

Precision Determination of Inclusive $|V_{ub}|$

Gil Paz

Department of Physics and Astronomy, Wayne State University

Outline

- Introduction
- Classic BLNP: 2004 2006
- Further developments: 2006 2010
- Future: 2015 -

Introduction

Motivation

- Determination of a fundamental parameter: $|V_{ub}|$
- Theoretically clean
- Theoretically interesting

Determination of fundamental parameters

- Inclusive semileptonic B decays
- \Rightarrow precision determination of $|V_{cb}| \& |V_{ub}|$

```
• PDG 2014:

Inclusive |V_{cb}| = 42.2 \pm 0.7 \times 10^{-3}

(exclusive |V_{cb}| = 39.5 \pm 0.8 \times 10^{-3})

Inclusive |V_{ub}| = 4.41 \pm 0.15 \underset{exp-0.17 \text{ theo}}{\text{+}0.15}

(exclusive |V_{ub}| = 3.28 \pm 0.29 \times 10^{-3})
```

• Unresolved tension for $|V_{cb}| \& |V_{ub}|$: Inclusive > Exclusive

Theoretically Clean

Since $5 \,\mathrm{GeV} \sim m_b \gg \Lambda_{\mathrm{QCD}} \sim 0.5 \,\mathrm{GeV}$

Observables expanded as a power series in $\Lambda_{\rm QCD}/m_b \sim 0.1$

$$d\Gamma = \sum_{n} c_{n} \frac{\langle O_{n} \rangle}{m_{b}^{n}}$$

 c_n perturbative, $\langle O_n \rangle$ non-perturbative

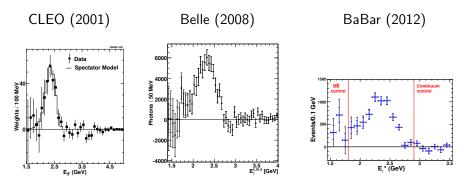
- Improvable:
- Calculate c_n to higher order in α_s
- Expand to higher orders in $\Lambda_{\rm QCD}/m_b$

Theoretically Interesting

- Theoretically Interesting: test of basic QFT tools
- Factorization theorems
- Operator product expansion

Theoretically Interesting

- Theoretically Interesting: test of basic QFT tools
- Factorization theorems
- Operator product expansion
- Theoretically Interesting: window to non-perturbative physics



At leading twist the photon spectrum is the B-meson pdf

• Smallest error on $|V_{ub}|$ compared to other approaches –

- Smallest error on $|V_{ub}|$ compared to other approaches –
- Get Inclusive and exclusive |Vub| to match-

- Smallest error on $|V_{ub}|$ compared to other approaches –
- Get Inclusive and exclusive |Vub| to match-
- Reliable extraction of $|V_{ub}|$ from inclusive *B* decays with conservative estimate of errors and non-perturbative effects

Take home message

• 1990's -2000's: Next to Leading Order (NLO) Era:

 c_0 at $\mathcal{O}(\alpha_s)$ + first power corrections at $\mathcal{O}(\alpha_s^0)$

• 2010's: Next to Next to Leading Order (NNLO) Era

 c_0 at $\mathcal{O}(\alpha_s^2)$ + first power corrections at $\mathcal{O}(\alpha_s)$ + ...

Classic BLNP: 2004 - 2006

$\bar{B} \to X_u \,\ell \,\bar{\nu}$

• In principle local OPE describes $\bar{B} \to X_u \, \ell \, \bar{\nu}$ observables

Assuming $M_X^2 \sim m_b^2 \Rightarrow$ local OPE

$\bar{B} \to X_u \,\ell \,\bar{\nu}$

• In principle local OPE describes $\bar{B} \to X_u \, \ell \, \bar{\nu}$ observables

Assuming $M_X^2 \sim m_b^2 \Rightarrow \text{local OPE}$

• In practice, to reject $\bar{B} \to X_c \, \ell \, \bar{\nu}$ background need cuts: $M_X^2 < M_D^2$

 $M_X^2 < M_D^2 \sim m_b \Lambda_{\rm QCD} \Rightarrow$ non-local OPE

$\bar{B} \to X_u \,\ell \,\bar{\nu}$

• In principle local OPE describes $\bar{B} \to X_u \, \ell \, \bar{\nu}$ observables

