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Importance of |Vcb|

Since several years, exclusive decays prefer  
smaller |Vub| and |Vcb|

Vcb plays an important 
role in the determination 
of  UT 
!
!
and in the prediction of  
FCNC:
⇥ |VtbVts|2 � |Vcb|2

h
1 +O(�2)

i

"K ⇡ x|Vcb|4 + ...



Inclusive decays: basics

• Simple idea: inclusive decays do not depend on final state, long 
distance dynamics of  the B meson factorizes. An OPE allows to express 
it in terms of  B meson matrix elements of  local operators 

• The Wilson coefficients are perturbative, matrix elements of  local ops 
parameterize non-pert physics: double series in αs, Λ/mb  

• Lowest order: decay of  a free b,  linear Λ/mb absent. Depends on mb,c, 2 
parameters at O(1/mb2), 2 more at O(1/mb3)... 
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observables in the OPE

OPE valid for inclusive enough measurements, away from 
perturbative singularities ➠ semileptonic width, moments 
Current fits includes 6 non-pert parameters  
mb,c         µ2π,G        ρ3

D,LS   
and all known corrections up to O(Λ3/mb3)

NEW



Extraction of the OPE parameters 

 Global shape parameters (first moments of  the distributions) tell 
us about mb, mc and the B structure, total rate about |Vcb| 

  
OPE parameters describe universal properties of  the B meson and of  

the quarks → useful in many applications (rare decays, Vub,...) 

hadronic mass spectrumEl spectrum



Let’s focus on:

1. Status of  higher order corrections 

2. Estimate of  residual theoretical errors 

3. How the fit is actually done 
(assumptions, additional inputs,…) 

4. Electroweak corrections



higher order effects
• Reliability of  the method depends on our ability to control 

higher order effects.  Quark-hadron duality violation would 
manifest as inconsistency in the fit.  

• Purely perturbative corrections complete at 
NNLO, small residual error (kin scheme)Melnikov,Biswas,Czarnecki,Pak,PG 

• Higher power corrections O(1/mQ4,5) known                                 
Mannel,Turczyk,Uraltsev 2010  See Sascha’s talk                                            

• Mixed corrections perturbative corrections to power 
suppressed coefficients completed at O(αs/mb2)                               
Becher, Boos, Lunghi, Alberti, Ewerth, Nandi, PG



NNLO perturbative 
correctionscontrast to [6], where it was defined at µ = 0. Most of these changes have already been

included in the version of the Fortran code employed by HFAG [3] in the last few years.
The O(�2

s) corrections that are not enhanced by ⇥0, which we will call non-BLM correc-
tions, are known to be subdominant when �s is normalized at mb. They have been recently
computed in [13, 15, 14]. While Refs. [13, 15] adopt numerical methods and can take into
account arbitrary cuts on the lepton energy, the authors of [14] expand the moments in
powers of mc/mb and provide only results without cuts. The two calculations are in good
agreement and their implementation in our codes is in principle straightforward. However,
the strong cancellations occurring in the calculation of normalized central moments require
a high level of numerical precision. Indeed, radiative corrections to the El spectrum tend
to renormalize the tree level spectrum in a nearly constant way, i.e. hard gluon emission is
comparatively suppressed. This implies that the perturbative corrections tend to drop out
of normalized moments. Let us consider for instance the first leptonic moment in the kinetic
scheme with µ = 1GeV, using r = 0.25, mb = 4.6GeV and Ecut = 1GeV:

⌅El⇧El>1GeV = 1.54GeV
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It is interesting to note that such kinematic cancellations between numerator and denomina-
tor a�ect the O(�s), O(�2

s⇥0), and two-loop non-BLM corrections in a similar way. We have
indicated in brackets the numerical uncertainty of the non-BLM correction [13]: the resulting
coe⇥cient in that case is �0.06± 0.12. Similar conclusions can be drawn at di�erent values
of the cut and for higher linear moments. As discussed in [15], these cancellations are not
accidental. In the limit ⇤ ⇤ ⇤max = 1� r2 the cancellations between numerator and denom-
inator are complete at any perturbative order: therefore the higher the cut, the stronger the
cancellation. Moreover the peak of the lepton energy distribution is relatively narrow and
close to the endpoint, which further protects the moments from radiative corrections.

In the case of the higher central moments, additional cancellations occur at each pertur-
bative order between normalized moments. In ⇧2, for instance, ⌅E2

l ⇧ and ⌅El⇧2 tend to cancel
each other: for the same inputs as in Eq.(6) we have

⇧2 = ⌅E2
� ⇧ � ⌅E�⇧2 = (2.479� 2.393)GeV2 = 0.087GeV2.

