Recent Progress on the Kinematic Algebra

Henrik Johansson

Uppsala U. & Nordita

April 11, 2022

YOUNGST@RS

MITP Workshop

Based on recent work with:

Bern, Carrasco, Chiodaroli, HJ, Roiban [1909.01358, 2203.13013]; Gang Chen, HJ, Fei Teng, Tianheng Wang [1906.10683, 2104.12726]; Andi Brandhuber, Gang Chen, HJ, Gab Travaglini, Congkao Wen [2111.15649]; Maor Ben-Shahar, HJ [2112.11452]

On-shell simplifications in GR

 $\varepsilon^{\mu}(p)\varepsilon^{\nu}(p)\,e^{ip\cdot x}$

← Yang-Mills polarization

Spin 2 \sim |spin 1 \otimes |spin 1 \otimes

On-shell 3-graviton vertex:

Gravity scattering amplitude:

$$\mathcal{M}_{\text{tree}}^{\text{GR}}(1,2,3,4) = \frac{st}{u} \Big[A_{\text{tree}}^{\text{Yang-Mills amplitude}} \Big]^2$$

Gravity processes = "squares" of gauge theory ones: KLT, BCJ, CHY

Kawai-Lewellen-Tye Relations ('86)

KLT relations emerge after nontrivial world-sheet integral identities

Field theory limit \Rightarrow gravity theory ~ (YM theory) × (YM theory)

gravity states are products of YM states: $|2\rangle = |1\rangle \otimes |1\rangle$ $|3/2\rangle = |1\rangle \otimes |1/2\rangle$

etc...

Squaring of YM theory – the double copy

Gravity processes = squares of gauge theory ones - entire S-matrix

E.g. pure Yang-Mills \rightarrow Einstein gravity + dilaton + axion

4D YM + massless quarks \rightarrow Pure 4D Einstein gravity

Example: axion-dilaton gravity

Consider double copy of *D***-dimensional pure YM:**

States:
$$\left\{ \begin{array}{ll} (\varepsilon^{h})_{\mu\nu}^{ij} &= \varepsilon_{\mu}^{((i}\varepsilon_{\nu}^{j))} & (\text{graviton}) \\ (\varepsilon^{B})_{\mu\nu}^{ij} &= \varepsilon_{\mu}^{[i}\varepsilon_{\nu}^{j]} & (B\text{-field}) \\ (\varepsilon^{\phi})_{\mu\nu} &= \frac{\varepsilon_{\mu}^{i}\varepsilon_{\nu}^{j}\delta_{ij}}{D-2} & (\text{dilaton}) \end{array} \right.$$

Amplitudes consistent with the theory:

$$S = \int d^D x \sqrt{-g} \left[-\frac{1}{2}R + \frac{1}{2(D-2)} \partial^\mu \phi \partial_\mu \phi + \frac{1}{6} e^{-4\phi/(D-2)} H^{\lambda\mu\nu} H_{\lambda\mu\nu} \right]$$

In 4D this is axion-dilaton gravity:

$$S = \int d^4x \sqrt{-g} \left[-\frac{1}{2}R + \frac{1}{4}\partial_\mu \phi \partial^\mu \phi + \frac{1}{4}e^{-2\phi}\partial_\mu \chi \partial^\mu \chi \right]$$

Symmetry $\begin{array}{cc} \chi \to -\chi \\ \phi \to -\phi \end{array}$ allows for consistent truncation of scalars

Example: pure GR

Pure 4D Einstein gravity:
$$\mathcal{S} = \frac{1}{2} \int d^4x \sqrt{g} R$$
 HJ, Ochirov

Does not match YM² spectrum: ${
m YM} \otimes {
m YM} = {
m GR} + \phi + a$

Deform YM theories with massless fundamental quarks

$$(YM + quark) \otimes (YM + n_f quarks)$$

= $GR + 2(n_f + 1)$ scalars

Anti-align the spins of the quarks \rightarrow gives scalars in GR

Web of double-copy constructible theories

See reviews [1909.01358], [2203.13013] - Bern, Carrasco, Chiodaroli, HJ, Roiban

N=2 SUGRA double copies

N=2 SQCD on color-kinematics form known up to two loops \rightarrow permits the double copies: HJ, Ochirov; Chiodaroli, Gunaydin, HJ, Roiban; Ben-Shahar, Chiodaroli; Mogull, Kälin, HJ

Exception that proves the rule...

