B meson decay constant and $B \rightarrow D\tau\nu$ form factors from lattice QCD

Gregorio Herdoíza

IFT, UAM/CSIC

Challenges in Semileptonic B decays, Mainz, April 24, 2015

CKM matrix & lattice QCD

$$V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

role of lattice determinations

CKM	process	lattice	precision (%)
V _{us}	$K \rightarrow \ell \nu$	f _K	~ 0.5
	$K \rightarrow \pi \ell \nu$	$f_+^{K\pi}(q^2=0)$	~ 0.5
$ V_{us} / V_{ud} $	$K \to \mu \nu / \pi \to \mu \nu$	f_K / f_π	~ 0.5
V _{cd}	$D \rightarrow \ell \nu$	f_{D_s}/f_D	~ 1.0
	$D \rightarrow \pi \ell \nu$	$f_{+,0}^{D\pi}(0)$	~ 5.0
$ V_{cs} $	$D_s \rightarrow \ell \nu$	f_{D_s}	~ 1.0
	$D \to K \ell \nu$	$f_{+}^{DK}(0)$	~ 3.0
V _{ub}	$B \to \tau \nu$	f _B	~ 2.5
		f_{B_e}/f_B	~ 2.0
	$B \rightarrow \pi \ell \nu$	$f_+^{B\pi}(q^2)$	~ 3.5
V _{cb}	$B ightarrow D^{(*)} \ell u$	$\mathcal{F}_{B \to D(*)}$	~ 1.5
$V_{tq}^*V_{ta'}$; $V_{cq}^*V_{ca'}$	€K	Âĸ	~ 1.5
		$K \rightarrow \pi \pi$	$\rightarrow 30.0$
$V_{tq}^* V_{tq'}$	Δm_d	$\hat{B}_{B_s} / \hat{B}_{B_d}$; ξ	≤ 10.0
	Δm_s	\hat{B}_{B_s}	≤ 5.0

quark masses, BSM four-fermion operators, ...

au lepton

• $(m_{\tau}/m_{\mu})^2 \sim 300$ $(m_{\tau}/m_e)^2 \sim 10^7$

• Decay width :
$$B \rightarrow \ell \nu$$

$$\Gamma(B \to \ell \nu) = \frac{G_{\mu}^2}{8\pi} \times |V_{ub}|^2 \times M_B^3 \left(\frac{m_\ell}{M_B}\right)^2 \left[1 - \left(\frac{m_\ell}{M_B}\right)^2\right] \times t_B^2$$

• alternative method to determine $|V_{ub}|$

• helicity suppression :
$$(m_{\ell}/M_B)^2$$

•
$$B \rightarrow \tau \nu$$

BaBar, Belle : [\sim 15%] \rightarrow Belle II : [\sim 5%]

definition of decay constants

 $\langle 0|A^{\mu}|B_q(p)\rangle = p_B^{\mu} f_{B_q}$

with q = u, d, s

• f_B , f_{B_s} : $|V_{ub}|$, $\mathcal{B}(B \to \tau \nu)$, rare leptonic decays, $B - \overline{B}$ mixing, ...

 \blacktriangleright f_B : leptonic decays

$$\mathcal{B}(B \to \tau \nu) \propto \left. G_F^2 f_B^2 \left| V_{ub} \right|^2 \qquad \qquad \mathbf{B}^{\dagger} \underbrace{ \left| V_{ub} \right|^2}_{\mathbf{u}}$$

 \blacktriangleright f_{B_s} : rare leptonic decays

$$\mathcal{B}(B_s \to \mu^+ \mu^-) \propto M_{B_s} f_{B_s}^2 |V_{tb}^* V_{ts}|^2$$

CMS, LHCb : [~ 25%]

heavy quarks on the lattice

- lattice spacing : a
- lattice size : L
- pion masses : M_{PS}
- number of flavours : $N_{\rm f}$

 $a \in [0.05, 0.15] \, \text{fm} \longrightarrow 1/a \in [1.3, 4.0] \, \text{GeV}$

 $M_{\rm PS}L \ge 4$

• to control discretisation effects for heavy quark masses: $m_h < 1/a$

 $m_c \approx 1.3 \,\mathrm{GeV}$ $m_b \approx 4.3 \,\mathrm{GeV}$ $am_b > 1$

for heavy quarks:

 $O[a] = O|_{C.L.} + c \cdot (am_h)^2 + \dots$

how to treat bottom quark on the lattice?

heavy quarks on the lattice

how to treat bottom guark on the lattice?
effective theories

- heavy auark effective theory (HQET)
- relativistic action with heavy-guark interpretation
- relativistic charm quarks + LO HQET
- chain of ratios with $m_h \ge m_c + \text{scaling laws of HQET} \longrightarrow \text{ratio method}$
- NRQCD

FLAG: f_B , f_{B_s} , f_{B_s}/f_B

Heavy Quark Effective Theory (HQET)

