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The universe as a membrane
The idea of formulating the cosmology of our universe on a brane
embedded in a higher-dimensional spacetime dates back, at least,
to Rubakov and Shaposhnikov. Phys. Lett. B125 (1983), 136

Attempts in a supergravity context to achieve a localization of
gravity on a brane embedded in an infinite transverse space were
made by Randall and Sundrum (RS II) Phys. Rev. Lett. 83 (1999) 4690 and by
Karch and Randall JHEP 0105 (2001) 008 using patched-together sections
of AdS5 space with a delta-function source at the joining surface.
This produced a “volcano potential” for the effective Schrödinger
problem in the direction transverse to the brane, giving rise to a
bound state concentrating gravity in the 4D directions.
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General problems with localization
Attempting to embed such models into a full
supergravity/string-theory context have proved to be problematic,
however. Splicing together sections of AdS5 is clearly an artificial
construction which does not make use of the natural D-brane or
NS-brane objects of string or supergravity theory.

These difficulties were studied more generally by Bachas and Estes
JHEP 1106 (2011) 005 , who traced the difficulty in obtaining localization
within a string or supergravity context to the behavior of the warp
factor for the 4D subspace. In the Karch-Randall spliced model,
one obtains a “kink” in the warp factor at the junction:
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The problem with string-theory attempts to localize gravity on a
brane subspace as found by Bachas and Estes, e.g., for a Janus
discontinuous-dilaton solution, is that there is no similar “bump” in
the warp factor for the 4D subgeometry:
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In consequence, there is no concentration of gravity on the 4D
subspace of such a model. Bachas and Estes raised the possibility
that this difficulty could be generic for asymptotically maximally
symmetric geometries of the embedding spacetime.
c.f. also Freedman, Gubser, Pilch & Warner, Adv. Theor. Math. Phys. 3 (1999) 363
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One interpretation of the patched AdS constructions is in terms of
an effective Schrödinger problem, in which the kink in the warp
factor produces a bound state for the transverse part of the
gravitational wavefunction. Trying to do this without an artificially
generated kink runs into a key difficulty in attempts to obtain
massless gravity in a lower-dimensional brane subspace when the
transverse space is infinite. Here’s a sketch:

Given an eigenvalue −λ for a normalizable wavefunction ξ of the
transverse wave operator e−2A

√
ĝ

(∂a
√
ĝ e4Aĝab∂b) (where e2A is the

warp factor of the 4d subspace), and provided one may integrate
by parts, one may write

λ||ξ||2 = −
∫

dd−4yξ(∂a
√
ĝ e4Aĝab∂bξ)→

∫
dd−4y

√
ĝ e4A|∂ξ|2

If one is looking for a transverse wavefunction ξ with λ = 0,
corresponding to massless gravitational excitations in the 4d
subspace, it would seem therefore that ξ has to be constant, which
would be inconsistent with it being normalizable in an infinite
transverse space.
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Another approach: Salam-Sezgin theory and its embedding

Abdus Salam and Ergin Sezgin constructed in 1984 a version of 6D
minimal (chiral, i.e. (1,0)) supergravity coupled to a 6D 2-form
tensor multiplet and a 6D super-Maxwell multiplet which gauges
the U(1) R-symmetry of the theory. Phys.Lett. B147 (1984) 47 This
Einstein-tensor-Maxwell system has the bosonic Lagrangian

LSS = 1
2R −

1
4g2 e

σFµνF
µν − 1

6e
−2σGµνρG

µνρ − 1
2∂µσ∂

µσ − g2e−σ

Gµνρ = 3∂[µBνρ] + 3F[µνAρ]

Note the positive potential term for the scalar field σ. This is a key
feature of all R-symmetry gauged models generalizing the
Salam-Sezgin model, leading to models with noncompact
symmetries. For example, upon coupling to yet more vector
multiplets, the sigma-model target space can have a structure
SO(p, q)/(SO(p)× SO(q)).
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The Salam-Sezgin theory does not admit a maximally symmetric
6D solution, but it does admit a (Minkowski)4 × S2 solution with
the flux for a unit-strength U(1) monopole turned on in the S2

directions

ds2 = ηµνdx
µdxν + a2(dθ2 + sin2 θdφ2)

