Quark masses from lattice QCD

Andreas S. Kronfeld Fermilab & IAS TU München

MITP Workshop Challenges in Semileptonic *B* Decays

20 April 2015

Summary Plots

- Narrow vertical bands are PDG "weighted averages" of continuum results w/ ETM $n_f = 2$ and HPQCD 2010; wider vertical lines show ± in PDG "evaluation".
- Error bar widened because of QED effects; concerns of alia et Hoang et alia.

Questions arising from these plots

- Why are the HPQCD results have such smaller errors than the others?
- To what extent are QED effects taken into account?
- Do the criticisms of arXiv:1102.2264 apply to lattice QCD?
 - Sensitivity to higher-order corrections in current-current correlators!
 - Treatment of $e^+e^- \rightarrow c\bar{c}$ in regions with sparse or untagged data!
- How are the calculations actually done?
- What are the prospects for further improvement?

Basic Steps

- Objective: \overline{MS} mass at some specified scale μ .
 - Objection: MS mass defined only in perturbation theory; overruled for now.
- First step: adjust bare lattice masses so that various hadron masses agree with experiment

$\frac{1}{2}(m_u + m_d)$	m_s	$m_d - m_u$	m_c	m_b	\boldsymbol{m}_t	heta	α_s
M_π^2	M_K^2	$\Delta M_K^2 - \mathrm{em}$	D_s or η_c	B_s or η_b	_	0	w_0 or r_1

- Cross check: rest of low-lying hadron masses agree with experiment.
- Remaining steps: compute other observable(s) nonperturbatively to build a bridge to the MS mass.

Error Budgets

HPQCD 2014, $m_c(3 \text{ GeV}), m_b/m_c$

PRD 91 (2015) 054508

TABLE IV. Error budget [31] for the *c* mass, QCD coupling, and the ratios of quark masses m_c/m_s and m_b/m_c from the $n_f = 4$ simulations described in this paper. Each uncertainty is given as a percentage of the final value. The different uncertainties are added in quadrature to give the total uncertainty. Only sources of uncertainty larger than 0.05% have been listed.

	$m_c(3)$	$\alpha_{\overline{\mathrm{MS}}}(M_Z)$	m_c/m_s	m_b/m_c
Perturbation theory	0.3	0.5	0.0	0.0
Statistical errors	0.2	0.2	0.3	0.3
$a^2 \rightarrow 0$	0.3	0.3	0.0	1.0
$\delta m_{uds}^{\text{sea}} \to 0$	0.2	0.1	0.0	0.0
$\delta m_c^{\text{sea}} \to 0$	0.3	0.1	0.0	0.0
$m_h \neq m_c$ [Eq. (15)]	0.1	0.1	0.0	0.0
Uncertainty in $w_0, w_0/a$	0.2	0.0	0.1	0.4
α_0 prior	0.0	0.1	0.0	0.0
Uncertainty in m_{η_s}	0.0	0.0	0.4	0.0
$m_h/m_c \to m_b/m_c$	0.0	0.0	0.0	0.4
δm_{η_c} : electromag., annih.	0.1	0.0	0.1	0.1
δm_{η_b} : electromag., annih.	0.0	0.0	0.0	0.1
Total:	0.64%	0.63%	0.55%	1.20%

- Statistical errors are tiny.
- Higher-order PT: fit extra terms
 - next 1 in β and γ running;
 - next 8–15 in moments;
 - offsets μ dependence.
- Extrapolation errors controlled by precision plus numerous (constrained) fit parameters.
- EM part of mass subtracted.

ETM 2014, *m_c*(2 GeV)

NPB 887 (2014) 19

Source	%	ETM/ HPQCD	
Stats+fits	2.6	13	
χΡΤ	0.2	_	
a^2	0.4	1.3	
Matching	1.4	NA	
PT	1.3	4.2	
tuning		?	
QED		?	

- Statistics are a killer:
 - 60–150 configs (ETM) vs.
 200–1020 (HPQCD←MILC).
- Staggered fermions are fast enough to allow
 - physical light quarks;
 - more lattice spacings.
- Precision brings PT under control.

Quantum Field Theory

Quark Masses

- In a QFT like QCD quark masses really mean one of
 - bare Lagrangian mass;
 - renormalized mass:
 - mass independent scheme, such as MS or Schrödinger functional;
 - mass dependent scheme, such as RI-MOM in Landau gauge;
 - additive scheme, such as kinetic scheme, potential subtracted, 1S,
 - Hadron mass with binding energy subtracted off.

Perturbative Matching

• In perturbation theory, assert that lattice and \overline{MS} yield the same pole mass:

$$Z_{\bar{m}}\bar{m}=m_{\text{pole}}=Z_{m_0}m_0$$

Although m_{pole} has infrared problems,^{*} it is IR finite & gauge independent, so the matching is well defined it PT. *renormalons, instantons, confinement

- Drawbacks: lattice perturbation theory for Z_{m0} is difficult:
 - two loops at most;
 - sometimes (e.g., lattice HQET, Wilson or nonrelativistic quarks) additive renormalization is needed too: $m_{\text{pole}} = Z_{m_0}(m_0 m_{\text{crit}})$
- Move to methods that are more convenient and, hence, more accurate.