Assuming $M_X^2 \sim m_b^2 \Rightarrow$ local OPE

• In practice, to reject $ar{B} o X_c \, \ell \, ar{
u}$ background need cuts: $M_X^2 < M_D^2$

$$M_X^2 < M_D^2 \sim m_b \Lambda_{\rm QCD} \Rightarrow$$
 non-local OPE

• Three scales in the problem

$$\begin{array}{ll} \mbox{hard} & \mu_h \sim m_b & \sim 5 \mbox{ GeV} \\ \mbox{jet} & \mu_i \sim \sqrt{m_b \Lambda_{\rm QCD}} & \sim 1.5 \mbox{ GeV} \\ \mbox{soft} & \mu_0 \sim \Lambda_{\rm QCD} & \sim 0.5 \mbox{ GeV} \end{array}$$

Classic BLNP: Leading Power Factorization

- At the end point region, spectra of
- $\bar{B}
 ightarrow X_u \, I \, \bar{
 u}$
- $Q_{7\gamma} Q_{7\gamma}$ contribution to $\overline{B} \to X_s \gamma$ obey a **leading power** factorization formula [Korchemsky, Sterman '94; Bauer, Pirjol, Stewart '01]

$$\begin{array}{ll} \bar{B} \to X_{s}\gamma : & d\Gamma_{s}^{77} \sim H_{s} \cdot J \otimes S + \dots \\ \bar{B} \to X_{u} \, I \, \bar{\nu} : & d\Gamma_{u} \sim H_{u} \cdot J \otimes S + \dots \end{array}$$

- S (leading) shape function, non-perturbative
- H_i and J calculable using PT in α_s

Classic BLNP: Leading Power Factorization at $\mathcal{O}(\alpha_s)$

Leading power factorization formula

[Korchemsky, Sterman '94; Bauer, Pirjol, Stewart '01]

$$\bar{B} \to X_s \gamma : \qquad d\Gamma_s^{77} \sim H_s \cdot J \otimes S + \dots$$
$$\bar{B} \to X_u \, I \, \bar{\nu} : \qquad d\Gamma_u \sim H_u \cdot J \otimes S + \dots$$

Classic BLNP: Leading Power Factorization at $\mathcal{O}(\alpha_s)$

Leading power factorization formula

[Korchemsky, Sterman '94; Bauer, Pirjol, Stewart '01]

$$\bar{B} \to X_s \gamma : \qquad d\Gamma_s^{77} \sim H_s \cdot J \otimes S + \dots \bar{B} \to X_u \, I \, \bar{\nu} : \qquad d\Gamma_u \sim H_u \cdot J \otimes S + \dots$$

- H_u and J calculated at $\mathcal{O}(lpha_s)$

[Bauer, Manohar '03; Bosch, Lange, Neubert, GP '04]

- H_s calculated at $\mathcal{O}(\alpha_s)$ [Neubert '04]

Classic BLNP: Leading Power Factorization at $\mathcal{O}(\alpha_s)$

Leading power factorization formula

[Korchemsky, Sterman '94; Bauer, Pirjol, Stewart '01]

$$\bar{B} \to X_s \gamma : \qquad d\Gamma_s^{77} \sim H_s \cdot J \otimes S + \dots \bar{B} \to X_u \, I \, \bar{\nu} : \qquad d\Gamma_u \sim H_u \cdot J \otimes S + \dots$$

- H_u and J calculated at $\mathcal{O}(\alpha_s)$ [Bauer, Manohar '03; Bosch, Lange, Neubert, GP '04]
- H_s calculated at $\mathcal{O}(\alpha_s)$ [Neubert '04]
- *H* evolved from μ_h down to μ_i resumming Sudakov double logs

Classic BLNP: Subleading Power Factorization at $\mathcal{O}(\alpha_s^0)$

 One type of 1/m_b power corrections: subleading shape functions (subleading "twist")

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

- SCET: [K.S.M. Lee, Stewart '04; Bosch, Neubert, GP '04; Beneke, Campanario, Mannel, Pecjak '04]
- Non SCET: [Bauer, Luke, Mannel '01, '02; Leibovich, Ligeti, Wise '02; Neubert '02; Burrell, Luke, Williamson '03; Tackmann '05] See GP talk at Vub/SF Workshop SLAC 2004
- s_i are non-perturbative, appear at tree level