Amdy
m = (n/2g)(cos θ ∓ 1)dφ
σ = σ0 = const , Bµν = 0

g2 =
eσ0

2a2
, n = ±1

This construction has been used in the SLED ↔ Supersymmetry in
Large Extra Dimensions proposal for dilution of the cosmological
constant in the two extra S2 dimensions, leaving a naturally small
residue in the four xµ dimensions.
Aghababaie, Burgess, Parameswaran & Quevedo, Nucl. Phys. B680 (2004) 389 et seq.
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H(2,2) embedding of the Salam-Sezgin theory
A way to obtain the Salam-Sezgin theory from M theory was given
by Cvetič, Gibbons & Pope. Nucl. Phys. B677 (2004) 164 This employed a
reduction from 10D type IIA supergravity on the space H(2,2), or,
equivalently, from 11D supergravity on S1 ×H(2,2). The H(2,2)

space is a cohomogeneity-one 3D hyperbolic space which can be
obtained by embedding into R4 via the condition
µ2

1 + µ2
2 − µ2

3 − µ2
4 = 1. This embedding condition is SO(2, 2)

invariant, but the embedding R4 space has SO(4) symmetry, so the
isometries of this space are just SO(2, 2) ∩ SO(4) = SO(2)× SO(2).
The cohomogeneity-one H(2,2) metric is
ds2

3 = cosh 2ρdρ2 + cosh2ρdα2 + sinh2ρdβ2.

Since H(2,2) admits a natural SO(2, 2) group action, the resulting
7D supergravity theory has maximal (32 supercharge)
supersymmetry and a gauged SO(2, 2) symmetry, linearly realized
on SO(2)× SO(2). Note how this fits neatly into the general
scheme of extended Salam-Sezgin gauged models.
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The Kaluza-Klein spectrum

Reduction on the non-compact H(2,2) space from ten to seven
dimensions, despite its mathematical consistency, does not provide
a full physical basis for compactification to 4D, however. The chief
problem is that the truncated Kaluza-Klein modes form a
continuum instead of a discrete set with mass gaps. Moreover, the
wavefunction of “reduced” 4D states when viewed from 10D or
11D includes a non-normalizable factor owing to the infinite H(2,2)

directions. This infinite transverse volume also has the
consequence that the resulting 4D Newton constant vanishes.
Accordingly, the higher-dimensional supergravity theory does not
naturally localize gravity in the lower-dimensional subspace when
handled by ordinary Kaluza-Klein methods.
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Bound states and mass gaps Crampton, Pope & K.S.S., JHEP 1412 (2014) 035; 1408.7072

An approach to solving the non-localization problem of gravity on
the 4D subspace of the ground-state Salam-Sezgin (SS) solution is
to look for a normalizable transverse-space wavefunction with a
mass gap before the onset of the continuous massive Kaluza-Klein
spectrum. This could be viewed as analogous to an effective field
theory for a system confined to a metal by a nonzero work
function.

General study of the fluctuation spectra about brane solutions
shows that the mass spectrum of the spin-two fluctuations about a
brane background is given by the spectrum of the scalar Laplacian
in the transverse embedding space of the brane
Csaki, Erlich, Hollowood & Shirman, Nucl.Phys. B581 (2000) 309; Bachas & Estes, JHEP 1106 (2011) 005

(10)F =
1√

− det g(10)

∂M

(√
− det g(10)g

MN
(10)∂NF

)
= H

1
4

SS( (4) + g24θ,φ,y ,ψ,χ + g24rad)

HSS = (cosh 2ρ)−1 warp factor; 4rad =
∂2

∂ρ2
+

2

tanh(2ρ)

∂

∂ρ 10 / 29



The directions θ, φ, y , ψ & χ are all compact, and one can employ
ordinary Kaluza-Klein methods for reduction on them by
truncating to the invariant sector for these coordinates, i.e. by
making an S-wave reduction.

To handle the noncompact radial direction ρ, one needs to expand
in eigenmodes of 4rad. The ansatz for 4D metric fluctuations
simply replaces ηµν in the 10D metric by ηµν + hµν(x , ρ), where
one may take ∂µhµν = ηµνhµν = 0

hµν(x , ρ) =
∑
i

hλiµν(x)ξλi (ρ) +

∫ ∞
Λedge

dλhλµν(x)ξλ(ρ)

in which the ξλi are discrete eigenmodes and the ξλ are continuous
Kaluza-Klein eigenmodes of the scalar Laplacian 4rad; their
eigenvalues give the Kaluza-Klein masses m2 = g2λ in 4D from

(10)h
λ
µν = 0 using 4θ,φ,y ,ψ,χh

λ
µν(x , ρ) = 0:

4radξλ(ρ) = −λξλ(ρ)

(4)h
λ
µν(x) = (g2λ)hλµν(x)
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The Schrödinger problem

One can rewrite the 4rad eigenvalue problem as a Schrödinger
equation by making the substitution

Ψλ =
√

sinh(2ρ)ξλ

after which the first derivative term is eliminated and the
eigenfunction equation takes the Schrödinger equation form

