Future prospects for moments measurements

Christoph Schwanda Institute of High Energy Physics Austrian Academy of Sciences

MITP Topical Workshop: Challenges in Semileptonic B Decays April 20-24, 2015, Mainz, Germany

THEORY RECAP: WHY DO WE MEASURE MOMENTS IN SEMILEPTONIC B DECAYS?

|V_{cb}| from inclusive decays

$$\mathsf{B} \to \mathsf{XIv} \qquad \Gamma = \frac{G_F^2 m_b^5}{192\pi^3} |V_{cb}|^2 \left(1 + \frac{c_5(\mu) \langle O_5 \rangle(\mu)}{m_b^2} + \frac{c_6(\mu) \langle O_6 \rangle(\mu)}{m_b^3} + \mathcal{O}(\frac{1}{m_b^4})\right)$$

- Based on the Operator Product Expansion (OPE)
- <O_i>: hadronic matrix elements (non-perturbative)
 c_i: coefficients (perturbative)
- Parton-hadron duality → the hadronic ME depend only on the initial state

	Kinetic scheme	1S scheme
	[JHEP 1109 (2011) 055]	[PRD70, 094017 (2004)]
O(1)	m _b , m _c	m _b
O(1/m ² _b)	μ^2_{π} , μ^2_{G}	$λ_1$, $λ_2$
O(1/m ³ _b)	$ρ_{D}^{3}$, $ρ_{LS}^{3}$	ρ ₁ , τ ₁₋₃

Moments of the E₁ and M²_X spectrum

Also other observables in B \rightarrow XIv can be expanded into an OPE with the same heavy quark parameters, e.g.,

• The nth moment of the (truncated) lepton energy spectrum

$$R_n(E_{\rm cut},\mu) = \int_{E_{\rm cut}} \left(E_\ell - \mu\right)^n \, \frac{\mathrm{d}\Gamma}{\mathrm{d}E_\ell} \, \mathrm{d}E_\ell \,, \quad \langle E_\ell^n \rangle_{E_{\rm cut}} = \frac{R_n(E_{\rm cut},0)}{R_0(E_{\rm cut},0)}$$

• The nth moment of the (truncated) M²_x spectrum

$$\langle m_X^{2n}\rangle_{E_{\rm cut}} = \frac{\displaystyle \int_{E_{\rm cut}} (m_X^2)^n \, \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2}{\displaystyle \int_{E_{\rm cut}} \frac{{\rm d}\Gamma}{{\rm d}m_X^2} \, {\rm d}m_X^2}$$

Master plan:

- Measure the quark masses and heavy quark parameters using moments
- Substitute them in the formula of the semileptonic width
- Determine $|V_{cb}|$ from the semileptonic branching fraction

THE CURRENT STATUS

Moment measurements available

BaBar	$: n=0,1,2,3$ [PRD 69, 111104 (2004), PRD 81, 032003 (2010)] $: n=1,2, 3$ [PRD 81, 032003 (2010)]
Belle	<e<sup>nl>: n=0,1,2,3 [PRD 75, 032001 (2007)]</e<sup>
	<m<sup>2n_X>: n=1,2 [PRD 75, 032005 (2007)]</m<sup>
CDF	<m<sup>2n_X>: n=1,2 [PRD 71, 051103 (2005)]</m<sup>
CLEO	<m<sup>2n_X>: n=1,2 [PRD 70, 032002 (2004)]</m<sup>
DELPHI	<e<sup>n >: n=1,2,3</e<sup>
	<m<sup>2n_X>: n=1,2,3 [EPJ C45, 35 (2006)]</m<sup>

EPJ C45, 35 (2006)

DELPHI hadronic moments

- D^{**} mass distribution
 - − Reconstructed decays: b → $\{D^0\pi^+, D^+\pi^-, D^{*+}\pi^-\}I^+\nu$
 - Fit to the $D^0\pi^+$, $D^+\pi^-$ and $D^{*+}\pi^$ mass distributions in which the narrow D^{**} states (D_1 , D_2^*) are constrained
- Used to calculate hadronic moments up to M⁵_x (for E_{cut} = 0)

 $< m_H^n >= p_D m_D^n + p_{D^*} m_{D^*}^n + p_{D^{**}} < m_{D^{**}}^n >$

p_{D_i}	 $\mathrm{BR}(\overline{\mathrm{B}^0_{\mathrm{d}}}{\rightarrow}\mathrm{D}_i\ell^-\overline{\nu}_\ell)$
	 $\mathrm{BR}(\overline{\mathrm{B}^0_{\mathrm{d}}} \rightarrow c\ell^- \overline{\nu}_\ell)$

