THE NEWMAN-PENROSE MAP AND THE CLASSICAL DOUBLE COPY

Based on arXiv: 2006.08630, 2104.09525, 2205.xxxxx with Gilly Elor, Michael Graesser and Gabriel Herczeg

Kara Farnsworth, Case Western Reserve University

YOUNGST@RS AT MITP

APRIL 12,2022

_

DOUBLE COPY

> simplifies calculations, only proven at tree level

how general is it? exact solutions?

- $gravity = (gauge)^2$

Classical Double Copy

- > map classical gravity sol'ns to classical gauge sol'ns
- start with linear solutions
 - = Maxwell (gauge), Kerr-Schild (gravity)

mixed Ricci tensor is linear in $h_{\mu\nu}$

 $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ $h_{\mu\nu} = \phi k_{\mu} k_{\nu}$

 $\eta^{\mu\nu}k_{\mu}k_{\nu} = g^{\mu\nu}k_{\mu}k_{\nu} = 0$ $k^{\nu}\partial_{\nu}k_{\mu} = k^{\nu}\nabla_{\nu}k_{\mu} = 0$

 $R^{\mu}_{\nu} = \frac{1}{2} \left[\partial^{\mu} \partial_{\alpha} (h^{\alpha}_{\nu}) + \partial_{\nu} \partial^{\alpha} (h^{\mu}_{\alpha}) - \partial^{2} (h^{\mu}_{\nu}) \right]$

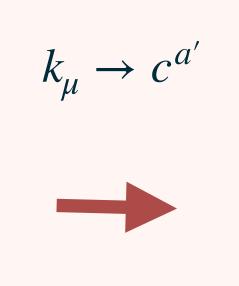
$$R^{i}_{\ 0} = \frac{1}{2} \partial_{j} \left[\partial^{i} (\phi k^{j}) - \partial^{j} (\phi k^{j}) \right]$$

Double Copy Single Copy $R_{\mu\nu}=0$

$$\partial_0 k_\mu = \partial_0 \phi = 0 \qquad k_0 = 1$$

 (ϕk^i)

$$R^0_{\ 0} = \frac{1}{2}\partial_i^2\phi$$



Zeroth Copy

$$\Box \phi^{aa'} = 0$$

Monteiro, O'Connell, White, 1410.0239

Schwarzschild in Kerr-Schild form

$$A_{\mu}dx^{\mu} = \phi k_{\mu}dx^{\mu} = \frac{2GM}{r} \left(dt + dr\right)$$
$$M \to Q$$
$$2G \to \frac{1}{4\pi\epsilon_0}$$

 $g_{\mu\nu} = \eta_{\mu\nu} + \phi k_{\mu}k_{\nu} \qquad \phi = \frac{2GM}{k_{\mu}dx^{\mu}} = dt + dr$

 $A_{\mu}dx^{\mu} = \frac{Q}{4\pi\epsilon_0 r}(dt + dr)$ point charge!

Monteiro, O'Connell, White, 1410.0239

Gravity/Double Copy	
Schwarzschild black hole	
Kerr black hole	
Plane waves	
Kerr-Taub-NUT	Rotating
Photon Rocket	
(A)dS backgrounds	
BTZ	Со

Gauge/Single Copy

Point charge (1410.0239)

Rotating disk of charge (1410.0239)

Plane waves (1410.0239)

dyon/Wu-Yang monopole (1507.01869, 2001.09918)

Lienard-Wiechert potential (1603.05737)

(A)dS backgrounds (1710.01953, 1711.01296)

onstant charge density (1711.01296, 1904.11001)

Only guaranteed to solve vacuum Maxwell equations if **vacuum**, **stationary** (other examples)

SELF-DUAL DOUBLE COPY

= (

 \hat{k}_{μ} 'null' and 'geodesic'

