Quarkonium and Open Quantum Systems

Yukinao Akamatsu (Osaka University)

January 18, 2022
The Quantumness of Hard Probes

Refs:
Akamatsu, Prog. Part. Nucl. Phys. xxx (2022) xxxx [2009.10559] Akamatsu-Miura, EPJ Web of Conferences 258 (2022) 01006 [2111.15402]

Quarkonia in heavy-ion collisions

What we are getting to know

- Non-equilibrium evolution of quarkonia in static and homogeneous medium

Quarkonia in heavy-ion collisions

What we ignore in this talk

- Interaction between initially uncorrelated pairs (justified for bottoms)
- Effects of non-static and inhomogeneous medium (for simplicity)
- Heavy quark pair creation in medium (suppressed by $e^{-M / T}$)
- Heavy quark pair annihilation in medium (suppressed by $1 / M^{2}$)

Quarkonia in heavy-ion collisions

What we do not know

- Initial condition of quarkonia
- assume singlet/octet wave packets, vacuum states, etc
- How quarkonia hadronize
- assume evolution freezes at $T=T_{f}$

Quarkonia in a static and uniform medium $\left(T>T_{c}\right)$

Key quantities: in-medium self-energy of a static quarkonium

- pNRQCD description: Local correlations in the QGP Thermal dipole self-energy coeff./HQ mom. diffusion const.
- NRQCD description: Non-local correlations in the QGP Complex potential

How do they determine quarkonium evolution?
\leftrightarrow What can we learn from experiment, in principle?

Contents

1. Quarkonia as an open quantum system in QGP
2. Simulation of Lindblad equation (from NRQCD)

Quarkonia as an open quantum system in QGP

Quarkonium by classical kinetics

- Heavy quark and antiquark are classical particles

- Quarkonium is a classical molecule and unbound pairs are classical particles
- When reaction duration \gtrsim orbital period

What is the quantum effect?

- Naive picture: collisions induce decoherence and classicalization

- Decoherence proceeds rapidly if $\lambda_{\Psi} \gg 1 / q$
- But it is not the case for quarkonium in Coulomb potential
- Scales for quarkonium in Coulomb potential: $\lambda_{\Psi} \sim 1 / M \alpha \ll 1 / T \sim 1 / q$

- Decoherence proceeds slowly because $\lambda_{\Psi} \ll 1 / q$
- How long does it take for medium to distinguish different classical trajectories?

Quarkonium as an open quantum system - reference list

Key observations before the application of open quantum system:

- J / ψ melting [Matsui-Satz (86)]
- J / ψ mass shift [Hashimoto+ (86)]
- J / ψ spectral function [Asakawa-Hatsuda (04)]
- Complex potential [Laine+ (07), Beraudo+ (08), Brambilla+ (08), Rothkopf+ (12)]

Personally, I was very confused by the non-unitary evolution by complex potential, which led me to take a system-environment approach, i.e. open quantum system.

Time-evolution equations using open system technique

- First applications [Young-Dusling (13) (2010 on arXiv), Borghini-Gombeaud (11,12)]
- Stochastic potential [Akamatsu-Rothkopf (12)]
- Lindblad equation from NRQCD [Akamatsu (15,22)]
- Lindblad equation from pNRQCD [Brambilla+ (17,18), Akamatsu (22)]
- Generalized Langevin equation from NRQCD [Blaizot+ $(16,18,18)]$
- Coupled Boltzmann equation from pNRQCD [Yao-Mehen (19)]

Minimum basics of open quantum system

Lindblad equation: evolution of reduced density matrix $\rho_{S}(t) \equiv \operatorname{Tr}_{E} \rho_{\text {tot }}(t)$

$$
\begin{aligned}
\frac{d}{d t} \rho_{S}(t) & =-i\left[H_{S}^{\prime}, \rho_{S}\right]+\underbrace{\sum_{k}\left(L_{k} \rho_{S} L_{k}^{\dagger}-\frac{1}{2} L_{k}^{\dagger} L_{k} \rho_{S}-\frac{1}{2} \rho_{S} L_{k}^{\dagger} L_{k}\right)}_{\text {dissipator } \mathcal{D}\left(\rho_{S}\right)}=\mathcal{L}\left(\rho_{S}\right) \\
& =-i \underbrace{\left(H_{\mathrm{eff}} \rho_{S}-\rho_{S} H_{\mathrm{eff}}^{\dagger}\right)}_{\text {non-Hermitian evolution }}+\underbrace{\sum_{k} L_{k} \rho_{S} L_{k}^{\dagger}}_{\text {transitions/scatterings }}, \quad H_{\mathrm{eff}}=\underbrace{H_{S}^{\prime}-\frac{i}{2} \sum_{k} L_{k}^{\dagger} L_{k}}_{H_{S}+\text { self-energy } \Delta H_{S}}
\end{aligned}
$$

