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What we want to measure
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In the Standard model, the only difference between
B— D™ 7y and B— D™ pw is the mass of the lepton
Ratio R(D™) = B(B— D™ rv) / B(B— D™ uv) is sensitive
to charged Higgs
e Or non-MFV couplings favouring 7

Theoretically clean?
e ~ 2% uncertainty for D* mode, ~ 6% for D

Focus here more on B— D*rv with 7 — uvv

Also introduce B— D*7v with 7 — 7wy
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Existing measurements
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e Previous measurements from B factories in 7 — fvv channel
e Most recent measurement from BaBar claimed 3 o excess
over SM expectation
e BaBar have used their final dataset, corresponding Belle
measurement yet to come
e B factory measurements based on reconstructing missing mass
using full event reconstruction
e This method not possible at LHCb — develop new techniques
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Experimental challenge

Difficulty: neutrinos - 3 for (1 — uvv)v
¢ No narrow peak to fit (in any distribution)

Main backgrounds: partially reconstructed B decays
e B— D*™yy, B— D*rarX, B— D*D ...

Also combinatorial background

Need to find fit distributions which differentiate signal and
background — fit

Additional information used to reduce backgrounds:

e Isolation
o 7 flight (lifetime = 87um)
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Isolation MVA
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e Strategy: use MVA to decide if each track is from the same
B, or the rest of the event
e Cut on most same-B-like track in event
e Output based on properties of track, and B + track
combination
e Highest MVA output distribution for D** and B— D*puv
e Inverting the cut gives a sample hugely enriched in physics
backgrounds — use this to control shapes
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Fit strategy
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e Can use B flight direction to measure transverse component
of missing momentum
e No way of measuring longitudinal component — use
approximation to access rest frame kinematics
e B boost >> energy release in decay
e Assume ’Yﬁz,visib/e = Wﬁz,total
o ~18% resolution on B momentum, long tail on high side
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e Can then calculate rest frame quantities - my ..., Eu. q
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Toy data

2. Fit strategy

Toy data
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Backgrounds described in detail later

Signal not large...

7/29

Comb. + Fake

3D template fit in lepton energy (B rest frame), missing mass
squared and g?

Toy dataset show after isolation requirement
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Toy data
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e 3D template fit in lepton energy (B rest frame), missing mass
squared and g?

e Toy dataset show after isolation requirement
e Backgrounds described in detail later

e Signal not large...
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Toy data (high ¢°)
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e Fit projections for highest g2 bin
e A bit more promising at least

e The key to the analysis is the background modelling
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Background shape uncertainties

e Uncertainties on template shapes incorporated in fit:
e Reweight MC samples reflecting e.g different form factor

parameters
e Two implementations: interpolate or regenerate histograns at

each minimisation step
e Parameterisation for each background discussed later
o Allows background shape parameters to be varied
continuously
e All major backgrounds controlled using data
e Rely only on parameterisations, not parameters
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B— D*uv

B°-D*u*v template projections
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e B— D*pv (black) vs B— D*1v (red)

e B— D*puv is both the normalisation mode, and the highest
rate background (~ 20 x B— D*7v)
e Use CLN parameterisation for form factors
o Float form factors parameters in fit — uncertainty taken into
account
e Values from fit more precise than HFAG averages
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B— D*u*tv

3. Backgrounds

B°-D;u"v template projections
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e B— D**utv refers to any higher charm resonances (or non
resonant hadronic modes)
e Not so well measured

o Set of states comprising D** known to be incomplete
e Decay models not well measured

e For the established states (shown in black):

e Separate components for each resonance (D;,D3,D;)
e Use LLSW model, float slope of Isgur-wise function
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B — D**(— D**m)uv control sample
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e Isolation MVA selects one track, Mp+«+, around narrow D**
peak — select a sample enhanced in B— D** v
e Toy dataset shown
e Use this to constrain, justify B— D**u v shape for light D**
states
e Also fit above, below narrow D** peak region to check all
regions of Mp«+, are modelled correctly in data
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Isolation MVA selects one track, Mp+«+, around narrow D**
peak — select a sample enhanced in B— D** v

e Toy dataset shown
Use this to constrain, justify B— D**uTv shape for light D**
states
Also fit above, below narrow D** peak region to check all
regions of Mp«+, are modelled correctly in data
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Higher B— D** ;v states

