Higher Power Corrections

Sascha Turczyk

Challenges in Semileptonic *B* Decays Monday, April 20th, 2014

Introduction Higher Order Corrections Numerical Discussion Motivation Heavy Quark Effective Th

Consider inclusive semi-leptonic decay $B \to X_c \ell \bar{\nu}_\ell$

Input of $|V_{cb}|$

- Important ingredient for UT: $V_{ub}^* V_{ud} + V_{tb}^* V_{td} + V_{cb}^* V_{cd} = 0$
- Determination of ϵ_K depends on $|V_{\rm cb}|^4$: ~ 35% of error budget! [1009.0947 [hep-ph], 0805.3887 [hep-ph]]

Introduction Motivation 20%D $\mathcal{B}(B^+ \to X_c \ell^+ \nu)$ Charm state Xc $(2.31 \pm 0.09)\%$ $\rightarrow X_c \, \ell \, \bar{\nu}_\ell$ D* $(5.63 \pm 0.18)\%$ $\sum D^{(*)}$ $(7.94 \pm 0.20)\%$ 50% D^* $D_0^* \rightarrow D \pi$ $(0.41 \pm 0.08)\%$ broad states $(0.86 \pm 0.12)\%$ $(0.45 \pm 0.09)\%$ $\mathcal{B}(B)$ $D_1 \rightarrow D^* \pi$ $D^{(*)} \pi$ $(0.43 \pm 0.03)\%$ narrow states 15% $(0.84 \pm 0.04)\%$ $D_2^* \rightarrow D^{(*)} \pi$ (0.41 ± 0.03) % $D^{(*)}\pi\pi$ $\sum D^{**} \rightarrow D^* \pi$ $(1.70 \pm 0.12)\%$ $D\pi$ $(0.66 \pm 0.08)\%$ $(0.87 \pm 0.10)\%$ $\sum D^* \pi$ $(1.53 \pm 0.13)\%$ New Measurement of $\sum D^{(*)} + \sum D^* \pi$ $(9.47 \pm 0.24)\%$ $B \rightarrow D^{(*)} \pi^+ \pi^- \ell \bar{\nu}_{\ell}$ $\sum D^{(*)} + \sum D^{**} \rightarrow D^{(*)}\pi$ $(9.64 \pm 0.23)\%$ $(10.92 \pm 0.16)\,\%$ Inclusive X_c

Gap $\sim 5-7\sigma$ [Bernlochner,ST,CKM2012]

Reduces Gap to $\sim 3\sigma$ [Bernlochner,CKM2014]

Results from [PDG 2014]

$$|V_{cb}|^{\text{excl.}} = (39.5 \pm 0.8) \cdot 10^{-3}$$

 $|V_{cb}|^{\text{incl.}} = (42.2 \pm 0.7) \cdot 10^{-3}$

• Inclusive: Average of [Gambino,Schwanda 2014] using kinetic scheme and [Bauer et. al. 2004, updated HFAG] using the 1*S* scheme

Sascha Turczyk

		l Higher Order Numerica	Introduction Corrections I Discussion	Motivation Heavy Quark Effective Theory	
_	Charm state X_c D D^* $\sum D^{(*)}$ $D_1^* \rightarrow D^* \pi$ $D_1 \rightarrow D^* \pi$ $D_2^* \rightarrow D^{(*)} \pi$ $\sum D^{**} \rightarrow D^* \pi$ $D^{\pi} = D^{\pi} = D^{\pi} = D^{\pi}$	$\begin{array}{c} {\cal B}(B^+\to X_c\ t^+\nu)\\ (2.31\pm 0.09)\ \%\\ (5.63\pm 0.18)\ \%\\ (7.94\pm 0.20)\ \%\\ (0.41\pm 0.08)\ \%\\ (0.43\pm 0.03)\ \%\\ (0.43\pm 0.03)\ \%\\ (1.70\pm 0.12)\ \%\\ (0.66\pm 0.08)\ \%\\ (0.62\pm 0.10)\ \%\end{array}$	$\left. \begin{array}{l} broad states \\ 0.86 \pm 0.12\% \\ narrow states \\ 0.84 \pm 0.04)\% \end{array} \right.$	$\mathcal{B}(B \to X_c l \bar{\nu}_l)$	$ \begin{array}{c} 20\% \\ 50\% \\ 15\% \\ 8.5\% \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$
	$\sum D^* \pi$	$(1.53 \pm 0.13)\%$		New	New Measurement of
_	$\sum D^{(*)} + \sum D^* \pi$	$(9.47\pm 0.24)\%$			(.)
	$\sum D^{(*)} + \sum D^{**} \to D^{(*)}\pi$	$(9.64 \pm 0.23)\%$		В –	$\rightarrow D^{(*)}\pi^+\pi^-\ell\bar{ u}_\ell$

Reduces Gap to $\sim 3\sigma$ [Bernlochner,CKM2014]

Results from [PDG 2014]

Gap $\sim 5 - 7\sigma$ [Bernlochner, ST, CKM2012]

$$|V_{cb}|^{\text{excl.}} = (39.5 \pm 0.8) \cdot 10^{-3}$$

 $|V_{cb}|^{\text{incl.}} = (42.2 \pm 0.7) \cdot 10^{-3}$

• Inclusive: Average of [Gambino,Schwanda 2014] using kinetic scheme and [Bauer et. al. 2004, updated HFAG] using the 1*S* scheme

Sascha Turczyk

Motivation Heavy Quark Effective Theory

Decay Rate

$$d\Gamma = 16\pi \ G_F^2 \ |V_{cb}|^2 \ W_{\mu\nu} \ L^{\mu\nu} \ d\phi$$

• Starting point: $W_{\mu\nu} = -\frac{1}{\pi} \text{Im } T_{\mu\nu}$ Correlator of two hadronic currents

$$iT_{\mu\nu} = \frac{1}{2M_B} \int d^4x \, e^{-ix(m_b\nu - q)}$$
$$\times \langle B|\bar{b}_{\nu}(x)\Gamma^{\dagger}_{\nu} \top [c(x)\bar{c}(0)]\Gamma_{\mu}b_{\nu}(0)|B\rangle$$

Expansion of the Rate

• Rate can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_b^2} \sum_i C_2^i(\alpha_s) \, \mathcal{O}_5^i + \frac{1}{m_b^3} \sum_i C_3^i \, \mathcal{O}_6^i + \dots$$

• Each Wilson Coefficient C_i^i has a power series in α_s

 \Rightarrow Combined expansion in α_s and $1/m_b$: Heavy Quark Expansion

Motivation Heavy Quark Effective Theory

Decay Rate

$$d\Gamma = 16\pi G_F^2 |V_{cb}|^2 W_{\mu\nu} L^{\mu\nu} d\phi$$

• Starting point: $W_{\mu\nu} = -\frac{1}{\pi} \text{Im } T_{\mu\nu}$ Correlator of two hadronic currents

$$iT_{\mu\nu} = \frac{1}{2M_B} \int d^4x \, e^{-ix(m_b\nu - q)} \\ \times \langle B|\bar{b}_{\nu}(x)\Gamma^{\dagger}_{\nu} \mathsf{T}[c(x)\bar{c}(0)]\Gamma_{\mu}b_{\nu}(0)|B\rangle$$

Expansion of the Rate

Rate can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_b^2} \sum_i C_2^i(\alpha_s) \, \mathcal{O}_5^i + \frac{1}{m_b^3} \sum_i C_3^i \, \mathcal{O}_6^i + \dots$$

• Each Wilson Coefficient C_i^i has a power series in α_s

 \Rightarrow Combined expansion in α_s and $1/m_b$: Heavy Quark Expansion

Motivation Heavy Quark Effective Theory

Decay Rate

$$d\Gamma = 16\pi G_F^2 |V_{cb}|^2 W_{\mu\nu} L^{\mu\nu} d\phi$$

• Starting point: $W_{\mu\nu} = -\frac{1}{\pi} \text{Im } T_{\mu\nu}$ Correlator of two hadronic currents

$$iT_{\mu\nu} = \frac{1}{2M_B} \int d^4x \, e^{-ix(m_b\nu - q)} \\ \times \langle B|\bar{b}_{\nu}(x)\Gamma^{\dagger}_{\nu} \mathsf{T}[c(x)\bar{c}(0)]\Gamma_{\mu}b_{\nu}(0)|B\rangle$$

Expansion of the Rate

• Rate can be written as

$$\Gamma = \Gamma_0 + \frac{1}{m_b^2} \sum_i C_2^i(\alpha_s) \, \mathcal{O}_5^i + \frac{1}{m_b^3} \sum_i C_3^i \, \mathcal{O}_6^i + \dots$$

- Each Wilson Coefficient C_i^i has a power series in α_s
- \Rightarrow Combined expansion in α_s and $1/m_b$: Heavy Quark Expansion

Motivation Heavy Quark Effective Theory

Current Status: Theory

- ^a [Dassinger,Mannel,ST] JHEP 0703 (2007) 087
- ^b [Mannel,Uraltsev,ST]: JHEP 1011 (2010) 109
- ^C [Becher, Boos,Lunghi] μ_{π}^2 JHEP 0712, 062 (2007) [Alberti,Gambino,Nandi] μ_G^2 JHEP (2014) 1-16 [Mannel,Pivovarov,Rosenthal] μ_G^2 1405.5072 [hep-ph]
- Melnikov] Phys. Lett. B 666, 336 (2008)
 [Pak,Czarnecki] Phys. Rev. Lett. 100, 241807 (2008)
- ^e Only BLM corrections / special kinematical point

Topics Addressed in this Talk: Heavy Quark Matrix Elements

- Explicit Corrections to order $1/m_b^4$ and $1/m_b^5$
- Subtleties concerning final state charm quark m_c
- \Rightarrow Estimate of HQE ME Size and Impact on $|V_{cb}|$ determination