−d2Ψλ

dρ2
+ V (ρ)Ψλ = λΨλ

where the potential is

V (ρ) = 2− 1

tanh2(2ρ)
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The SS Schrödinger equation potential V (ρ) asymptotes to the
value 1 for large ρ. In this large-ρ limit, the Schrödinger equation
becomes

d2Ψλ

dρ2
+ 4e−4ρΨλ + (λ− 1)Ψλ = 0

giving scattering-state solutions for λ > 1:

Ψλ(ρ) ∼
(
Aλe

iρ
√
λ−1 + Bλe

−iρ
√
λ−1
)

for large ρ

while for λ < 1, one can have L2 normalizable candidate bound
states. Recalling the ρ dependence of the measure√
−g(10) ∼ (cosh(2ρ))

1
4 sinh(2ρ), one finds for large ρ the

normalizability requirement∫ ∞
ρ1�1

|Ψλ(ρ)|2dρ <∞⇒ Ψλ ∼ Bλe
−ρ
√

1−λ for λ < 1

So for λ < 1 we can have candidate bound states.
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Asymptotic conformal invariance and its puzzles

The limit as ρ→ 0 of the potential V (ρ) = 2− 1/ tanh2(2ρ) is
just V (ρ) = −1/(4ρ2). The associated Schrödinger problem has a
long history as one of the most puzzling cases in one-dimensional
quantum mechanics. It has been studied and commented upon by
Von Neumann; Pauli; Case; Landau & Lifshitz; de Alfaro, Fubini &
Furlan, and many others.

A key feature of this 1D problem is its SO(1, 2) conformal
invariance. This symmetry has the consequence that, at the
classical level, there is no way to form a definite scale for the
transverse Laplacian eigenvalue of an L2 normalizable ground
state. (Except for the value zero, which is what will happen, as we
shall see.)
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Discussions of the corresponding quantum theory require a
regularization that breaks this 1D conformal symmetry and gives
rise to the choice of a self-adjoint extension for the domain of the
Laplacian in order to determine the ground state. The −1/4
coefficient is also key: for coefficients α > −1/4, there is no L2

normalizable ground state, while for α < −1/4, an infinity of L2

normalizable discrete bound states appear.

For the precise coefficient α = −1/4, a regularized treatment
shows the existence of a single L2 normalizable bound state
separated by a mass gap and lying below the continuum of
scattering states. A.M. Essin & D.J. Griffiths, Am.J. Phys. 74, 109 (2006) The precise
eigenvalue of this ground state, however, is not fixed by
normalizability considerations and hence remains, so far, a free
parameter of the quantum theory.

15 / 29



The zero-mode bound state

The SS Schrödinger potential V (ρ) = 2− coth2(2ρ) diverges as
ρ→ 0; this is a regular singular point of the Schrödinger equation.
Near ρ = 0, solutions have a structure given by a Frobenius
expansion

Ψλ ∼
√
ρ(aλ + bλ log ρ)

This behavior at the origin does not affect L2 normalizability, but it
does indicate that we have a family of candidate bound states
characterized by θ = arctan( aλbλ ). Numerical study shows that there
is a 1↔ 1 relationship between θ and the eigenvalue λ. Moreover,
the limit of a candidate wavefunction ξλ ∼ aλ + bλ log ρ is singular
as ρ→ 0, in contrast to the smooth character of the underlying
Salam-Sezgin spacetime.

We need some way to select a specific ground state, hopefully
corresponding to massless 4D gravitons, and at the same time to
justify the ρ→ 0 behavior.
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For λ = 0 the Schrödinger equation luckily can be solved in terms
of simple functions. The exact result, corresponding to θ = 0 (i.e.
to a Ψ wavefunction that is asymptotically pure

√
ρ log ρ as

ρ→ 0) is

Ψ0(ρ) =
√

sinh(2ρ)ξ0(ρ) =
2
√

3

π

√
sinh(2ρ) log(tanh ρ)

0 1 2 3 4
-1.0

-0.5

0.0

0.5

1.0

H(2,2) Schrödinger equation potential (orange) and zero-mode Ψ0 (purple)
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The Salam-Sezgin background with an NS5-brane inclusion
Justifying the singularity of the ξ(ρ) bound state as ρ→ 0 requires
introduction of some other element into the solution. It turns out
that what can be included nicely is an NS5-brane. Güven 1992

NS5-brane
wrapped on H (2,2)

H(2,2) space with an NS5-brane source wrapped around its ‘waist’
and smeared on a transverse S2
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In the Einstein frame, the 10D nonsingular SS solution has the
metric (with µ = 0, 1, 2, 3 corresponding to the 4D subspace)

dŝ2
10 = (cosh 2ρ)

1
4

(
dxµdxµ + dy2

+
1

4g2

{
4dρ2 +

(
dψ + sech2ρ (dχ+ cos θdϕ)