Not all gauge theories obey color-kinematics duality

Imagine the double copy:

 $\text{YM} \otimes (\text{YM} + \mathcal{N} \text{ adjoint fermions}) = \text{GR} + \mathcal{N} \Psi_{3/2}$

According to conventional wisdom $\Psi_{3/2}~$ must be a gravitino and $~{\cal N}\leq 8~$ is the number of supersymmetries

What goes wrong? The theory

 $YM + \mathcal{N}$ adjoint fermions $+ \dots$

only obeys color-kinematics duality if supersymmetric $o \ \mathcal{N} \leq 4$

Kinematic Jacobi Id. \rightarrow Fierz Id. that enforces SUSY

Chiodaroli, Jin, Roiban

The (Square-)Root of Gravity

Color-kinematics duality

Consider Yang-Mills 4p tree amplitude:

color factors: $c_s = f^{a_1 a_2 b} f^{b a_3 a_4}$

kinematic numerators:

$$n_{s} = \left[(\varepsilon_{1} \cdot \varepsilon_{2}) p_{1}^{\mu} + 2(\varepsilon_{1} \cdot p_{2}) \varepsilon_{2}^{\mu} - (1 \leftrightarrow 2) \right] \left[(\varepsilon_{3} \cdot \varepsilon_{4}) p_{3\mu} + 2(\varepsilon_{3} \cdot p_{4}) \varepsilon_{4\mu} - (3 \leftrightarrow 4) \right] \\ + s \left[(\varepsilon_{1} \cdot \varepsilon_{3}) (\varepsilon_{2} \cdot \varepsilon_{4}) - (\varepsilon_{1} \cdot \varepsilon_{4}) (\varepsilon_{2} \cdot \varepsilon_{3}) \right],$$

consider gauge transformation $\ \delta A_{\mu} = \partial_{\mu} \phi$

$$n_{s}\Big|_{\varepsilon_{4}\to p_{4}} = s\Big[(\varepsilon_{1}\cdot\varepsilon_{2})\big((\varepsilon_{3}\cdot p_{2}) - (\varepsilon_{3}\cdot p_{1})\big) + \operatorname{cyclic}(1,2,3)\Big] \equiv s\,\alpha(\varepsilon,p)$$

(individual diagrams not gauge inv.)

Color-kinematics duality

Consider Yang-Mills 4p tree amplitude:

color factors: $c_s = f^{a_1 a_2 b} f^{b a_3 a_4}$

kinematic numerators:

$$n_{s} = \left[(\varepsilon_{1} \cdot \varepsilon_{2}) p_{1}^{\mu} + 2(\varepsilon_{1} \cdot p_{2}) \varepsilon_{2}^{\mu} - (1 \leftrightarrow 2) \right] \left[(\varepsilon_{3} \cdot \varepsilon_{4}) p_{3\mu} + 2(\varepsilon_{3} \cdot p_{4}) \varepsilon_{4\mu} - (3 \leftrightarrow 4) \right] \\ + s \left[(\varepsilon_{1} \cdot \varepsilon_{3}) (\varepsilon_{2} \cdot \varepsilon_{4}) - (\varepsilon_{1} \cdot \varepsilon_{4}) (\varepsilon_{2} \cdot \varepsilon_{3}) \right],$$

consider linearized gauge transformation $\,\delta A_{\mu}=\partial_{\mu}\phi\,$

$$\frac{n_s c_s}{s} + \frac{n_t c_t}{t} + \frac{n_u c_u}{u} \Big|_{\varepsilon_4 \to p_4} = (c_s + c_t + c_u) \alpha(\varepsilon, p)$$

= 0 Jacobi identity

Color-kinematics duality

Consider Yang-Mills 4p tree amplitude:

color factors: $c_s = f^{a_1 a_2 b} f^{b a_3 a_4}$

kinematic numerators:

$$n_{s} = \left[(\varepsilon_{1} \cdot \varepsilon_{2}) p_{1}^{\mu} + 2(\varepsilon_{1} \cdot p_{2}) \varepsilon_{2}^{\mu} - (1 \leftrightarrow 2) \right] \left[(\varepsilon_{3} \cdot \varepsilon_{4}) p_{3\mu} + 2(\varepsilon_{3} \cdot p_{4}) \varepsilon_{4\mu} - (3 \leftrightarrow 4) \right] \\ + s \left[(\varepsilon_{1} \cdot \varepsilon_{3}) (\varepsilon_{2} \cdot \varepsilon_{4}) - (\varepsilon_{1} \cdot \varepsilon_{4}) (\varepsilon_{2} \cdot \varepsilon_{3}) \right],$$

 $c_s + c_t + c_u = 0$ Jacobi Id. (gauge invariance) \Leftrightarrow $n_s + n_t + n_u = 0$ kinematic Jacobi Id. (diffeomorphism inv.) BCJ ('08)

Double copy

Color and kinematics are dual...