Motivation Heavy Quark Effective Theory

Current Status: Theory

- ^a [Dassinger,Mannel,ST] JHEP 0703 (2007) 087
- ^b [Mannel,Uraltsev,ST]: JHEP 1011 (2010) 109
- ^C [Becher, Boos,Lunghi] μ_{π}^2 JHEP 0712, 062 (2007) [Alberti,Gambino,Nandi] μ_G^2 JHEP (2014) 1-16 [Mannel,Pivovarov,Rosenthal] μ_G^2 1405.5072 [hep-ph]
- ^d [Melnikov] Phys. Lett. B 666, 336 (2008)
 [Pak,Czarnecki] Phys. Rev. Lett. 100, 241807 (2008)
- ^e Only BLM corrections / special kinematical point

Topics Addressed in this Talk: Heavy Quark Matrix Elements

- Explicit Corrections to order $1/m_b^4$ and $1/m_b^5$
- Subtleties concerning final state charm quark m_c
- ⇒ Estimate of HQE ME Size and Impact on $|V_{cb}|$ determination

Heavy Quark Matrix Elements Computing the Observables

Non-Perturbative Parameter

To Order $1/m_b^2$

$$2M_{B}\mu_{\pi}^{2} = -\langle B(p)|\bar{b}_{v}(iD_{\perp})^{2}b_{v}|B(p)\rangle$$

$$\hat{=} \langle \mathbf{p}^{2} \rangle$$

$$2M_{B}\mu_{G}^{2} = 1/2 \langle B(p)|\bar{b}_{v}\left[(iD_{\perp}^{\mu}),(iD_{\perp}^{\nu})\right](-i\sigma_{\mu\nu})b_{v}|B(p)\rangle$$

$$\hat{=} \langle \mathbf{s} \cdot \mathbf{B} \rangle$$

To Order $1/m_h^3$

$$2M_{B}\rho_{D}^{3} = 1/2 \langle B(p) | \bar{b}_{v} \Big[(iD_{\perp,\mu}), [(iv \cdot D), (iD_{\perp}^{\mu})] \Big] b_{v} | B(p) \rangle$$

$$\hat{=} \langle \nabla \cdot \mathbf{E} \rangle$$

$$2M_{B}\rho_{LS}^{3} = 1/2 \langle B(p) | \bar{b}_{v} \Big\{ (iD_{\perp}^{\mu}), [(iv \cdot D), (iD_{\perp}^{\nu})] \Big\} (-i\sigma_{\mu\nu}) b_{v} | B(p) \rangle$$

$$\hat{=} \langle \mathbf{s} \cdot \nabla \times \mathbf{B} \rangle$$

Heavy Quark Matrix Elements Computing the Observables

Non-Perturbative Parameter

To Order $1/m_b^2$

$$2M_{B}\mu_{\pi}^{2} = -\langle B(p)|\bar{b}_{v}(iD_{\perp})^{2}b_{v}|B(p)\rangle$$

$$\hat{=} \langle \mathbf{p}^{2} \rangle$$

$$2M_{B}\mu_{G}^{2} = 1/2 \langle B(p)|\bar{b}_{v}\left[(iD_{\perp}^{\mu}),(iD_{\perp}^{\nu})\right](-i\sigma_{\mu\nu})b_{v}|B(p)\rangle$$

$$\hat{=} \langle \mathbf{s} \cdot \mathbf{B} \rangle$$

To Order $1/m_b^3$

$$2M_{B}\rho_{D}^{3} = 1/2 \langle B(p) | \bar{b}_{v} \Big[(iD_{\perp,\mu}), [(iv \cdot D), (iD_{\perp}^{\mu})] \Big] b_{v} | B(p) \rangle$$

$$\hat{=} \langle \nabla \cdot \mathbf{E} \rangle$$

$$2M_{B}\rho_{LS}^{3} = 1/2 \langle B(p) | \bar{b}_{v} \Big\{ (iD_{\perp}^{\mu}), [(iv \cdot D), (iD_{\perp}^{\nu})] \Big\} (-i\sigma_{\mu\nu}) b_{v} | B(p) \rangle$$

$$\hat{=} \langle \mathbf{s} \cdot \nabla \times \mathbf{B} \rangle$$

Sascha Turczyk

Higher Orders

Dimension - 7: $1/m_b^4$

- 4 Spin independent parameter
- 5 Spin dependent parameters

Dimension - 8: $1/m_b^5$

- Proliferation of parameters
- 8 Spin independent parameter
- 10 Spin dependent parameter

Problem in Experiment

- All parameters have to be extracted from correlated measurements
- \Rightarrow Not reliably possible
 - Estimate parameters and use this to estimate influence

Higher Orders

Dimension - 7: $1/m_b^4$

- 4 Spin independent parameter
- 5 Spin dependent parameters

Dimension - 8: $1/m_b^5$

- Proliferation of parameters
- 8 Spin independent parameter
- 10 Spin dependent parameter

Problem in Experiment

- All parameters have to be extracted from correlated measurements
- ⇒ Not reliably possible

Estimate parameters and use this to estimate influence

Sascha Turczyk

Higher Orders

Dimension - 7: $1/m_b^4$

- 4 Spin independent parameter
- 5 Spin dependent parameters

Dimension - 8: $1/m_b^5$

- Proliferation of parameters
- 8 Spin independent parameter
- 10 Spin dependent parameter

Problem in Experiment

- All parameters have to be extracted from correlated measurements
- ⇒ Not reliably possible
- \Rightarrow Estimate parameters and use this to estimate influence

Heavy Quark Matrix Elements Computing the Observables

Lowest-Lying State Approximation (LLSA)

Known Parameters [Heinonen, Mannel], [Fit] [Gambino, Schwanda, PRD89,014022]

$$\mu_{\pi}^2 = 0.414 \text{ GeV}^2 \ \mu_G^2 = 0.340 \text{ GeV}^2 \ \epsilon_{1/2} = 0.390 \text{ GeV} \ \epsilon_{3/2} = 0.476 \text{ GeV}$$

$$\rho_D^{-} = \frac{1}{3} \epsilon_{1/2} (\mu_{\pi}^2 - \mu_G^2) + \frac{1}{3} \epsilon_{3/2} (2\mu_{\pi}^2 + \mu_G^2) = 0.21 \text{ GeV}^3 \quad [0.154 \pm 0.045]$$

$$\rho_{LS}^3 = \frac{2}{3}\epsilon_{1/2}(\mu_{\pi}^2 - \mu_{G}^2) - \frac{1}{3}\epsilon_{3/2}(2\mu_{\pi}^2 + \mu_{G}^2) = -0.17 \text{ GeV}^3 \left[-0.147 \pm 0.098\right]$$

A Comment on Precision

[Heinonen, Mannel

- \bullet Estimate of Series Truncation \sim Duality violation
- \Rightarrow Model with sum of infinitly narrow resonances [Shifman,hep-ph/0009131]
- Relative Uncertainty of truncating after first term and analytic sum

$$\left[\frac{\pi^2}{6}\right] - 1 \sim 64\%$$

• Large corrections to LLSA have previously been found [Gaminbo,Mannel,Uraltsev,JHEP,1210,169 (2012)]

Heavy Quark Matrix Elements Computing the Observables

Lowest-Lying State Approximation (LLSA)

Known Parameters [Heinonen, Mannel], [Fit] [Gambino, Schwanda, PRD89,014022]

$$\mu_{\pi}^2 = 0.414 \text{ GeV}^2 \ \mu_{G}^2 = 0.340 \text{ GeV}^2 \ \epsilon_{1/2} = 0.390 \text{ GeV} \ \epsilon_{3/2} = 0.476 \text{ GeV}$$

$$\rho_D^3 = \frac{1}{3}\epsilon_{1/2}(\mu_\pi^2 - \mu_G^2) + \frac{1}{3}\epsilon_{3/2}(2\mu_\pi^2 + \mu_G^2) = 0.21 \text{ GeV}^3 \quad [0.154 \pm 0.045]$$

$$\rho_{LS}^3 = \frac{2}{3}\epsilon_{1/2}(\mu_\pi^2 - \mu_G^2) - \frac{1}{3}\epsilon_{3/2}(2\mu_\pi^2 + \mu_G^2) = -0.17 \text{ GeV}^3 \quad [-0.147 \pm 0.098]$$

A Comment on Precision

[Heinonen, Mannel]

- \bullet Estimate of Series Truncation \sim Duality violation
- \Rightarrow Model with sum of infinitly narrow resonances [Shifman,hep-ph/0009131]
 - Relative Uncertainty of truncating after first term and analytic sum

$$\left[\frac{\pi^2}{6}\right] - 1 \sim 64\%$$

• Large corrections to LLSA have previously been found [Gaminbo,Mannel,Uraltsev,JHEP,1210,169 (2012)]

Heavy Quark Matrix Elements Computing the Observables

Subtlety in the $1/m_Q$ expansion

- Expansion in both heavy quark masses m_b and $m_c \approx \sqrt{m_b \Lambda}$
- \Rightarrow Some Higher Order terms formally belong formally to lower orders
- Starting at leading order $\frac{\Lambda^3}{m_b^3} \left(\log \frac{m_c^2}{m_b^2} + \frac{\Lambda^2}{m_c^2} + \dots \right)$
- ⇒ Leading to systematical effects
- \Rightarrow Computation and estimation of higher orders and these effects

[Bigi,Uraltsev,Zwicky[hep-ph/0511158], Breidenbach,Feldmann,Mannel,ST[0805.0971], Bigi,Mannel,Uraltev,ST[0911.3322]]

