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Introduction

• 0RWKHUV�RI�LQWHUHVWLQJ�WKHRULHV�LQ d � 4 [Gaiotto ’09, Alday, 
Gaiotto, Tachikawa ’09…]

Original motivation of this work: 6d CFTs

• 7KH\�PLJKW�OHDG�WR�SURJUHVV�RQ (2, 0) WKHRU\ RQ�0��VWDFNV

FRQH�RYHU M4 VKRXOG�KDYH
UHGXFHG�KRORQRP\ M4 = S4/Γ���

• $G67 � M4 LQ 11G�VXJUD�

Holography: classification of AdS7 solutions?

• In type II: pure spinor methods

This talk: emphasis on gravity aspects



Plan

• infinitely many; analytical

• &ODVVL¿FDWLRQ�RI�$G67 VROXWLRQV�LQ�W\SH�,, VXJUD

• 7KHLU�&)76 GXDOV� 16�ĥ'�ĥ'��EUDQH�FRQVWUXFWLRQV

• 7KH\�JHQHUDWH�DQDO� LQ¿QLWHO\�PDQ\ $G65 DQG $G64 VROXWLRQV
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We describe three analytic classes of infinitely many AdSd BPS solutions of massive IIA supergravity,
for d = 7, 5, 4. The three classes are related by simple universal maps. For example, the AdS7 ⇥M3

solutions (where M3 is topologically S3) are mapped to AdS5 ⇥ ⌃2 ⇥M 0
3, where ⌃2 is a Riemann

surface of genus g � 2 and the metric on M 0
3 is obtained by distorting M3 in a certain way. The

solutions can have localized D6 or O6 sources, as well as an arbitrary number of D8-branes. The
AdS7 case (previously known only numerically) is conjecturally dual to an NS5–D6–D8 system. The
field theories in three and four dimensions are not known, but their number of degrees of freedom
can be computed at leading order. The AdS4 solutions have numerical “attractor” generalizations
that might be useful for flux compactification purposes.

Recently, AdS
7

solutions in type II theories were classi-
fied [1]. In presence of the so-called Romans mass param-
eter F

0

, infinitely many new solutions were obtained nu-
merically. These were later argued [2] to be near-horizon
limits of NS5-D6-D8 brane intersections, considered long
ago in [3, 4]. This in turn gives some information about
the holographically dual (1, 0)-superconformal theories
(SCFTs) in six dimensions.

The more supersymmetric (2, 0) SCFT living on co-
incident M5s can be compactified to obtain interesting
SCFTs in four and three dimensions. This can be demon-
strated holographically by replacing AdS

7

with either
AdS

5

⇥ ⌃
2

[5] or AdS
4

⇥ ⌃
3

[6, 7], where ⌃
2

is a Rie-
mann surface and ⌃

3

is a maximally symmetric space.
It is natural to wonder whether the (1, 0) SCFTs de-

scribed above can also be compactified in this fashion. In
recent work [8, 9] we found that this can indeed be done.
In the process of doing so, we were able to find analytic
expressions for the AdS

7

solutions of [1] themselves, and
analytic maps  

5

,  
4

from those to the AdS
5

⇥ ⌃
2

and
AdS

4

⇥⌃
3

solutions. These maps are invertible and they
can of course be composed:

AdS
7

AdS
4

⇥ ⌃
3

AdS
5

⇥ ⌃
2

.
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(1)

So in the end we have three new classes of infinitely many
new backgrounds with analytic expressions, holographi-
cally dual to SCFTs in six, four, and three dimensions,
with respectively eight, four, and two Q-supercharges.
The AdS

4

vacua also have potential applications to flux
compactifications.