Ρ

 $c_s + c_t + c_u = 0 \qquad \Leftrightarrow \qquad n_s + n_t + n_u = 0$

...replace color by kinematics $c_i
ightarrow n_i$ BCJ double copy

$$\frac{2}{1} \sum_{i=1}^{n} \frac{n_s^2}{s} = \frac{n_s^2}{s} + \frac{n_t^2}{t} + \frac{n_u^2}{u} \quad \leftarrow \text{ gravity ampl.}$$

$$\frac{n_s^2}{s} + \frac{n_t^2}{t} + \frac{n_u^2}{u} \quad = 2(n_s + n_s + n_s) \, \alpha(\varepsilon, n) = 0$$

 $\frac{n_s}{s} + \frac{n_t}{t} + \frac{n_u}{u}\Big|_{\varepsilon_4^{\mu\nu} \to p_4^{\mu} \varepsilon_4^{\nu} + p_4^{\nu} \varepsilon_4^{\mu}} = 2(n_s + n_t + n_u)\,\alpha(\varepsilon, p) = 0$

Progress on Kinematic Lie Algebra

What is the Kinematic Algebra?

YM numerators obey Jacobi Id. → kinematic algebra should exist ?
 Algebra may dramatically simplify GR calculations!
 What is known?

Self dual YM in light-cone gauge: $u^2 = w^2 = u \cdot w = 0$ Monteiro, O'Connell ('11)

Introduce generators of area-preserving diffeomorphisms:

$$L_{k} = e^{-ik \cdot x} (-k_{w}\partial_{u} + k_{u}\partial_{w})$$

Lie Algebra: $[L_{p_{1}}, L_{p_{2}}] = iX(p_{1}, p_{2})L_{p_{1}+p_{2}} = iF_{p_{1}p_{2}}{}^{k}L_{k}$
YM vertex

Amplitudes in self-dual YM ?

Calculations via kinematic algebra: Boels, Iserman, Monteiro, O'Connell

Kinematic algebra encoded in Lagrangian

Attempt to construct Lagrangian that manifests color-kinematics duality Bern, Dennen, Huang, Kiermaier ('10): add non-local operators

$$\mathcal{L}_{YM} = \mathcal{L} + \mathcal{L}'_5 + \mathcal{L}'_6 + \dots$$

$$\mathcal{L}'_5 \sim \operatorname{Tr} \left[A^{\nu}, A^{\rho}\right] \frac{1}{\Box} \left(\left[\left[\partial_{\mu} A_{\nu}, A_{\rho}\right], A^{\mu}\right] + \left[\left[A_{\rho}, A^{\mu}\right], \partial_{\mu} A_{\nu}\right] + \left[\left[A^{\mu}, \partial_{\mu} A_{\nu}\right], A_{\rho}\right] \right)$$

gives 5pts BCJ numerators, but there exist an ambiguity

 $\mathcal{D}_{5} = \frac{-\beta}{2} g^{3} f^{a_{1}a_{2}b} f^{ba_{3}c} f^{ca_{4}a_{5}} \left(\partial_{(\mu} A^{a_{1}}_{\nu)} A^{a_{2}}_{\rho} A^{a_{3}\mu} + \partial_{(\mu} A^{a_{2}}_{\nu)} A^{a_{3}}_{\rho} A^{a_{1}\mu} + \partial_{(\mu} A^{a_{3}}_{\nu)} A^{a_{1}}_{\rho} A^{a_{2}\mu} \right) \frac{1}{\Box} (A^{a_{4}\nu} A^{a_{5}\rho})$

at 6pts the ambiguity contains 30 free parameters!

Introduce auxiliary fields to make Lagr. manifestly cubic:

 $\mathcal{L}_{YM} = \frac{1}{2} A^{a\mu} \Box A^a_\mu - B^{a\mu\nu\rho} \Box B^a_{\mu\nu\rho} - g f^{abc} (\partial_\mu A^a_\nu + \partial^\rho B^a_{\rho\mu\nu}) A^{b\mu} A^{c\nu}$

@4pts: one aux. field @5pts: five aux. fields

also see Tolotti & Weinzierl

Cheung-Shen Lagrangian

Cubic Lagrangian that manifests color-kinematics duality, gives: → NLSM pions at tree level → YM trees for MHV sector Cheung, Shen ('16)

$$\mathcal{L}_{\rm CS} = Z^{a\mu} \Box X^a_\mu + \frac{1}{2} Y^a \Box Y^a - g f^{abc} Z^{a\mu} \left(Z^{b\nu} X^c_{\mu\nu} + Y^b \partial_\mu Y^c \right)$$