Such cancellations are quite general and are further enhanced by higher Ecut. They are
simply a consequence of the fact that, as we have just seen, at each perturbative order the
spectrum follows approximately the tree-level spectrum, which is peaked at ⇤ ⇥ 0.7� 0.8.

One obvious consequence of the cancellations we have just discussed is that the numerical
accuracy with which the non-BLM corrections are known becomes a serious issue. While
we have explained the origin of the cancellations, we need a precise calculation to know
their exact extent, and the result will have some impact on the estimate of the remaining
theoretical uncertainty.
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✴ Complete 2loop corrections to 
width and moments with cuts now 
known, either in expansion mc/mb 
or numerically    Biswas-Melnikov, Pak-Czarnecki   

✴ Non-BLM effects ~15-30% of  BLM ones when αs(mb) is used, residual th error 
on Vcb O(0.5%). 

✴ Strong cancellations between different contributions make NNLO to lept 
moments small: non-accidental, numerical accuracy crucial           PG 2011
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Lepton energy spectrum 
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where �0 is the total width at the tree-level. Any Ln can be expanded in �s and 1/mb
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where we have distinguished between BLM and non-BLM two-loop corrections (⇥0 = 11 �
2
3nl) and indicated by L(pow)

n the power suppressed contributions. The expansion for the
normalized moments is
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and an analogous formula holds for R�.
Both available non-BLM calculations have been performed in the on-shell scheme and give

us results for L(2)
n at di⇥erent values of r with an uncertainty due either to the numerical

integration (and therefore of statistical origin) or to the truncation of the r expansion.

However, L(2)
n has been computed at ⌅ ⇤= 0 only numerically [15]. The two calculations can

be combined in order to reduce the final uncertainty. In the analytic calculation of [14] the
expansion of the O(�2

s) corrections to the moments at ⌅ = 0 includes at most O(r7) terms
and converges quite slowly for r ⇥ 0.2 � 0.25, in the relevant physical range. We can take
the size of the last term included, O(r7), as a rough estimate of its non-gaussian uncertainty.

It turns then out that the combinations of two-loop non-BLM integrals L(2)
i that enter the

normalized moments, ⇤(2)i , at ⌅ = 0 and r <⇥ 0.26 can be more accurately determined using
[14] then using the tables of [15].

It is also helpful to notice that, since the electron energy spectrum must vanish at low en-
ergies at least like E2

� , only terms O(⌅3) and higher are relevant: the two-loop corrections ⇤(2)i

must be flat for small ⌅ and the results of [15] are perfectly consistent with this requirement.
One can therefore perform a fit to all the available results at di⇥erent r and ⌅ values using
simple functions of ⌅ and r. We have checked that, given the level of accuracy provided in
[15], it is su⇤cient to consider an expansion up to O(⌅5) with coe⇤cients linearly dependent
on r. The ⌥2/dof is generally low, about 0.4, as the spread of central values in the low-⌅

region is much smaller than the size of the errors. We also know that the functions ⇤(2)i (⌅, r)
must vanish linearly at the endpoint ⌅ = 1 � r2, and one can implement this constraint in
the fit, but the result are unchanged for ⌅ < 0.7.

In the first plot in Fig. 1 we show the combination ⇤(2)1 that enters the first normalized
leptonic moment �1 as a function of ⌅ for r = 0.25. In the plot we compare the numerical
evaluations given in Table 1 of [15] and their associated error bars with the fit. At ⌅ = 0
we also have the results obtained in [14], whose uncertainty is estimated as explained above.
The shaded band represents the 1⌃ uncertainty of the fit. In the case of Eq. (6) the error of
the non-BLM O(�2

s) coe⇤cient estimated in this way is ±0.03, with a sizable reduction wrt
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Suppression of hard gluon radiation makes 
spectrum similar at any pert order. 	


!
Correction ηi vanishes close to endpoint 

and for same spectrum
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NNLO results
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Ecut=1GeV,   mc/mb=0.25

Small corrections. Cancellations	

may be partially spoiled by choice 

of scheme

µ = 0 µ = 1GeV
⇤1 ⇤2 ⇤3 ⇤1 ⇤2 ⇤3

tree 1.4131 0.1825 -0.0408 1.4131 0.1825 -0.0408
1/m3

b 1.3807 0.1808 -0.0354 1.3807 0.1808 -0.0354
O(�s) 1.3790 0.1786 -0.0354 1.3853 0.1811 -0.0349
O(⇥0�2

s) 1.3731 0.1766(1) -0.0350(3) 1.3869 0.1820(1) -0.0341(3)
O(�2

s) 1.3746(1) 0.1767(2) -0.0349(6) 1.3865(1) 0.1816(2) -0.0340(6)
tot error [6] 0.0125 0.0055 0.0026

Table 1: The first three leptonic moments for the reference values of the input parameters and
Ecut = 0, in the on-shell and kinetic schemes. In parentheses the numerical uncertainty of the
BLM and non-BLM contributions (see text).