The AdS
7

solutions have the following general form.
The internal space M

3

is an S2-fibration over an interval,
parameterized by a coordinate r 2 [r�, r+]:

e2Ads2
AdS7

+ dr2 + e2Av2ds2S2 . (2)

A (the “warping”) and v are functions of r; so is the dila-
ton �. We will see below how these three functions are
fixed by the equations of motion and preserved supersym-
metry. The S2 has a round metric, and its isometry group
is the SU(2) R-symmetry of the (1, 0) SCFT

6

. It shrinks
at the endpoints r± of the interval. The fluxes have all
the components compatible with the R-symmetry: F

0

,
F
2

/ volS2 , H / dr ^ volS2 .

The map  
4

takes the metric (2) to

r
5

8


5

8
e2A

✓
ds2

AdS4
+

4

5
ds2

⌃3

◆
+ dr2 +

e2Av2

1� 6v2
Ds2S2

�

(3)
with ⌃

3

a compact quotient of hyperbolic space, normal-
ized so that its scalar curvature is �6. S2 is now fibered
over ⌃

3

, in a way associated to its tangent bundle; even
though the S2 is still round, the total internal space has
no isometries. The solution has now four supercharges;
it is dual to an N = 1 SCFT

3

. The fluxes now acquire
also components along ⌃

3

. The dilaton �
7

of the AdS
7

solutions is taken to �
4

given by

e�4 =

✓
5

8

◆
1/4

e�7

p
1� 6v2

. (4)

Similarly, the map  
5

takes the metric (2) to

r
3

4


3

4
e2A

�
ds2

AdS5
+ ds2

⌃2

�
+ dr2 +

e2Av2

1� 4v2
Ds2S2

�
(5)

with ⌃
2

a Riemann surface, again normalized so that its
scalar curvature is �6. S2 is fibered over ⌃

2

via one
of its U(1) isometries; in other words, it can be written
as P(K � O), and actually K is the canonical bundle of
⌃

2

. The isometry group is now this U(1), which is the
R-symmetry of the N = 1 superalgebra of the SCFT

4

.
Again the fluxes acquire components along ⌃

2

. The dila-

might also be useful 
as flux compactifications…

• Pure spinor methods



VXV\�SDUDPHWHUV �1,2 GH¿QH

PDQ\�SRVVLEOH�FDVHV
GHSHQGLQJ�RQ G(�1) � G(�2)

• WZR RUGLQDU\ GĥVWUXFWXUHV

or

• RQH GĥVWUXFWXUH�RQ T � T �

nicer equations; easier classifications
described by forms 

obeying algebraic constraints:
often ‘pure spinors’

Pure spinor methods

:RUNLQJ�RQ T � T �



original example
[Graña, Minasian, 

Petrini, AT ’05]
$G64

0LQN4} �M6

(d + H�)� = (�K + K̃�)F

nice differential equations
68(3)�68(3) VWUXFWXUH

,G�,G�VWUXFWXUH
V\VWHP�IRU�$G67 � M3

DQ\ M10�
(6SLQ(7) � R8)2 VWUXFWXUH


[AT ’11]

*simplifying the story a bit…

+ extra equations, almost never important

total 
RR flux

GH¿QHG�E\ �NS 3-form

[Apruzzi, Fazzi, Rosa, AT ’13] ,G�,G�VWUXFWXUH
V\VWHP�IRU�$G65 � M5

[Apruzzi, Fazzi, Passias, AT ’13] 



,G�,G�VWUXFWXUH
V\VWHP�IRU�$G67 � M3

RULJLQ� �G�SDUW �1,2 RI�VXV\�SDUDPHWHUV �1,2

both define a vielbein (= Id structure) 
for the internal metric

EHWWHU�SDUDPHWHUL]DWLRQ�
RQH�YLHOEHLQ {ei}

DQG�WKUHH�DQJOHV� �1, �2, �

ĬVRUU\� GRQ
W�FRQIXVH�DQJOH � ZLWK IRUPV �1,2�ĭ

�1
+ = ei�1 [FRV(�) + e1 � (�ie2 + VLQ(�)e3)]

for example:

[+ = even part]

�1 = �1 � �†
2

�2 = �1 � �2
bispinors �= IRUPV

�i1...ik

� =

dxi1 � . . . � dxik



,G�,G�VWUXFWXUH
V\VWHP�IRU�$G67 � M3

The differential system reads*

dH,P�1
± = �25H�1

�

dH5H�1
± = 4,P�1

�

dH�2
± = �4i�2

�

± �3 F = dA � ,P�1
± + 5H�1

�

dA � 5H�1
� = 0

*up to factors of 
dilaton and warping

total 
RR flux

dH � d � H�

A = ZDUSLQJ

upper sign: IIA

lower sign: IIB

After some computations…



•IIB: no solutions!