B—[D*nrjuv template projections
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e Previously unmeasured B — D**(— D*Tmm)uv contributions
recently measured by BaBar
e Too little data to separate individual (non)resonant
components
e Single fit component, empirical treatment
e Constrain based on a control sample in data
o Degrees of freedom considered: D** mass spectrum, g2
distribution, D** helicity angle
o Effect of D** mass spectrum negligible
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B — D**(— D*"mm)uv control sample
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e Look for two tracks with isolation MVA — study
B — D**(— D*"rr)uv in data

e Toy dataset shown

e Can control shape of this background
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B — D**(— D*"mm)uv control sample
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Also look for two tracks with isolation MVA — study
B — D**(— D*"rrw)uv in data

e Toy dataset shown

e Can control shape of this background
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B°—>D"D‘X template projections
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e B— D*DX consists of a very large number of decay modes
e Physics models for many modes not well established

e Constrain based on a control sample in data

e Single component, empirical treatment

o Consider variations in: Mpp, Mx and M,

e Multiply simulated distributions by second order polynomials
e Parameters determined from data
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B — D*DX control sample
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e [solation MVA selects a track with loose kaon ID — select a
sample enhanced in B— D*DX

e Use this to constrain, justify B— D*DX shape
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B — D*DX control sample
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e [solation MVA selects a track with loose kaon ID — select a
sample enhanced in B— D*DX

e Use this to constrain, justify B— D*DX shape
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Combinatorial backgrounds

Combinatoric p template projections
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e Combinatorial background modelled using same-sign D** ™

data

e Two sources of combinatorial background are treated
separately (shown on next slide)
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Combinatorial backgrounds

Combinatoric D* template projections
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e Non D** backgrounds (fake D*) template modelled using
D%z~ data (shown)
o Yield determined from sideband extrapolation beneath D**
mass peak
¢ Hadrons misidentified as muons (fake muons)
e Controlled using D**h* sample
e Both template and expected yield can be determined
e Both of these are subtracted from D** ™t template to avoid
double counting
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D**7X backgrounds

B°—>D; T'v template projections

e Two small backgrounds containing taus, each expected to be
<~ 10% of the signal yield: B— D**7"v (shown) and
B— D*(Ds — tv)X

e B— D**7Tv constrained based on measured B— D**u v
yield, theoretical expectations (~50% uncertainty)

e B— D*(Ds — Tv)X constrained based on B— D*DX yield,
and measured branching fractions (~30% uncertainty)

e Both too small to measure
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Sensitivity

e Overall uncertainty competitive with BaBar
e Largest systematic uncertainties from background modelling

e Controlled by background samples in data — will scale with
statistics

e Largest single systematic uncertainty from MC template
statistics — can be reduced

e Uncertainties from selectionefficiency etc not significant
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Measurement with 7 — w7y
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Introduction

e Measurement of B(B— D*7v) also underway using
T — TV
o Different sets of backgrounds:

e Large B— D*puv component absent
e B— D**uTv also not present
e Additional B — D*mmw X backgrounds
e B— D*DX with D — X
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Removing B — D*rrn X

A5 orequirement
One can select THIS T kills the D*3m+N
topology for D*tv events background by >10*
D" vertex Do K*
~ B vertex

Primary
Vertex

decays:

must have flown — 7 or D decay
Can remove a large, poorly measured background
o Negligible with sufficiently tight cut

B — D*DX major physics background remaining

Can use decay topology to remove direct B — D*mrn X
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If the [r7m] vertex is downstream of the [D] vertex, the [r7]
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Dealing with B— D*DX

For B® — D*~DJ: |pglitz = |pp, |iin, + Por
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e Can use partial reconstruction techniques to reconstruct D
peak in B — D**D (not B— D*DX)

e Use this to control D — w7 X modelling
e 7 — wrwv is mostly a1(1260), D — www X mostly isn't

e Use the mmr (sub) structure to separate B— D*7v from
B— D*DX

e Measurement underway
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Conclusion

LHCb can measure B— D*rv
Measurement of R(D*) using 7 — puvvr coming soon
e All major backgrounds controlled with data

e Measurement using 7 — wmr also in progress

B— D%v and /\2—) AcTv next on agenda
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