▶ 1/m expansion

$$\mathcal{L}_{\text{HQET}} = \overline{\psi}_{\text{h}} \left[\underbrace{D_{0} + \delta m}_{\substack{\text{static}\\\text{limit (LO)}}} \underbrace{-\omega_{\text{kin}} D^{2} - \omega_{\text{spin}} \sigma \mathbf{B}}_{\text{NLO, O(1/m)}} \right] \psi_{\text{h}} + \dots, \qquad \underbrace{\omega_{\text{kin}}}_{\omega_{\text{spin}}} \left\} \sim \frac{1}{2m}$$

action

$$e^{-S_{\text{HQET}}} = \exp\left\{-a^{4} \sum_{x} \mathcal{L}_{\text{stat}}(x)\right\} \times \left\{1 - a^{4} \sum_{x} \mathcal{L}^{(1)}(x) + \frac{1}{2} \left[a^{4} \sum_{x} \mathcal{L}^{(1)}(x)\right]^{2} - a^{4} \sum_{x} \mathcal{L}^{(2)}(x) + \dots\right\}$$

- ▶ 1/m terms : insertions on local operators \rightarrow renormalizability order by order
- observables

$$\langle \mathcal{O} \rangle = \mathcal{Z}^{-1} \int \mathcal{D}[\phi] e^{-\mathcal{S}_{\text{rel}} - \mathcal{S}_{\text{stat}}} \mathcal{O} \Big\{ 1 - a^4 \sum_{x} \mathcal{L}^{(1)}(x) + \dots \Big\}$$

HQET on the lattice

HQET on the lattice

[ALPHA]

• mixing : power divergences e.g. $\overline{\psi}_h D_0 \psi$ and $\overline{\psi}_h D_0 \psi$

$$\rightsquigarrow \delta m = c(g)/a \sim e^{1/(2b_0g^2)} (c_1g^2 + c_2g^4 + \dots)$$

- uncontrolled truncation error in perturbation theory
- non-perturbative matching : determination of HQET parameters in small volume

• scale setting: f_K

$$f_{\mathbf{B}_{\mathbf{i}}} = \exp(\phi_i) / \sqrt{a^3 m_{\mathbf{B}_{\mathbf{i}}}/2}$$

$$\phi_i = \ln(Z_{\mathbf{A}}^{\mathbf{HQET}}) + b_{\mathbf{A}}^{\mathbf{stat}} a m_{\mathbf{q},i} + \left[\ln(a^{3/2} p^{\mathbf{stat}}) + \omega_{\mathbf{kin}} p^{\mathbf{kin}} + \omega_{\mathbf{spin}} p^{\mathbf{spin}} + c_{\mathbf{A}}^{(1)} p^{\mathbf{A}^{(1)}} \right]_{m_{\mathbf{q},i}}$$

 $f_B = 186(13)(2)_{\chi} \text{ MeV} [7\%]$ $f_{B_s} = 224(14)(2)_{\chi} \text{ MeV} [6\%]$ $\frac{f_{B_s}}{f_B} = 1.203(62)(19)_{\chi} [5\%]$

 $f_{B}^{\text{stat}} = 190(5)(2)_{\chi} \text{ MeV} [3\%]$ $f_{B_s}^{\text{stat}} = 226(6)(9)_{\chi} \text{ MeV} [5\%]$ $\frac{f_{B_s}^{\text{stat}}}{f_{B}^{\text{stat}}} = 1.189(24)(30)_{\chi} [3\%]$

[ALPHA, 1404.3590]

[ALPHA]

statistical errors

autocorrelations :

quenched, $64^3 \times 32$, a = 0.07 fm, HMC

 \blacktriangleright autocorrelation function : lattice spacing and ϕ

Wilson clover action with relativistic heavy-quark interpretation

based on the Fermilab approach

- rest frame heavy-light meson : $|\vec{p}_h| \sim \Lambda_{QCD} \ll 1/a$
- expansion in powers of $a|\vec{p}_h|$ while keeping all orders in am_h and D_0
- Symanzik improvement : coef. depend on *am_h*
- discretization effects are parametrically similar to those of light quarks
- Relativistic Heavy Quark (RHQ) action : non-perturbative tuning of parameters of the clover action
- tuning using B_s-meson: spin-averaged mass and hyperfine splitting; equal rest and kinetic masses

• improvement of the current :
$$Z_{\Phi} = \rho_A^{bl} \sqrt{Z_V^{ll} Z_V^{bb}}$$

 ρ_A^{bl} from PT : 1-loop tadpole improved

domain-wall (Shamir) fermions	[1011.0892]					
 Iwasaki gauge action 						
N = 2 + 1		L	<i>a</i> (fm)	m_l	m_s	$M_{\pi}({ m MeV})$
• $N_{\rm f} = 2 + 1$		24	pprox 0.11	0.005	0.040	329
• $a = \{0.08, 0.11\}$ fm		24	pprox 0.11	0.010	0.040	422

 $32 \approx 0.08$

32

32

- L = 2.6 fm, $M_{PS}L > 3.7$
- $M_{\pi} \in \{290, 420\}$ MeV
- scale setting: M_{Ω}

 $\begin{array}{c} \approx 0.08 & 0.006 & 0.030 & 345 \\ \approx 0.08 & 0.008 & 0.030 & 394 \end{array}$

0.030

289

0.004

[RBC-UKQCD, 1404.4670]

[RBC-UKQCD]

► SU(2) HM χ PT : unitary points

[RBC-UKQCD, 1404.4670]

[RBC-UKQCD]