Sascha Turczyk

Heavy Quark Matrix Elements Computing the Observables

Subtlety in the $1/m_Q$ expansion

- Expansion in both heavy quark masses m_b and $m_c \approx \sqrt{m_b \Lambda}$
- \Rightarrow Some Higher Order terms formally belong formally to lower orders
 - Starting at leading order $\frac{\Lambda^3}{m_b^3} \left(\log \frac{m_c^2}{m_b^2} + \frac{\Lambda^2}{m_c^2} + \dots \right)$
- \Rightarrow Leading to systematical effects
- \Rightarrow Computation and estimation of higher orders and these effects

[Bigi,Uraltsev,Zwicky[hep-ph/0511158], Breidenbach,Feldmann,Mannel,ST[0805.0971], Bigi,Mannel,Uraltev,ST[0911.3322]]

Sascha Turczyk

Measurement Procedure I

Extraction of Heavy Quark Parameters

- Use normalization to cancel out prefactors
- Need completely integrated hadronic phase-space
- Sufficient number of observables for all different parameters

Definition of Observables

```
Electron energy spectrum
```

$$\mathsf{BR}(E_e) = \frac{1}{\int \frac{\mathsf{d}\Gamma}{\mathsf{d}E_e} \mathsf{d}E_E} \frac{\mathsf{d}\Gamma}{\mathsf{d}E_e}$$

Moments of electron energy and hadronic invariant mass

Measurement Procedure I

Extraction of Heavy Quark Parameters

- Use normalization to cancel out prefactors
- Need completely integrated hadronic phase-space
- Sufficient number of observables for all different parameters

Definition of Observables

Electron energy spectrum

$$\mathsf{BR}(E_e) = \frac{1}{\int \frac{\mathrm{d}\Gamma}{\mathrm{d}E_e} \mathrm{d}E_E} \frac{\mathrm{d}\Gamma}{\mathrm{d}E_e}$$

Moments of electron energy and hadronic invariant mass

$$\langle E_e^n M_x^m \rangle (E_{\text{cut}}) = \frac{1}{\int_{E_e > E_{\text{cut}}} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d} E_e \mathrm{d} M_X} \mathrm{d} E_e \mathrm{d} M_X} \int_{E_e > E_{\text{cut}}} E_e^n M_X^m \frac{\mathrm{d}^2 \Gamma}{\mathrm{d} E_e \mathrm{d} M_X} \mathrm{d} E_e \mathrm{d} M_X$$

Measurement Procedure I

Extraction of Heavy Quark Parameters

- Use normalization to cancel out prefactors
- Need completely integrated hadronic phase-space
- Sufficient number of observables for all different parameters

Definition of Observables

Electron energy spectrum

$$\mathsf{BR}(E_e) = \frac{1}{\int \frac{\mathrm{d}\Gamma}{\mathrm{d}E_e} \mathrm{d}E_E} \frac{\mathrm{d}\Gamma}{\mathrm{d}E_e}$$

Ø Moments of electron energy and hadronic invariant mass

$$\langle E_e^n M_X^m \rangle (\boldsymbol{E}_{\mathsf{cut}}) = \frac{1}{\int_{\boldsymbol{E}_e > \boldsymbol{E}_{\mathsf{cut}}} \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}\boldsymbol{E}_e \mathrm{d}M_X} \mathrm{d}\boldsymbol{E}_e \mathrm{d}M_X} \int_{\boldsymbol{E}_e > \boldsymbol{E}_{\mathsf{cut}}} E_e^n M_X^m \frac{\mathrm{d}^2 \Gamma}{\mathrm{d}\boldsymbol{E}_e \mathrm{d}M_X} \mathrm{d}\boldsymbol{E}_e \mathrm{d}M_X}$$

Heavy Quark Matrix Elements Computing the Observables

Measurement Procedure II

Extraction of V_{cb}

- Heavy Quark parameters known from fit to moments and spectra
- Normalisation to partial branching fraction determines $|V_{cb}|$

$$\Gamma = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} f(m_c, m_b, \mu_{\pi}^2, \ldots)$$

Remarks

- E_{cut} restricts phase-space
- \Rightarrow Reduces validity of HQE
- Highly correlated measurement
- \Rightarrow Limits reasonable order of non-perturbative expansion

Heavy Quark Matrix Elements Computing the Observables

Measurement Procedure II

Extraction of V_{cb}

- Heavy Quark parameters known from fit to moments and spectra
- Normalisation to partial branching fraction determines $|V_{cb}|$

$$\Gamma = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} f(m_c, m_b, \mu_{\pi}^2, \ldots)$$

Remarks

- E_{cut} restricts phase-space
- ⇒ Reduces validity of HQE
 - Highly correlated measurement
- ⇒ Limits reasonable order of non-perturbative expansion

Heavy Quark Matrix Elements Computing the Observables

Measurement Procedure II

Extraction of V_{cb}

- Heavy Quark parameters known from fit to moments and spectra
- Normalisation to partial branching fraction determines $|V_{cb}|$

$$\Gamma = \frac{G_F^2 |V_{cb}|^2 m_b^5}{192\pi^3} f(m_c, m_b, \mu_{\pi}^2, \ldots)$$

Remarks

- *E*_{cut} restricts phase-space
- ⇒ Reduces validity of HQE
 - Highly correlated measurement
- ⇒ Limits reasonable order of non-perturbative expansion

Generic Effects on $|V_{cb}|$

Direct effect

- Additional terms in branching ratio
- \Rightarrow Change value of $|V_{cb}|$ directly

Indirect Effect

- Use estimate of higher-order parameters
- \bullet Value fixed by moment $\mathcal{M}^{(6)}$ up to dimension six

$$\delta m_b = -\frac{\delta M^{(0)}}{\delta m_b}, \quad \delta \mu_{\pi}^2 = -\frac{\delta M^{(0)}}{\delta \mu_{\pi}^2}, \quad \delta \rho_D^3 = -\frac{\delta M^{(0)}}{\delta \rho_D^2}$$
ilts in indirect change of $|V_{cb}|$

$$\frac{\delta |V_{cb}|}{\delta |V_{cb}|} = -\frac{1}{2} \frac{1}{\Gamma} \frac{\partial \Gamma_{sl}}{\partial \mu_D^2} \delta HQP$$

Generic Effects on $|V_{cb}|$

Direct effect

- Additional terms in branching ratio
- \Rightarrow Change value of $|V_{cb}|$ directly

Indirect Effect

- Use estimate of higher-order parameters
- \bullet Value fixed by moment $\mathcal{M}^{(6)}$ up to dimension six

• Compensate effect by change of heavy quark parameter in $\mathcal{M}^{(6)}$ $\delta \mathcal{M}^{(8)}$ $\delta \mathcal{M}^{(8)}$

$$\delta m_b = -\frac{\partial \mathcal{M}^{(6)}}{\partial m_b}$$
, $\delta \mu_\pi^2 = -\frac{\partial \mathcal{M}^{(6)}}{\partial \mu_\pi^2}$, $\delta \rho_D^3 = -\frac{\partial \mathcal{M}^{(6)}}{\partial \rho_D^3}$

 \Rightarrow Results in indirect change of $|V_{cb}|$

$$\frac{\delta |V_{cb}|}{|V_{cb}|} = -\frac{1}{2} \frac{1}{\Gamma_{sl}} \frac{\partial \Gamma_{sl}}{\partial HQP} \, \delta \, HQP$$

Generic Effects on $|V_{cb}|$

Direct effect

- Additional terms in branching ratio
- \Rightarrow Change value of $|V_{cb}|$ directly

Indirect Effect

- Use estimate of higher-order parameters
- Value fixed by moment $\mathcal{M}^{(6)}$ up to dimension six
- Compensate effect by change of heavy quark parameter in $\mathcal{M}^{(6)}$

$$\delta m_b = -\frac{\delta \mathcal{M}^{(8)}}{\frac{\partial \mathcal{M}^{(6)}}{\partial m_b}}, \qquad \delta \mu_{\pi}^2 = -\frac{\delta \mathcal{M}^{(8)}}{\frac{\partial \mathcal{M}^{(6)}}{\partial \mu_{\pi}^2}}, \qquad \delta \rho_D^3 = -\frac{\delta \mathcal{M}^{(8)}}{\frac{\partial \mathcal{M}^{(6)}}{\partial \rho_D^3}}$$
sults in indirect change of $|V_{cb}|$
$$\frac{\delta |V_{cb}|}{|V_{cb}|} = -\frac{1}{2} \frac{1}{\Gamma_{cl}} \frac{\partial \Gamma_{sl}}{\partial HQP} \delta HQP$$

Generic Effects on $|V_{cb}|$

Direct effect

- Additional terms in branching ratio
- \Rightarrow Change value of $|V_{cb}|$ directly

Indirect Effect

- Use estimate of higher-order parameters
- \bullet Value fixed by moment $\mathcal{M}^{(6)}$ up to dimension six
- Compensate effect by change of heavy quark parameter in $\mathcal{M}^{(6)}$

$$\delta m_b = -\frac{\delta \mathcal{M}^{(8)}}{\frac{\partial \mathcal{M}^{(6)}}{\partial m_b}}, \qquad \delta \mu_{\pi}^2 = -\frac{\delta \mathcal{M}^{(8)}}{\frac{\partial \mathcal{M}^{(6)}}{\partial \mu_{\pi}^2}}, \qquad \delta \rho_D^3 = -\frac{\delta \mathcal{M}^{(8)}}{\frac{\partial \mathcal{M}^{(6)}}{\partial \rho_D^3}}$$

 \Rightarrow Results in indirect change of $|V_{cb}|$

$$\frac{\delta |V_{cb}|}{|V_{cb}|} = -\frac{1}{2} \frac{1}{\Gamma_{sl}} \frac{\partial \Gamma_{sl}}{\partial HQP} \ \delta HQP$$