	M_1^H	M_2^H	M_3^H	M_4^H	M_5^H
	$(\text{GeV}/c^2)^2$	$(\text{GeV}/c^2)^4$	$(\text{GeV}/c^2)^6$	$(\text{GeV}/c^2)^8$	$({\rm GeV}/c^2)^{10}$
value	0.647	1.98	7.4	35.7	205
stat. uncert.	± 0.046	± 0.23	± 1.3	± 7.9	± 1080
Ext. BR	0.079	0.22	0.8	4.1	23.4
$b_{\pi\pi}$	± 0.039	± 0.15	± 0.6	± 2.8	± 16.4
$m_{D_0^*}$	± 0.015	± 0.04	± 0.0	± 0.7	∓ 7.0
backg. param	0.007	0.04	0.2	1.2	8.0
$\overline{\mathbf{B}_{s}^{0}}, \Lambda_{b}^{0}$	± 0.007	± 0.03	± 0.2	± 0.9	± 5.2
d_{\pm} dist.	0.005	0.03	0.2	1.1	7.4
$\Gamma(D_2^*) = 40 \text{MeV}/c^2$	-0.004	-0.02	-0.1	-0.9	-5.8
Tot. syst.	0.090	0.27	1.1	5.4	32.3

DELPHI lepton moments

- Lepton spectrum in inclusive semileptonic b-hadron decays
- The lepton energy moments are calculated from the background subtracted, unfolded spectrum

	M_1^ℓ	$M_2^{\prime \ell}$	$M_3^{\prime \ell}$
	(GeV)	$(GeV)^2$	$(GeV)^3$
value	1.3782	0.1838	-0.0301
stat. uncert.	± 0.0073	± 0.0058	± 0.0015
B species	± 0.0027	∓ 0.0017	∓ 0.0005
$B \rightarrow D, D^*, D^{**}\ell \overline{\nu}_{\ell}$	± 0.0010	± 0.0005	± 0.0001
B fragmentation	± 0.0027	∓ 0.0020	∓ 0.0007
$B \rightarrow X_u \ell \overline{\nu}_\ell$	± 0.0008	± 0.0003	∓ 0.0001
e.m. radiation	± 0.0035	± 0.0001	∓ 0.0004
Bkg modelling	± 0.0026	∓ 0.0011	∓ 0.0005
B direction reconstruction	± 0.0027	± 0.0018	∓ 0.0006
B energy reconstruction	± 0.0027	± 0.0011	∓ 0.0003
B mass cut	± 0.0051	∓ 0.0031	∓ 0.0017
Unfolding	± 0.0031	± 0.0028	± 0.0029
Tot. syst.	± 0.0092	± 0.0055	± 0.0036

Again, moments are for E_{cut} = 0

EPJ C45, 35 (2006)

232M BB

BaBar hadronic moments PRD 81, 032003 (2010)

 Fully reconstruct the hadronic decay of one B in Y(4S) → BB (efficiency ~0.4%, purity ~80%)

- Require one identified lepton amongst the signal-side particles (p > 0.8 GeV/c)
- Combine all remaining particles to the X system and do a kinematic fit
 - 4-momentum conservation
 - Missing mass consistent with zero mass neutrino

Moment measurement

PRD 81, 032003 (2010)

Hadronic mass spectrum
 after kinematic fit

- Linear correction of the measured moments in bins of X multiplicity, E_{miss}-cp_{miss} and lepton momentum
- Moments of the hadronic mass spectrum up to M⁶_x for E_{cut} between 0.8 and 1.9 GeV (in B rest frame) are measured
- Also mixed mass-energy moments are determined and the electron energy moments from [PRD69, 111104] are re-evaluated

- For both the E_I and M²_x measurements, similar 152M BB experimental method using fully reconstructed events
- The finite detector resolution is unfolded with SVD algorithm [NIM A372, 469 (1996)]
- $\langle E^n_e \rangle$ measured for n=0,...,4 and E_{cut} =0.4-2.0 GeV
- $< M^{2n}_{X} >$ measured for n=1,2 and $E_{cut} = 0.7-1.9$ GeV

Global fit (kinetic scheme)