Relative contributions to the error

	$f_{B^+}(\%)$	$f_{B_S}(\%)$
statistics	3.1	3.3
chiral-continuum extrapolation	4.4	5.9
lattice-scale uncertainty	1.5	1.5
light- and strange-quark mass uncertainty	0.1	0.1
RHQ parameter tuning	1.2	1.2
HQ discretization errors	1.7	1.7
LQ and gluon discretization errors	1.1	1.1
renormalization factor	1.7	1.7
finite volume	0.4	0.5
isospin-breaking and EM	0.7	0.7
total	6.3	7.6

 $f_{B^0} = 199.5(12.6) \text{ MeV},$ $f_{B^+} = 195.6(14.9) \text{ MeV}$ $f_{B_e} = 235.4(12.2) \text{ MeV}$ $f_{B_e}/f_{B^0} = 1.197(50) [4\%]$ $f_{B_e}/f_{B^+} = 1.223(71) [6\%]$ [RBC-UKQCD, 1404.4670]

Ongoing : physical point results (Möbius DWF), AMA

see also [RBC-UKQCD, Aoki et al., 1406.6192]: f^{stat}_B

ratio method

[ETMC]

► series of quark masses :
$$m_h^{(i+1)} = \lambda m_h^{(i)}$$
 $m_h^{(1)} \approx m_c$
 $\lambda \approx 1.18$

chain equation for observable O:

$$O(m_b) \equiv O(m_h^{(10)}) = O(m_h^{(1)}) \times \frac{O(m_h^{(2)})}{O(m_h^{(1)})} \times \dots \times \frac{O(m_h^{(10)})}{O(m_h^{(9)})}$$

• ratios z:

$$z(m_h^{(i)}) \equiv \frac{O(m_h^{(i)})}{O(m_h^{(i-1)})}$$

ratio method

[ETMC]

$$\lambda \approx 1.18$$

• cut-off effects in ratios z:

$$\begin{aligned} z(m_h^{(l)}) &\equiv \frac{O(m_h^{(l)})}{O(m_h^{(l-1)})} \\ &\approx z(m_h^{(l)})\Big|_{\text{C.L.}} + c \cdot (\lambda^2 - 1) \cdot \left(am_h^{(l)}\right)^2 + \dots \end{aligned}$$

choice of O: scaling law of HQET

e.g.
$$O = \Phi = f_H \sqrt{M_H}$$

$$O(m_h) = O_{\text{stat}} + \frac{d}{m_h} + \dots$$

scaling law of ratio z

$$z(m_h) = 1 + \frac{\tilde{d} \cdot (\lambda - 1)}{m_h} + \dots \quad \xrightarrow{m_h \to \infty} 1$$

ratio method: implementation

chain equation for observable O:

$$O(m_b) \equiv O(m_h^{(10)}) = O(m_h^{(1)}) \times \frac{O(m_h^{(2)})}{O(m_h^{(1)})} \times \ldots \times \frac{O(m_h^{(0)})}{O(m_h^{(9)})}$$

- 1. determine $O(m_h^{(1)})$ in the charm region
- 2. determine $z(m_h^{(i)})$, i = 2, ..., 7, for $\lambda \approx 1.18$
- 3. use $z(m_h) \xrightarrow[m_h \to \infty]{} 1$ to reach m_b
- 4. apply chain eq. to get $O(m_b)$

properties:

- continuum limit taken at each step: regularisation independent
- does not require explicit computation in an effective theory
- not very computationally costly [multi-mass solver]

ETMC ensembles

- fermionic lattice action: Wilson twisted-mass
- N_f = 2: u,d
- N_f = 2 + 1 + 1: u, d, s, c

• physical input : M_{π} , M_K , f_{π}

- *m_h* ∈ [*m_c*, 3*m_c*]
- to isolate ground state : smearing \rightsquigarrow GEVP

[1308.1851, 1311.2837]

ratio method: f_B , f_{B_s}

chain equation for observable O:

$$O(m_b) \equiv O(m_h^{(10)}) = O(m_h^{(1)}) \times \frac{O(m_h^{(2)})}{O(m_h^{(1)})} \times \cdots \times \frac{O(m_h^{(10)})}{O(m_h^{(0)})}$$

observables O

in practice, for $O = f_{hs} \sqrt{M_{hs}}$:

$$ilde{Z}_{s}(\overline{\mu}_{h},\lambda) \;=\; rac{f_{hs}(\overline{\mu}_{h})\;\sqrt{M_{hs}(\overline{\mu}_{h})}}{f_{hs}(\overline{\mu}_{h}/\lambda)\;\sqrt{M_{hs}(\overline{\mu}_{h}/\lambda)}} \cdot rac{C_{A}^{\mathrm{stat}}(\mu^{*},\overline{\mu}_{h}/\lambda)}{C_{A}^{\mathrm{stat}}(\mu^{*},\overline{\mu}_{h})}$$

chain equation :

$$ilde{z}_{s}(\overline{\mu}_{h}^{(2)}) \, imes \, ilde{z}_{s}(\overline{\mu}_{h}^{(3)}) \, imes \, \dots \, imes \, ilde{z}_{s}(\overline{\mu}_{h}^{(10)}) \, = \, rac{f_{hs}(\overline{\mu}_{h}^{(10)}) \sqrt{\mathcal{M}_{hs}(\overline{\mu}_{h}^{(1)})}}{f_{hs}(\overline{\mu}_{h}^{(1)}) \sqrt{\mathcal{M}_{hs}(\overline{\mu}_{h}^{(1)})}} \cdot \left[rac{C_{A}^{\mathrm{stat}}(\mu^{*}, \overline{\mu}_{h}^{(1)})}{C_{A}^{\mathrm{stat}}(\mu^{*}, \overline{\mu}_{h}^{(10)})}
ight]$$