Classic BLNP: Other Contributions

• In absence of proper factorization for α_s/m_b terms "kinematical corrections" are incorporated as Kinematical = (Partonic - LO corrections) \otimes LO SF Partonic at $O(\alpha_s)$ from [De-Fazio, Neubert '99]

Classic BLNP: Other Contributions

- In absence of proper factorization for α_s/m_b terms "kinematical corrections" are incorporated as Kinematical = (Partonic - LO corrections) ⊗ LO SF Partonic at O(α_s) from [De-Fazio, Neubert '99]
- 1/m²_b hadronic corrections from OPE Calculation
 [Blok, Koyrakh, Shifman '93, Vainshtein; Manohar, Wise '93]
 Extract and express as convolution with LO SF

Classic BLNP: Other Contributions

- In absence of proper factorization for α_s/m_b terms "kinematical corrections" are incorporated as Kinematical = (Partonic - LO corrections) ⊗ LO SF Partonic at O(α_s) from [De-Fazio, Neubert '99]
- 1/m²_b hadronic corrections from OPE Calculation
 [Blok, Koyrakh, Shifman '93, Vainshtein; Manohar, Wise '93]
 Extract and express as convolution with LO SF

• Example: for
$$E_X - |ec{P}_X| = P_+ \leq M_D^2/M_B$$

 $\begin{array}{ccc} \Gamma_u^{(0)} & + \left(\Gamma_u^{\text{kin}(1)} & + \Gamma_u^{\text{hadr}(1)}\right) & + \left(\Gamma_u^{\text{kin}(2)} & + \Gamma_u^{\text{hadr}(2)}\right) \\ = \left[\begin{array}{ccc} 53.225 & + \left(4.646 & -11.746\right) & + \left(0.328 & -0.469\right) \right] \ |V_{ub}|^2 \, \text{ps}^{-1} \end{array} \right.$

[Lange, Neubert, GP '05]

Classic BLNP: Summary

Based on

$$d\Gamma \sim \frac{H}{J} \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(lpha_s)$
- Subleading shape functions: $H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$
- α_{s}/m_{b} , α_{s}/m_{b}^{2} and $1/m_{b}^{2}$ as above
- S extracted from $\bar{B}
 ightarrow X_s \gamma$, s_i modeled (\sim 700 models)
- Smoothly merges to local OPE when integrated over phase space

Classic BLNP: Summary

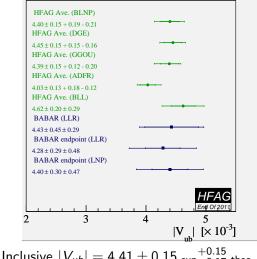
Based on

$$d\Gamma \sim \frac{H}{J} \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \dots$$

- Leading power $H \cdot J \otimes S$ at $\mathcal{O}(lpha_s)$
- Subleading shape functions: $H \cdot J \otimes s_i$ at $\mathcal{O}(\alpha_s^0)$
- α_{s}/m_{b} , α_{s}/m_{b}^{2} and $1/m_{b}^{2}$ as above
- S extracted from $\bar{B}
 ightarrow X_s \gamma$, s_i modeled (\sim 700 models)
- Smoothly merges to local OPE when integrated over phase space
- Precision determination of $|V_{ub}|$ ("NLO") [Lange, Neubert, GP '05] Error on $|V_{ub}|$: **18%** (PDG 2004) \Rightarrow **8%** (PDG 2006)

$\bar{B} \to X_u \,\ell \,\bar{\nu}$: Present

Consistent extractions based on various theoretical approaches



• PDG 2014: Inclusive $|V_{ub}| = 4.41 \pm 0.15 \exp_{-0.17 \text{ theo}}^{+0.15}$ exclusive $|V_{ub}| = 3.28 \pm 0.29 \times 10^{-3}$

Further developments: 2006 - 2010

• Progress in the perturbative calculation:

$$\begin{split} \bar{B} &\to X_s \gamma : \qquad d\Gamma_s^{77} \sim H_s \cdot J \otimes S + \dots \\ \bar{B} &\to X_u \, I \, \bar{\nu} : \qquad d\Gamma_u \sim H_u \cdot J \otimes S + \dots \end{split}$$

• Progress in the perturbative calculation:

$$\bar{B} \to X_s \gamma : \qquad d\Gamma_s^{77} \sim H_s \cdot J \otimes S + \dots \\ \bar{B} \to X_u \, I \, \bar{\nu} : \qquad d\Gamma_u \sim H_u \cdot J \otimes S + \dots$$

• 2005: H_s calculated at $\mathcal{O}(\alpha_s^2)$ [Melnikov, Mitov '05, ...]