Direct Effect Indirect Effect Discussion

Direct Effect on Branching Fraction

[Mannel, Uraltsev, ST, JHEP 1011 (2010) 109]

Naive Assumption

• Definition: $\delta\Gamma_{1/m^k} = \Gamma_{1/m^k} - \Gamma_{1/m^{k-1}}$ and Γ_{parton} leading order

$\frac{\delta\Gamma_{1/m^2}}{\Gamma_{\text{parton}}} = -4.3\%$	$\frac{\delta\Gamma_{1/m^3}}{\Gamma_{\text{parton}}} = -3.0\%$	
$\frac{\delta\Gamma_{1/m^4}}{\Gamma_{\text{parton}}} = 0.75\%$	$\frac{\delta\Gamma_{1/m^5}}{\Gamma_{parton}}=0.6\%$	$\frac{\delta\Gamma^{\text{IC}}}{\Gamma_{\text{parton}}}=0.7\%$

Implication for
$$|V_{cb}|$$
$$\frac{\delta\Gamma_{1/m^4} + \delta\Gamma}{\Gamma}$$

parton

 \Rightarrow Expect direct 0.65% reduction of $|V_{cb}|$

Sascha Turczyk

Direct Effect Indirect Effect Discussion

Direct Effect on Branching Fraction

[Mannel, Uraltsev, ST, JHEP 1011 (2010) 109]

Naive Assumption

• Definition: $\delta\Gamma_{1/m^k}=\Gamma_{1/m^k}-\Gamma_{1/m^{k-1}}$ and Γ_{parton} leading order

$\frac{\delta\Gamma_{1/m^2}}{\Gamma_{\text{parton}}} = -4.3\%$	$\frac{\delta\Gamma_{1/m^3}}{\Gamma_{\text{parton}}} = -3.0\%$	
$\frac{\delta\Gamma_{1/m^4}}{\Gamma_{\text{parton}}} = 0.75\%$	$\frac{\delta\Gamma_{1/m^5}}{\Gamma_{parton}}=0.6\%$	$\frac{\delta\Gamma^{IC}}{\Gamma_{parton}}=0.7\%$

Implication for $|V_{cb}|$

$$\frac{\delta\Gamma_{1/m^4} + \delta\Gamma_{1/m^5}}{\Gamma_{\text{parton}}} \simeq 1.3\%$$

 \Rightarrow Expect direct 0.65% reduction of $|V_{cb}|$

Sascha Turczyk

Introduction Dire Higher Order Corrections Indi Numerical Discussion Disc

Direct Effect Indirect Effect Discussion

Indirect Effect on V_{cb} from Selected Moments

Results for $\langle E_e \rangle$

$$\begin{split} \delta m_b &= -33 \text{ MeV}, \qquad \delta \mu_\pi^2 = -0.39 \text{ GeV}^2, \qquad \delta \rho_D^3 = 0.15 \text{ GeV}^3 \\ \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} &= 0.022 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.005 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.014 \end{split}$$

Results for $\langle M_X^2 \rangle$

$$\delta m_b = -17 \text{ MeV}, \qquad \delta \mu_\pi^2 = -0.12 \text{ GeV}^2, \qquad \delta \rho_D^3 = 0.086 \text{ GeV}^3$$

$$\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.011 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.0015 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.008$$

• Combining everything we expact a net increase of $|V_{cb}|$

$$\frac{\delta |V_{cb}|}{|V_{cb}|} \approx +(0.3 \div 0.5)\%$$

Direct Effect Indirect Effect Discussion

Indirect Effect on V_{cb} from Selected Moments

Results for $\langle E_e \rangle$

$$\begin{split} \delta m_b &= -33 \text{ MeV}, \qquad \delta \mu_\pi^2 = -0.39 \text{ GeV}^2, \qquad \delta \rho_D^3 = 0.15 \text{ GeV}^3 \\ \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} &= 0.022 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.005 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.014 \end{split}$$

Results for $\langle M_X^2 \rangle$

$$\delta m_b = -17 \text{ MeV}, \qquad \delta \mu_\pi^2 = -0.12 \text{ GeV}^2, \qquad \delta \rho_D^3 = 0.086 \text{ GeV}^3$$
$$\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.011 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.0015 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.008$$

• Combining everything we expact a net increase of $|V_{cb}|$

$$\frac{\delta |V_{cb}|}{|V_{cb}|} \approx +(0.3 \div 0.5)\%$$

Introduction Dire Higher Order Corrections Indi Numerical Discussion Disc

Indirect Effect

Indirect Effect on V_{cb} from Selected Moments

Results for $\langle E_e \rangle$

$$\begin{split} \delta m_b &= -33 \text{ MeV}, \qquad \delta \mu_\pi^2 = -0.39 \text{ GeV}^2, \qquad \delta \rho_D^3 = 0.15 \text{ GeV}^3 \\ \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} &= 0.022 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.005 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.014 \end{split}$$

Results for $\langle M_X^2 \rangle$

$$\delta m_b = -17 \text{ MeV}, \qquad \delta \mu_\pi^2 = -0.12 \text{ GeV}^2, \qquad \delta \rho_D^3 = 0.086 \text{ GeV}^3$$
$$\Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.011 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = -0.0015 \qquad \Rightarrow \frac{\delta |V_{cb}|}{|V_{cb}|} = 0.008$$

• Combining everything we expact a net increase of $|V_{cb}|$

$$\frac{\delta |V_{cb}|}{|V_{cb}|} \approx +(0.3 \div 0.5)\%$$

Direct Effect Indirect Effect Discussion

Effect of Electron Energy Cut

Legend of Different Order Contributions

- Blue: $1/m_b^2$
- Green: $1/m_b^3$

• Red:
$$1/m_b^4$$

• Magenta:
$$1/m_b^5$$

Direct Effect Indirect Effect Discussion

Effect of Electron Energy Cut

Sascha Turczyk

Summary

- Heavy Quark Expansion of inclusive decays
- \Rightarrow HQE matrix element of form $\langle B|\bar{b}_v iD \dots iDb_v|B\rangle$
 - Estimated size of unknown parameters (LLSA)
 - Estimated impact on $|V_{cb}|$ extraction
- \Rightarrow Improving knowledge on ME crucial for < 0.5-1% theo. uncertainty
- \Rightarrow Need to understand uncertainty due to E_{cut} and series truncation
Future Plans

- Fit including Dim=7,8 parameters [Gambino, ST]
- \Rightarrow First hint $\frac{\delta V_{cb}}{V_{cb}} \simeq -0.35\%$
- \Rightarrow Allowing 80% gaussian deviations seem to leave V_{cb} unaffected
 - More elaborate estimate of higher order parameters
- \Rightarrow Including radiative corrections, higher terms? [Heinonen, Mannel]
 - Combined α_s/m_b^3 correction to Darwin term
 - Measure Forward Backward Asymmetry?

Future Plans

- Fit including Dim=7,8 parameters [Gambino, ST]
- \Rightarrow First hint $\frac{\delta V_{cb}}{V_{cb}} \simeq -0.35\%$
- \Rightarrow Allowing 80% gaussian deviations seem to leave V_{cb} unaffected
 - More elaborate estimate of higher order parameters
- \Rightarrow Including radiative corrections, higher terms? [Heinonen, Mannel]
 - Combined α_s/m_b^3 correction to Darwin term
 - Measure Forward Backward Asymmetry?

Backup Slides

Background Field Method

Heavy Quark Matrix Elements

$$2M_B T_{\mu\nu} = \langle B(p) | \bar{b}_v \gamma_\nu P_L S_{\rm BGF} \gamma_\mu P_L b_v | B(p) \rangle$$

Parametrize Background Field Propagator

- Remove only large momentum: $p_b = m_b v + k$, $b_v(x) = e^{im_b v \cdot x} b(x)$
- Background field propagator:

$$iS_{\rm BGF} = \frac{i}{m_b \not\!\!/ - \not\!\!/ + i \not\!\!/ - m_c}$$

• HQE corresponds to expand S_{BGF} in small quantitiy $i \not D$

$$S_{\mathrm{BGF}} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{\not{Q} - m_c} \left(i \not{D} \frac{1}{\not{Q} - m_c}\right)^r$$

\Rightarrow Keeps track on the ordering of the covariant derivatives

Background Field Method

Heavy Quark Matrix Elements

$$2M_B T_{\mu\nu} = \langle B(p) | \bar{b}_v \gamma_\nu P_L S_{\rm BGF} \gamma_\mu P_L b_v | B(p) \rangle$$

Parametrize Background Field Propagator

- Remove only large momentum: $p_b = m_b v + k$, $b_v(x) = e^{im_b v \cdot x} b(x)$
- Background field propagator:

$$iS_{\rm BGF} = \frac{i}{m_b \not v - \not q + i \not D - m_c}$$

• HQE corresponds to expand S_{BGF} in small quantitiy $i \not D$

$$S_{\mathrm{BGF}} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{\not{Q} - m_c} \left(i \not{P} \frac{1}{\not{Q} - m_c} \right)^n$$

 \Rightarrow Keeps track on the ordering of the covariant derivatives

General Structure in each Order

• "Trace-formulae": Non-perturbative input in Dimension n + 3 $\langle B(p)|\bar{b}_{\nu,\alpha}(iD_{\mu_1})\dots(iD_{\mu_n})b_{\nu,\beta}|B(p)\rangle = \sum \hat{\Gamma}^{(i)}_{\beta\alpha}A^{(i)}_{\mu_1\mu_2\cdots\mu_n}$

• "Off-shellness" The imaginary part is given by

$$-\frac{1}{\pi} \operatorname{Im} \frac{1}{(Q^2 - m_c^2 + i\epsilon)^{n+1}} = \frac{(-1)^n}{n!} \delta^{(n)} (Q^2 - m_c^2)$$