 $\textit{N}_{f}=2$

chain equation :

 f_{B_s}

$$\tilde{z}_{s}(\overline{\mu}_{h}^{(2)}) \times \tilde{z}_{s}(\overline{\mu}_{h}^{(3)}) \times \ldots \times \tilde{z}_{s}(\overline{\mu}_{h}^{(10)}) = \frac{f_{hs}(\overline{\mu}_{h}^{(10)}) \sqrt{M_{hs}(\overline{\mu}_{h}^{(10)})}}{f_{hs}(\overline{\mu}_{h}^{(1)}) \sqrt{M_{hs}(\overline{\mu}_{h}^{(1)})}} \cdot \Big[\frac{C_{\mathcal{A}}^{\text{stat}}(\mu^{*}, \overline{\mu}_{h}^{(1)})}{C_{\mathcal{A}}^{\text{stat}}(\mu^{*}, \overline{\mu}_{h}^{(10)})}\Big]$$

1. triggering point : $f_{hs}(\overline{\mu}_h^{(1)}) \sqrt{M_{hs}(\overline{\mu}_h^{(1)})}$

 $\overline{\mu}_h^{(1)} = \overline{\mu}_c$

 f_{B_s}

 $N_{\rm f} = 2$

chain equation :

$$ilde{z}_{s}(\overline{\mu}_{h}^{(2)}) \, imes \, ilde{z}_{s}(\overline{\mu}_{h}^{(3)}) \, imes \, \ldots \, imes \, ilde{z}_{s}(\overline{\mu}_{h}^{(10)}) \, = \, rac{f_{hs}(\overline{\mu}_{h}^{(10)}) \sqrt{M_{hs}(\overline{\mu}_{h}^{(1)})}}{f_{hs}(\overline{\mu}_{h}^{(1)}) \sqrt{M_{hs}(\overline{\mu}_{h}^{(1)})}} \cdot \left[rac{C_{A}^{\mathrm{stat}}(\mu^{*},\overline{\mu}_{h}^{(1)})}{C_{A}^{\mathrm{stat}}(\mu^{*},\overline{\mu}_{h}^{(1)})}
ight]$$

2. ratios : $\tilde{z}_s(\overline{\mu}_b^{(l)})$, l = 2, ..., 7, for $\lambda = 1.1784$

3. $\tilde{Z}_s(\overline{\mu}_h) = 1 + \frac{\eta_1}{\overline{\mu}_h} + \frac{\eta_2}{\overline{\mu}_1^2}$

 $\overline{\mu}_{\rm h}^{(7)} \approx 2.7 \,\overline{\mu}_{\rm c}$

 f_{B_s}/f_B

 $N_{\rm f}=2$

 $O = \mathcal{R}_{f} \equiv \left[\left(f_{hs}/f_{hl} \right) / \left(f_{sl}/f_{ll} \right) \right] \times \left(f_{K}/f_{\pi} \right)$

$$\begin{aligned} \mathcal{R}_{f} &= \sigma_{h}^{(1)} + b_{h}^{(1)} \overline{\mu}_{\ell} + D_{h}^{(1)} \sigma^{2} \\ \mathcal{R}_{f} &= \sigma_{h}^{(2)} \left[1 + b_{h}^{(2)} \overline{\mu}_{\ell} + \left[\frac{3(1+3\hat{g}^{2})}{4} - \frac{5}{4} \right] \frac{2B_{0} \overline{\mu}_{\ell}}{(4\pi f_{0})^{2}} \log \left(\frac{2B_{0} \overline{\mu}_{\ell}}{(4\pi f_{0})^{2}} \right) \right] + D_{h}^{(2)} \sigma^{2} \\ & \longrightarrow \quad \frac{f_{B_{\ell}}}{f_{B}} = 1.206(10)(22) \end{aligned}$$

statistical and systematic uncertainties

 $N_{\rm f} = 2$

source of uncertainty [%]	f_{B_s}	f_{B_s}/f_B	f _B
stat. + fit (C.L. and chiral)	2.2	0.8	2.1
lat. scale	2.0	-	2.0
discr. effects	1.3	0.4	1.7
$1/\mu_h$	1.0	0.1	1.1
chiral extr. trig. point	-	1.7	1.7
total	3.4	2.0	4.0

► *N*_f = 2

$$f_B = 189(8) \text{ MeV}$$
, $f_{B_S} = 228(8) \text{ MeV}$, $\frac{f_{B_S}}{f_B} = 1.206(24)$

▶ N_f = 2 + 1 + 1: [PRELIMINARY]

$$f_B = 196(9) \text{ MeV}$$
, $f_{B_S} = 235(9) \text{ MeV}$, $\frac{f_{B_S}}{f_B} = 1.201(25)$

[Fermilab-MILC]