Nonperturbative Matching I

• Multiplicative renormalization can be computed nonperturbatively from the scalar or pseudoscalar density:

$$Z_{m_0} = \frac{Z_V}{Z_S} = \frac{Z_A}{Z_P}$$

- Noether currents on the lattice are point-split and, hence, noisier.
- Local currents have $Z_{V,A} \neq 1$, but Z_V is easy to obtain from the flavor charge, and Z_A can be obtained from chiral Ward-Takahashi identities. Matching.
- The QFT mass, and $Z_S \& Z_P$ too, have an anomalous dimension: need to define a renormalization scheme, and introduce a renormalization scale.

Nonperturbative Matching II

• When the bare mass suffers from additive renormalization, one can define

$$m'_{c} - m'_{s} = (M_{D} - M_{K}) \frac{\langle K | \bar{s} \gamma^{0} c | D \rangle}{\langle K | \bar{s} c | D \rangle} \qquad \text{PCVC}$$
$$m'_{c} + m'_{s} = M_{D_{s}} \frac{\langle 0 | \bar{s} \gamma^{0} \gamma^{5} c | D_{s} \rangle}{\langle 0 | \bar{s} \gamma^{5} c | D_{s} \rangle} \qquad \text{PCAC}$$

using flavor nonsinglet PCAC to avoid a term from the axial anomaly.

- States chosen here are for illustration: in SF method use finite-volume states.
- As before, the renormalization scheme of m' is inherited from $Z_V/Z_S \& Z_A/Z_P$.
- Can use fictitious mesons with equal-mass flavors to avoid PCVC step.

Summary Plot for Charm

Current-current Correlator

Moments of the Charmonium Correlator

• The non-lattice heavy-quark masses with the smallest error bars come from moments of the charmonium correlator:

$$\tilde{G}_n = \left(\frac{2}{3}\right)^2 \frac{12\pi^2}{n!} \left. \frac{d^n \Pi(s)}{ds^n} \right|_{s=0}$$

- Experiments measure $\Pi(s)$ in $e^+e^- \rightarrow c\bar{c}$ hadrons.
- The same idea can be exploited at spacelike momentum transfer
- Then $\Pi(s)$, s < 0, is the Fourier transform of the current-current correlation function.

$$G_n = \sum_t (t/a)^n \sum_{\boldsymbol{x}} \langle J(\boldsymbol{x},t) J(\boldsymbol{0},0) \rangle$$

• Calculable in lattice QCD [Bochkarev & de Forcrand, hep-lat/9505025]:

• In the correlator,

$$G_n = \sum_t (t/a)^n \sum_{\boldsymbol{x}} \langle J(\boldsymbol{x},t) J(\boldsymbol{0},0) \rangle$$

J is mP or V^0 , for example.

- Take continuum limit of these moments & use continuum $\overline{\text{MS}}$ perturbation theory for several G_n ($n \le 22$) to extract α_s and m_Q .
- Complication: lattice has finite time extent with, say, periodic boundary conditions:
 - at large *t*, the correlator saturates to the lowest-lying state (η_c or J/ψ);
 - HPQCD replaces correlator at these large *t* with this state.
- Study of several moments allows for cross checks.

Summary

Perspective

- Any lattice-QCD average a la FLAG would be dominated by HPQCD results.
- Higher statistics allows a much richer set of tests, cross-checks, and modeling of higher-order PT.
 - Fermilab/MILC, who use the same ensembles, should (and has started) a similar study of quarkonium correlators. (We do have m_c/m_s .)
- In my view, the QED effects and issues of the perturbative series have been addressed (in the current-current correlator analyses).
- Thus, the PDG "OUR EVALUATION" error bar is too large (*i.e.*, out of date).
- A thorough, professional (a la HFAG, FLAG, PDG!) averaging is called for.

Summary Plots

- Narrow vertical bands are PDG "weighted averages" of continuum results w/ ETM $n_f = 2$ and HPQCD 2010; wider vertical lines show ± in PDG "evaluation".
- Error bar widened because of QED effects and concerns of arXiv:1102.2264.

Projections

Lepage, Mackenzie, Peskin, arXiv:1404.0319 [hep-ph]

	$\delta m_b(10)$	$\delta \alpha_s(m_Z)$	$\delta m_c(3)$	δ_b	δ_c	δ_g
current errors [10]	0.70	0.63	0.61	0.77	0.89	0.78
+ PT	0.69	0.40	0.34	0.74	0.57	0.49
+ 0.03 fm	0.30	0.53	0.53	0.38	0.74	0.65
+ 0.023 fm	0.14	0.35	0.53	0.20	0.65	0.43
+ PT + 0.03 fm	0.28	0.17	0.21	0.30	0.27	0.21
+ PT + 0.023 fm	0.12	0.14	0.20	0.13	0.24	0.17
+ PT + 0.023 fm + Stat100	0.09	0.08	0.20	0.10	0.22	0.09
ILC goal				0.30	0.70	0.60