Comment on Uncertainties

- Truncation of Series and Parametric Uncertainties
- Duality Violation [Shifman, hep-ph/0009131]
 - [] In Instanton model suppressed by $1/m_b^3$
 - ② Supposedly will result in inconsitent fit \Rightarrow Currently not observed

General Structure in each Order

• "Trace-formulae": Non-perturbative input in Dimension n + 3 $\langle B(p)|\bar{b}_{\nu,\alpha}(iD_{\mu_1})\dots(iD_{\mu_n})b_{\nu,\beta}|B(p)\rangle = \sum_{\beta\alpha}\hat{\Gamma}^{(i)}_{\beta\alpha}A^{(i)}_{\mu_1\mu_2\cdots\mu_n}$

"Off-shellness" The imaginary part is given by

$$-\frac{1}{\pi} \operatorname{Im} \frac{1}{(Q^2 - m_c^2 + i\epsilon)^{n+1}} = \frac{(-1)^n}{n!} \delta^{(n)} (Q^2 - m_c^2)$$

Comment on Uncertainties

- Truncation of Series and Parametric Uncertainties
- Duality Violation [Shifman, hep-ph/0009131]
 - [] In Instanton model suppressed by $1/m_b^3$
 - 2 Supposedly will result in inconsitent fit \Rightarrow Currently not observed

General Structure in each Order

• "Trace-formulae": Non-perturbative input in Dimension n + 3 $\langle B(p)|\bar{b}_{\nu,\alpha}(iD_{\mu_1})\dots(iD_{\mu_n})b_{\nu,\beta}|B(p)\rangle = \sum \hat{\Gamma}^{(i)}_{\beta\alpha}A^{(i)}_{\mu_1\mu_2\cdots\mu_n}$

"Off-shellness" The imaginary part is given by

$$-\frac{1}{\pi} \operatorname{Im} \frac{1}{(Q^2 - m_c^2 + i\epsilon)^{n+1}} = \frac{(-1)^n}{n!} \delta^{(n)} (Q^2 - m_c^2)$$

Comment on Uncertainties

- Truncation of Series and Parametric Uncertainties
- Duality Violation [Shifman, hep-ph/0009131]
 - **1** In Instanton model suppressed by $1/m_b^3$
 - **2** Supposedly will result in inconsitent fit \Rightarrow Currently not observed

Lowest-Lying State Approximation (LLSA)

[Mannel,Uraltsev,ST,JHEP 1011 (2010) 109], improved [Heinonen,Mannel,1407.4384]

Insert complete set to decompose matrix elements

$$\sum_{n} |n\rangle \langle n| = \sum_{\text{pol}} \int d\tilde{\rho} \left[|1^+, \frac{1}{2}\rangle \langle 1^+, \frac{1}{2}| + |1^+, \frac{3}{2}\rangle \langle 1^+, \frac{3}{2}| \right] + \dots$$

 \Rightarrow Express higher order M.E. through product of lower orders

Master Equation

[Heinonen,Mannel,1407.4384]

$$\sum_{k=0}^{\infty} \sum_{n} (2\pi)^{3} \delta^{3}(p_{n}^{\perp}) \left(\frac{-\epsilon_{n}}{\omega}\right)^{k} \langle B(p_{B}) | \bar{b}_{v} \mathcal{P}_{1} Q_{v} | n \rangle \langle n | \bar{Q}_{v} \mathcal{P}_{2} \Gamma b_{v} | B(p_{B}) \rangle$$
$$= \sum_{k=0}^{\infty} \langle B(p_{B}) | \bar{b}_{v} \mathcal{P}_{1} \left(\frac{i v \cdot D}{\omega}\right)^{k} \left(\frac{1+\psi}{2}\right) \mathcal{P}_{2} \Gamma b_{v} | B(p_{B}) \rangle$$

Lowest-Lying State Approximation (LLSA)

[Mannel,Uraltsev,ST,JHEP 1011 (2010) 109], improved [Heinonen,Mannel,1407.4384]

Insert complete set to decompose matrix elements

$$\sum_{n} |n\rangle\langle n| = \sum_{\text{pol}} \int \tilde{d\rho} \left[|1^+, \frac{1}{2}\rangle\langle 1^+, \frac{1}{2}| + |1^+, \frac{3}{2}\rangle\langle 1^+, \frac{3}{2}| \right] + \dots$$

 \Rightarrow Express higher order M.E. through product of lower orders

Master Equation

Heinonen, Mannel, 1407.4384

$$\sum_{k=0}^{\infty} \sum_{n} (2\pi)^{3} \delta^{3}(p_{n}^{\perp}) \left(\frac{-\epsilon_{n}}{\omega}\right)^{k} \langle B(p_{B}) | \bar{b}_{v} \mathcal{P}_{1} Q_{v} | n \rangle \langle n | \bar{Q}_{v} \mathcal{P}_{2} \Gamma b_{v} | B(p_{B}) \rangle$$
$$= \sum_{k=0}^{\infty} \langle B(p_{B}) | \bar{b}_{v} \mathcal{P}_{1} \left(\frac{i v \cdot D}{\omega}\right)^{k} \left(\frac{1+\psi}{2}\right) \mathcal{P}_{2} \Gamma b_{v} | B(p_{B}) \rangle$$

Lowest-Lying State Approximation (LLSA)

[Mannel,Uraltsev,ST,JHEP 1011 (2010) 109], improved [Heinonen,Mannel,1407.4384]

Insert complete set to decompose matrix elements

$$\sum_{n} |n\rangle \langle n| = \sum_{\text{pol}} \int d\tilde{\rho} \left[|1^+, \frac{1}{2}\rangle \langle 1^+, \frac{1}{2}| + |1^+, \frac{3}{2}\rangle \langle 1^+, \frac{3}{2}| \right] + \dots$$

⇒ Express higher order M.E. through product of lower orders

Master Equation

[Heinonen,Mannel,1407.4384]

$$\sum_{k=0}^{\infty} \sum_{n} (2\pi)^{3} \delta^{3}(p_{n}^{\perp}) \left(\frac{-\epsilon_{n}}{\omega}\right)^{k} \langle B(p_{B}) | \bar{b}_{v} \mathcal{P}_{1} Q_{v} | n \rangle \langle n | \bar{Q}_{v} \mathcal{P}_{2} \Gamma b_{v} | B(p_{B}) \rangle$$
$$= \sum_{k=0}^{\infty} \langle B(p_{B}) | \bar{b}_{v} \mathcal{P}_{1} \left(\frac{i v \cdot D}{\omega}\right)^{k} \left(\frac{1+\psi}{2}\right) \mathcal{P}_{2} \Gamma b_{v} | B(p_{B}) \rangle$$

Numerical Example Dim=7

Mannel, Uraltsev, ST, JHEP 1011 (2010) 109]

$$2M_{B} m_{1} = \langle \bar{B} | \bar{b}_{v} i D_{\rho} i D_{\sigma} i D_{\lambda} i D_{\delta} b_{v} | \bar{B} \rangle \frac{1}{3} \left(\Pi^{\rho\sigma} \Pi^{\lambda\delta} + \Pi^{\rho\lambda} \Pi^{\sigma\delta} + \Pi^{\rho\delta} \Pi^{\sigma\lambda} \right)$$

$$2M_{B} m_{4} = \langle \bar{B} | \bar{b}_{v} \left\{ i D_{\rho}, \left[i D_{\sigma}, \left[i D_{\lambda}, i D_{\delta} \right] \right] \right\} b_{v} | \bar{B} \rangle \Pi^{\sigma\lambda} \Pi^{\rho\delta}$$

$$2M_{B} m_{8} = \langle \bar{B} | \bar{b}_{v} \left\{ \left\{ i D_{\rho}, i D_{\sigma} \right\}, \left[i D_{\lambda}, i D_{\delta} \right] \right\} \left(- i \sigma_{\alpha\beta} \right) b_{v} | \bar{B} \rangle \Pi^{\rho\sigma} \Pi^{\alpha\lambda} \Pi^{\beta\delta}$$

$$2M_{B} m_{9} = \langle \bar{B} | \bar{b}_{v} \left[i D_{\rho}, \left[i D_{\sigma}, \left[i D_{\lambda}, i D_{\delta} \right] \right] \right] \left(- i \sigma_{\alpha\beta} \right) b_{v} | \bar{B} \rangle \Pi^{\rho\beta} \Pi^{\lambda\alpha} \Pi^{\sigma\delta},$$

Singlet param.	m_1	m_2	<i>m</i> ₃	<i>m</i> ₄		
Fact. estimate	$rac{5}{9} \left(\mu_{\pi}^2 \right)^2$	$-ar{\epsilon} ho_D^3$	$-rac{2}{3}\left(\mu_G^2 ight)^2$	$\left(\mu_{G}^{2} ight)^{2}+rac{4}{3}\left(\mu_{\pi}^{2} ight)^{2}$		
Value / GeV^4	0.113	-0.06	-0.82	0.393		
Norm Factor	1	1	4	8		
Triplet param.	m_5	m_6	<i>m</i> ₇	<i>m</i> 8	<i>m</i> 9	
Fact. estimate	$-\bar{\epsilon} ho_{LS}^3$	$\frac{2}{3}\left(\mu_G^2\right)^2$	$-\frac{8}{3}\mu_{G}^{2}\mu_{\pi}^{2}$	$-8\mu_G^2\mu_\pi^2$	$\left(\mu_{G}^{2}\right)^{2}-rac{10}{3}\mu_{G}^{2}\mu_{\pi}^{2}$	
Value / GeV^4	0.060	0.082	-0.420	-1.260	-0.403	
Norm Factor	1	4	8	8	8	