Jacobi Id. manifest:

$$X^a_{\mu\nu} = \partial_\mu X^a_\nu - \partial_\nu X^a_\mu \,,$$

NLSM pions: external states $Y^a \,\, {
m or} \,\, \partial_\mu Z^{a\mu}$

Gives all YM numerator terms of type: $n^{\text{YM}} \sim (\varepsilon_1 \cdot \varepsilon_n) \prod_{i,j} (\varepsilon_i \cdot p_j)$ sufficient for MHV amplitude: Chen, HJ, Teng, Wang

Stratify kinematic algebra by MHV sectors

Chen, HJ, Teng, Wang [1906.10683]

polarization power one: $(\varepsilon_i \cdot \varepsilon_j) \prod (\varepsilon_k \cdot p_l) \longrightarrow MHV$ polarization power two: $(\varepsilon_{i_1} \cdot \varepsilon_{j_1}) (\varepsilon_{i_2} \cdot \varepsilon_{j_2}) (p_{i_3} \cdot p_{j_3}) \prod (\varepsilon_k \cdot p_l) \longrightarrow NMHV$

The sectors map to different helicity amplitudes via the choice

$$\varepsilon_i^+ = \varepsilon_i^+(p_i, q^-)$$
 $\varepsilon_j^- = \varepsilon_j^-(p_j, q^+)$

 $\begin{array}{ll} \text{Ref. mom.} & q^- = p_{j_1} & q^+ = p_{i_1} \\ \rightarrow & \text{only.} & \varepsilon_i^+ \cdot \varepsilon_j^- \neq 0 & \text{for} & \frac{|i| = N_+ - 1}{|j| = N_- - 1} \\ \text{Numerators stratified} & \int_{i,j}^{\min\{|i|,|j|\}} & \sum_{i,j}^{\min\{|i|,|j|\}} & \prod_{k,l}^{\min\{|i|,|j|\}-1} & (\varepsilon_i \cdot \varepsilon_j) & \prod_{k,l}^{\min\{|i|,|j|\}-1} & (p_k \cdot p_l) & \prod(\varepsilon \cdot p) \end{array}$

Note: standard Feynman rules compute the MHV sector \rightarrow unique sector

Chen, HJ, Teng, Wang

Consider BCJ numerator in massless QCD

$$\begin{split} n \left(\underbrace{\stackrel{p_1 \quad p_2 \quad p_3}{\underbrace{\xi \quad \xi \quad \xi \quad p_4}}}_{q \quad \xi \quad \xi \quad \xi \quad \xi \quad p_4} \right) &= \bar{v} \not \epsilon_1 (\not p_1 + \not q) \not \epsilon_2 (\not p_{12} + \not q) \not \epsilon_3 u + \frac{1}{3} (p_1 + q)^2 \, \bar{v} [\not \epsilon_1, \not \epsilon_2] \not \epsilon_3 u \\ &= \bar{v} \not \epsilon_1 \not p_1 \not \epsilon_2 \not p_{12} \not \epsilon_3 u + \mathcal{O}(q) \,, \end{split}$$

Can be used to get pure YM numerator

$$n(123; \bar{v}u) \equiv n \begin{pmatrix} p_2 & p_3 \\ \xi & \xi \\ p_1 & p_1 & p_2 \end{pmatrix} = n \begin{pmatrix} [[p_1 & p_2] & p_3] \\ \frac{1}{2} & \xi & \xi \\ \frac{1}{2} & \xi & \xi \\ p_2 & p_1 & \xi_2 & p_2 & \xi_1 & p_1 \\ p_1 & p_2 & p_2 & \xi_1 & p_1 & \xi_2 & p_2 & \xi_1 & p_1 \\ p_1 & p_2 & p_2 & \xi_1 & p_1 & \xi_2 & p_2 & \xi_1 & p_1 & \xi_2 & p_2 & \xi_1 & p_1 \\ p_1 & p_2 & p_2 & \xi_1 & p_1 & \xi_2 & p_2 & \xi_1 & p_2 & \xi_1 & p_2 & \xi_1 & p_2 & \xi_2 & p_2 & \xi_1 & p_2 & \xi_1 & p_2 & \xi_2 & p_2 & \xi_1 & p_2 & \xi_2 & p_2 & \xi_1 & p_2 & \xi_1 & p_2 & \xi_2 & g_1 & g_2 & g_2 & g_1 & g_2 & g_1 & g_2 & g_1 & g_2 & g_2 & g_1 & g_2 & g_$$

 \rightarrow Motivate buliding blocks using tensor curents of the Clifford algebra

$$\bar{v} \not\in_i \cdots \notp_k \cdots \not\in_j \cdots \notp_l u$$

$$\bar{v}\gamma^{\mu_i}\cdots\gamma^{\mu_k}\cdots\gamma^{\mu_j}\cdots\gamma^{\mu_l}u \equiv J^{\mu_i\cdots\mu_k\cdots\mu_j\cdots\mu_l}$$