[Phys.Rev.D89, 014022 (2014)]

th. corr. scenario	m_b^{kin}	m_c	μ_π^2	$ ho_D^3$	μ_G^2	$ ho_{LS}^3$	$\mathrm{BR}_{c\ell\nu}(\%)$	$10^3 V_{cb} $
D [11]	4.541	0.987	0.414	0.154	0.340	-0.147	10.65	42.42
$\overline{m}_c(3 { m GeV})$	0.023	0.013	0.078	0.045	0.066	0.098	0.16	0.86
A [11]	4.540	0.987	0.454	0.167	0.234	-0.078	10.45	41.85
$\overline{m}_c(3 { m GeV})$	0.014	0.013	0.035	0.022	0.040	0.085	0.13	0.74
B [11]	4.542	0.987	0.457	0.184	0.290	-0.135	10.51	42.15
$\overline{m}_c(3{ m GeV})$	0.017	0.013	0.056	0.035	0.056	0.095	0.14	0.77
C [11]	4.539	0.987	0.415	0.155	0.336	-0.147	10.65	42.45
$\overline{m}_c(3{ m GeV})$	0.022	0.013	0.073	0.043	0.066	0.098	0.16	0.86
D [11]	4.538	0.986	0.415	0.153	0.336	-0.145	10.65	42.46
$\overline{m}_c(3 { m GeV}), m_b$	0.018	0.012	0.078	0.045	0.064	0.098	0.16	0.84
D [13]	4.549	0.996	0.413	0.154	0.339	-0.146	10.65	42.40
$\overline{m}_c(3 { m GeV})$	0.029	0.026	0.078	0.045	0.066	0.098	0.16	0.87
D [11]	4.548	1.092	0.428	0.158	0.344	-0.146	10.66	42.24
m_c^{kin}	0.023	0.020	0.079	0.045	0.066	0.098	0.16	0.85
D [11]	4.553	1.088	0.428	0.155	0.328	-0.139	10.67	42.42
$\overline{m}_c(2 \text{GeV}), m_b$	0.018	0.013	0.079	0.045	0.064	0.098	0.16	0.83

$\overline{m}_c(3{ m GeV})$	$m_b^{kin}(1{ m GeV})$	$\overline{m}_b(\overline{m}_b)$
0.986(13) [1] 4.541(23)	4.171(38)
0.986(6) [12]	4.540(20)	4.170(36)
0.994(26) [1	3 4.549(29)	4.179(42)

- [11] K. G. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer, P. Marquard, M. Steinhauser and C. Sturm, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110 [hep-ph]].
- I. Allison et al. [HPQCD Collaboration], Phys. Rev. D78, 054513 (2008)
 [arXiv:0805.2999 [hep-lat]]; C. McNeile, C. T. H. Davies, E. Follana, K. Hornbostel and G. P. Lepage, [HPQCD Collaboration] Phys. Rev. D 82 (2010) 034512 [arXiv:1004.4285 [hep-lat]].
- [13] B. Dehnadi, A. H. Hoang, V. Mateu and S. M. Zebarjad, JHEP 1309 (2013) 103 [arXiv:1102.2264 [hep-ph]].

A FEW THOUGHTS ABOUT FUTURE MEASUREMENTS

Looking at the Belle hadron moments

E^*_{\min} (GeV)	$\langle M_X^2 angle ~({ m GeV}^2/c^4)$	$\langle (M_X^2 - \langle M_X^2 \rangle)^2 \rangle ~({ m GeV}^4/c^8)$	$\langle M_X^4 angle ~({ m GeV}^4/c^8)$
0.7	$4.403 \pm 0.036 \pm 0.052$	$1.494 \pm 0.173 \pm 0.327$	$20.88 \pm 0.48 \pm 0.77$
0.9	$4.353 \pm 0.032 \pm 0.041$	$1.229 \pm 0.138 \pm 0.244$	$20.18 \pm 0.40 \pm 0.58$
1.1	$4.293 \pm 0.028 \pm 0.029$	$0.940 \pm 0.098 \pm 0.137$	$19.37 \pm 0.33 \pm 0.36$
1.3	$4.213 \pm 0.027 \pm 0.024$	$0.641 \pm 0.071 \pm 0.080$	$18.40 \pm 0.29 \pm 0.26$
1.5	$4.144 \pm 0.028 \pm 0.022$	$0.515 \pm 0.061 \pm 0.064$	$17.69 \pm 0.28 \pm 0.23$
1.7	$4.056 \pm 0.033 \pm 0.022$	$0.322 \pm 0.058 \pm 0.040$	$16.77 \pm 0.32 \pm 0.21$
1.9	$3.996 \pm 0.041 \pm 0.021$	$0.143 \pm 0.056 \pm 0.038$	$16.11 \pm 0.38 \pm 0.20$
	<u>^ </u>	<u>†</u> †	1 1