Double Copy

$$h_{\mu\nu} = \hat{k}_{\mu}\hat{k}_{\nu}\phi$$

$$R_{\mu\nu} = 0 \quad \clubsuit \quad \partial^2 \varphi + (\hat{k}^{\mu} \hat{k}^{\nu} \varphi) (\partial_{\mu} \partial_{\nu} \varphi)$$

$$R_{\mu\nu\tau\lambda} = \pm i\epsilon_{\mu\nu\rho\sigma}R^{\rho\sigma}_{\ \tau\lambda}$$

Monteiro, O'Connell, White, 1410.0239, Berman, Chacón, Luna, White, 1809.04063

Xerr-Schild metric with differential operator \hat{k}_{μ} $g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu}$ $h_{\mu\nu} = \hat{k}_{\mu}\hat{k}_{\nu}\varphi$

$$\eta^{\mu\nu}\hat{k}_{\mu}\hat{k}_{\nu}=0\qquad\qquad \hat{k}\cdot\partial=0$$

Single Copy

$$A_{\mu} \equiv \hat{k}_{\mu} \phi$$

)

$$\partial_{\mu}F^{\mu\nu} = 0 \quad \longleftrightarrow \quad \partial^{2}\varphi = 0$$

$$F_{\mu\nu} = \pm i\epsilon_{\mu\nu\rho\sigma}F^{\rho\sigma}$$

NEWMAN-PENROSE FORMALISM

- **Null (rather than orthonormal) tetrad**
 - $\ell, n \text{ real, } m, \overline{m} \text{ complex conjugates}$
- makes symmetries manifest (align one direction with KS vector)
- easy to write in spinor formalism (connections with twistor space)
- **only in 4d**

 $g_{\mu\nu} = -\ell_{\mu}n_{\nu} - n_{\mu}\ell_{\nu} + m_{\mu}\bar{m}_{\nu} + \bar{m}_{\mu}m_{\nu}$

NEWMAN-PENROSE + KERR-SCHILD

 $\sim \ell_{\mu}$ null, geodesic, shear-free, expanding > implied already if vacuum

$$g_{\mu\nu} = \eta_{\mu\nu} + h_{\mu\nu} \qquad \qquad h_{\mu\nu} = V \ell_{\mu} \ell_{\nu}$$

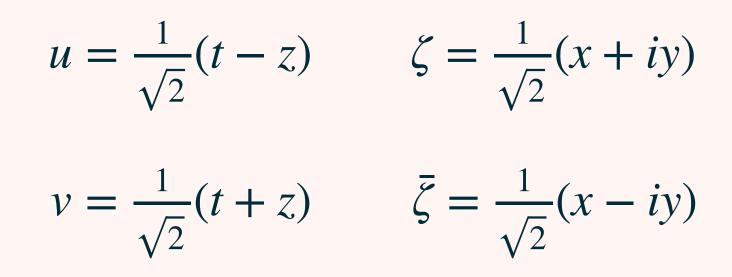
- **fixes form of metric up to two functions**
- excludes Petrov type N (pp waves)
- > includes every other example so far
 - Schwarzschild, Kerr, Taub-NUT, photon rocket,

NEWMAN-PENROSE + KERR-SCHILD

Kerr-Schild metric in lightcone coordinates

$$g_{\mu\nu} = \eta_{\mu\nu} + V \ell_{\mu} \ell_{\nu}$$

$$n_{\mu}dx^{\mu} = dv + \frac{1}{2}V\ell_{\mu}dx^{\mu}$$
$$\ell_{\mu}dx^{\mu} = du + \bar{\Phi}d\zeta + \Phi d\bar{\zeta} + \Phi$$
$$-m_{\mu}dx^{\mu} = \Phi dv + d\zeta$$
$$-\bar{m}_{\mu}dx^{\mu} = \bar{\Phi}dv + d\bar{\zeta}$$