- MILC ensembles : rooted asqtad staggered fermions
- $N_{\rm f} = 2 + 1$
- tadpole-improved gauge action
- Fermilab action for b quark
- $a = \{0.045, 0.15\}$ fm
- $L = [2.4, 5, 5] \, \text{fm}$, $M_{PS}L > 3.8$
- $M_{\pi}^{\rm min} \approx 174 \, {\rm MeV}$
- scale setting: f_{π}

Source	f_{B_s}/f_B	f _B ∕f _D
Statistics	0.4%	0.6%
Heavy-quark discretization	0.6%	0.8%
Light-quark discretization	0.1%	0.3%
Chiral extrapolation	0.6%	1.0%
Heavy-quark tuning	0.1%	1.7%
$Z_{V_{qq}^4}$	0.0%	—
$Z_{V_{QQ}^4}$	—	0.2%
Finite volume	0.2%	0.3%
Higher-order $ ho_{A^4_{Qq}}$	0.1%	4.1%
Total projected error	0.9%	4.7%

[PRELIMINARY, Fermilab-MILC, 1501.01991]

 $f_{B_s}/f_{B^+} = 1.229(26) [2\%]$ [Fermilab-MILC, 1112.3051]

comparison : f_B , f_{B_s}

Static limit of HQET:

[Aoki et al., 1406.6192]

∡stat

∡stat

$$f_B^{\text{stat}} = 219(17) \text{ MeV} [8\%]$$
 $f_{B_s}^{\text{stat}} = 264(19) \text{ MeV} [7\%]$ $\frac{I_{B_s}}{f_B^{\text{stat}}} = 1.193(41) [3\%]$

[ALPHA, 1404.3590]

$$f_{B}^{\text{stat}} = 190(5)(2)_{\chi} \text{ MeV} [3\%] \qquad f_{B_{s}}^{\text{stat}} = 226(6)(9)_{\chi} \text{ MeV} [5\%] \qquad \frac{I_{B_{s}}}{I_{B}^{\text{stat}}} = 1.189(24)(30)_{\chi} [3\%]$$

$FLAG: |V_{ub}|$

	from	$ V_{ub} \times 10^3$
FLAG $N_{\rm f} = 2$	$B \rightarrow \tau \nu$	4.21(53)(18)
FLAG $N_{\rm f} = 2 + 1$	$B \rightarrow \tau \nu$	4.18(52)(9)
FLAG $N_{\rm f} = 2 + 1 + 1$	$B \to \tau \nu$	4.28(53)(9)
FLAG $N_{\rm f} = 2 + 1$	$B ightarrow \pi\ell u$ (Babar)	3.37(21)
FLAG $N_{\rm f} = 2 + 1$	$B ightarrow \pi \ell u$ (Belle)	3.47(22)
HFAG inclusive average	$B o X_{\rm u} \ell \nu$	4.40(15)(20)

[FLAG, 1310.8555]

 $\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}$: τ lepton

•
$$(m_{\tau}/m_{\mu})^2 \sim 300$$
 $(m_{\tau}/m_e)^2 \sim 10^7$

matrix element

$$\langle D(p')|\bar{c}\gamma_{\mu}b|\bar{B}(p)\rangle = \left(p_{\mu}+p'_{\mu}-\frac{m_{B}^{2}-m_{D}^{2}}{q^{2}}q_{\mu}\right)f_{+}(q^{2}) + \frac{m_{B}^{2}-m_{D}^{2}}{q^{2}}q_{\mu}f_{0}(q^{2})$$

differential decay rate

$$\frac{d\mathcal{B}(\bar{B} \to D\ell\bar{\nu}_{\ell})}{dq^2} = \tau_{B^0} \frac{G_F^2 |V_{cb}|^2}{192\pi^3 m_B^3} \left[c_+^{\ell}(q^2) |f_+(q^2)|^2 + c_0^{\ell}(q^2) |f_0(q^2)|^2 \right]$$

where

$$\begin{aligned} c_{+}^{\ell}(q^{2}) &= \lambda^{3/2}(q^{2}, m_{B}^{2}, m_{D}^{2}) \left[1 - \frac{3}{2} \frac{m_{\ell}^{2}}{q^{2}} + \frac{1}{2} \left(\frac{m_{\ell}^{2}}{q^{2}} \right)^{3} \right] \\ c_{0}^{\ell}(q^{2}) &= m_{\ell}^{2} \lambda^{1/2}(q^{2}, m_{B}^{2}, m_{D}^{2}) \frac{3}{2} \frac{m_{B}^{4}}{q^{2}} \left(1 - \frac{m_{\ell}^{2}}{q^{2}} \right)^{2} \left(1 - \frac{m_{D}^{2}}{m_{B}^{2}} \right)^{2} \\ \lambda(q^{2}, m_{B}^{2}, m_{D}^{2}) &= [q^{2} - (m_{B} + m_{D})^{2}][q^{2} - (m_{B} - m_{D})^{2}] \end{aligned}$$

 \blacktriangleright τ lepton : coupling to a scalar non-SM particle can be probed

 $\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}$: τ lepton

$$m_\ell^2 \le q^2 \le (m_B - m_D)^2 = 11.63 \,\, {
m GeV}^2 \,.$$
 $f_+(0) = f_0(0)$