⇤1 ⇤2 ⇤3 R�

µ = 0
tree 1.5674 0.0864 -0.0027 0.8148
1/m3

b 1.5426 0.0848 -0.0010 0.8003
O(�s) 1.5398 0.0835 -0.0010 0.8009
O(⇥0�2

s) 1.5343 0.0818 -0.0009 0.7992
O(�2

s) 1.5357(2) 0.0821(6) -0.0011(16) 0.7992(1)
µ = 1GeV

O(�s) 1.5455 0.0858 -0.0003 0.8029
O(⇥0�2

s) 1.5468 0.0868 0.0005 0.8035
O(�2

s) 1.5466(2) 0.0866(6) 0.0002(16) 0.8028(1)
O(�2

s)
� – 0.0865 0.0004 –

tot error [6] 0.0113 0.0051 0.0022

Table 2: The first three leptonic moments for the reference values of the input parameters and
Ecut = 1GeV, in the on-shell and kinetic schemes. Error from BLM correction ????????
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µ = 1GeV, mMS
c (2GeV)

⇤1 ⇤2 ⇤3 R�

tree 1.5792 0.0890 -0.0032 0.8200
1/m3

b 1.5536 0.0873 -0.0013 0.8058
O(�s) 1.5502 0.0869 -0.0003 0.8056
O(⇥0�2

s) 1.5540 0.0884 0.0004 0.8073
O(�2

s) 1.5523(3) 0.0879(6) -0.0002(16) 0.8061(1)
O(�2

s)
� – 0.0878 0.0004 –

µ = 1GeV, mMS
c (3GeV)

⇤1 ⇤2 ⇤3 R�

tree 1.6021 0.0940 -0.0043 0.8296
1/m3

b 1.5748 0.0922 -0.0020 0.8159
O(�s) 1.5613 0.0894 -0.0004 0.8118
O(⇥0�2

s) 1.5629 0.0904 0.0004 0.8125
O(�2

s) 1.5571(4) 0.0890(9) -0.0008(25) 0.8090(2)
O(�2

s)
� – 0.0889 0.0006 –

Table 3: The first three leptonic moments for the reference values of the input parameters and
Ecut = 1GeV, in the kinetic scheme with MS charm mass evaluated at µ = 2 and 3GeV, with
mc(2GeV) = 1.1GeV and mc(3GeV) = 1GeV. The uncertainty in the O(�2

s) is larger in the
second case because the mc/mb value is closer to the edge of the range considered in [15].
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µ = 0 µ = 1GeV
h1 h2 h3 h1 h2 h3

LO 4.345 0.198 -0.02 4.345 0.198 -0.02
1/m3

b 4.452 0.515 4.90 4.452 0.515 4.90
O(�s) 4.563 0.814 5.96 4.426 0.723 4.50
O(⇥0�2

s) 4.701 1.105 6.85 4.404 0.894 4.08
O(�2

s) 4.682(1) 1.066(3) 6.69(4) 4.411(1) 0.832(4) 4.08(4)
tot error [6] 0.149 0.501 1.20

Table 7: The first three hadronic moments for the reference values of the input parameters and
Ecut = 1GeV, in the on-shell and kinetic schemes.

µ = 1GeV, mMS
c (2GeV) µ = 1GeV, mMS

c (3GeV)
h1 h2 h3 h1 h2 h3

1/m3
b 4.301 0.551 4.94 4.020 0.618 5.02

O(�s) 4.355 0.758 4.60 4.192 0.830 4.79
O(⇥0�2

s) 4.304 0.936 4.21 4.169 1.015 4.49
O(�2

s) 4.328 0.865(4) 4.18(4) 4.245(1) 0.922(5) 4.38(4)

Table 8: The first three hadronic moments for the reference values of the input parameters and
Ecut = 1GeV, in the kinetic scheme with MS charm mass evaluated at µ = 2 and 3GeV, with
mc(2GeV) = 1.1GeV and mc(3GeV) = 1GeV. The uncertainty in the O(�2

s) is larger in the
second case because the mc/mb value is closer to the edge of the range considered in [15].
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Figure 6: Ecut dependence of leptonic (left) and hadronic (right) at NNLO in the kinetic scheme
with µ = µc = 1GeV. The black, red, blue lines refer to ⇤1, 10⇥⇤2,�10⇥⇤3 and to h1, 8⇥h2, h3,
respectively, each expressed in GeV to the appropriate power. The dotted lines (indistinguishable
for the leptonic moments) represent the predictions at O(�2

s⇥0).
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effects                O(�s/m
2
b)