Formalize using current algebra tools

off-shell vs. on-shell currents $J^{(w)}_{\mathfrak{a}_1 \otimes \mathfrak{a}_2 \otimes \cdots \otimes \mathfrak{a}_m}(p) \to \overline{v}(q) \not a_1 \not a_2 \cdots \not a_m u(p)$ linearity of tensors $J^{(w)}_{\cdots \otimes (x\mathfrak{a}_i + y\mathfrak{a}'_i) \otimes \cdots}(p) = x J^{(w)}_{\cdots \otimes \mathfrak{a}_i \otimes \cdots}(p) + y J^{(w)}_{\cdots \otimes \mathfrak{a}'_i \otimes \cdots}(p)$

Clifford alg. $J^{(w)}_{\cdots \mathfrak{a}_i \otimes \mathfrak{a}_j \otimes \mathfrak{a}_k \otimes \mathfrak{a}_l \otimes \cdots}(p) + J^{(w)}_{\cdots \mathfrak{a}_i \otimes \mathfrak{a}_k \otimes \mathfrak{a}_j \otimes \mathfrak{a}_l \otimes \cdots}(p) = (2\mathfrak{a}_j \cdot \mathfrak{a}_k) J^{(w)}_{\cdots \otimes \mathfrak{a}_i \otimes \mathfrak{a}_l \otimes \cdots}(p)$

Pre-numerators: $N(\sigma) = J_{\hat{\varepsilon}_1}(p_1) \star J_{\varepsilon_{\sigma_2}}(p_{\sigma_2}) \star \cdots \star J_{\varepsilon_{\sigma_{n-1}}}(p_{\sigma_{n-1}})$

Fusion product $J^{(w)}_{\mathfrak{a}_1 \otimes \cdots \otimes \mathfrak{a}_m}(p) \star J_{\varepsilon_i}(p_i) = \sum_{k=1}^{m+2} \sum_{\mathfrak{a}'_1, \dots, \mathfrak{a}'_k} \sum_{w'} f^{\mathfrak{a}'_1 \dots \mathfrak{a}'_k}_{\mathfrak{a}_1 \dots \mathfrak{a}_m; \varepsilon_i}(p, p_i; w, w') J^{(w')}_{\mathfrak{a}'_1 \otimes \cdots \otimes \mathfrak{a}'_k}(p+p_i)$

BCJ numerator from nested commutator: $N([\cdots[[[1,2],3],4],5],\ldots,m])$

Kinematic algebra at the Next-to-MHV level (NMHV)

 $\begin{aligned} \text{Simplify by considering YM-scalar numerator:} \\ J_{\hat{\varepsilon}_{1}}(p) \star J_{\varepsilon_{i}}(p_{i}) &= \varepsilon_{i} \cdot p J_{\hat{\varepsilon}_{1}}(p+p_{i}) - \frac{1}{2} J_{\hat{\varepsilon}_{1} \otimes \varepsilon_{i} \otimes (p+p_{i})}(p+p_{i}) \\ & \downarrow \\ &$

Five types of tensors:
$$J_{\hat{\varepsilon}_1}, J_{\varepsilon_i}, J_{\hat{\varepsilon}_1 \otimes \varepsilon_i \otimes p}, J_{\hat{\varepsilon}_1 \otimes \varepsilon_i \otimes \varepsilon_j}^{(1)}, J_{\hat{\varepsilon}_1 \otimes \varepsilon_i \otimes \varepsilon_j}^{(2)}$$

Closed form for numerators: vector: $N^{(1)}(123\cdots n) = \left(\prod_{i=2}^{n-1} \varepsilon_j \cdot p_{1\cdots j-1}\right) J_{\hat{\varepsilon}_1}$

$$\textbf{tensor:} \quad N^{(2)}(123\cdots n) = \frac{1}{2} \sum_{i=2}^{n-2} \sum_{\substack{\ell,m=i\\m>\ell}}^{n-1} (-1)^{\ell-i-1} s_{1\cdots i} \left(\prod_{j\in\mathsf{S}_{i\ell m}} \varepsilon_j \cdot p_{1\cdots j-1}\right) \det(\mathbf{P}_{[i,\ell-1]}) J_{\hat{\varepsilon}_1 \otimes \varepsilon_\ell \otimes \varepsilon_m}$$

Chen, HJ, Teng, Wang [2104.12726]