[Becirevic et al., 1206.4977]

► ratio:

$$\mathcal{R}(D) = rac{\mathcal{B}(\bar{B} o D au ar{
u}_{ au})}{\mathcal{B}(\bar{B} o D \mu ar{
u}_{\mu})}$$

depends on $f_0(q^2)/f_+(q^2)$

$B \to D \ell \nu$

[Fermilab-MILC]

- MILC ensembles : rooted asqtad staggered fermions
- $N_{\rm f} = 2 + 1$
- tadpole-improved gauge action
- Fermilab action for *b* and *c* quarks
- $a = \{0.045, 0.15\}$ fm
- L = [2.4, 5, 5] fm, $M_{\rm PS}L > 3.8$
- $M_{\pi}^{\rm min} \approx 174\,{\rm MeV}$
- scale setting: f_{π}

[Fermilab-MILC, 1503.07237]

 $B \rightarrow D\ell\nu$

[Fermilab-MILC]

BGL parametrisation

[Fermilab-MILC, 1501.0199]

$B\to D\ell\nu$

[Fermilab-MILC]

Source	f ₊ (%)	f ₀ (%)
Statistics+matching+ χ PT cont. extrap.	1.2	1.1
(Statistics)	(0.7)	(0.7)
(Matching)	(0.7)	(0.7)
(χ PT/cont. extrap.)	(0.6)	(0.5)
Heavy-quark discretization	0.4	0.4
Lattice scale r ₁	0.2	0.2
Total error	1.2	1.1

w = 1.16

R(D) and $R(D^*)$: comparison

$$R(D) = \frac{\mathcal{B}(\bar{B} \to D\tau \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D\mu \bar{\nu}_{\mu})}$$

 R(D) = 0.299(11) Fermilab-MILC (2015) + BaBar B-tagged (2009)

 R(D) = 0.316(12)(07) Fermilab-MILC (2012)

 R(D) = 0.300(08) [PRELIMINARY] HPQCD (2015) more details in [talk by Carlos Pena]

 R(D) = 0.440(58)(42) BaBar (2012)

 i.e. 2σ from Fermilab-MILC (2015)

$$\mathcal{R}(D^*) = \frac{\mathcal{B}(\bar{B} \to D^* \tau \bar{\nu}_{\tau})}{\mathcal{B}(\bar{B} \to D^* \mu \bar{\nu}_{\mu})}$$

in addition to $h_{A_1}(w)$, it requires the other form factors

Belle II

 $R(D^*) = 0.252(3)$ Fajfer et al. (2012) $R(D^*) = 0.332(24)(18)$ BaBar (2012) i.e. 2.7 σ

$\bar{B} \rightarrow D \ell \bar{\nu}_{\ell}$: coupling to tensor operator

matrix element

$$\langle D(\rho')|\bar{c}\sigma_{\mu\nu}b|\bar{B}(\rho)\rangle = -i\left(\rho_{\mu}\rho'_{\nu}-\rho'_{\mu}\rho_{\nu}\right)\frac{2f_{\rm f}(q^2,\mu)}{m_{\rm B}+m_{\rm D}}$$

differential decay rate in generic New Physics scenario:

$$\begin{split} \frac{d\mathcal{B}(\bar{B} \to D\ell\bar{\nu}_{\ell})}{dq^2} \; = \; |V_{cb}|^2 \mathcal{B}_0 |f_+(q^2)|^2 \left\{ |1 + g_V|^2 c_+^{\ell}(q^2) + |g_T(\mu)|^2 c_T^{\ell}(q^2) \left| \frac{f_T(q^2, \mu)}{f_+(q^2)} \right|^2 \right. \\ & + c_{TV}^{\ell}(q^2) \operatorname{Re} \left[(1 + g_V) g_T^*(\mu) \frac{f_T(q^2, \mu)}{f_+(q^2)} \right] \\ & + \left| (1 + g_V) - \frac{q^2}{m_{\ell}} \frac{g_{\mathcal{S}}(\mu)}{m_{\mathcal{D}}(\mu) - m_c(\mu)} \right|^2 c_0^{\ell}(q^2) \left| \frac{f_0(q^2)}{f_+(q^2)} \right|^2 \Big\} \end{split}$$

► $B_s \rightarrow D_s \ell \nu$:

 $f_7(q_0^2, m_b)/f_+(q_0^2) = 1.08(7);$ $f_0(q_0^2)/f_+(q_0^2) = 0.77(2)$ for $q_0^2 = 11.5 \text{ GeV}^2$

 $N_{\rm f} = 2$ Wilson twisted mass fermions with ratio method [Atoui et al., 1310.5238]

conclusion

- currently, lattice QCD can determine B-meson decay constants with a few % accuracy
- no significant effect of *s* and *c* sea quarks with current level of accuracy for the decay constants
- scalar form factor is available for various semileptonic decays : $B \rightarrow \pi \ell \nu$, $\Lambda_D \rightarrow \Lambda_C \ell \nu$, ...
- $B \rightarrow D^* \ell \nu$: extend computation to other form factors $\rightsquigarrow R(D^*)$
- challenges : simulations at very fine lattice spacings, control of statistical error, isospin and QED effects, unstable hadrons, ...