Boos,Becher,Lunghi 2007 
Ewerth,Nandi, PG 2009 
Alberti,Ewerth,Nandi,PG 2012 
Alberti,Nandi,PG 2013

Wi(π,n) can be computed using reparameterization invariance which relates 
different orders in the HQET:  e.g. for i=3 at all orders

Manohar 2010

Proliferation of  power divergences, up to 1/u3,  
and complex kinematics (q2,q0, mc,mb)  Wi(G,1) requires proper matching.

where the structure functions Wi are functions of q̂2, q̂0 or equivalently of q̂2, û, vµ is the
four-velocity of the B meson, and q̂µ = qµ/mb.

In the limit of massless leptons only W1,2,3 contribute to the decay rate and one has

d�

dÊ⇥ dq̂2 dû
=

G2
Fm

5
b |Vcb|2

16⇧3
⇤(û+ � û)⇥ (2.10)

⇥
⇤
q̂2 W1 �

�
2Ê2

⇥ � 2Ê⇥q̂0 +
q̂2

2

⇥
W2 + q̂2(2Ê⇥ � q̂0)W3

⌅
,

where û+ = (1 �
⇧

q̂2)2 � ⌃ represents the kinematic boundary on û, and Ê⇥ = E⇥/mb is
the normalized charged lepton energy. Thanks to the OPE, the structure functions can be
expanded in series of �s and ⇥QCD/mb. There is no term linear in ⇥QCD/mb and therefore

Wi = W (0)
i +

µ2
�

2m2
b

W (�,0)
i +

µ2
G

2m2
b

W (G,0)
i +

CF�s

⇧

�
W (1)

i +
µ2
�

2m2
b

W (�,1)
i +

µ2
G

2m2
b

W (G,1)
i

⇥
(2.11)

where we have neglected terms of higher order in the expansion parameters. µ2
� and µ2

G are
the B-meson matrix elements of the only gauge-invariant dimension 5 operators that can
be formed from the b quark and gluon fields [1, 2]. The leading order coe⇤cients are given
by

W (0)
i = w(0)

i ⇥(û); w(0)
1 = 2E0, w(0)

2 = 4, w(0)
3 = 2. (2.12)

The tree-level nonperturbative coe⇤cients [2] read

W (�,0)
i = w(�,0)

i ⇥(û) + w(�,1)
i ⇥�(û) + w(�,2)

i ⇥��(û); (2.13)

w(�,0)
1 = 8

3(1� E0), w(�,1)
1 = 4

3E0(1� E0), w(�,2)
1 = 2

3E0⌅0;

w(�,0)
2 = 0, w(�,1)

2 = �8(1� E0), w(�,2)
2 = 4

3⌅0;

w(�,0)
3 = �2, w(�,1)

3 = �4
3(1� E0), w(�,2)

3 = 2
3⌅0,

and
W (G,0)

i = w(G,0)
i ⇥(û) + w(G,1)

i ⇥�(û); (2.14)

w(G,0)
1 = �4

3(2� 5E0), w(G,1)
1 = �4

3(E0 + 3E2
0 +

1
2⌅0);

w(G,0)
2 = 0, w(G,1)

2 = 8
3(3� 5E0);

w(G,0)
3 = 10

3 , w(G,1)
3 = �4

3(1 + 5E0).

The perturbative corrections to the free quark decay have been computed in [14] and refs.
therein. They read

W (1)
i = w(0)

i

⇤
Si ⇥(û)� 2 (1� E0I1)

�
1

û

⇥

+

+
⇤(û)

(⌃+ û)

⌅
+Ri ⇤(û), (2.15)

4

W (�,n)
3 =

5

3
q̂0

dW (n)
3

dq̂0
� q̂2 � q̂20

3

d2W (n)
3

dq̂20

Hadronic tensor W�⇥ =
(2⇥)3

2mB

X

Xc

�4(pb � q � pX)⇥B̄|J†�
L |Xc⇤⇥Xc|J⇥

L |B̄⇤

mbW
�⇥ = �W1g

�⇥ +W2v
�v⇥ + iW3�

�⇥⇤⌅v⇤q̂⌅ +W4q̂
�q̂⇥ +W5(v

�q̂⇥ + v⇥ q̂⇥)



Matching at O(αs)

Taylor expansion around on-shell b quark matched onto HQET local operators. 
Analytic formulae.  RPI relations reproduced. Unlike μπ,  μG gets renormalized, 
therefore Wilson coefficients are scale-dependent.