Full NMHV sector algebra generatred by 13 currents

vector:

$$J_{\varepsilon_{i}}, J_{\varepsilon_{i}}^{(2)}, J_{p_{i}}^{(1)}, J_{p_{i}}^{(2)}$$
tensor:

$$J_{\varepsilon_{i}\otimes\varepsilon_{j}\otimes p}, J_{p_{i}\otimes\varepsilon_{j}\otimes p}, J_{\varepsilon_{i}\otimes\varepsilon_{j}\otimes\varepsilon_{k}}^{(1)}, J_{\varepsilon_{i}\otimes\varepsilon_{j}\otimes\varepsilon_{k}}^{(2)},$$

$$J_{p_{i}\otimes\varepsilon_{j}\otimes\varepsilon_{k}}^{(1)}, \ldots, J_{\varepsilon_{i}\otimes\varepsilon_{j}\otimes\varepsilon_{k}}^{(5)}.$$

Again closed formula for pre-numerator

$$\mathcal{N}(1,2,\ldots,n) = \left(1 + \frac{1}{2}Q_n\right)\mathcal{N}_V^{(1)} + \frac{1}{4}(1+Q_n)\mathcal{N}_T^{(2)} + \mathcal{N}_V^{(2)}$$

Explored pure-gauge BCJ numerators (non-uniqueness of NMHV)

crossing symmetry	Total d.o.f. $N^{\text{gauge}} \sim (\varepsilon \cdot \varepsilon)^2 (p \cdot p) \prod \varepsilon \cdot p$			
	n = 4	n = 5	n = 6	n = 7
S_{n-2}	1	36	760	16583
S_{n-1}	0	8	148	2734
S_n	0	1	25	381

Non-uniqueness of numerators

Amplitudes and numerators linearly related

$$A(1,\sigma,n) = \sum_{\rho \in S_{n-2}} m(\sigma|\rho) N(1,\rho,n)$$

Propagator matrix $m(\sigma|\rho)$ (bi-adjoint scalar ampl.) has only rank (n-3)!

Give rise to BCJ amplitude relations, and generalized gauge freedom

 $N(1, 2, \dots, n-1, n) \sim N(1, 2, \dots, n-1, n) + N^{\text{gauge}}(1, 2, \dots, n-1, n)$

Pure gauge numerators: $\sum_{\rho \in S_{n-2}} m(\sigma|\rho) N^{\text{gauge}}(1,\rho,n) = 0$

However, for off-shell kinematics (or massive fund. matter) the kernel becomes trivial \rightarrow can be exploited to obtain gauge inv. numerators

Hopf algebra structure and heavy mass EFT

Gauge invariant BCJ numerators from heavy-quark limit

Brandhuber, Chen, HJ, Travaglini, Wen '21

YM numerators at any multiplicity given by an associative Hopf algebra

$$\mathcal{N}(12\dots n-2, v) := \langle T_{(1)} \star T_{(2)} \star \dots \star T_{(n-2)} \rangle$$

Quasi-shuffle product: $T_{(12)} \star T_{(3)} = -T_{(123)} + T_{(12),(3)} + T_{(13),(2)}$

$$\langle T_{(1\tau_1),(\tau_2),\dots,(\tau_r)} \rangle := \frac{1}{1} \underbrace{\gamma_1}_{r_1} \underbrace{\gamma_2}_{r_2} \cdots \underbrace{\gamma_r}_{r_r} = \frac{v \cdot F_{1\tau_1} \cdot V_{\Theta(\tau_2)} \cdot F_{\tau_2} \cdots V_{\Theta(\tau_r)} \cdot F_{\tau_r} \cdot v}{(n-2)v \cdot p_1 v \cdot p_{1\tau_1} \cdots v \cdot p_{1\tau_1\tau_2 \cdots \tau_{r-1}}}$$

Heavy mass numerators for PM calculations

Efficient calculations for Post Minkovskian corrections:

Brandhuber, Chen, Travaglini, Wen [2108.04216]

$$A_5^{\rm YM-M}(234, v) = \frac{\mathcal{N}_5([[2, 3], 4], v)}{s_{234}s_{23}} + \frac{\mathcal{N}_5([2, [3, 4]], v)}{s_{234}s_{34}}$$

$$1 \xrightarrow[v]{\begin{array}{c}2 & 3 & 4\\ \underbrace{\xi & \xi & \xi\\ v\end{array}}} 5$$

Double copy for massive scalar (Schwarzschild BH):

First complete Kinematic Lie Algebra

Recent surprise:

Ben-Shahar, HJ

A complete QFT with straightforward kinematic algebra at tree and loop level.