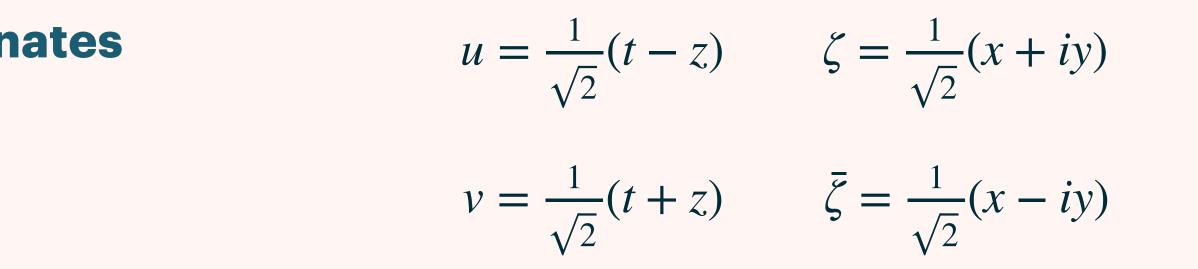


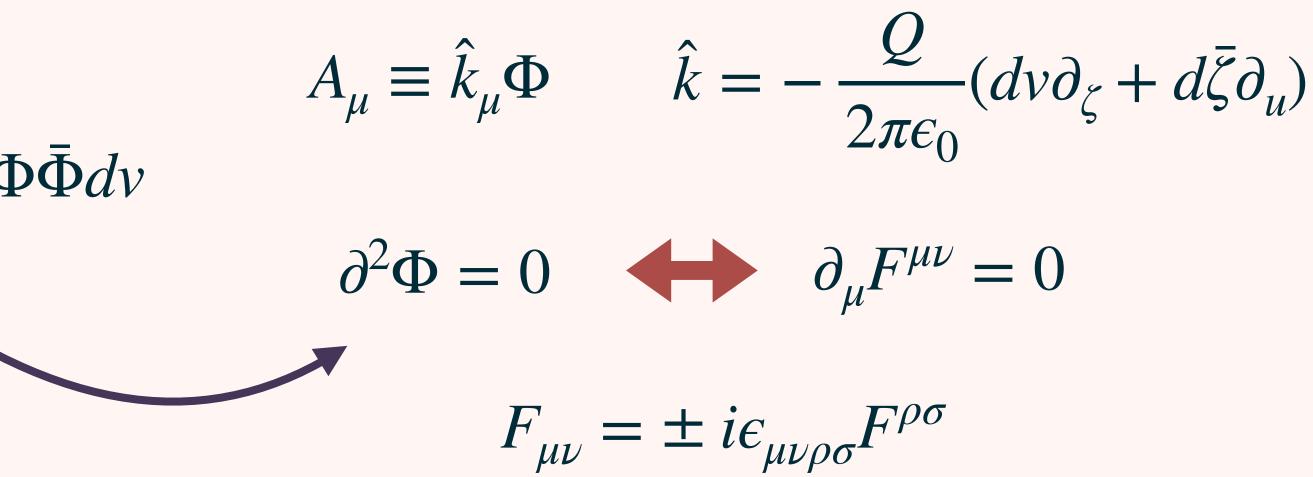
NEWMAN-PENROSE + KERR-SCHILD

Kerr-Schild metric in lightcone coordinates

$$g_{\mu\nu} = \eta_{\mu\nu} + V \ell_{\mu} \ell_{\nu}$$

$$n_{\mu}dx^{\mu} = dv + \frac{1}{2}V\ell_{\mu}dx^{\mu}$$
$$\ell_{\mu}dx^{\mu} = du + \bar{\Phi}d\zeta + \Phi d\bar{\zeta} + \Phi$$
$$-m_{\mu}dx^{\mu} = \Phi dv + d\zeta$$
$$-\bar{m}_{\mu}dx^{\mu} = \bar{\Phi}dv + d\bar{\zeta}$$





Schwarzschild in Kerr-Schild form

$$g_{\mu\nu} = \eta_{\mu\nu} + \phi k_{\mu}k_{\nu}$$

$$k_{\mu}dx^{\mu} = dt + dr$$
$$= \frac{1}{2r} \left[(\sqrt{2r} - \frac{1}{2r}) \right]$$

$$\ell_{\mu}dx^{\mu} = du + \bar{\Phi}d\zeta + \Phi d\bar{\zeta} + \Phi \bar{\Phi}dv$$