• Progress in the perturbative calculation:

$$\bar{B} \to X_s \gamma : \qquad d\Gamma_s^{77} \sim H_s \cdot J \otimes S + \dots \\ \bar{B} \to X_u \, I \, \bar{\nu} : \qquad d\Gamma_u \sim H_u \cdot J \otimes S + \dots$$

- 2005: H_s calculated at $\mathcal{O}(\alpha_s^2)$ [Melnikov, Mitov '05, ...]
- 2006: J calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '06]

• Progress in the perturbative calculation:

$$\bar{B} \to X_s \gamma : \qquad d\Gamma_s^{77} \sim H_s \cdot J \otimes S + \dots \\ \bar{B} \to X_u \, I \, \bar{\nu} : \qquad d\Gamma_u \sim H_u \cdot J \otimes S + \dots$$

- 2005: H_s calculated at $\mathcal{O}(\alpha_s^2)$ [Melnikov, Mitov '05, ...]
- 2006: J calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '06]
- 2008: *H_u* calculated at *O*(α_s²)
 [Bonciani, Ferroglia '08; Asatrian, Greub, Pecjak '08; Beneke, Huber, Li '08; Bell '08]

Leading Power Factorization at $\mathcal{O}(\alpha_s^2)$: Implications

• Study of implication of $\mathcal{O}(\alpha_s^2)$ on $|V_{ub}|$ [Greub, Neubert, Pecjak '09] See Pecjak's talk at V_{xb} 2009

Leading Power Factorization at $\mathcal{O}(\alpha_s^2)$: Implications

- Study of implication of $\mathcal{O}(\alpha_s^2)$ on $|V_{ub}|$ [Greub, Neubert, Pecjak '09] See Pecjak's talk at V_{xb} 2009
- "For the default choice $\mu_i = 1.5$ GeV used in ... BLNP framework, the NNLO corrections induce significant downward shifts"

Leading Power Factorization at $\mathcal{O}(\alpha_s^2)$: Implications

- Study of implication of $\mathcal{O}(\alpha_s^2)$ on $|V_{ub}|$ [Greub, Neubert, Pecjak '09] See Pecjak's talk at V_{xb} 2009
- "For the default choice $\mu_i = 1.5$ GeV used in ... BLNP framework, the NNLO corrections induce significant downward shifts"
- "perturbative uncertainties are reduced, especially those at the jet scale, which are the dominant ones at next-to-leading order (NLO). "

- Study of implication of $\mathcal{O}(\alpha_s^2)$ on $|V_{ub}|$ [Greub, Neubert, Pecjak '09] See Pecjak's talk at V_{xb} 2009
- "For the default choice $\mu_i = 1.5$ GeV used in ... BLNP framework, the NNLO corrections induce significant downward shifts"
- "perturbative uncertainties are reduced, especially those at the jet scale, which are the dominant ones at next-to-leading order (NLO). "
- "For parameter and scale choices ... within the BLNP framework ... NNLO corrections raise the value of |*Vub*| by slightly less than 10% compared to NLO"

- Study of implication of $\mathcal{O}(\alpha_s^2)$ on $|V_{ub}|$ [Greub, Neubert, Pecjak '09] See Pecjak's talk at V_{xb} 2009
- "For the default choice $\mu_i = 1.5$ GeV used in ... BLNP framework, the NNLO corrections induce significant downward shifts"
- "perturbative uncertainties are reduced, especially those at the jet scale, which are the dominant ones at next-to-leading order (NLO). "
- "For parameter and scale choices ... within the BLNP framework ... NNLO corrections raise the value of |*Vub*| by slightly less than 10% compared to NLO"
- "factorization ... perturbative coefficient...into jet and hard functions is not strictly necessary: using ... fixed-order... does not lead to large scale uncertainties ... nor to a poor convergence ..."