HQETQCD

possible gluon 
insertions

2 2



Numerical results
In on-shell scheme (mb=4.6GeV, mc=1.15GeV) without cuts

Similar results in the kinetic scheme. NLO corrections generally O(15-20%) 
of  tree level coefficients, shifts in some cases larger than experimental 
error.  Impact on Vcb requires new fit of  semileptonic moments. 
!
Mannel, Pivovarov, Rosenthal (1405.5072) have computed the μG correction to the width in 
the limit mc=0 and find compatible result. Analytic checks under way.

2



Relative NLO correction to the coefficients of  μG in the width (blue), first 
(red) and second central (yellow) leptonic moments as a function of  the 
renormalization scale. Smaller corrections for smaller scale.

-scale dependence µ2
G

2



In	  the	  kinetic	  	  
scheme	  μ=1GeV	  



Theoretical errors

Theoretical errors are generally the dominant ones in the fits. 
We estimate them in a conservative way, mimicking higher orders by 
varying the parameters by fixed amounts: mc,b 8MeV, αs(mb) 0.018, 7% in 
1/m2 parameters, 30% in 1/m3 parameters  
New corrections have been within theor. uncertainties so far.



Theoretical correlations

1.

2.

3.

4.
Correlations between theory errors of   
moments with different cuts difficult to  
estimate  
!
1. 100% correlations (unrealistic but used previously) 
2. corr. computed from low-order expressions 
3. constant factor 0<ξ<1 for 100MeV step 
4. same as 3. but larger for larger cuts !
always assume different central moments uncorrelated 

Schwanda, PG 2013



Theoretical correlations

Schwanda, PG 2013

Therefore: 1) use a constraint on charm mass  
   2) reduce theory errors 



Latest semileptonic fit

• updates the fit in Schwanda, PG, 1307.4551 

• kinetic scheme calculation based on 1107.3100; hep-ph/0401063 

• includes all O(αs2) and O(αs/mb2) corrections   

• reassessment of  theoretical errors, realistic correlations 

• external constraints: precise heavy quark mass 
determinations, plus mild constraints on μ2G  from hyperfine 
splitting and ρ3LS from sum rules

Alberti, Healey, Nandi, PG 1411.6560

Previous fits:  Buchmuller, Flaecher hep-ph/0507253,  
Bauer et al, hep-ph/0408002 (1S scheme)



charm mass determinations

Hoang et al ‘13

Remarkable improvement in recent years.  
mc can be used as precise input to fix mb instead of  radiative moments

sum rules studies of  σ(e+e- → hadrons)  
almost all at NNNLOour default 

choice



fit results

• results depend little on 
assumption for correlations 
and choice of  inputs, 1.8% 
determination of  Vcb 

• 20-30% determination of     
the OPE parameters

Without mass 
constraints

4.

(3GeV)

uncertai

1411.6560

2

a(1) a(2,�0) a(2) p(1) g(0) g(1) d(0)

-0.95 -0.47 0.71 0.99 -1.91 -3.51 -16.6

-1.66 -0.43 -2.04 1.35 -1.84 -2.98 -17.5

-1.24 -0.28 0.01 1.14 -1.91 -3.23 -16.6

TABLE I. Coe⇥cients of (3) for mkin
b (1GeV) = 4.55GeV and

with the charm mass in the kinetic scheme, mkin
c (1GeV) =

1.091GeV (first row), and in the MS scheme, mc(3GeV) =
0.986GeV (2nd row) and mc(2GeV) = 1.091GeV (3rd row).

⇧m2n
X ⌃ = 1

�E`>Ecut

⌃

E`>Ecut

m2n
X

d�

dm2
X

dm2
X .

where E� is the lepton energy, m2
X the invariant hadronic

squared mass, and Ecut an experimental threshold on the
lepton energy applied by some of the experiments. Since
the physical information of moments of the same type is
highly correlated, for n > 1 it is better to employ central
moments, computed relative to ⇧E�⌃ and ⇧m2

X⌃. The in-
formation on the non-perturbative parameters obtained
from a fit to the moments enables us to extract |Vcb| from
the total semileptonic width [19–21].