Generators $L^{\mu}(p) = e^{ip \cdot x} \Delta^{\mu\nu} \partial_{\nu}$

3D transversality "projector" $\Delta^{\mu\nu}(p) = i\epsilon^{\rho\mu\nu}p_{\rho}$

Infinite-dimensional $[L^{\mu}(p_1), L^{\nu}(p_2)] = F^{\mu\nu}_{\ \rho} L^{\rho}(p_1 + p_2)$

Kinematic structure constants $F^{\mu_1\mu_2}_{\ \nu}(p_1,p_2) = \Delta^{\rho\mu_1}(p_1)\epsilon_{\rho\nu\sigma}\Delta^{\sigma\mu_2}(p_2)$

 $\begin{array}{rcl} \textbf{BCJ numerators} & 1 & \underbrace{2 & 3 & 4}_{1} & \underbrace{-1 & -1}_{5} & = & \mathrm{tr} \Big([[[L^{\mu_1}(p_1), L^{\mu_2}(p_2)], L^{\mu_3}(p_3)], L^{\mu_4}(p_4)], L^{\mu_5}_{\mathrm{amp}}(p_5) \Big) \\ & = & F^{\mu_1 \mu_2}{}_{\nu} F^{\nu \mu_3}{}_{\rho} F^{\rho \mu_4 \mu_5} \delta^3(p_1 + p_2 + p_3 + p_4 + p_5) \ , \end{array}$

Lie algebra of 3D volume-preserving diffeomorphisms!

Chern-Simons theory – off-shell C/K duality

Pure Chern-Simons theory (tree-level action)

$$S = \frac{k}{4\pi} \int \operatorname{Tr} \left(A \wedge dA + \frac{2i}{3} A \wedge A \wedge A \right)$$

cubic Feynman rules: $A\mu \mathcal{N} \mathcal{A}_{\rho} = -\frac{\epsilon_{\mu\nu\rho}p^{\nu}}{p^{2}}$
 $\rho \mathcal{N}_{\nu} = -\frac{\epsilon^{\mu\nu\rho}}{\sqrt{2}}$

Ben-Shahar, HJ

in Lorenz gauge these obeys color-kinematics duality off shell !

Chern-Simons is toplogical → amplitudes vanish, but off-shell correlation fn's are non-zero

Superfield notation

Ben-Shahar, HJ

Quantum CS action includes Faddeev-Popov ghosts. Can be packaged into superfield: $\Psi = c + \theta_{\mu}A^{\mu} + \theta_{\mu}\theta_{\nu}C^{\mu\nu} + \theta_{1}\theta_{2}\theta_{3}a$

Pure Chern-Simons theory (quantum action)

$$S = \frac{k}{2\pi} \int d^3x d^3\theta \operatorname{Tr}\left(\frac{1}{2}\Psi Q\Psi + \frac{i}{3}\Psi\Psi\Psi\right)$$

Feynman rules: $\theta \xrightarrow{\rightarrow} p \tilde{\theta} = \frac{p \cdot \vartheta}{p^2} \delta^3(\theta - \tilde{\theta})$ $= i \int d^3\theta$

again obeys color-kinematics duality!

$$\sum_{1} \left\langle \begin{array}{c} 3\\ 4 \end{array} \right\rangle = \int d^{3}\theta \Psi_{1}\Psi_{2} \int d^{3}\tilde{\theta} \, p_{34} \cdot \vartheta \, \delta^{3}(\theta - \tilde{\theta})\Psi_{3}(\tilde{\theta})\Psi_{4}(\tilde{\theta}) = i \int d^{3}\theta b(\Psi_{1}\Psi_{2})\Psi_{3}\Psi_{4}$$

5pts: $1 \xrightarrow{2} 3 4 = i \int d^3\theta \, b(b(\Psi_1\Psi_2)\Psi_3)\Psi_4\Psi_5$ similarly at higher pts

Ben-Shahar, HJ

Represent propagator numerator with differential operator :

 $b = \frac{\partial}{\partial \theta^{\mu}} \partial_{\mu} \equiv \vartheta^{\mu} \partial_{\mu}$ acting on product of fields gives

$$b(\Psi_1\Psi_2) \stackrel{\text{Lorenz}}{=} \vartheta^{\mu}\Psi_1 \partial_{\mu}\Psi_2 - \partial_{\mu}\Psi_1 \vartheta^{\mu}\Psi_2 \equiv \{\Psi_1, \Psi_2\}_{\text{P}}$$

Jaobi identity follows from Poisson bracket

 $b(b(\Psi_1\Psi_2)\Psi_3) + \operatorname{cyclic}(1,2,3) = \{\{\Psi_1,\Psi_2\}_{\mathsf{P}},\Psi_3\}_{\mathsf{P}} + \operatorname{cyclic}(1,2,3) = 0$