if the evolution is Markovian, (completely) positive, and preserves probability [Gorini-Kossakowski-Sudarshan (76), Lindblad (76)]

Lindblad equation for weak system-environment coupling

Born-Markov approximation for $H_{I}=V_{S} \otimes V_{E}$ (interaction picture)

$$
\frac{d}{d t} \rho_{S}(t)=\int_{0}^{\infty} d s \underbrace{\left\langle V_{E}(s) V_{E}(0)\right\rangle}_{\text {environment correlator }}\left[\begin{array}{l}
V_{S}(t-s) \rho_{S}(t) V_{S}(t) \\
-V_{S}(t) V_{S}(t-s) \rho_{S}(t)
\end{array}\right]+\text { h.c. }+\mathcal{O}\left(V^{3}\right)
$$

Quantum Brownian regime ${ }^{1}$

- Slow system time scale \rightarrow derivative expansion

$$
\begin{aligned}
& V_{S}(t-s) \approx V_{S}(t)-s \dot{V}_{S}(t)+\cdots=V_{S}(t)-i s\left[H_{S}, V_{S}(t)\right]+\cdots \\
& \quad \rightarrow \quad L \propto \underbrace{V_{S}+\frac{i}{4 T} \dot{V}_{S}}_{\tau_{E} / \tau_{S} \rightarrow 0 \text { limit }}+\cdots \quad \text { fluctuation-dissipation theorem }
\end{aligned}
$$

- Condition for derivative expansion ($\tau_{S / E}=$ system/env. timescale)

$$
\tau_{S} \sim \underbrace{\frac{4}{M\left(C_{F} \alpha\right)^{2}}}_{\text {Coulombic }} \sim \frac{1}{[0.11-0.19] \mathrm{GeV}} \gg \tau_{E} \sim \frac{1}{2 \pi T}
$$

${ }^{1}$ There is another regime "Quantum optical limit," where $H_{I}(t)$ has discrete spectra

Lindblad equation from potential NRQCD [Brambilla et al (17, 18), Akamatsu (22)]
Color-dipole interaction ($R / r=$ center-of-mass/relative coordinates)

$$
H_{I}=-[\underbrace{\frac{|s\rangle\langle a|+|a\rangle\langle s|}{\sqrt{2 N_{c}}}}_{\text {singlet } \leftrightarrow \text { octet }}+\underbrace{\frac{d_{a b c}}{2}|b\rangle\langle c|}_{\text {octet } \leftrightarrow \text { octet }}] \underbrace{\vec{r} \otimes g \vec{E}^{a}(R)}_{\text {dipole at } R} \sim \vec{r} \cdot g \vec{E}(R)
$$

- For small dipole, gauge-invariant and non-perturbative expansion possible
- Expansion coefficients are physical quantities

Self-energy and Lindblad operator

$$
\begin{aligned}
\Delta H_{S} & =\frac{1}{2}(\gamma-i \kappa)[r^{2}+\underbrace{\mathcal{O}(\dot{r})}_{\text {derivative exp. }}][|s\rangle\langle s|+\#|a\rangle\langle a|]+\underbrace{\mathcal{O}\left(r^{3}\right)}_{\text {small-r exp. }} \\
L & \sim \underbrace{\sqrt{\kappa}}_{\text {transport coeff. }}[r+\underbrace{\mathcal{O}(\dot{r})}_{\text {derivative exp. }}][\text { color transitions }]+\underbrace{\mathcal{O}\left(r^{2}\right)}_{\text {small-r exp. }}
\end{aligned}
$$

- γ : thermal dipole self-energy coefficient, in-medium mass shift of quarkonia
- κ : heavy quark momentum diffusion constant, in-medium width of quarkonia