7KLV S2 UHDOL]HV
WKH 68(2) 5ĥV\PPHWU\
RI�D (1, 0) �G�WKHRU\�

[no Ansatz necessary]

LQWHUQDO M3 LV�ORFDOO\ S2ĥ¿EUDWLRQ�RYHU�LQWHUYDO•IIA:

Fluxes: F0, F2 � YROS2 , H � dr � YROS2

ds2 � e2A(r)ds2
$G6� + dr2 + v2(r)ds2

S2

solved at first numerically [Apruzzi, Fazzi, Rosa, AT ’13] 

A(r)� �(r)� v(r) GHWHUPLQHG�E\�2'(V

then analytically with the help of AdS4 and AdS5
 [Rota, AT ’15] [Apruzzi, Fazzi, Passias, AT ’15] 

AdS7 classification



• F0 �= 0� PDQ\�QHZ�VROXWLRQV

we can make one 
of the poles regular:

reg. pointD6 stack

local solutions also in [Blåbäck, Danielsson, Junghans, Van Riet, Wrase, Zagermann ’11] 
susy-breaking? in [Junghans, Schmidt, Zagermann ’14] 

ds2
M3

= n'�
F0

�
dy2

4
�

y+2(1�y)
+ 1

3
(1�y)(y+2)3/2

8�4y�y2 ds2
S2

�
.

• F0 = 0� RQO\ RQH VROXWLRQ
UHGXFWLRQ�RI

$G67 � S4/Zk

k '�V

k '�V



more generally we can have
two unequal D6 stacks

n2 '�V

n1 '�V

these solutions are also analytic, but a bit more complicated. 

or also an O6 and a D6 stack

D6sO6



stacks with opposite D6 charge

intuitively: D8’s don’t slip off 
because of electric attraction

metric: gluing of two pieces of metric in prev. slide
+ central region from two slides ago

we can also 
include D8’s: D8–D6 stack

actually, ‘magnetized’ D8’s

D8–D6 bound states

=

metric: gluing of two pieces of earlier metric



• $OO�LV�GHWHUPLQHG�E\�D�VLQJOH�IXQFWLRQ �(y)

ds2 = 4
9

�
���

y

�
ds2

$G6� � 1
16

��

y� dy2 + �/4
4��y�� ds2

S2

�
ZKHUH

�
y2�
��2

��
= F0

72

[it’s easy to solve]

• � KDV�VLQJOH�]HUR � UHJXODU�SRLQW� GRXEOH�]HUR � '��VWDFN

examples:

If you’re curious about the 
analytic expressions:

F0 = 0� WZR�'��VWDFNV � � (y2 � y2
0)2

F0 �= 0� RQH�'��VWDFN �'� � (y � y0)(y + 2y0)2

F0 �= 0� PRVW�JHQHUDO� � � (�'� + FRQVW)2



ds2 = 8
�

� �̈
�ds2

$G67 +
�

��
�̈dz2

+�3/2(��̈)1/2�
2��̈��̇2 ds2

S2

L = 5

R = 6

s

r̈�

z

piecewise linear and convex

More generally:



e2Ads2
$G67 + dr2 + v2ds2

S2

To any of our solutions

5
8e2A(ds2

$G64��3
) + dr2 + v2

1�6v2 e2Ads2
S2

GXDO�WR�&)73
�= &)76/�3 [twisted compactification]

[Rota, AT ’15] 

3
4e2A(ds2

$G65��2
) + dr2 + v2

1�4v2 e2Ads2
S2

GXDO�WR�&)74
�= &)76/�2

[twisted compactification]

[Apruzzi, Fazzi Passias, AT ’15] 

we came to suspect that there was a more general story:

interesting flux compactification: 
AdS4 solution with localized O6s and D6s

AdS5, AdS4



e2Ads2
$G67 + dr2 + v2ds2

S2

To any of our solutions

e2Ads2
7 + dr2 + v2

1+16(X5�1)v2 e2Ads2
S2

this is in fact an Ansatz for a consistent truncation!