Lie algebra generators: $L_{\Psi}\equiv artheta^{\mu}\Psi\partial_{\mu}-\partial_{\mu}\Psiartheta^{\mu}$

Lie algebra:
$$[L_{\Psi_1}, L_{\Psi_2}] = L_{b(\Psi_1 \Psi_2)}$$

Volume-preserving diffeomorphisms (bosonic & fermonic volume)

Double copy and black hole amplitudes

Double copy and gravitational waves

Explicit PM calculations done using double copy:

Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove ('18) Bern, Cheung, Roiban, Shen, Solon, Zeng ('19)+ Ruf, Parra-Martinez ('21) Brandhuber, Chen, Travaglini, Wen (21)

Some methods developed for PM calc. using double copy: Bjerrum-Bohr, Cristofoli, Damgaard, Gomez+Brown; Cristofoli, Gonzo, Kosower, O'Connell; Maybee, O'Connell, Vines; Luna, Nicholson, O'Connell, White; ...

AHH amplitudes \leftrightarrow Kerr BH?

Arkani-Hamed, Huang, Huang ('17) wrote down natural higher-spin ampl's:

Gauge th 3pt: $A(1\phi^s, 2\bar{\phi}^s, 3A^+) = mx \frac{\langle \mathbf{12} \rangle^{2s}}{m^{2s}}, \qquad A(1\phi^s, 2\bar{\phi}^s, 3A^-) = \frac{m}{x} \frac{[\mathbf{12}]^{2s}}{m^{2s}}$

Gravity 3pt: $M(1\phi^{s}, 2\bar{\phi}^{s}, 3h^{+}) = im^{2}x^{2} \frac{\langle \mathbf{12} \rangle^{2s}}{m^{2s}}, \qquad M(1\phi^{s}, 2\bar{\phi}^{s}, 3h^{-}) = i\frac{m^{2}}{x^{2}} \frac{[\mathbf{12}]^{2s}}{m^{2s}}$

Shown to reproduce Kerr by: Guevara, Ochirov, Vines ('18)

Gravity Compton ampl. $M(1\phi^s, 2\bar{\phi}^s, 3h^+, 4h^+) = i \frac{\langle 12 \rangle^{2s} [34]^4}{m^{2s-4}s_{12}t_{13}t_{14}}$ via BCFW recursion ?

$$M(1\phi^s, 2\bar{\phi}^s, 3h^-, 4h^+) = i \frac{[4|p_1|3\rangle^{4-2s}([4\mathbf{1}]\langle 3\mathbf{2}\rangle + [4\mathbf{2}]\langle 3\mathbf{1}\rangle)^{2s}}{s_{12}t_{13}t_{14}}$$

spurious pole for s > 2

Kerr Black hole amplitudes

The AHH ampl's for $s < 2\,$ admit double copies to any multiplicity $(YM + scalar) \otimes (YM + scalar) = (GR + scalar)$ $(YM + scalar) \otimes (YM + fermion) = (GR + fermion)$ $(YM + scalar) \otimes (YM + W-boson) = (GR + Proca)$ $(YM + W\text{-boson}) \otimes (YM + \text{fermion}) = (GR + \text{massive gravitino})$ $(YM + W-boson) \otimes (YM + W-boson) = (GR + massive KK graviton)$ Lagrangians unique: have no non-minimal terms beyond cubic order in fields Can be used for $(S^{\mu})^{\leq 4}$ PM/PN calculations. Compton $(S^{\mu})^4$ yet to be confirmed via other methods (BHPT, worldline). Ochirov, HJ; Chiodaroli, HJ, Pichini; Chiodaroli, Gunaydin, HJ, Roiban, [...]

Summary & Outlook

- Color-kinematics duality lies at the root of gravity:
 - → Diffeomorphism inv. from YM numerator relations
 - \rightarrow makes perturbative GR more manageable!
 - \rightarrow allows for simpler classification of gravity theories
- Kinematic algebra is a well-hidden gem of YM (and GR)
 - → Notoriously difficult, after 15 years no complete YM algebra
 - \rightarrow Much progress in last 3 years:
 - → Stratification by sectors: NMHV algebra via current algebra
 - \rightarrow Gauge invariant numerators $\leftarrow \rightarrow$ heavy mass EFT $\leftarrow \rightarrow$ Hopf algebra
 - → First complete (quantum) kinematic algebra Chern-Simons theory
 - → Not discussed: Covariant color-kinematics duality Cheung & Mangan
- Explored amplitudes for massive spinning matter \rightarrow Kerr BH?
 - \rightarrow Double copy works well up to spin-2 (KK graviton)

Take-home message from this MITP workshop:

work on double copy & CK duality has significantly broadened in the last few years, and I look forward to hearing all the new perspectives!