The expansion for the total semileptonic width is

�sl =�0

⌥
1 + a(1)

�s(mb)

⌅
+ a(2,�0)⇥0

��s

⌅

⇥2
+ a(2)

��s

⌅

⇥2

+

⇤
�1

2
+ p(1)

�s

⌅

⌅
µ2
⇥

m2
b

+
�
g(0) + g(1)

�s

⌅

⇥ µ2
G(mb)

m2
b

+d(0)
⇧3D
m3

b

� g(0)
⇧3LS

m3
b

+ higher orders

⇧
, (3)

where �0 = Aew|V 2
cb|G2

Fm
5
b(1 � 8⇧ + 8⇧3 � ⇧4 �

12⇧2 ln ⇧)/192⌅3 is the tree level free quark decay width,
⇧ = m2

c/m
2
b , and Aew = 1.014 the leading electroweak

correction. We have split the �2
s coe⇧cient into a BLM

piece proportional to ⇥0 = 9 (with three massless ac-
tive quark flavors) and a remainder. The expansions for
the moments have the same structure. The parameters
µ2
⇥, µ

2
G, ⇧

3
D, ⇧3LS are the B meson expectation values of

the relevant dimension 5 and 6 local operators.
In Eq. (3) and in the calculation of all the moments we

have included the complete one and two-loop perturba-
tive corrections [22–27], as well as 1/m2,3

b power correc-
tions [16–18, 28]. We neglect contributions of order 1/m4

b
and 1/m5

Q [29], which appear to lead to a very small shift
in |Vcb|, but we include for the first time the perturbative
corrections to the leading power suppressed contributions
[13–15] to the width (see also [30] for the limit mc ⌅ 0)
and to all the moments [31].

The coe⇧cients a(i), g(i), p(1), d(0) in Eq. (3) are func-
tions of ⇧ and of various unphysical scales, such as the
one of �s. They are given in Table 1 for specific val-
ues of the quark masses. We use the kinetic scheme [32]
with cuto⇥ at 1GeV for mb and the OPE parameters and
three di⇥erent options for the charm mass.

mkin
b mc(3GeV) µ2

⇤ ⇥3D µ2
G ⇥3LS BRc ⇥ 103|Vcb|

4.553 0.987 0.465 0.170 0.332 -0.150 10.65 42.21

0.020 0.013 0.068 0.038 0.062 0.096 0.16 0.78

1 0.508 -0.099 0.142 0.596 -0.173 -0.075 -0.427

1 -0.013 0.002 -0.023 0.007 0.016 -0.047

1 0.711 -0.025 0.041 0.144 0.338

1 -0.064 -0.154 0.065 0.195

1 -0.032 -0.022 -0.255

1 -0.017 0.011

1 0.359

1

TABLE II. Results of the global fit in our default scenario.
All parameters are in GeV at the appropriate power and all,
except mc, in the kinetic scheme at µ = 1GeV. The first
and second rows give central values and uncertainties, the
correlation matrix follows.

THE GLOBAL FIT

The available measurements of the semileptonic mo-
ments [4] and the recent, precise determinations of the
heavy quark masses significantly constrain the parame-
ters entering Eq. (3), making possible a determination of
|Vcb| whose uncertainty is dominated by our ignorance
of higher order e⇥ects. Duality violation e⇥ects can be
constrained a posteriori, by checking whether the OPE
predictions fit the experimental data, but this again de-
pends on precise OPE predictions.
We perform a fit to the semileptonic data listed in

Table 1 of Ref. [8] with �s(4.6GeV) = 0.22 and em-
ploy a few additional inputs. Since the moments are
mostly sensitive to ⇤ mb � 0.8mc, it is essential to in-
clude information on at least one of the heavy quark
masses. Because of its smaller absolute uncertainty, mc

is preferable. Among recent mc determinations [33–35]
we choose mc(3GeV) = 0.986(13)GeV [33], although
we will discuss the inclusion of mb determinations as
well. We also include a loose bound on the chromomag-
netic expectation value from the B hyperfine splitting,
µ2
G(mb) = 0.35(7)GeV2. Finally, as all observables de-

pend very weakly on ⇧3LS , we use the heavy quark sum
rule constraint ⇧3LS = �0.15(10)GeV3.
As should be clear from the above discussion on higher

orders in the OPE, the estimate of theoretical errors and
of their correlation is crucial. We follow the strategy of
[8, 19] for theoretical uncertainties, updating it because
of the new corrections that we include. In particular, we
assign an irreducible uncertainty of 8 MeV to mc,b, and
vary �s(mb) by ±0.018, µ2

⇥ and µ2
G by ±7%, ⇧3D and ⇧3LS

by ±30%. This implies a total theoretical uncertainty
between 2.0% and 2.6% in the semileptonic width, de-
pending on the scheme. For the theory correlations we
adopt scenario D of Ref. [8], i.e. we assume no correla-

Schwanda	  
PG	  2013

mkin
b (1GeV)� 0.85mc(3GeV) = 3.714± 0.018GeV
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Results: bottom mass

The fit gives mbkin(1GeV)=4.553(20)GeV 
scheme translation error  mbkin(1GeV)=mb(mb)+0.37(3)GeV 

mb(mb)=4.183(37)GeV
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further checks
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mb �mb ⇥ �GeV⇥
FIG. 1. Comparison of di�erent mb(mb) determinations
[35, 37–42]. The dashed line denotes the error before scheme
conversion.

tion between di⇥erent central moments and a correlation
between the same moment measured at di⇥erent Ecut,
depending on the proximity of the cuts and their magni-
tude. In the extraction of |Vcb| we use the latest isospin
average ⌃B = 1.579(5)ps [36].