Subleading Power Factorization at $\mathcal{O}(\alpha_s)$: Subleading jet functions

$$d\Gamma \sim \frac{H}{M} \cdot J \otimes S + \frac{1}{m_b} \sum_{i} H \cdot J \otimes s_i + \frac{1}{m_b} \sum_{i} H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right)$$

• Subleading jet functions, j_i , for $d\Gamma_s^{77}$ and $d\Gamma_u$ calculated at $\mathcal{O}(\alpha_s)$ [GP '09] Subleading Power Factorization at $\mathcal{O}(\alpha_s)$: Subleading jet functions

$$d\Gamma \sim \frac{H}{M} \cdot J \otimes S + \frac{1}{m_b} \sum_{i} H \cdot J \otimes s_i + \frac{1}{m_b} \sum_{i} H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right)$$

- Subleading jet functions, j_i , for $d\Gamma_s^{77}$ and $d\Gamma_u$ calculated at $\mathcal{O}(\alpha_s)$ [GP '09]
- *j_i* are perturbative, arise at α_s/m_b, appear in convolution with LO SF i.e. do *not* introduce new hadronic uncertainties

Subleading Power Factorization at $\mathcal{O}(\alpha_s)$: Subleading jet functions

$$d\Gamma \sim \frac{H}{M} \cdot J \otimes S + \frac{1}{m_b} \sum_{i} H \cdot J \otimes s_i + \frac{1}{m_b} \sum_{i} H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right)$$

- Subleading jet functions, j_i , for $d\Gamma_s^{77}$ and $d\Gamma_u$ calculated at $\mathcal{O}(\alpha_s)$ [GP '09]
- *j_i* are perturbative, arise at α_s/m_b, appear in convolution with LO SF i.e. do *not* introduce new hadronic uncertainties
- As experimental cuts are relaxed
- s_i remain power suppressed
- j_i become less power suppressed

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \frac{1}{m_b} \sum_i H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right)$$

$$d\Gamma \sim \frac{H}{M} \cdot J \otimes S + \frac{1}{m_b} \sum_{i} H \cdot J \otimes s_i + \frac{1}{m_b} \sum_{i} H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right)$$

• To implement j_i , e.g. for $d\Gamma_s^{77}$, replace the α_s/m_b "kinematic"

$$W^{\text{Kin.}} = \frac{1}{m_b} \frac{C_F \alpha_s(\mu)}{4\pi} \int d\omega \,\theta(\omega + n \cdot p) \left[32 \ln \frac{\omega + n \cdot p}{m_b} + 30 \right] S(\omega) + \mathcal{O}(\alpha_s^2)$$
by

$$W^{\rm SJF} = \frac{1}{m_b} \frac{C_F \alpha_s(\mu)}{4\pi} \int d\omega \ \theta(\omega + n \cdot p) \left[32 \ln \frac{\mu^2}{m_b(\omega + n \cdot p)} - 18 \right] S(\omega) + \mathcal{O}(\alpha_s^2)$$

$$d\Gamma \sim \frac{H}{M} \cdot J \otimes S + \frac{1}{m_b} \sum_{i} H \cdot J \otimes s_i + \frac{1}{m_b} \sum_{i} H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right)$$

• To implement j_i , e.g. for $d\Gamma_s^{77}$, replace the α_s/m_b "kinematic"

$$W^{\text{Kin.}} = \frac{1}{m_b} \frac{C_F \alpha_s(\mu)}{4\pi} \int d\omega \,\theta(\omega + n \cdot p) \left[32 \ln \frac{\omega + n \cdot p}{m_b} + 30 \right] S(\omega) + \mathcal{O}(\alpha_s^2)$$

by

$$W^{\rm SJF} = \frac{1}{m_b} \frac{C_F \alpha_s(\mu)}{4\pi} \int d\omega \ \theta(\omega + n \cdot p) \left[32 \ln \frac{\mu^2}{m_b(\omega + n \cdot p)} - 18 \right] S(\omega) + \mathcal{O}(\alpha_s^2)$$

 No change for s_i term, just s_i modeling to account for their non-zero one loop contribution

$$d\Gamma \sim \frac{H}{M} \cdot J \otimes S + \frac{1}{m_b} \sum_{i} H \cdot J \otimes s_i + \frac{1}{m_b} \sum_{i} H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right)$$