SCHWARZSCHILD

$$\psi = \frac{1}{\sqrt{2}}(t-z) \qquad \zeta = \frac{1}{\sqrt{2}}(x+iy)$$

$$\phi = \frac{2GM}{r} \qquad \qquad v = \frac{1}{\sqrt{2}}(t+z) \qquad \bar{\zeta} = \frac{1}{\sqrt{2}}(x-iy)$$

$$-(v-u))du - 2(\zeta d\bar{\zeta} + \bar{\zeta} d\zeta) + (\sqrt{2}r - (v-u))d$$

$$\Phi = \frac{-2\zeta}{\sqrt{2}r + (v - u)} = \frac{-(x + iy)}{r + z}$$

Schwarzschild in Kerr-Schild form

$$\Phi = \frac{-2\bar{\zeta}}{\sqrt{2}r + (v - u)} = \frac{-(x + iy)}{r + z}$$

$$\begin{aligned} A_{\mu}dx^{\mu} &= \hat{k}\Phi = \frac{Q}{2\sqrt{2}\pi\epsilon_{0}} \begin{pmatrix} dv - \Phi d\bar{\zeta} \end{pmatrix} \text{ point charge + i(magnetic} \\ &= \frac{Q}{4\pi\epsilon_{0}} \left(\frac{dt + dr}{r} - i(1 - \cos\theta)d\phi - \frac{\sin\theta}{1 + \cos\theta}d\theta \right) \end{aligned}$$

SCHWARZSCHILD

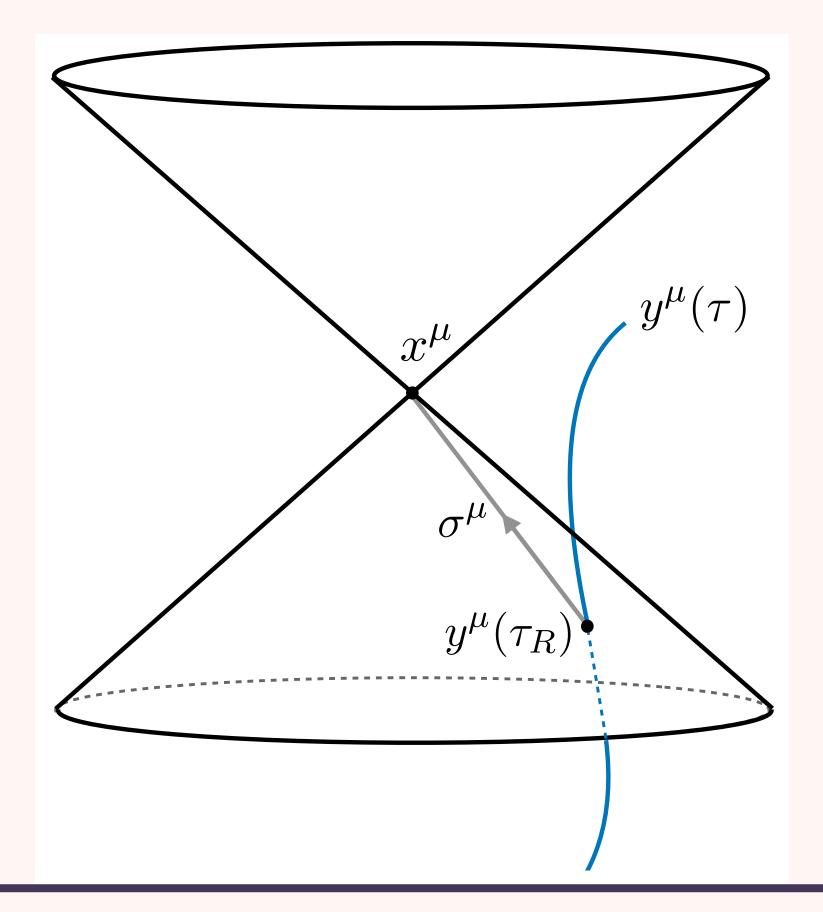
$$u = \frac{1}{\sqrt{2}}(t-z) \qquad \zeta = \frac{1}{\sqrt{2}}(x+iy)$$
$$v = \frac{1}{\sqrt{2}}(t+z) \qquad \bar{\zeta} = \frac{1}{\sqrt{2}}(x-iy)$$