¿HOGV� g(7)
µ� � Ai

µ� X
For any AdS7 solution in IIA

there is a consistent truncation to
‘minimal gauged 7d sugra’

[Passias, Rota, AT ’15]

One can use it to establish 
• 5* ÀRZV�IURP�$G67 WR�$G65 � �2 DQG�$G64 � �3

• QRQĥVXV\�$G67 VROXWLRQ

• $G63��4 VROXWLRQV



Holographic duals

. . . . . .ri ri+1

fi+1fi

10 1010 10 10 10 109 98 874 46 2

1 1 1 12

Natural class: linear quivers $W�HDFK�QRGH� nF = 2nc

D-brane engineering:

D6’s
NS5’s

D8’s 6

7, 8, 9

[Hanany, Zaffaroni ’96, 
Brunner, Karch ’96…]

L � (�i+1 � �i)7UF 2 �i = x6 SRVLWLRQV�RI�16�
V

coincident NS5s = strong coupling point; CFT?



the branes can also be arranged differently…

Hanany-Witten
brane-creation effect

N = 17

Until

…



brane supergravity solution not known, but…

N = 17

� '�
V�HQGLQJ�RQ�D�'�

ÀX[�LQWHJHU
�

M3
H

N = � 16�
V

D6 charge of the D8

Conjecture: near-horizon limit gives our AdS7 solutions



These theories can be labeled by two Young diagrams

[combinatorics well-known 
in other dimensions]

. . . . . .ri ri+1

fi+1fi

10 1010 10 10 10 109 98 874 46 2

1 1 1 12

L = 5

R = 6

s

rranks

L = 5

R = 6

s

r

�UDQNV
�SRVLWLRQ

Y/ Y5

jumps in Young diagrams
= positions of D8-branes

ds2 = 8
�

� �̈
�ds2

$G67 +
�

��
�̈dz2

+�3/2(��̈)1/2�
2��̈��̇2 ds2

S2

VDPH�IXQFWLRQ �̈(z)
DSSHDULQJ�LQ�WKH�PHWULF



Some notable examples: 

N k

k

N
k

k

N
N

k

k

N

UHGXFWLRQ�RI
$G67 � S4/Zk

DQ RUELIROG RI
WKH (2, 0) WKHRU\



A check of this conjectured correspondence

we can compare this with the R-symmetry anomaly in field theory

$G6�&)7��Ī� GHJ� IUHHGRPī �= YRO(M3)

N

k

a � k2N3 �

k

a � 4
15k5 �

[S. Cremonesi, AT, in prep.]…the comparison always works

L = 5

R = 6

s

r
General reason:

this graph is a discretization of the 
internal geometry!

k

N

a � k2
�
N3 � 4kN + 16

5 k3
�

�



Conclusions

N

TN
ρ�,ρ�

ρ� ρ�

NS5-branes

pattern of D6’s 
ending on D8’s

•Classification of type II AdS7 solutions 

• 'XDO�¿HOG�WKHRULHV� VWURQJ�FRXSOLQJ�SRLQWV�LQ�OLQHDU 8(k) TXLYHUV

•There are also extensions involving exceptional gauge groups 

•Infinitely many analytic AdS7, AdS5, AdS4 solutions

6S(1) G2 F4 G2 6S(1)E8 E8

[‘fractional M5-branes’] [del Zotto, Heckman, AT, Vafa ’14]