Reduction of Lindblad operators

1. Lindblad operators ($\#=24$)

$$
L_{a i} \propto r_{i}(\underbrace{\sqrt{\frac{1}{2 N_{c}}}|a\rangle\langle s|}_{\text {singlet } \rightarrow \text { octet }}+\underbrace{\sqrt{\frac{1}{2 N_{c}}}|s\rangle\langle a|}_{\text {octet } \rightarrow \text { singlet }}+\underbrace{\frac{1}{2} d^{a b c}|b\rangle\langle c|}_{\text {octet } \rightarrow \text { octet }})+\underbrace{\mathcal{O}(\dot{r})}_{\text {derivative exp. }}+\underbrace{\mathcal{O}\left(r^{2}\right)}_{\text {small-r exp. }}
$$

2. Singlet-octet projection (do not distinguish the octets) (\#=9)

$$
\tilde{C}_{+i} \propto r_{i}|o\rangle\langle s|+\cdots, \quad \tilde{C}_{-i} \propto r_{i}|s\rangle\langle o|+\cdots, \quad \tilde{C}_{d i} \propto r_{i}|o\rangle\langle o|+\cdots
$$

3. Angular momentum projection (do not distinguish m s for fixed ℓ) (\#=6)

$$
\begin{array}{cl}
\tilde{C}_{+\uparrow} \sim r|\ell+1\rangle\langle\ell| \otimes|o\rangle\langle s|, & \tilde{C}_{+\downarrow} \sim r|\ell-1\rangle\langle\ell| \otimes|o\rangle\langle s|, \\
\tilde{C}_{-\uparrow} \sim r|\ell+1\rangle\langle\ell| \otimes|s\rangle\langle o|, & \tilde{C}_{-\downarrow} \sim r|\ell-1\rangle\langle\ell| \otimes|s\rangle\langle o|, \\
\tilde{C}_{d \uparrow} \sim r|\ell+1\rangle\langle\ell| \otimes|o\rangle\langle o|, & \tilde{C}_{d \downarrow} \sim r|\ell-1\rangle\langle\ell| \otimes|o\rangle\langle o|
\end{array}
$$

- $|\ell\rangle\langle\ell|$ is prohibited by the parity selection rule
- See [Akamatsu (22), in Appendix C] for complete expressions including $\mathcal{O}(\dot{r})$ terms

Lindblad equation from NRQCD [Akamatsu (15,22)]

Color-eletric interaction

$$
H_{I}=\underbrace{g A_{0}\left(x_{Q}\right)-g A_{0}^{*}\left(x_{Q_{c}}\right)}_{\text {fluctuating scalar potential }}=\int_{k} \underbrace{\left(e^{i k x_{Q}} t_{Q}^{a}-e^{i k x_{Q_{c}}} t_{Q_{c}}^{a *}\right)}_{\text {momentum transfer } k} \otimes \underbrace{g \tilde{A}_{0}^{a}(k)}_{\text {mode } k}
$$

Self-energy and Lindblad operator ($r \sim 1 / g T$)

$$
\begin{aligned}
\Delta H_{S} & =V(r)\left[t_{Q}^{a} t_{Q_{c}}^{a *}\right]+i\left(D(r)\left[t_{Q}^{a} t_{Q_{c}}^{a *}\right]-C_{F} D(0)\right)+\underbrace{\cdots}_{\text {expansions }\left(\partial_{t}, g\right)} \\
V(r) & =-\frac{\alpha}{r} e^{-m_{D} r}, \quad D(r)=\int_{k} e^{i k \cdot r} \tilde{D}(k), \quad \tilde{D}(k)=g^{2} T \frac{\pi m_{D}^{2}}{\frac{\pi\left(k^{2}+m_{D}^{2}\right)^{2}}{k}} \\
L_{k} & \sim \underbrace{\sqrt{\tilde{D}(k)}}_{r^{1 / 2} e^{1 / 2} \alpha g}[e^{i k x_{Q}} t_{Q}^{a}-e^{i k x_{Q_{c}}} t_{Q_{c}}^{a *}+\underbrace{\mathcal{O}\left(\dot{x}_{Q}, \dot{x}_{Q_{c}}\right)}_{\text {derivative exp. }}]+\underbrace{\mathcal{O}\left(g^{2}\right)}_{\text {perturbative exp. }}
\end{aligned}
$$