• To implement j_i , e.g. for $d\Gamma_s^{77}$, replace the α_s/m_b "kinematic"

$$W^{\text{Kin.}} = \frac{1}{m_b} \frac{C_F \alpha_s(\mu)}{4\pi} \int d\omega \,\theta(\omega + n \cdot \rho) \left[32 \ln \frac{\omega + n \cdot \rho}{m_b} + 30 \right] S(\omega) + \mathcal{O}(\alpha_s^2)$$
by

$$W^{\rm SJF} = \frac{1}{m_b} \frac{C_F \alpha_s(\mu)}{4\pi} \int d\omega \ \theta(\omega + n \cdot p) \left[32 \ln \frac{\mu^2}{m_b(\omega + n \cdot p)} - 18 \right] S(\omega) + \mathcal{O}(\alpha_s^2)$$

- No change for s_i term, just s_i modeling to account for their non-zero one loop contribution
- Although α_s and $1/m_b$ suppressed, effect can be non-negligible e.g. constant change from +30 to -18 See GP talk at V_{xb} 2009

• Several ops. contribute to $\bar{B} \to X_s \gamma$, most important: $Q_{7\gamma}, Q_{8g}, Q_1$ At leading power only $Q_{7\gamma} - Q_{7\gamma}$, at higher power $Q_i - Q_j$

- Several ops. contribute to $\bar{B} \to X_s \gamma$, most important: $Q_{7\gamma}, Q_{8g}, Q_1$ At leading power only $Q_{7\gamma} - Q_{7\gamma}$, at higher power $Q_i - Q_j$
- Common lore: like semileptonic, no $1/m_b$ corrections for $\Gamma(\bar{B} \to X_s \gamma)$

- Several ops. contribute to $\bar{B} \to X_s \gamma$, most important: $Q_{7\gamma}, Q_{8g}, Q_1$ At leading power only $Q_{7\gamma} - Q_{7\gamma}$, at higher power $Q_i - Q_j$
- Common lore: like semileptonic, no $1/m_b$ corrections for $\Gamma(\bar{B} \to X_s \gamma)$ Hints that not all is well
- $Q_{8g} Q_{8g}$ [Ali, Greub '95; Kapustin, Ligeti, Politzer '95]
- $Q_1 Q_{7\gamma}$ [Voloshin '96; Ligeti, Randall, Wise '97; Grant, Morgan, Nussinov, Peccei '97; Buchalla, Isidori, Rey '97]
- No local OPE for $\Gamma(\bar{B} \to X_s \gamma)$ [Ligeti, Randall, Wise '97]

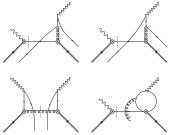
- Several ops. contribute to $\bar{B} \to X_s \gamma$, most important: $Q_{7\gamma}, Q_{8g}, Q_1$ At leading power only $Q_{7\gamma} - Q_{7\gamma}$, at higher power $Q_i - Q_j$
- Common lore: like semileptonic, no $1/m_b$ corrections for $\Gamma(\bar{B} \to X_s \gamma)$ Hints that not all is well
- $Q_{8g} Q_{8g}$ [Ali, Greub '95; Kapustin, Ligeti, Politzer '95]
- $Q_1 Q_{7\gamma}$ [Voloshin '96; Ligeti, Randall, Wise '97; Grant, Morgan, Nussinov, Peccei '97; Buchalla, Isidori, Rey '97]
- No local OPE for $\Gamma(\bar{B} \to X_s \gamma)$ [Ligeti, Randall, Wise '97]
- Effects thought under control or small ...

- Several ops. contribute to $\bar{B} \to X_s \gamma$, most important: $Q_{7\gamma}, Q_{8g}, Q_1$ At leading power only $Q_{7\gamma} - Q_{7\gamma}$, at higher power $Q_i - Q_j$
- Common lore: like semileptonic, no $1/m_b$ corrections for $\Gamma(\bar{B} \to X_s \gamma)$ Hints that not all is well
- $Q_{8g} Q_{8g}$ [Ali, Greub '95; Kapustin, Ligeti, Politzer '95]
- $Q_1 Q_{7\gamma}$ [Voloshin '96; Ligeti, Randall, Wise '97; Grant, Morgan, Nussinov, Peccei '97; Buchalla, Isidori, Rey '97]
- No local OPE for $\Gamma(\bar{B} \to X_s \gamma)$ [Ligeti, Randall, Wise '97]
- Effects thought under control or small ... never a systematic study