 $f_B: N_f = 2 + 1 + 1$

[FLAG]

[FLAG, 1310.8555]

				Wion States	autor 48	etrapolation	Volumo	Wellie ation	quark treatment		
Collaboration	Ref.	N_f	qnd	CONCORT	Chira	finit	^{ten} o	1eg.	f_{B_s}/f_{B^+}	$f_{B_{\theta}}/f_{B^0}$	$f_{B_{\scriptscriptstyle B}}/f_B$
ETM 13E	[398]	2+1+1	С	*	0	0	0	✓	-	_	1.201(25)
HPQCD 13	[399]	2+1+1	А	*	*	*	0	~	1.217(8)	1.194(7)	1.205(7)
RBC/UKQCD 13A	[400]	2+1	С	0	0	*	0	✓	_	_	$1.20(2)^{\diamond}_{\text{stat}}$
HPQCD 12	[401]	2+1	Α	0	0	*	0	\checkmark	-	-	1.188(18)
FNAL/MILC 11	[331]	2+1	Α	0	0	*	0	\checkmark	1.229(26)	-	-
RBC/UKQCD 10C	[405]	2+1	Α			*	0	\checkmark	-	-	1.15(12)
HPQCD 09	[402]	2+1	Α	0	0	*	0	~	_	-	1.226(26)
ALPHA 13	[403]	2	С	*	*	*	*	✓	_	_	1.195(61)(20
ETM 13B, 13C [33	4, 404]	2	\mathbf{P}^{\dagger}	*	0	*	0	\checkmark	_	_	1.206(24)
ALPHA 12A	[369]	2	\mathbf{C}	*	*	*	*	\checkmark	-	-	1.13(6)
ETM 12B	[392]	2	\mathbf{C}	*	0	*	0	\checkmark	-	-	1.19(5)
ETM 11A	[335]	2	А	0	0	*	0	✓	-	-	1.19(5)

^oStatistical errors only.

[†]Update of ETM 11A and 12B.

 $f_B: N_f = 2 + 1 + 1$

IFLAG

[FL	AG, 1310.8555]											
	Collaboration	Ref.	N _f	Dublica	Continue star	chiral ext	finite ettabolati	reporting to the top	heavy detton	PHORE TO BE A CHINE	f_{B^0}	fB	f_{B_g}
:	ETM 13E HPQCD 13	[398] [399]	$2+1+1 \\ 2+1+1$	C A	∘ ★	∘ ★	∘ ★	0 0	√ ✓	- 184(4)	- 188(4)	196(9) 186(4)	235(9) 224(5)
	RBC/UKQCD 13A HPQCD 12 HPQCD 12 HPQCD 11A FNAL/MILC 11 HPQCD 09	[400] [401] [401] [365] [331] [402]	2+1 2+1 2+1 2+1 2+1 2+1 2+1	C A A A A A	0 0 ★ 0 0	0 0 0 0 0	*****	0 0 ★ 0 0	<<<<<<<<<<>><<<<<<<>><<<<<<<><<<<<><<<<><<<<	- - - 197(9) -	- - - -	191(6) [◦] _{stat} 191(9) 189(4) [△] - - 190(13)•	$233(5)^{\circ}_{stat}$ 228(10) - $225(4)^{\nabla}$ 242(10) $231(15)^{\bullet}$
	ALPHA 13 ETM 13B, 13C [334 ALPHA 12A ETM 12B ALPHA 11 ETM 11A ETM 09D	[403] [, 404] [369] [392] [364] [335] [391]	2 2 2 2 2 2 2 2 2 2	C P [†] C C C A A	*****00	* 0 * 0 0 0 0	******	★ ○ ★ ○ ★ ○ ○	~~~~~~~~			$\begin{array}{c} 187(12)(2)\\ 189(8)\\ 193(9)(4)\\ 197(10)\\ 174(11)(2)\\ 195(12)\\ 194(16) \end{array}$	224(13) 228(8) 219(12) 234(6) - 232(10) 235(12)

^oStatistical errors only.

Consistent errors only. Construct by combining B_s from HPQCD 11A with f_{B_s}/f_B calculated in this work. This result uses an od determination of $r_1 = 0.321(5)$ fm from Ref. [379] that has since been superseded. [†]Update of ETM 11A and 12B.

$f_B: N_f = 2 + 1$

[HPQCD]

[HPQCD, 1202.4914]

- fermionic lattice action :HISQ (val) / asqtad (sea)
- N_f = 2 + 1: u,d,s
- combination of NRQCD (f_{B_S}/f_B) and HISQ (f_B) results

Source	f_{B_s}	f_B	f_{B_s}/f_B
	(%)	(%)	(%)
statistical	0.6	1.2	1.0
scale $r_1^{3/2}$	1.1	1.1	_
discret. corrections	0.9	0.9	0.9
chiral extrap. & $g_{B^*B\pi}$	0.2	0.5	0.6
mass tuning	0.2	0.1	0.2
finite volume	0.1	0.3	0.3
relativistic correct.	1.0	1.0	0.0
operator matching	4.1	4.1	0.1
Total	4.4	4.6	1.5

 $f_B = 0.191(9)$ GeV, $f_{B_s} = 0.228(10)$ GeV, $f_{B_s}/f_B = 1.188(18)$

$$\left[\frac{f_{B_s}}{f_B}\right]_{NRQCD}^{-1} \times f_{B_s}^{(HISQ)} \equiv f_B = 0.189(4) \text{GeV} \ [2\%]$$