Sascha Turczyk

$$\begin{split} &2M_{B} \ m_{1} = \langle \bar{B} | \bar{b}_{v} \ iD_{\rho}iD_{\sigma}iD_{\lambda}iD_{\delta} \ b_{v} | \bar{B} \rangle \ \frac{1}{3} \left(\Pi^{\rho\sigma}\Pi^{\lambda\delta} + \Pi^{\rho\lambda}\Pi^{\sigma\delta} + \Pi^{\rho\delta}\Pi^{\sigma\lambda} \right) \\ &2M_{B} \ m_{2} = \langle \bar{B} | \bar{b}_{v} \ \left[iD_{\rho}, iD_{\sigma} \right] \left[iD_{\lambda}, iD_{\delta} \right] \ b_{v} | \bar{B} \rangle \ \Pi^{\rho\delta}v^{\sigma}v^{\lambda} \\ &2M_{B} \ m_{3} = \langle \bar{B} | \bar{b}_{v} \ \left[iD_{\rho}, iD_{\sigma} \right] \left[iD_{\lambda}, iD_{\delta} \right] \ b_{v} | B \rangle \ \Pi^{\rho\lambda}\Pi^{\sigma\delta} \\ &2M_{B} \ m_{4} = \langle \bar{B} | \bar{b}_{v} \ \left[iD_{\rho}, \left[iD_{\sigma}, \left[iD_{\lambda}, iD_{\delta} \right] \right] \right] \ b_{v} | \bar{B} \rangle \Pi^{\sigma\lambda}\Pi^{\rho\delta} \\ &2M_{B} \ m_{5} = \langle \bar{B} | \bar{b}_{v} \ \left[iD_{\rho}, iD_{\sigma} \right] \left[iD_{\lambda}, iD_{\delta} \right] \left(- i\sigma_{\alpha\beta} \right) \ b_{v} | \bar{B} \rangle \ \Pi^{\alpha\rho}\Pi^{\beta\delta}v^{\sigma}v^{\lambda} \\ &2M_{B} \ m_{6} = \langle \bar{B} | \bar{b}_{v} \ \left[iD_{\rho}, iD_{\sigma} \right] \left[iD_{\lambda}, iD_{\delta} \right] \left(- i\sigma_{\alpha\beta} \right) \ b_{v} | \bar{B} \rangle \ \Pi^{\alpha\sigma}\Pi^{\beta\lambda}\Pi^{\rho\delta} \\ &2M_{B} \ m_{7} = \langle \bar{B} | \bar{b}_{v} \ \left\{ \left\{ iD_{\rho}, iD_{\sigma} \right\}, \left[iD_{\lambda}, iD_{\delta} \right] \right\} \left(- i\sigma_{\alpha\beta} \right) \ b_{v} | \bar{B} \rangle \ \Pi^{\sigma\sigma}\Pi^{\alpha\lambda}\Pi^{\beta\delta} \\ &2M_{B} \ m_{8} = \langle \bar{B} | \bar{b}_{v} \ \left\{ \left\{ iD_{\rho}, iD_{\sigma} \right\}, \left[iD_{\lambda}, iD_{\delta} \right] \right\} \left(- i\sigma_{\alpha\beta} \right) \ b_{v} | \bar{B} \rangle \ \Pi^{\rho\sigma}\Pi^{\alpha\lambda}\Pi^{\beta\delta} \\ &2M_{B} \ m_{9} = \langle \bar{B} | \bar{b}_{v} \ \left[iD_{\rho}, \left[iD_{\sigma}, \left[iD_{\lambda}, iD_{\delta} \right] \right] \right] \left(- i\sigma_{\alpha\beta} \right) \ b_{v} | \bar{B} \rangle \ \Pi^{\rho\beta}\Pi^{\lambda\alpha}\Pi^{\sigma\delta} , \end{split}$$

 $2M_{B}r_{1} = \langle \bar{B} | \bar{b}_{v} i D_{\rho} (iv \cdot D)^{3} i D^{\rho} b_{v} | \bar{B} \rangle$ $2M_{B}r_{2} = \langle \bar{B} | \bar{b}_{v} i D_{\rho} (iv \cdot D) i D^{\rho} i D_{\sigma} i D^{\sigma} b_{v} | \bar{B} \rangle$ $2M_{B}r_{3} = \langle \bar{B} | \bar{b}_{v} i D_{\rho} (iv \cdot D) i D_{\sigma} i D^{\rho} i D^{\sigma} b_{v} | \bar{B} \rangle$ $2M_{B}r_{4} = \langle \bar{B} | \bar{b}_{v} i D_{\rho} (iv \cdot D) i D_{\sigma} i D^{\sigma} i D^{\rho} b_{v} | \bar{B} \rangle$ $2M_{B}r_{5} = \langle \bar{B} | \bar{b}_{v} i D_{\rho} i D^{\rho} (iv \cdot D) i D_{\sigma} i D^{\sigma} b_{v} | \bar{B} \rangle$ $2M_{B}r_{6} = \langle \bar{B} | \bar{b}_{v} i D_{\rho} i D_{\sigma} (iv \cdot D) i D^{\sigma} i D^{\rho} b_{v} | \bar{B} \rangle$ $2M_{B}r_{7} = \langle \bar{B} | \bar{b}_{v} i D_{\rho} i D_{\sigma} (iv \cdot D) i D^{\sigma} i D^{\sigma} b_{v} | \bar{B} \rangle$

 $2M_B r_8 = \langle \bar{B} | \bar{b}_{\nu} i D_{\mu} (i \nu \cdot D)^3 i D_{\nu} (-i \sigma^{\mu\nu}) b_{\nu} | \bar{B} \rangle$ $2M_{B}r_{9} = \langle \bar{B} | \bar{b}_{v} i D_{\mu} (iv \cdot D) i D_{v} i D_{\rho} i D^{\rho} (-i\sigma^{\mu\nu}) b_{v} | \bar{B} \rangle$ $2M_{\rm B}r_{10} = \langle \bar{B} | \bar{b}_{\nu} i D_{\rho} (i \nu \cdot D) i D^{\rho} i D_{\mu} i D_{\nu} (-i \sigma^{\mu\nu}) b_{\nu} | \bar{B} \rangle$ $2M_{B}r_{11} = \langle \bar{B} | \bar{b}_{\nu} i D_{\rho} (i \nu \cdot D) i D_{\mu} i D^{\rho} i D_{\mu} (-i \sigma^{\mu\nu}) b_{\nu} | \bar{B} \rangle$ $2M_{\rm B}r_{12} = \langle \bar{B} | \bar{b}_{\nu} i D_{\mu} (i \nu \cdot D) i D_{\rho} i D_{\nu} i D^{\rho} (-i \sigma^{\mu\nu}) b_{\nu} | \bar{B} \rangle$ $2M_{B}r_{13} = \langle \bar{B} | \bar{b}_{\nu} i D_{\rho} (i \nu \cdot D) i D_{\mu} i D_{\nu} i D^{\rho} (-i \sigma^{\mu\nu}) b_{\nu} | \bar{B} \rangle$ $2M_{B}r_{14} = \langle \bar{B} | \bar{b}_{\nu} i D_{\mu} (i \nu \cdot D) i D_{\rho} i D^{\rho} i D_{\mu} (-i \sigma^{\mu\nu}) b_{\nu} | \bar{B} \rangle$ $2M_{B}r_{15} = \langle \bar{B} | \bar{b}_{\nu} i D_{\mu} i D_{\nu} (i \nu \cdot D) i D_{\rho} i D^{\rho} (-i \sigma^{\mu\nu}) b_{\nu} | \bar{B} \rangle$ $2M_{B}r_{16} = \langle \bar{B} | \bar{b}_{V} i D_{0} i D_{\mu} (i V \cdot D) i D_{V} i D^{\rho} (-i \sigma^{\mu\nu}) b_{V} | \bar{B} \rangle$ $2M_{B}r_{17} = \langle \bar{B} | \bar{b}_{\nu} i D_{\mu} i D_{\rho} (i \nu \cdot D) i D^{\rho} i D_{\nu} (-i \sigma^{\mu\nu}) b_{\nu} | \bar{B} \rangle$ $2M_{B}r_{18} = \langle \bar{B} | \bar{b}_{v} i D_{o} i D_{\mu} (iv \cdot D) i D^{\rho} i D_{\nu} (-i\sigma^{\mu\nu}) b_{v} | \bar{B} \rangle$

Truncation Uncertainty Estimate

- Rewrite Master Formulae as spectral density integral $\sum_{k=0}^{\infty} \sum_{n} (2\pi)^{3} \delta^{3}(p_{n}^{\perp}) \left(\frac{-\epsilon_{n}}{\omega}\right)^{k} \langle B(p_{B}) | \bar{b}_{v} \mathcal{P}_{1} Q_{v} | n \rangle \langle n | \bar{Q}_{v} \mathcal{P}_{2} \Gamma b_{v} | B(p_{B}) \rangle$ $= \int \frac{d\omega'}{2\pi} \frac{\rho(\omega')}{\omega - \omega'} := \Delta(\omega)$
- Represent spectral density as sum infintely many narrow resonances

$$\rho(\omega) = \sum_{n} g(n)\delta(\omega - n\Lambda)$$

• Then the master equation is given by

$$\Delta(\omega) = \frac{1}{2\pi} \sum_{n} g(n) \frac{1}{\omega - n\Lambda}$$

• Impose radial wave function behaviour for resonances $g(n) = g_0 1/n^2$

$$\Delta(\omega) = rac{g_0}{2\pi\Lambda}rac{1}{(\omega/\Lambda)^2}\left[\gamma+\psi(1-\omega/\Lambda)+rac{\pi^2}{6}\omega/\Lambda
ight]$$

Sascha Turczyk

UT Fit V_{ub} and V_{cb} [Derkach ICHEP 2014]

The relative ratio of CKM elements is easily calculable:

$$\left|\frac{V_{ub}}{V_{cb}}\right| = \frac{\lambda}{1 - \frac{\lambda^2}{2}}\sqrt{\bar{
ho}^2 + \bar{\eta}^2}$$

QCD corrections to be considered •inclusive measurements: OPE •exclusive measurements: form-factors from lattice QCD

There is still an inconsistency between inclusive and exclusive measurements. We take this into account inflating the combined uncertainty (a-la PDG).