- Several ops. contribute to $\bar{B} \to X_s \gamma$, most important: $Q_{7\gamma}, Q_{8g}, Q_1$ At leading power only $Q_{7\gamma} - Q_{7\gamma}$, at higher power $Q_i - Q_j$
- Common lore: like semileptonic, no $1/m_b$ corrections for $\Gamma(\bar{B} \to X_s \gamma)$ Hints that not all is well
- $Q_{8g} Q_{8g}$ [Ali, Greub '95; Kapustin, Ligeti, Politzer '95]
- $Q_1 Q_{7\gamma}$ [Voloshin '96; Ligeti, Randall, Wise '97; Grant, Morgan, Nussinov, Peccei '97; Buchalla, Isidori, Rey '97]
- No local OPE for $\Gamma(\bar{B} \to X_s \gamma)$ [Ligeti, Randall, Wise '97]
- Effects thought under control or small ... never a systematic study Uncertainty from $Q_{7\gamma} - Q_{8g}$ was missed (tree level diagram...) [Lee, Neubert, GP '06]

- Several ops. contribute to $\bar{B} \to X_s \gamma$, most important: $Q_{7\gamma}, Q_{8g}, Q_1$ At leading power only $Q_{7\gamma} - Q_{7\gamma}$, at higher power $Q_i - Q_j$
- Common lore: like semileptonic, no $1/m_b$ corrections for $\Gamma(\bar{B} \to X_s \gamma)$ Hints that not all is well
- $Q_{8g} Q_{8g}$ [Ali, Greub '95; Kapustin, Ligeti, Politzer '95]
- $Q_1 Q_{7\gamma}$ [Voloshin '96; Ligeti, Randall, Wise '97; Grant, Morgan, Nussinov, Peccei '97; Buchalla, Isidori, Rey '97]
- No local OPE for $\Gamma(\bar{B} \to X_s \gamma)$ [Ligeti, Randall, Wise '97]
- Effects thought under control or small ... never a systematic study Uncertainty from Q_{7γ} Q_{8g} was missed (tree level diagram...) [Lee, Neubert, GP '06]
 Non perturbative effects in Γ(B̄ → X_s γ) arise at 1/m_b
 Effects on the integrated rate ~ 5% [Benzke, Lee, Neubert, GP '10]

Resolved Photons: Implications

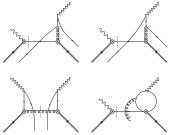


Top line: Bottom left: Bottom right:

• For the $\overline{B} \to X_s \gamma$ spectrum: Soft functions contributions unique to $B \to X_s \gamma$, e.g.

 $h_{17}(\omega,\omega_1)$ F.T. of $\langle \bar{B}|\bar{b}(tn)\cdots G(tn+r\bar{n})\cdots b(0)|\bar{B}\rangle$

Resolved Photons: Implications

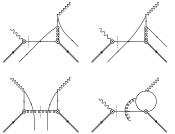


Top line: Bottom left: Bottom right: $egin{aligned} Q_{7\gamma} &- Q_{8g}\ Q_{8g} &- Q_{8g}\ Q_1 &- Q_{7\gamma} \end{aligned}$

• For the $\bar{B} \to X_s \gamma$ spectrum: Soft functions contributions unique to $B \to X_s \gamma$, e.g. $h_{17}(\omega, \omega_1)$ F.T. of $\langle \bar{B} | \bar{b}(tn) \cdots G(tn + r\bar{n}) \cdots b(0) | \bar{B} \rangle$

 Very hard to model: Normalization: 2λ₂, 1st moment in ω : -ρ₂, 1st moment in ω₁: zero

Resolved Photons: Implications



Top line: Bottom left: Bottom right: $egin{aligned} Q_{7\gamma} &- Q_{8g} \ Q_{8g} &- Q_{8g} \ Q_1 &- Q_{7\gamma} \end{aligned}$

 For the B
 → X_s γ spectrum: Soft functions contributions unique to B → X_s γ, e.g. h₁₇(ω, ω₁) F.T. of ⟨B|b(tn) · · · G(tn + rn) · · · b(0)|B⟩