$$\hat{k} = -\frac{Q}{2\pi\epsilon_0}(dv\partial_{\zeta} + d\bar{\zeta}\partial_u)$$

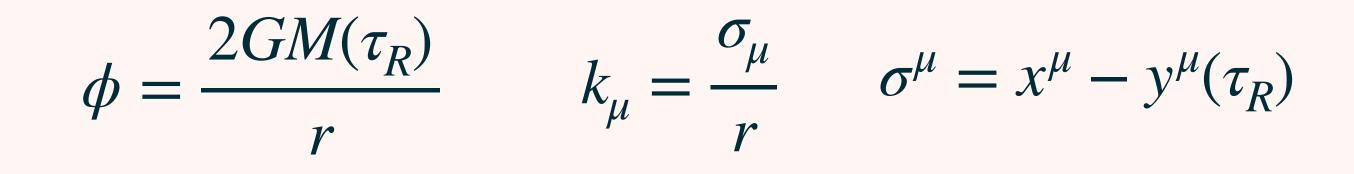
c monopole)

PHOTON ROCKET

particle moving along arbitrary timelike worldline



 $g_{\mu\nu} = \eta_{\mu\nu} + \phi k_{\mu}k_{\nu}$



 $r = \sigma \cdot \lambda(\tau_R)$ $\lambda^{\mu} = \frac{dy^{\mu}(\tau)}{d\tau}$

non-vacuum: $T_{\mu\nu} = fk_{\mu}k_{\nu}$

Kerr-Schild double copy:

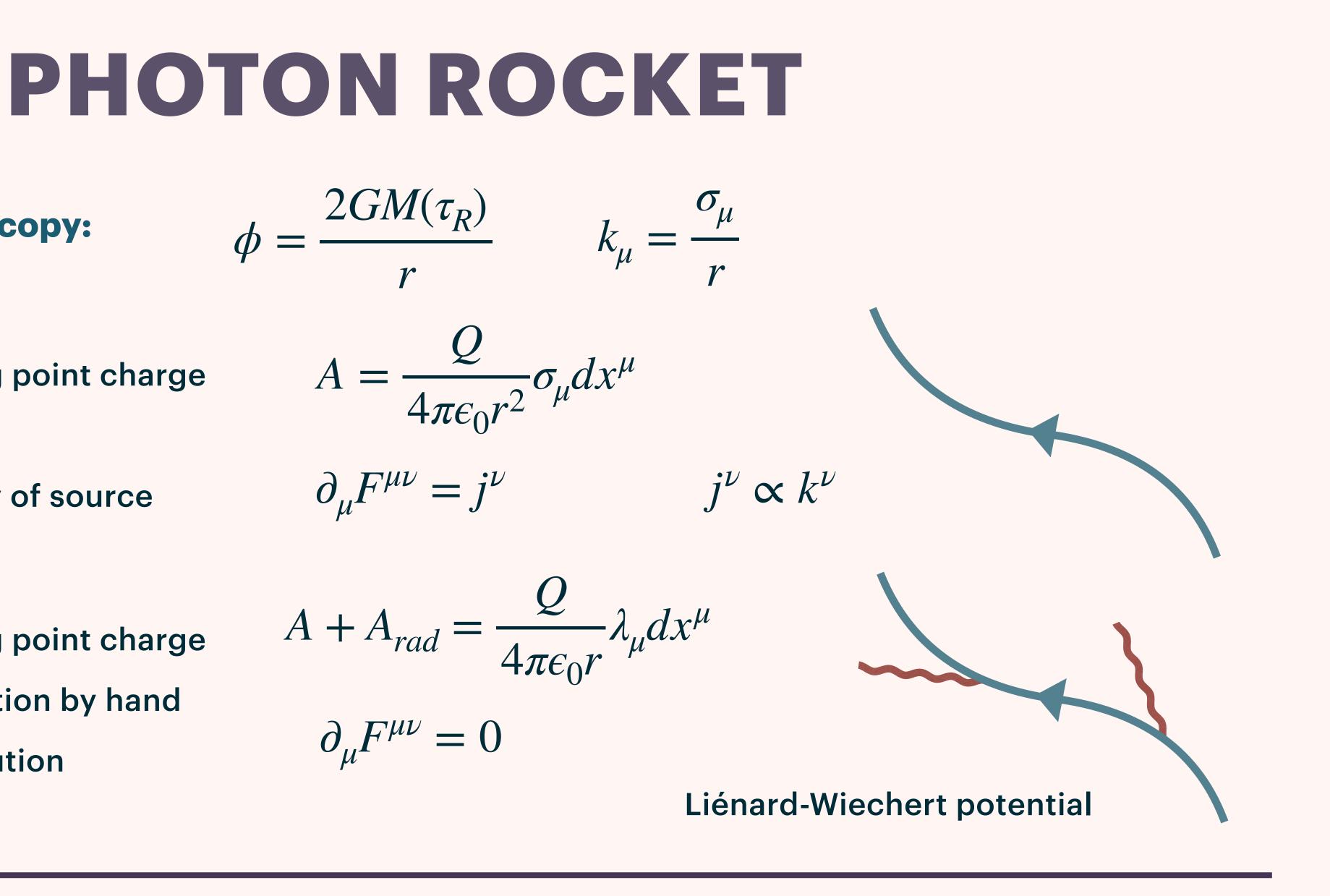
accelerating point charge

no radiation

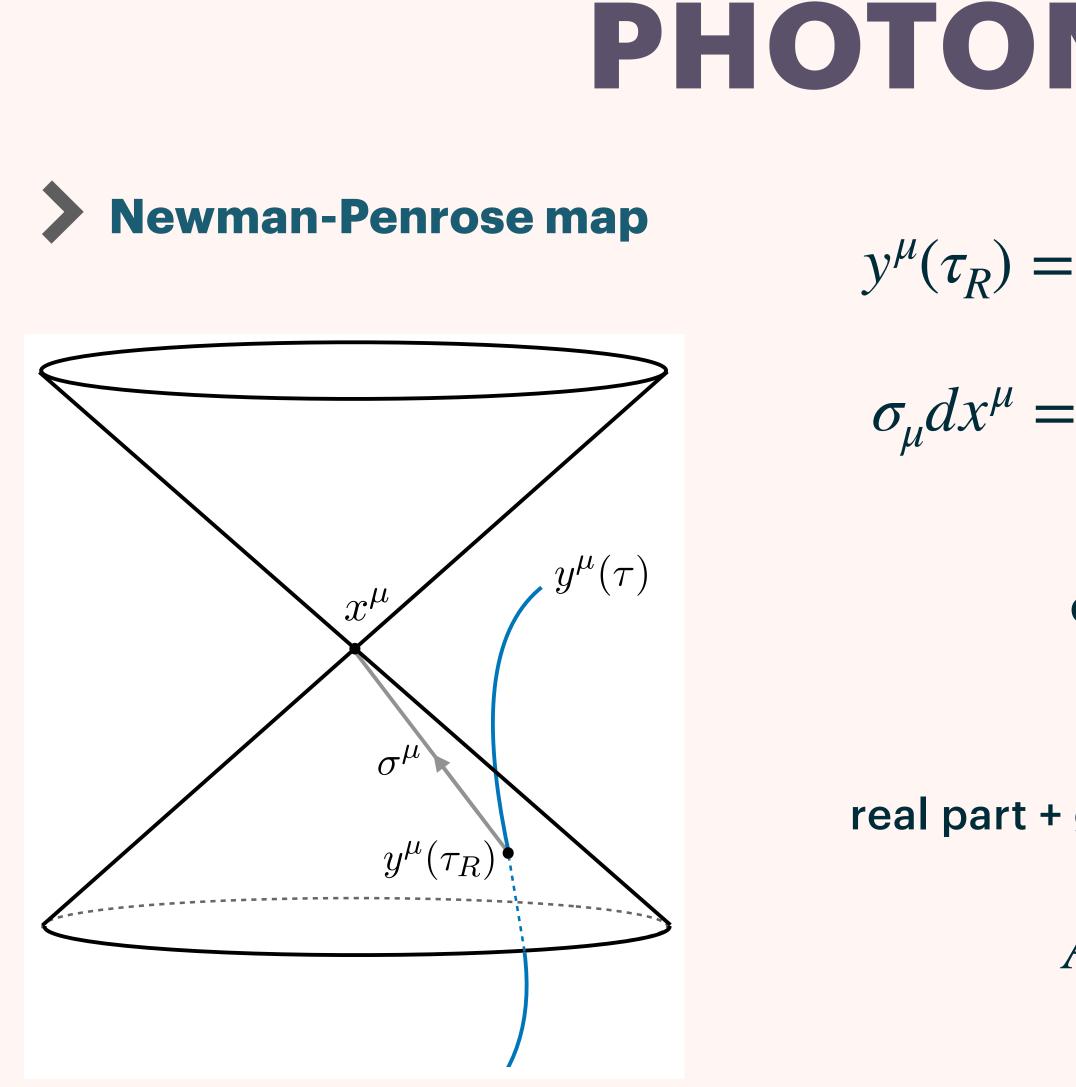
double copy of source

accelerating point charge add in radiation by hand

vacuum solution



Luna, Monteiro, Nicholson, O'Connell, White, 1603.05737



PHOTON ROCKET

 $y^{\mu}(\tau_R) = (u_0, v_0, \zeta_0, \bar{\zeta}_0)$

$$= (u - u_0)dv + (v - v_0)du - (\zeta - \zeta_0)d\bar{\zeta} - (\bar{\zeta} - \bar{\zeta}_0)d\bar{\zeta} - (\bar{\zeta} - \bar{\zeta})d\bar{\zeta} - (\bar{\zeta} - \bar{\zeta})d\bar{\zeta} - (\bar{\zeta} - \bar{\zeta})d\bar{\zeta} - (\bar$$

$$\Phi = -\frac{\zeta - \zeta_0}{v - v_0} \qquad \qquad \hat{k} = -\frac{Q}{2\pi\epsilon_0} \left(dv\partial_{\zeta} + d\bar{\zeta}\partial_{\zeta} \right)$$

real part + gauge transformation:

$$A = \hat{k}\Phi = \frac{Q}{4\pi\epsilon_0 r}\lambda_\mu dx^\mu$$

Liénard-Wiechert potential

$$g_{\mu\nu} = \eta_{\mu\nu} + \phi k_{\mu}k_{\nu} + \psi \ell_{\mu}\ell_{\nu}$$

$$\mathbf{KERR-TAUB-NUT}$$

$$\phi = \frac{2GMr}{r^2 - a^2\cos^2\theta} \quad \psi = \frac{2Na\cos\theta}{r^2 - a^2\cos^2\theta}$$

$$g_{\mu\nu} = \eta_{\mu\nu} + \phi k_{\mu}k_{\nu} + \psi\ell_{\mu}\ell_{\nu}$$

$$\Phi_k = \frac{-2Xr}{(r-a)(\sqrt{2}r + (v-u))}$$

$$\ell_{\mu}dx^{\mu} = dt + dr + \frac{r^2 - a^2\cos^2\theta}{a\sin\theta}d\theta + \frac{(r^2 - a^2)}{a}d\phi$$

$$\Phi_{\ell} = \frac{2Xr}{(r+a)(\sqrt{2}r - (v-u))}$$

 $\lim a \to 0$:

$$A = \hat{k}_M \Phi_k + \hat{k}_N \Phi_\ell \sim \frac{Q_\ell}{d}$$

$$\frac{+iQ_m}{4\pi}\left(\frac{dt}{r} - i(1 - \cos\theta)d\varphi\right) + A_{gauge}$$