11

Setup of the Differential Rate

Double Differential Rate

• Consider differential rate in $v \cdot p$ and p^2 , where $p = m_b v - q$

$$\frac{d^{2}\Gamma}{d\nu \cdot p dp^{2}} = \frac{G_{F}^{2} |V_{cb}|^{2}}{6\pi^{3}} \sqrt{(\nu \cdot p)^{2} - p^{2}} W^{\mu\nu} \\ \times \left[m_{b}^{2} \left(\nu_{\mu} \nu_{\nu} - g_{\mu\nu} \right) - 2m_{b} \left(\frac{\nu_{\mu} p_{\nu} + \nu_{\nu} p_{\mu}}{2} - g_{\mu\nu} \nu \cdot p \right) + p_{\mu} p_{\nu} - g_{\mu\nu} p^{2} \right]$$

- Hadronic tensor
- From leptonic tensor

General Structure

$$\frac{\mathrm{d}^2 \Gamma}{\mathrm{d} v \cdot p \mathrm{d} p^2} = \frac{G_F^2 |V_{cb}|^2}{6\pi^3} \sqrt{(v \cdot p)^2 - p^2} \sum_{n=0}^{\infty} P_n(v \cdot p, p^2, m_c) \, \delta^{(n)}(p^2 - m_c^2)$$

• P_n is a polynomial containing $\langle B(p)|\bar{b}_{\nu,\alpha}(iD_{\mu_1})\dots(iD_{\mu_n})b_{\nu,\beta}|B(p)\rangle$

Setup of the Differential Rate

Double Differential Rate

• Consider differential rate in $v \cdot p$ and p^2 , where $p = m_b v - q$

$$\begin{aligned} \frac{d^{2}\Gamma}{dv \cdot p dp^{2}} &= \frac{G_{F}^{2} |V_{cb}|^{2}}{6\pi^{3}} \sqrt{(v \cdot p)^{2} - p^{2}} W^{\mu\nu} \\ &\times \left[m_{b}^{2} \left(v_{\mu} v_{\nu} - g_{\mu\nu} \right) - 2m_{b} \left(\frac{v_{\mu} p_{\nu} + v_{\nu} p_{\mu}}{2} - g_{\mu\nu} v \cdot p \right) + p_{\mu} p_{\nu} - g_{\mu\nu} p^{2} \right] \end{aligned}$$

- Hadronic tensor
- From leptonic tensor

General Structure

$$\frac{d^2\Gamma}{dv \cdot p dp^2} = \frac{G_F^2 |V_{cb}|^2}{6\pi^3} \sqrt{(v \cdot p)^2 - p^2} \sum_{n=0}^{\infty} P_n(v \cdot p, p^2, m_c) \,\delta^{(n)}(p^2 - m_c^2)$$

• P_n is a polynomial containing $\langle B(p)|\bar{b}_{\nu,\alpha}(iD_{\mu_1})\dots(iD_{\mu_n})b_{\nu,\beta}|B(p)\rangle$

Expansion in $1/m_c$

Origin

$$\int dv \cdot p \sqrt{(v \cdot p)^2 - p^2} v \cdot p^{2n} (p^2)^k = C_n (p^2)^{n+k+1} \log p^2 + \text{regular}$$

• Project out most singular contribution

Determine Leading Order

• We have in the order
$$1/m_b^i$$
 (for simplicity $n = k = 0$)
 $\Gamma \sim \int dp^2 m_c^{i+1} p^2 \log p^2 \delta^{(i)}(p^2 - m_c^2)$
 $\sim (m_c^2)^{\frac{3-i}{2}}$

Expansion in $1/m_c$

Origin

$$\int dv \cdot p \sqrt{(v \cdot p)^2 - p^2} v \cdot p^{2n} (p^2)^k = C_n (p^2)^{n+k+1} \log p^2 + \text{regular}$$

• Project out most singular contribution

Determine Leading Order

• We have in the order
$$1/m_b^i$$
 (for simplicity $n = k = 0$)

$$\Gamma \sim \int dp^2 m_c^{i+1} p^2 \log p^2 \delta^{(i)} (p^2 - m_c^2)$$

$$\sim (m_c^2)^{\frac{3-i}{2}}$$

 \Rightarrow For i = 5 the first $1/(m_b^3 m_c^2)$ terms appear

Scenario I: $m_b \sim m_c \gg \Lambda_{QCD}$

Calculable Part

- Integrate out (hard) quantum fluctuations with virtuality of $\mathcal{O}(m_{b,c})$
- \Rightarrow Only light-degrees of freedom remain:
 - light quarks
 - gluons
 - quasi-static *b*-quark field in HQET
 - Short-distance matching coefficients and phase space integrals are functions of fixed ratio $\rho=m_c^2/m_b^2$

Non-Perturbative Part

- At $\mu < m_c$: Operators with charm-quark do not appear in a standard renormalization scheme like e.g. $\overline{\rm MS}$
- They correspond to $\langle \bar{B} | \bar{b}_v \dots c_{\mathrm{static}} \bar{c}_{\mathrm{static}} \dots b_v | \bar{B}
 angle \equiv 0$
- Matches to zero because of $m_b + 2m_c + \Delta E_{\rm soft} > m_B$

Scenario I: $m_b \sim m_c \gg \Lambda_{QCD}$

Calculable Part

- Integrate out (hard) quantum fluctuations with virtuality of $\mathcal{O}(m_{b,c})$
- \Rightarrow Only light-degrees of freedom remain:
 - light quarks
 - gluons
 - quasi-static *b*-quark field in HQET
 - Short-distance matching coefficients and phase space integrals are functions of fixed ratio $\rho=m_c^2/m_b^2$

Non-Perturbative Part

- At $\mu < m_c$: Operators with charm-quark do not appear in a standard renormalization scheme like e.g. $\overline{\rm MS}$
- They correspond to $\langle \bar{B} | \bar{b}_v \dots c_{\mathrm{static}} \bar{c}_{\mathrm{static}} \dots b_v | \bar{B}
 angle \equiv 0$
- Matches to zero because of $m_b + 2m_c + \Delta E_{\rm soft} > m_B$

Scenario III: $m_b \gg m_c \gtrsim \Lambda_{QCD}$

• Charm-quark effects cannot be integrated out perturbatively

 \Rightarrow Define proper power counting

Consequences

- Genuine intrinsic-charm operators exist
 - ⇒ Hadronic matrix elements of this operators have to be defined at μ_0 with $m_b \ge \mu_0 \gg m_c$
- Matrix elements contain non-analytic dependence on m_c
 - ⇒ Partonic phase-space integration for calculation of moments has to be modified to avoid double counting

Scenario III: $m_b \gg m_c \gtrsim \Lambda_{QCD}$

• Charm-quark effects cannot be integrated out perturbatively

 \Rightarrow Define proper power counting

Consequences

- Genuine intrinsic-charm operators exist
 - ⇒ Hadronic matrix elements of this operators have to be defined at μ_0 with $m_b \ge \mu_0 \gg m_c$
- Matrix elements contain non-analytic dependence on m_c
 - ⇒ Partonic phase-space integration for calculation of moments has to be modified to avoid double counting

Hadronic Tensor for "IC"

Starting Point

$$W_{\mu\nu} = \frac{1}{2M_B} \sum_{X_c} \langle \bar{B} | J_{q,\nu}^{\dagger}(x) | X_c \rangle \langle X_c | J_{q,\mu}(0) | \bar{B} \rangle (2\pi)^3 \delta^4(p_B - q - p_{X_c})$$

Rewrite for "Intrinsic Charm" Contribution

• Use translational invariance and expand in local operators

$$2M_{B} W_{\mu\nu}^{IC} = (2\pi)^{3} \delta^{4}(q - m_{b}\nu) \langle \bar{B}(p) | (\bar{b}_{\nu} \gamma_{\nu} P_{L} c) (\bar{c} \gamma_{\mu} P_{L} b_{\nu}) | \bar{B}(p) \rangle$$

+ $(2\pi)^{3} \left(\frac{\partial}{\partial q_{\alpha}} \delta^{4}(q - m_{b}\nu) \right) \langle \bar{B}(p) | (i\partial_{\alpha} \bar{b}_{\nu} \gamma_{\nu} P_{L} c) (\bar{c} \gamma_{\mu} P_{L} b_{\nu}) | \bar{B}(p) \rangle$
+ ...