In Table II we show the results of the fit and the corre-
lation matrix among the fitted parameters. With respect
to the default fit of Ref. [8], |Vcb| is reduced by 0.5%, see
Eq. (1), mkin

b is increased by about 10 MeV, µ2
� and ⌅3D

are both shifted upward by about 10%. As the method
and inputs are the same of Ref. [8], except for the value
of ⌃B which only reflects in a tiny +0.1% shift in |Vcb|,
the di⇥erence can be mostly attributed to the new cor-
rections. Because of smaller theoretical errors, the final
uncertainties are slightly reduced. The ⌥2/d.o.f. is very
good, about 0.4.

It is interesting to compare the b mass extracted from
the fit with other recent determinations, generally ex-
pressed in terms of mb(mb) in the MS scheme. This is
shown in Fig. 1, after converting mkin

b into mb(mb). The
scheme conversion implies an additional ⇤ 30MeV un-
certainty, enlarging the final error to 37MeV, because
it is known only through O(�2

s). Our result agrees
well with those reported in the Figure. The combina-
tion mkin

b (1GeV)�0.85mc(3GeV) is best determined to
3.714± 0.018GeV.

Table III shows the results when the fit is performed
with mc in a di⇥erent scheme or at a di⇥erent scale with
respect to our default fit of Table II. The results are
remarkably consistent and very close to the default fit,
with the only partial exception of mb, which becomes 1⇧
higher when mc(2GeV) is used as input. Table III also
reports the results of a fit with an additional constraint
on mb. Even the currently most precise mb determina-
tions are spoiled by the uncertainty due to the scheme
conversion to mkin

b . Because of this, and of the large
range of mb values given in the literature, we prefer to
avoid using a mb constraint in our default fit.

Overall, the fit results depend little on the scale of �s.
This is shown in Fig. 2 for the default fit. |Vcb| and mkin

b

mkin
b mc µ2

⇥ ⇤3D µ2
G ⇤3LS BRc⌥� 103|Vcb|

a) 4.561 1.092 0.464 0.175 0.333 -0.146 10.66 42.04

0.021 0.020 0.067 0.040 0.061 0.096 0.16 0.67

b) 4.576 1.092 0.466 0.174 0.332 -0.146 10.66 42.01

0.020 0.014 0.068 0.039 0.061 0.096 0.16 0.68

c) 4.548 0.985 0.467 0.168 0.321 -0.146 10.66 42.31

0.017 0.012 0.068 0.038 0.058 0.096 0.16 0.76

TABLE III. Results of the fit in di�erent scenarios: a) with
mc in the kinetic scheme, mkin

c = 1.091(20)GeV from [33];
b) in the MS scheme at a lower scale, with mc(2GeV) =
1.091(14)GeV from [33]; c) same as our default fit, with an ad-
ditional constraint mkin

b = 4.533(32)GeV, derived from [33].

2.0 2.5 3.0 3.5 4.0 4.5

1.00

1.01

1.02

1.03

1.04

⇥�s �GeV⇥

⇥⇤
mb,KIN⇤Vcb⇤

FIG. 2. Relative variation of the central values for |Vcb|, mkin
b ,

and µ2
⇥ on the scale of �s in the default fit.

increase by less than 0.5% if we perform the whole analy-
sis using �s(mb/2), while µ2

� and in general the OPE pa-
rameters are slightly more sensitive. A similar behavior
is observed for the fits in Table III. Fig. 3 shows instead
the µkin dependence of |Vcb| in the case a), keeping the
scales of mb and mc distinct. In all cases, the scheme
and scale dependence confirms the size of theoretical er-
rors employed in our analysis.
Finally, we update the value of the semileptonic phase

space ratio C,

C =

����
Vub

Vcb

����
2 �[B̄ ⌅ Xce⇤̄]

�[B̄ ⌅ Xue⇤̄]
,

which is often used in the calculation of the branching
ratio of radiative and rare semileptonic B decays. Using
the default fit we find C = 0.576± 0.008± 0.014, where
the first uncertainty comes from the parameters deter-
mined in the fit, and the second from unknown higher
orders, estimated as explained above. Since the ratio
C receives large perturbative corrections when it is ex-
pressed in terms of mc(3GeV) [8], we believe that using
mc(2GeV) leads to a more reliable estimate. Including
the mkin

b mass constraint derived from [33] as well, we

4

FIG. 3. Dependence of the |Vcb| central value in fit a) on the
kinetic cuto� of the b and c masses.

find

C = 0.569± 0.007± 0.010, (4)

slightly higher but with a smaller error than the corre-
sponding value in [8].