- Singlet complex potential $\left(\left.\left[t_{Q^{a}}^{a}{ }_{Q_{c}}^{a *}\right]\right|_{\text {singlet }}=C_{F}\right)$ [Laine+(07), Beraudo+(08), Brambilla+(08)]

$$
V_{\text {complex }}^{(\text {singlet })}(r)=C_{F}[V(r)-i(D(0)-D(r))]
$$

Classical limit of the Lindblad equations - kinetics

[Blaizot-Escobedo (18), Akamatsu (22)]

Langevin equation with correlated noise \rightarrow drag force is also correlated

- Singlet pair

$$
\begin{aligned}
\overline{\xi_{Q i}(t) \xi_{Q j}\left(t^{\prime}\right)} & =\overline{\xi_{Q_{c} i}(t) \xi_{Q_{c} j}\left(t^{\prime}\right)}=-C_{F} \partial_{i} \partial_{j} D(0) \delta\left(t-t^{\prime}\right)>0, \\
\overline{\xi_{Q i}(t) \xi_{Q_{c} j}\left(t^{\prime}\right)} & =\underbrace{C_{F} \partial_{i} \partial_{j} D(r) \delta\left(t-t^{\prime}\right)<0}_{\text {singlet } \sim \text { opposite charges }}
\end{aligned}
$$

- Octet pair

$$
\begin{aligned}
\overline{\xi_{Q i}(t) \xi_{Q j}\left(t^{\prime}\right)} & =\overline{\xi_{Q_{c i}}(t) \xi_{Q_{c j}}\left(t^{\prime}\right)}=-C_{F} \partial_{i} \partial_{j} D(0) \delta\left(t-t^{\prime}\right)>0, \\
\overline{\xi_{Q i}(t) \xi_{Q_{c j}}\left(t^{\prime}\right)} & =\underbrace{-\frac{1}{2 N_{c}} \partial_{i} \partial_{j} D(r) \delta\left(t-t^{\prime}\right)>0}_{\text {octet } \sim \text { same charges }}
\end{aligned}
$$

For pNRQCD, $C_{F} D(r)=C_{F} D(0)-\frac{1}{2} \kappa r^{2}$: infinite correlation length

Classical limit of the Lindblad equations - colors [Akamatsu (22)]
Transition rate (not quite classical)

$$
\begin{aligned}
& \Gamma_{s \rightarrow o}=2 C_{F}\left[1-\frac{V_{o}(r)-V_{s}(r)}{4 T}\right]^{2} \frac{D(0)-D(r)}{\hbar^{2}} \\
& \Gamma_{o \rightarrow s}=\frac{1}{N_{c}}\left[1+\frac{V_{o}(r)-V_{s}(r)}{4 T}\right]^{2} \frac{D(0)-D(r)}{\hbar^{2}}
\end{aligned}
$$

- Approximate detail balance between singlet and octet

$$
\frac{\Gamma_{o \rightarrow s}}{\Gamma_{s \rightarrow o}}=\frac{1}{N_{c}^{2}-1}\left(\frac{1+\left[V_{o}(r)-V_{s}(r)\right] / 4 T}{1-\left[V_{o}(r)-V_{s}(r)\right] / 4 T}\right)^{2} \simeq \frac{1}{N_{c}^{2}-1} \exp \left[\frac{V_{o}(r)-V_{s}(r)}{T}\right]
$$

Collisions

Simulation of Lindblad equation (from NRQCD)

Numerical simulations

Most simulations use stochastic unravelling $=$ sampling wave functions

	NRQCD	pNRQCD
Inter-quark distance r	can be long	short
Coupling g	weak	can be large
Simulation cost	heavier	lighter

NRQCD	Dissipation	Method
1D, U(1)	no	Stochastic Potential [Akamatsu-Rothkopf (12), Kajimoto+ (18)]
3D, U(1)	no	Stochastic Potential [Rothkopf (14)]
1D, SU(3)	no	Stochastic Potential [Sharma-Tiwari (20), Kajimoto+ (21)]
1D, U(1)	yes	Quantum State Diffusion [Akamatsu+ (19), Miura+ (20)]
1D, SU(3)	yes	Quantum State Diffusion [Akamatsu-Miura (22), Miura+ (in prog.)]
1D, U(1)	yes	Direct evolution [Alund+ (21)]
pNRQCD	Dissipation	Method
$1+$ D, SU(3)	no	Direct evolution for S and P waves [Brambilla+ (17,18)]
3D, SU(3)	no	Quantum Jump [Brambilla+ (20,21)]
1D, SU(3)	yes	Quantum State Diffusion [Miura+ (in prog.)]