NEWMAN-PENROSE MAP

Gravity Solution	Kerr-Schild	Newman-Penrose
Schwarzschild black hole	Point charge	
Kerr black hole	Rotating disk of charge	
Plane waves (type N)	Plane waves	N/A
Kerr-Taub-NUT	Rotating dyon/Wu-Yang monopole	
Photon Rocket	Lienard-Wiechert potential	
(A)dS backgrounds	(A)dS backgrounds	
BTZ	Constant charge density	N/A
 applies to non-vacuum, non-stationary solutions 		2006.08630 2205.xxxx

NEWMAN-PENROSE MAP

- **Kerr-Schild spacetime with expandin**
- **Function** Φ appears in construction of preferred null tetrad

$$\ell_{\mu}dx^{\mu} = du + \bar{\Phi}d\zeta + \Phi d\bar{\zeta} + \Phi \bar{\Phi}dv \qquad \partial^2 \Phi = 0$$

- **construct gauge field** $A = \hat{k}\Phi$
 - will satisfy vacuum Maxwell equations
- **different normalization for** ℓ_{μ} ?
- other forms of k?

ng SNGC
$$g_{\mu\nu} = \eta_{\mu\nu} + V \ell_{\mu} \ell_{\nu}$$

$$\hat{k} = -\frac{Q}{2\pi\epsilon_0}(dv\partial_{\zeta} + d\bar{\zeta}\partial_u)$$

NP MAP FROM TWISTOR

tangent bi-vector to α **-plane** = τ

 $\ell_{\mu}dx^{\mu} = du + \cdot$ $\tau \propto \partial_{u} \wedge \partial_{u}$ $\tau^{\mu\rho}\eta_{\rho\nu}dx^{\nu}\partial_{\mu}\propto-(d\bar{\zeta}d)$

 $\hat{k} = \frac{Q}{2\pi\epsilon_0} \tau^{\mu\rho} \eta_{\rho\nu} c$

$$\left(\omega^{A},\pi_{A'}\right)$$
 $\ell_{AA'}\bar{\pi}^{A}\pi^{A'}=1$

Z^a in $\mathbb{PT}_0 \leftrightarrow$ totally null α -plane in \mathbb{CM} with real null geodesic

$$\begin{split} & \cdots \qquad & \ell_{\mu}dx^{\mu} = dv + \cdots \\ & \tau \propto \partial_{v} \wedge \partial_{\bar{\zeta}} \\ & \sigma^{\mu\rho}\eta_{\rho\nu}dx^{\nu}\partial_{\mu} \propto - (d\zeta\partial_{v} + du\partial_{\bar{\zeta}}) \\ & dx^{\nu}\partial_{\mu} \qquad \Phi = \frac{1}{\omega^{A}\bar{\pi}_{A}}\ell_{BB'}\bar{\omega}^{B'}\bar{\pi}^{B} \qquad A = \hat{k}\Phi \end{split}$$

Farnsworth, Graesser, Herczeg, 2104.09525

NEWMAN-PENROSE MAP

- applies to general class of metrics
 - **including non-vacuum, non-stationary**
 - **maps to SD gauge solution**
- **must be in 4d**
- > no explicit double copy structure
- **also has twistor formulation**
 - **y** gives a coordinate independent definition for $\hat{k}\Phi$

CONCLUSIONS

- **Penrose map, Weyl)**
 - agree (mostly) where they overlap
 - > secretly the same? use twistors to unite?
- **y** gauge invariance?
- **position vs. momentum space?**
- **y** go beyond linear order?

Several different versions of classical double copy (Kerr-Schild, self-dual, Newman-

THANK YOU!