$f_B: N_f = 2 + 1 + 1$

[HPQCD]

[HPQCD, 1302.2644]

- fermionic lattice action :HISQ
- N_f = 2 + 1 + 1: u, d, s, c
- NRQCD
- ensembles at the physical point

Error %	Φ_{B_s}/Φ_B	$M_{B_s} - M_B$	Φ_{B_s}	Φ_B
EM:	0.0	1.2	0.0	0.0
a dependence:	0.01	0.9	0.7	0.7
chiral:	0.01	0.2	0.05	0.05
g:	0.01	0.1	0.0	0.0
stat/scale:	0.30	1.2	1.1	1.1
operator:	0.0	0.0	1.4	1.4
relativistic:	0.5	0.5	1.0	1.0
total:	0.6	2.0	2.0	2.1

$$f_B = 0.186(4) \text{ GeV}, \quad f_{B_s} = 0.224(5) \text{ GeV}, \quad f_{B_s}/f_B = 1.205(7)$$

$f_B^{\rm stat}$ static

[Aoki et al.]

 f_B^{stat} : [RBC-UKQCD, Aoki et al., 1406.6192]

• fermionic lattice action: domain-wall (Shamir) fermions

- $N_{\rm f} = 2 + 1: u, d, s$
- static quarks
- a = {0.08, 0.11} fm
- $L = 2.6 \, \text{fm}$, $M_{PS}L > 3.7$
- $M_{\pi} \in \{290, 420\}$ MeV

	f _B	f _{Bs}	f_{B_s}/f_B
Statistics	2.99	1.81	1.65
Chiral/continuum extrapolation	3.54	1.98	2.66
Finite volume effect	0.82	0.0	1.00
Discretization	1.0	1.0	0.2
One-loop renormalization	6.0	6.0	0.0
$g_{B^*B\pi}$	0.24	0.00	0.00
Scale	1.82	1.85	0.04
Physical quark mass	0.05	0.01	0.06
Off-physical sea s quark mass	0.84	0.69	0.79
Fit-range	0.44	2.31	0.26
Total systematic error	7.38	7.09	2.97
Total error (incl. statistical)	7.96	7.32	3.40

$$f_B^{\text{stat}} = 219(17) \text{ MeV} [8\%] \qquad f_{B_s}^{\text{stat}} = 264(19) \text{ MeV} [7\%]$$

$$\frac{f_{B_s}^{\text{stat}}}{f_B^{\text{stat}}} = 1.193(41) [3\%]$$

HQET on the lattice

[ALPHA]	
---------	--

-	Source	f _{Bs}	f _B	f_{B_s}/f_B	$f_{B_{e}}^{\text{stat}}$	$f_B^{\rm stat}$	$f_{B_{\rm s}}^{\rm stat}/f_{B}^{\rm stat}$	
-	A3	0.20 %	0.19 %	0.00 %	1.22 %	1.10 %	0.00 %	
	A4	5.94 %	9.36 %	14.27 %	8.06 %	2.76 %	14.36 %	
	A5	1.17 %	6.51 %	7.37 %	2.01 %	0.91 %	3.10 %	
	B6	3.32 %	2.99 %	0.00 %	2.70 %	1.44 %	0.26 %	
	E5	1.15 %	1.28 %	0.21 %	1.00 %	0.95 %	0.01 %	
	F6	1.70 %	2.21 %	6.44 %	1.85 %	2.62 %	9.65 %	
	F7	15.41 %	5.79 %	37.01 %	14.89 %	3.02 %	40.32 %	
	G8	13.96 %	12.81 %	0.00 %	15.36 %	13.26 %	0.00 %	
	N5	5.91 %	5.43 %	0.00 %	9.17 %	7.94 %	0.00 %	
	N6	19.42 %	13.78 %	29.87 %	8.35 %	24.10 %	28.61 %	
	07	16.03 %	25.46 %	4.80 %	19.91 %	27.66 %	3.58 %	
	ω	14.02 %	12.72 %	0.01 %	8.35 %	7.21 %	0.00 %	
	ZA	1.77 %	1.46 %	0.01 %	7.13 %	7.04 %	0.09 %	
$f_{B} = 1$	86(13)(2) _x	MeV [7%]	$f_{B_s} =$	224(14)(2)	$_{\chi}$ MeV [6%	$\frac{f_{B_s}}{f_B}$	= 1.203(62))(19) _x [5%]
$f_B^{\rm stat} =$	190(5)(2)	$_{\chi}$ MeV [3%]	$f_{B_s}^{\mathrm{stat}}$	= 226(6)(9	9) _{\chi} MeV [59	%] $\frac{f_E^*}{f_E^*}$	$\frac{1}{3}$ = 1.189(2	4)(30) _x [3%]

[ALPHA, 1404.3590]

correlation between $sin(2\beta)$ and $\mathcal{B}(B \rightarrow \tau \nu)$

 $B \to \pi \ell \nu$

for more details see [talk by Daping Du]

Λ_b decays

[Detmold, Lehner, Meinel, arXiv:1503.01421]

for more details see [talk by Carlos Pena]