Numerical Method for solving the Lindblad equation

Stochastic unravelling of ρ_{S} : give a mixed-state wave-function ensemble

$$
\rho_{S}(t)=\underbrace{\overline{|\psi(t)\rangle\langle\psi(t)|}}_{\text {ensemble average }}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left|\psi_{i}(t)\right\rangle\left\langle\psi_{i}(t)\right|
$$

Method 1: Quantum State Diffusion [Gisin-Percival (92)]

- Nonlinear stochastic equation with complex white noises ($\overline{d \xi_{k}^{*} d \xi_{\ell}}=2 \delta_{k \ell} d t$)

$$
\begin{aligned}
|d \tilde{\psi}\rangle & =|\tilde{\psi}(t+d t)\rangle-|\psi(t)\rangle \\
& =\underbrace{\left[\mathcal{L}(|\psi\rangle\langle\psi|)-\langle\mathcal{L}(|\psi\rangle\langle\psi|)\rangle_{\psi}\right]|\psi(t)\rangle d t}_{\text {closest pure state to Lindblad evolution }}+\underbrace{\frac{1}{\sqrt{2}} \sum_{k} L_{k}|\psi(t)\rangle d \xi_{k}}_{\text {mixed state }} \\
|\psi(t+d t)\rangle & =\text { normalize }|\tilde{\psi}(t+d t)\rangle \quad \rightarrow \quad \text { repeat }
\end{aligned}
$$

Method 2: Quantum Jump [Plenio-Knight (98)] \rightarrow Nora's talk

Numerical Method for solving the Lindblad equation

Stochastic unravelling of ρ_{S} : give a mixed-state wave-function ensemble

$$
\rho_{S}(t)=\underbrace{\overline{|\psi(t)\rangle\langle\psi(t)|}}_{\text {ensemble average }}=\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{i=1}^{N}\left|\psi_{i}(t)\right\rangle\left\langle\psi_{i}(t)\right|
$$

Method 1: Quantum State Diffusion [Gisin-Percival (92)]

- Nonlinear stochastic equation with complex white noises ($\overline{d \xi_{k}^{*} d \xi_{\ell}}=2 \delta_{k \ell} d t$)

$$
\begin{aligned}
|d \tilde{\psi}\rangle & =|\tilde{\psi}(t+d t)\rangle-|\psi(t)\rangle \\
& =\underbrace{\left[-i H_{\mathrm{eff}}|\psi(t)\rangle+\sum_{k}\left\langle L_{k}^{\dagger}\right\rangle_{\psi} L_{k}|\psi(t)\rangle\right] d t}_{\text {nonlinear Schrödinger equation }}+\underbrace{\frac{1}{\sqrt{2}} \sum_{k} L_{k}|\psi(t)\rangle d \xi_{k}}_{\text {mixed state }} \\
|\psi(t+d t)\rangle & =\text { normalize }|\tilde{\psi}(t+d t)\rangle \quad \rightarrow \quad \text { repeat }
\end{aligned}
$$

Method 2: Quantum Jump [Plenio-Knight (98)] \rightarrow Nora's talk

QSD simulation (NRQCD) [Akamatsu-Miura (22)]

Modeling the Lindblad equation from singlet complex potential

$$
V_{\text {complex }}^{(\text {singlet })}(r)=C_{F}[\underbrace{V(r)}_{\text {screening }}-i \underbrace{(D(0)-D(r))}_{0 \nearrow D(0)}]
$$

Complex potential from non-perturbative thermal Wilson loop
[Rothkopf+ $(12,15)$, see also Bala+ (20)]

- Plateau $\operatorname{Im} V(r \rightarrow \infty)$ yet to be seen

QSD simulation (NRQCD): density matrix [Akamatsu-Miura (22)]

Model complex potential: $V_{\text {complex }}^{(\text {singlet })}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of QGP $\ell \sim 1 / T=10 / M$