CONCLUSION

In summary, we have improved the inclusive deter-
mination of |Vcb| through the inclusion of the complete
O(�s�2

QCD/m
2
b) e⇥ects. Our final value,

|Vcb| = (42.21± 0.78)� 10�3, (5)

is compatible with previous analyses, but its uncertainty
is slightly reduced thanks to the smaller theoretical er-
rors. Eq. (5) still di⇥ers at the 2.9⇥ level from Eq. (2).
We find no sign of inconsistency in the inclusive analy-
sis and adopt a conservative estimate of theory errors.
The latter could be further reduced by a calculation of
O(�s�3

QCD/m
3
b) contributions, as well as by a better un-

derstanding of higher power corrections, see [43].
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Dependence	  of	  fit	  results	  on	  
strong	  coupling	  scale

Dependence	  on	  kinetic	  cutoffs	  of	  
bottom	  and	  charm	  masses



electroweak corrections

• Short-distance log (Sirlin 1982) included, ~0.7% 

• Short-distance remainder (finite contribution to Wilson 
coefficient of  4f  operator) tiny if  Gμ is used to normalise decay 

• QED soft and collinear radiation (and possibly some other 
stuff…) subtracted by experiments using PHOTOS 

• QED hard radiation missing, calculation almost finished 

• for B0 only: static Coulomb interaction 1+πα (Atwood, Marciano, 
Ginsberg) for mixture 37% B0 this brings a 0.5% suppression of  
Vcb Should be included, but does it cancel in the moments?



UTfit SM prediction:
(42.73±0.77) 10-3

Inclusive

Exclusive B→D*

Exclusive B→D

Latest	  lattice	  results	  for	  
exclusives	  (FNAL/MILC)

HQSR,HQE	  for	  exclusives	  
Mannel,	  Uraltsev,	  PG
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New physics?

Right Handed currents disfavored since

The difference with FNAL/MILC is quite large: 3σ or about 8%.  
The perturbative corrections to inclusive Vcb total 5%, the power 
corrections about 4%.

|Vcb|incl ⇥ |Vcb|
⇣
1 +

1

2
|�|2

⌘

|Vcb|B!D⇤ ⇥ |Vcb|
⇣
1� �

⌘

|Vcb|B!D ⇥ |Vcb|
⇣
1 + �

⌘
� = ⇥R

Ṽcb

Vcb
⇡ 0.08

Chen,Nam,Crivellin,Buras,Gemmler,Isidori,Pokorski...

Most general SU(2) invariant dim 6 NP (without RH neutrino) can 
explain results, but it is incompatible with Z→bb data

Crivellin,	  Pokorski	  	  1407.1320	  
see	  also	  Mannel,	  Turczyk	  et	  al

_



Summary
• Improvements of  OPE approach to semileptonic decays continue. All 

effects O(αs2,αsΛ2/mb2) implemented. No sign of  inconsistency in 
this approach so far, 1.8% determination of  Vcb, competitive 
mb determination.  

• Calculation of  O(αsΛ3/mb3) effects, work on higher power 
corrections (see Sascha’s talk) ongoing. QED corrections need to be 
reconsidered. 

• Exclusive/inclusive tension in Vcb remains large (3σ, 8%). It cannot 
be explained by right-handed current and in general by SU(2)-
invariant new physics.   

• Belle-II will improve on exp precision. We need new ways to check 
and improve inclusive approach (new observables, lattice 
measurements of  matrix elements or current correlators,…) 



back-up slides



A strip in the mb-mc plane
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Higher power corrections
Proliferation of  non-pert parameters and powers of  1/mc starting 1/m5. At 1/mb4

can be estimated by Lowest Lying State 
Saturation approx by truncating    

LLSA might set the scale of  effect, not yet clear how much it depends on 
assumptions on expectation values.  Large corrections to LLSA have been found.  
                    
Allowing 80% gaussian deviations from LLSA seem to leave Vcb unaffected.

Mannel,Turczyk,Uraltsev 1009.4622

Mannel, Uraltsev, PG, 2012
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X

n
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Vcb
' �0.35%

In LLSA good convergence of  
the HQE. First fit with 1/m4,5: Turczyk,PG preliminary

Heinonen,Mannel 1407.4384 have more systematic approach