 Very hard to model: Normalization: 2λ₂, 1st moment in ω : -ρ₂, 1st moment in ω₁: zero Effects on the *spectrum* not modeled yet
 ⇒ Extra uncertainty on S as input to B → X_u ℓ ν

$\bar{B} \to X_u \, \ell \, \bar{\nu}$: Further developments

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \frac{1}{m_b} \sum_i H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right)$$

- More recently
- J calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '06]
- *H* calculated at $\mathcal{O}(\alpha_s^2)$ [Bonciani, Ferroglia '08; Asatrian, Greub, Pecjak '08; Beneke, Huber, Li '08; Bell '08]
- j_i calculated at $\mathcal{O}(\alpha_s)$ [GP '09]
- New resolved photon contribution to $B\to X_{\rm s}\,\gamma$ [Benzke, Lee, Neubert, GP '10]
- Calculations not fully combined yet

$\bar{B} \to X_u \, \ell \, \bar{\nu}$: Further developments

$$d\Gamma \sim H \cdot J \otimes S + \frac{1}{m_b} \sum_i H \cdot J \otimes s_i + \frac{1}{m_b} \sum_i H \cdot j_i \otimes S + \mathcal{O}\left(\frac{\Lambda_{\text{QCD}}^2}{m_b^2}\right)$$

- More recently
- J calculated at $\mathcal{O}(\alpha_s^2)$ [Becher, Neubert '06]
- *H* calculated at $\mathcal{O}(\alpha_s^2)$ [Bonciani, Ferroglia '08; Asatrian, Greub, Pecjak '08; Beneke, Huber, Li '08; Bell '08]
- j_i calculated at $\mathcal{O}(\alpha_s)$ [GP '09]
- New resolved photon contribution to $B\to X_{\rm s}\,\gamma$ [Benzke, Lee, Neubert, GP '10]
- Calculations not fully combined yet Once combined: NNLO Era!

Future: 2015 -

• New calculations should be combined

- New calculations should be combined
- Really extract S from $B o X_s \gamma$, not just use m_b and μ_π^2

- New calculations should be combined
- Really extract S from $B o X_s \gamma$, not just use m_b and μ_π^2
- What if we could relax the cuts?

E.g. Belle's $p_{\ell}^{*B} > 1.0$ GeV [Belle, Urquijo et al. '10]

Relaxing the cuts makes the measurement more inclusive

- New calculations should be combined
- Really extract S from $B o X_s \gamma$, not just use m_b and μ_π^2
- What if we could relax the cuts? E.g. Belle's $p_{\ell}^{*B} > 1.0$ GeV [Belle, Urquijo et al. '10] Relaxing the cuts makes the measurement more inclusive
- Three options:
- 1) Use the same calculations as the end point region e.g. BLNP smoothly merges to local OPE
- 2) Use local OPE

Recently free quark d $\Gamma(b \rightarrow u \, \ell \, \bar{\nu})$ was calculated at $\mathcal{O}(\alpha_s^2)$ [Burcherseifer, Caola, Melnikov '13]

3) Multi Scale OPE [Neubert '05] interpolating between local and non-local OPE

- New calculations should be combined
- Really extract S from $B o X_s \gamma$, not just use m_b and μ_π^2
- What if we could relax the cuts? E.g. Belle's $p_{\ell}^{*B} > 1.0$ GeV [Belle, Urquijo et al. '10] Relaxing the cuts makes the measurement more inclusive
- Three options:
- 1) Use the same calculations as the end point region e.g. BLNP smoothly merges to local OPE
- 2) Use local OPE

Recently free quark d $\Gamma(b \rightarrow u \, \ell \, \bar{\nu})$ was calculated at $\mathcal{O}(\alpha_s^2)$ [Burcherseifer, Caola, Melnikov '13]

- 3) Multi Scale OPE [Neubert '05] interpolating between local and non-local OPE
 - My personal preference: try a variety of approaches Data with different *cuts* will allow to test these options

Take home message

• 1990's -2000's: Next to Leading Order (NLO) Era:

 c_0 at $\mathcal{O}(\alpha_s)$ + first power corrections at $\mathcal{O}(\alpha_s^0)$

• 2010's: Next to Next to Leading Order (NNLO) Era

 c_0 at $\mathcal{O}(\alpha_s^2)$ + first power corrections at $\mathcal{O}(\alpha_s)$ + ...