Singlet ground state

QSD simulation (NRQCD): density matrix [Akamatsu-Miura (22)]

Model complex potential: $V_{\text {complex }}^{(\text {singlet })}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of QGP $\ell \sim 1 / T=10 / M$

Dipole excitation to octet

QSD simulation (NRQCD): density matrix [Akamatsu-Miura (22)]

Model complex potential: $V_{\text {complex }}^{\text {(singlet }}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of QGP $\ell \sim 1 / T=10 / M$

Octet $\left|\rho_{o}(x, y)\right|^{2}$

Decoherence in octet ${ }^{2}$

${ }^{2}$ For color $\mathrm{SU}(2)$ case, density matrix does not get diagonalized. [Kajimoto+ 2021]

QSD simulation (NRQCD): density matrix [Akamatsu-Miura (22)]

Model complex potential: $V_{\text {complex }}^{(\text {singlet }}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of QGP $\ell \sim 1 / T=10 / M$

Octet $\left|\rho_{o}(x, y)\right|^{2}$

Decoherence in octet ${ }^{2}$

${ }^{2}$ For color $\mathrm{SU}(2)$ case, density matrix does not get diagonalized. [Kajimoto+ 2021]

QSD simulation (NRQCD): density matrix [Akamatsu-Miura (22)]

Model complex potential: $V_{\text {complex }}^{(\text {singlet })}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of QGP $\ell \sim 1 / T=10 / M$

De-excitation to singlet

QSD simulation (NRQCD): density matrix [Akamatsu-Miura (22)]

Model complex potential: $V_{\text {complex }}^{(\text {singlet })}(r)=C_{F} V(r)-i C_{F}(D(0)-D(r))$

$$
C_{F} V(r)=-\frac{0.3}{r} e^{-2 T r}, \quad C_{F} D(r)=\frac{T}{\pi} e^{-(T r)^{2}}, \quad T=0.1 M
$$

\rightarrow Color resolution scale of $\mathrm{QGP} \ell \sim 1 / T=10 / M$

De-excitation to singlet \rightarrow equilibrated?

QSD simulation (NRQCD): equilibration [Akamatsu-Mirra (22)]

Evolution of eigenstate occupation

Steady state is independent of initial conditions

Eigenstate occupation in the steady state

Approach to the Boltzmann distribution with environment temperature

QSD simulation (NRQCD): role of dissipation [Akamatsu-Miura (22)]

Evolution of eigenstate occupation

Without dissipation, all states get equally occupied Dissipation is non-negligible from early time

Decoherence is not effective for a localized bound state \rightarrow Need to take account of heavy quark's motion during decoherence (=dissipation)

Summary - theory

Quarkonium Lindblad equations carry information of QGP

- pNRQCD: local coefficients γ and κ
- NRQCD: complex potential

Quarkonium Lindblad equation is yet to be complete

- pNRQCD: valid in non-perturbative regime and in the dipole limit
- NRQCD: valid in weak-coupling regime and can be modeled for any size
- For $T \lesssim 0.2 \mathrm{GeV}$, quantum Brownian regime may cease to hold [Yao+ (19)]

$$
\text { QGP corr. time } \sim \frac{1}{(2 \pi ?) T} \ll \text { orbital period } \sim \frac{1}{[0.11-0.19] \mathrm{GeV}}
$$

Summary - phenomenology

Simulation of Lindblad equation

- pNRQCD: phenomenological application has started
- NRQCD: equilibration achieved by balancing decoherence and dissipation
- Need to check the validity of dipole approximation [Miura+ (in prog.)]
- Quantum simulation? [Hu-Zia-Kais (20), de Jong+ (20)]

Initial condition

- Complete positivity derives from uncorrelated initial condition - when is it?

$$
\rho_{\mathrm{tot}}\left(t_{0}\right)=\rho_{S}\left(t_{0}\right) \otimes \rho_{E}\left(t_{0}\right), \quad t_{0} \sim \underbrace{1 / M}_{\text {pair creation }}, \underbrace{1 / M \alpha^{2}}_{\text {formation }}, \quad \underbrace{\tau_{\text {hydro }}}_{\text {thermalization }}
$$

- If initial condition mainly consists of octet wave packet

$$
R_{A A}=\text { survival probability? }
$$

Freezeout process

- Is projection onto singlet wave function enough? Octet component?