- Systematic uncertainties dominate already with a dataset of 140/fb -- main contributions:
 - Background (secondary leptons) and signal model (D^{**}) at low E_{cut} values
 - Unfolding method at high E_{cut} values

Looking at the Belle electron moments

$E_{\rm cut}[{ m GeV}]$	$M_1 \; [{ m MeV}]$	$M_2 \; [10^{-3} { m GeV}^2]$	$M_3 [10^{-3} { m GeV^3}]$	$M_4 [10^{-3} { m GeV}^4]$
0.4	$1393.92 \pm 6.73 \pm 3.02$	$168.77 \pm 3.68 \pm 1.53$	$-21.04\pm1.93\pm0.66$	$64.153 \pm 1.813 \pm 0.935$
0.6	$1427.82\pm5.82\pm2.55$	$146.15 \pm 2.88 \pm 1.08$	$\textbf{-11.04} \pm 1.35 \pm 0.49$	$45.366 \pm 1.108 \pm 0.548$
0.8	$1480.04\pm4.81\pm2.13$	$117.97 \pm 2.05 \pm 0.55$	$\textbf{-3.45} \pm 0.83 \pm 0.30$	$28.701 \pm 0.585 \pm 0.247$
1.0	$1547.76\pm3.96\pm1.45$	$88.17 \pm 1.42 \pm 0.36$	$0.83 \pm 0.49 \pm 0.20$	$15.962 \pm 0.302 \pm 0.142$
1.2	$1627.79\pm3.26\pm1.08$	$61.36 \pm 1.02 \pm 0.36$	$2.40\pm0.30\pm0.11$	$7.876 \pm 0.162 \pm 0.106$
1.4	$1719.96\pm2.58\pm1.10$	$38.99 \pm 0.71 \pm 0.24$	$2.33 \pm 0.16 \pm 0.07$	$3.314 \pm 0.080 \pm 0.055$
1.6	$1826.15\pm1.80\pm1.03$	$21.75 \pm 0.47 \pm 0.22$	$1.45 \pm 0.08 \pm 0.05$	$1.129 \pm 0.033 \pm 0.032$
1.8	$1943.18 \pm 0.93 \pm 1.16$	$10.14 \pm 0.28 \pm 0.18$	$0.68 \pm 0.03 \pm 0.04$	$0.283 \pm 0.010 \pm 0.017$
2.0	$2077.59\pm0.21\pm1.23$	$3.47 \pm 0.13 \pm 0.19$	$0.19 \pm 0.01 \pm 0.03$	$0.047 \pm 0.002 \pm 0.007$
	1 1	<u>^ </u>	<u>^</u>	<u>↑</u> ↑

- Here, systematic uncertainties are still subdominant at 140/fb
- The main systematic error contribution is the signal model (D^{**}, D^(*) form factors)

What can Belle II do?

- Repeating the lepton and hadron moment analyses on Belle II data samples will lead to some improvement in the accuracy (mostly for lepton moments)
- However, does this lead to an improvement in |V_{cb}| and/or in the OPE parameters?

Does it help?

Current default fit:

FCN=	13.46754	FROM MINOS EDM= 0.648	STATUS=SU E-06 STRATE	ICCESSFUL 69 :GY=1 ER	8 CALLS ROR MATRIX /	959 TOTAL ACCURATE
EXT	PARAMETER		PARABOLIC	MINOS E	RRORS	
NO.	NAME	VALUE	ERROR	NEGATIVE	POSITIVE	
1	br	10.645	0.16027	-0.16025	0.16030	
2	mb	4.5510	0.28713E-01	-0.30340E-01	0.30309E	01
з	mc	1.0014	0.27359E-01	-0.28595E-01	0.28609E	01
4	mu2pi	0.41203	0.73521E-01	-0.73623E-01	0.73471E	01
5	rhoD	0.15359	0.43028E-01	-0.42973E-01	0.43142E	01
6	mu2G	0.33686	0.65477E-01	-0.65541E-01	0.65605E	01
7	rhoLS	-0.14623	0.97875E-01	-0.97913E-01	0.97871E	01
8	vcb	0.42416E-01	0.84703E-03	-0.83975E-03	0.86070E	03

Divide all Belle errors by a factor 2:

CN=	21.85681	FROM MINOS	S STATUS=SU	ICCESSFUL 60	52 CALLS	900 TOTAL
		EDM= 0.16	E-05 SIRATE		KROK MATRIX	ACCORATE
EXT	PARAMETER		PARABOLIC	MINOS E	RRORS	
NO.	NAME	VALUE	ERROR	NEGATIVE	POSITIVE	
1	br	10.674	0.11090	-0.11090	0.11090	
2	mb	4.5475	0.30988E-01	-0.30183E-01	0.301488	- 01
з	mc	1.0027	0.28923E-01	-0.28578E-01	0.285846	- 01
4	mu2pi	0.43533	0.71915E-01	-0.72010E-01	0.71814E	- 01
5	rhoD	0.15989	0.42780E-01	-0.42668E-01	0.42799E	- 01
6	mu2G	0.32749	0.65620E-01	-0.65305E-01	0.653846	- 01
7	rhoLS	-0.14599	0.97893E-01	-0.97868E-01	0.97817E	- 01
8	vcb	0.42623E-01	0.80460E-03	-0.79087E-03	3 0.81180E	- 03
	EXT NO. 1 2 3 4 5 6 7 8	CN= 21.85681 EXT PARAMETER NO. NAME 1 br 2 mb 3 mc 4 mu2pi 5 rhoD 6 mu2G 7 rhoLS 8 vcb	CN= 21.85681 FROM MINOS EDM= 0.16 EXT PARAMETER 0. 0.16 NO. NAME VALUE 1 br 10.674 2 mb 4.5475 3 mc 1.0027 4 mu2pi 0.43533 5 rhoD 0.15989 6 mu2G 0.32749 7 rhoLS -0.14599 8 vcb 0.42623E-01	CN= 21.85681 FROM MINOS STATUS=SL EDM= 0.16E-05 STRATE EXT PARAMETER PARABOLIC NO. NAME VALUE ERROR 1 br 10.674 0.11090 2 mb 4.5475 0.30988E-01 3 mc 1.0027 0.28923E-01 4 mu2pi 0.43533 0.71915E-01 5 rhoD 0.15989 0.42780E-01 6 mu2G 0.32749 0.65620E-01 7 rhoLS -0.14599 0.97893E-01 8 vcb 0.42623E-01 0.80460E-03	CN= 21.85681 FROM MINOS STATUS=SUCCESSFUL 66 EDM= 0.16E-05 STRATEGY= 1 EF EXT PARAMETER PARABOLIC MINOS E NO. NAME VALUE ERROR NEGATIVE 1 br 10.674 0.11090 -0.11090 2 mb 4.5475 0.30988E-01 -0.30183E-01 3 3 mc 1.0027 0.28923E-01 -0.28578E-01 -0.28578E-01 -0.42668E-01 -0.42668E-01 -0.42668E-01 -0.42668E-01 -0.42668E-01 -0.42668E-01 -0.65305E-01 -0.65305E-01 -0.65305E-01 -0.65305E-01 -0.97868E-01 -0.97868E-01 -0.97868E-01 -0.97868E-01 -0.97868E-01 -0.97868E-01 -0.97987E-03 -0.79087E-03 -0.79087E-03	CN= 21.85681 FROM MINOS EDM= STATUS=SUCCESSFUL STRATEGY= 662 CALLS ERROR MATRIX EXT PARAMETER PARABOLIC MINOS ERRORS NO. NAME VALUE ERROR NEGATIVE POSITIVE 1 br 10.674 0.11090 -0.11090 0.11090 2 mb 4.5475 0.30988E-01 -0.30183E-01 0.30148E 3 mc 1.0027 0.28923E-01 -0.28578E-01 0.28584E 4 mu2pi 0.43533 0.71915E-01 -0.72010E-01 0.71814E 5 rhoD 0.15989 0.42780E-01 -0.42668E-01 0.42799E 6 mu2G 0.32749 0.65620E-01 -0.65305E-01 0.65384E 7 rhoLS -0.14599 0.97893E-01 -0.97868E-01 0.97817E 8 vcb 0.42623E-01 0.80460E-03 -0.79087E-03 0.81180E

• Error on |V_{cb}| improves only from 2.0% to 1.9%

Summary and conclusions

- A number of moment measurements are available from different experiments
 - The data is consistent and consistent with theory
 - They allow to determine $|V_{cb}|$ at the level of 2%
- Some improvement in the moment measurements is possible if these analyses are repeated on the Belle II data set but this will have little impact on |V_{cb}| and the OPE parameters
- Clearly, we need new ideas to improve $|V_{cb}|$ inclusive
 - Can the theory errors be reduced?
 - Which observables (not used in the analysis so far) should be measured at Belle II to better constrain the OPE?
 - Can LHCb measure moments at $E_{cut} = 0$?