Hadronic Tensor for "IC"

Starting Point

$$W_{\mu\nu} = \frac{1}{2M_B} \sum_{X_c} \langle \bar{B} | J_{q,\nu}^{\dagger}(x) | X_c \rangle \langle X_c | J_{q,\mu}(0) | \bar{B} \rangle (2\pi)^3 \delta^4(p_B - q - p_{X_c})$$

Rewrite for "Intrinsic Charm" Contribution

• Use translational invariance and expand in local operators

$$2M_{B} W_{\mu\nu}^{IC} = (2\pi)^{3} \delta^{4}(q - m_{b}\nu) \langle \bar{B}(p) | (\bar{b}_{\nu} \gamma_{\nu} P_{L} c) (\bar{c} \gamma_{\mu} P_{L} b_{\nu}) | \bar{B}(p) \rangle + (2\pi)^{3} \left(\frac{\partial}{\partial q_{\alpha}} \delta^{4}(q - m_{b}\nu) \right) \langle \bar{B}(p) | (i\partial_{\alpha} \bar{b}_{\nu} \gamma_{\nu} P_{L} c) (\bar{c} \gamma_{\mu} P_{L} b_{\nu}) | \bar{B}(p) \rangle + \dots$$

Scenarios

Scenario I

• Consider charm-quark as heavy

 $\Rightarrow m_b \sim m_c \gg \Lambda_{QCD}$

Scenario II

• Consider charm-quark as semi-heavy

$$\Rightarrow m_b \gg m_c \gg \Lambda_{QCD}$$

Scenario III

• Consider charm-quark as light

 $\Rightarrow m_b \gg m_c \gtrsim \Lambda_{QCD}$

Scenario II: $m_b \gg m_c \gg \Lambda_{QCD}$

Difference to Scenario

- Resum logarithmic terms $\ln m_c/m_b$ into short-distance coefficient functions
- Expand analytic terms in powers of $m_c/m_b \sim \sqrt{\Lambda_{\rm QCD}/m_b} \sim 0.3$
- \Rightarrow Reproduces Scenario I

Scenario II: $m_b \gg m_c \gg \Lambda_{QCD}$

Difference to Scenario I

- Resum logarithmic terms $\ln m_c/m_b$ into short-distance coefficient functions
- Expand analytic terms in powers of $m_c/m_b \sim \sqrt{\Lambda_{\rm QCD}/m_b} \sim 0.3$
- ⇒ Reproduces Scenario I

Mixing of Operators [Scenario 2/3]

Dimension 6 Intrinsic Charm

- Generates mixing into ρ_D^3
- \Rightarrow Renormalization group flow

$$\frac{d}{d\ln\mu} \begin{pmatrix} \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu) \end{pmatrix} = - \begin{pmatrix} 0 & 0 & 0 \\ -2/3 & 0 & 0 \\ 4/3 & 0 & 0 \end{pmatrix} \begin{pmatrix} \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu) \end{pmatrix}$$

Dimension 7 Intrinsic Charm

• Generates mixing into $m_c^4 \bar{b}_v b_v$

 \Rightarrow RGE flow

• $1/m_c^{2n}$ terms also reproduced [hep-ph/0511158]

Sascha Turczyk

Higher Power Corrections

Mixing of Operators [Scenario 2/3]

Dimension 6 Intrinsic Charm

- Generates mixing into ρ_D^3
- \Rightarrow Renormalization group flow

$$\frac{d}{\ln \mu} \begin{pmatrix} \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu) \end{pmatrix} = - \begin{pmatrix} 0 & 0 & 0 \\ -2/3 & 0 & 0 \\ 4/3 & 0 & 0 \end{pmatrix} \begin{pmatrix} \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu) \end{pmatrix}$$

Dimension 7 Intrinsic Charm

• Generates mixing into $m_c^4 \bar{b}_v b_v$ \Rightarrow RGE flow

• $1/m_c^{2n}$ terms also reproduced [hep-ph/0511158]

Mixing of Operators [Scenario 2/3]

Dimension 6 Intrinsic Charm

- Generates mixing into ρ_D^3
- \Rightarrow Renormalization group flow

$$\frac{d}{\ln \mu} \begin{pmatrix} \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu) \end{pmatrix} = - \begin{pmatrix} 0 & 0 & 0 \\ -2/3 & 0 & 0 \\ 4/3 & 0 & 0 \end{pmatrix} \begin{pmatrix} \rho_D(\mu) \\ T_1(\mu) \\ T_2(\mu) \end{pmatrix}$$

Dimension 7 Intrinsic Charm

• Generates mixing into $m_c^4 \bar{b}_v b_v$ \Rightarrow RGE flow

• $1/m_c^{2n}$ terms also reproduced [hep-ph/0511158]

Model: Weak Annihilation in $b \rightarrow u$ Transitions

- Blue: Leading Log from order $1/m_b^3$
- Yellow: Including $1/(m_b^3 m_c^2)$ Corrections
- Red: Model (s.b.)

Model for "Weak-Annihilation" Operator

- Szenario 3: Four quark operator appears: "Weak-Annihilation"
- Renormalization group inspired model

$$rac{1}{2M_B}\langle B|ar{b}\gamma^k(1-\gamma_5)c\,ar{c}\gamma^k(1-\gamma_5)b|B
angle=rac{
ho_D^3}{m_b^3}\,\lnrac{m_b^2}{m_c^2+\Lambda^2}$$

• $\Lambda \approx 0.7$ GeV from comparisson with expansion up to $1/m_b^5$ \Rightarrow Estimate of $\mathcal{O}(-3\%)$ contribution in $B \to X_u \ell \bar{\nu}_\ell$ decays

Model: Weak Annihilation in $b \rightarrow u$ Transitions

- Blue: Leading Log from order $1/m_b^3$
- Yellow: Including $1/(m_b^3 m_c^2)$ Corrections
- Red: Model (s.b.)

Model for "Weak-Annihilation" Operator

- Szenario 3: Four quark operator appears: "Weak-Annihilation"
- Renormalization group inspired model

$$rac{1}{2M_B}\langle B|ar{b}\gamma^k(1-\gamma_5)c\,ar{c}\gamma^k(1-\gamma_5)b|B
angle=rac{
ho_D^3}{m_b^3}\lnrac{m_b^2}{m_c^2+\Lambda^2}$$

• $\Lambda \approx 0.7$ GeV from comparisson with expansion up to $1/m_b^5$ \Rightarrow Estimate of $\mathcal{O}(-3\%)$ contribution in $B \to \chi_u \ell \bar{\nu}_\ell$ decays

Model: Weak Annihilation in $b \rightarrow u$ Transitions

- Blue: Leading Log from order $1/m_b^3$
- Yellow: Including $1/(m_b^3 m_c^2)$ Corrections
- Red: Model (s.b.)

Model for "Weak-Annihilation" Operator

Szenario 3: Four quark operator appears: "Weak-Annihilation"

• Renormalization group inspired model

$$rac{1}{2M_B}\langle B|ar{b}\gamma^k(1-\gamma_5)c\,ar{c}\gamma^k(1-\gamma_5)b|B
angle=rac{
ho_D^3}{m_b^3}\,\lnrac{m_b^2}{m_c^2+\Lambda^2}$$

 $\bullet~\Lambda \approx 0.7~{\rm GeV}$ from comparisson with expansion up to $1/m_b^5$

⇒ Estimate of $\mathcal{O}(-3\%)$ contribution in $B \to X_u \ell \bar{\nu_\ell}$ decays
Most Recent Data

- Experimental errors are competative with theoretical errors
- General uncertainty due to operators with charm content [hep-ph/0511158]

Fit	$ V_{cb} $	$m_b/{ m GeV}$	$m_c/{\rm GeV}$
RESULT	41.91	4.566	1.101
Δ_{exp}	0.48	0.034	0.045
Δ_{theo}	0.38	0.041	0.064
$\Delta \Gamma_{sl}$	0.59		
Δ_{tot}	0.85	0.055	0.078

Used in Analysis

- Non-perturbative corrections up to $1/m_b^3$
- Electroweak corrections: Estimated $1 + A_{EW} \approx 1.014$
- Perturbative contributions: Using α_s, α²_sβ₀ and α³_sβ²₀ to leading order in 1/m_b: A_{pert} ≈ 0.908

Most Recent Fit

 $|V_{cb}| = (42.42 \pm 0.86) \cdot 10^{-3}$

$$m_b = (4.541 \pm 0.023) \text{ GeV}$$

[BABAR, Phys.Rev.D81:032003,2010]

Most Recent Data

- Experimental errors are competative with theoretical errors
- General uncertainty due to operators with charm content [hep-ph/0511158]

Fit	$ V_{cb} $	$m_b/{ m GeV}$	$m_c/{ m GeV}$
RESULT	41.91	4.566	1.101
Δ_{exp}	0.48	0.034	0.045
Δ_{theo}	0.38	0.041	0.064
$\Delta \Gamma_{sl}$	0.59		
Δ_{tot}	0.85	0.055	0.078

Used in Analysis

- Non-perturbative corrections up to $1/m_b^3$
- Electroweak corrections: Estimated $1 + A_{EW} \approx 1.014$
- Perturbative contributions: Using α_s, α²_sβ₀ and α³_sβ²₀ to leading order in 1/m_b: A_{pert} ≈ 0.908

Most Recent Fit

 $|V_{cb}| = (42.42 \pm 0.86) \cdot 10^{-3}$

$m_b = (4.541 \pm 0.023) \text{ GeV}$

Most Recent Data

- Experimental errors are competative with theoretical errors
- General uncertainty due to operators with charm content [hep-ph/0511158]

Fit	$ V_{cb} $	$m_b/{ m GeV}$	$m_c/{ m GeV}$
RESULT	41.91	4.566	1.101
Δ_{exp}	0.48	0.034	0.045
Δ_{theo}	0.38	0.041	0.064
$\Delta\Gamma_{sl}$	0.59		
Δ_{tot}	0.85	0.055	0.078

Used in Analysis

- Non-perturbative corrections up to $1/m_b^3$
- Electroweak corrections: Estimated $1 + A_{EW} \approx 1.014$
- Perturbative contributions: Using α_s, α²_sβ₀ and α³_sβ²₀ to leading order in 1/m_b: A_{pert} ≈ 0.908

Most Recent Fit

[Gambino, Schwanda, Phys. Rev. D89, 014022]

 $|V_{cb}| = (42.42 \pm 0.86) \cdot 10^{-3}$

 $m_b = (4.541 \pm 0.023) \text{ GeV}$

Sascha Turczyk

Higher Power Corrections