)2

+ tanh2 2ρ (dχ+ cos θdϕ)2 + dθ2 + sin2 θ dϕ2
})

accompanied by flux from the 2-form gauge field

Â2 =
1

4g2

[
dχ+ sech2ρ dψ

]
∧ (dχ+ cos θ dϕ)

and the dilaton, asymptotically linear as ρ→∞,

e−2φ̂ = cosh 2ρ
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The SS solution has 8 unbroken supersymmetries arising as
solutions of the 10D Killing spinor equations (written in string
frame)

δψM = ∇M ε− 1
8FMNP ΓNP Γ11 ε = 0

δλ = ΓM∂Mφ ε− 1
12FMNP ΓMNP Γ11 ε = 0 .

These Killing spinor equations have solutions

ε = e−
1
2χ Γ89 η

where the constant spinor η satisfies the projection conditions

Γ11 η = −η , Γ67 η = Γ89 η .
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The key to generalizing the SS solution by the inclusion of an
NS5-brane Güven 1992 is first to dimensionally reduce it to 9D on the
‘waist’ coordinate z = 1

2gψ and then to recognize its structure as a
“brane resolved through transgression”.
Cvetič, Lü & Pope, Nucl. Phys. B600 (2001) 103

It is convenient to work first in 10D string frame,

dŝ2
10 str = e

1
2 φ̂ dŝ2

10 ein, after which the reduction ansatz takes the

simple form dŝ2
10 str = ds2

9 str + e
√

2φ2 (dz +A(1))
2 and the 10D

dilaton is given by φ̂ = −
√

7
8 φ1 + 1√

8
φ2 .

One then recognizes the SS solution as a special 9D case of a
4-brane solution

ds2
9 str = dX µ̃dXµ̃ + g−2HSS ds̄

2
4 , e−

√
7
2 φ1 = HSS

where µ̃ = µ (= 0, 1, 2, 3); y are 5D coordinates and

ds̄2
4 =

(
cosh 2ρdρ2 + 1

4 cosh 2ρ(dθ2 + sin θdφ2)

+ 1
4 sinh 2ρ tanh 2ρ(dχ+ cos θdφ)2

)
HSS = (cosh 2ρ)−1 .
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Changing the radial coordinate according to cosh 2ρ = r2, the
underlying 4D transverse metric becomes

ds̄2
4 =

(
1− 1

r4

)−1
dr2 + 1

4 r
2(dθ2 + sin2 θ dϕ2)

+ 1
4

(
1− 1

r4

)
r2 (dχ+ cos θ dϕ)2

which one recognizes as the unit-scale self-dual Ricci-flat
Eguchi-Hanson metric.

This solution fits into the system of “brane resolution through
transgression” because the 3-form field strength for the 9D 2-form
reduced from A2 obeys the Bianchi identity dF(3) = −F(2) ∧ F(2)

where F(2) and F(2) are self-dual in the ds̄2
4 metric. The 4-brane

ansatz

e

√
7
2 φ1 ∗F(3) = dA(5) , A(5) = H−1 d5X , e

√
7
2φ1 = H−1

then yields then a solution provided H satisfies

4EH(4) H = g2

2 F ij Fij ,

where 4EH(4) = sech2ρ4rad is the radial Eguchi-Hanson Laplacian.
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In the present case, one has the self-dual 2-forms

F(2) = −F(2) =
−2

g cosh2 2ρ

(
ē6 ∧ ē7 − ē8 ∧ ē9

)
so for H one requires

4EH(4) H = g2

2 F ij Fij = − 8

cosh4 2ρ
.

The SS “vacuum” solution to this equation has HSS = sech2ρ, but
one can now straightforwardly generalize this by inclusion of a
homogeneous H̃ solution: H = H̃ + HSS, where

H̃ = c1 + c2 log tanh ρ

in which c1 and c2 are integration constants. Then, returning to
Einstein frame in 10D, one has the generalized SS + NS-5 solution

dŝ2
10 = H−

1
4 (dxµdxµ + dy2 + 1

4g2 [dψ + sech2ρ (dχ+ cos θ dϕ)]2) + H
3
4 ds̄2

eφ̂ = H
1
2 , Â2 = 1

4g2

[
(1− c2) dχ+ sech2ρ dψ

]
∧ (dχ+ cos θ dϕ) .
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Reconsidering the fluctuation problem about the deformed SS +
NS5-brane metric, one now finds that the transverse wavefunction
ξλ with eigenvalue λ must satisfy

4EH(4)ξλ + λHξ = 0 (up to NS-5 source terms)

in which 4EH(4) = (sinh 2ρ cosh 2ρ)−1 ∂
∂ρ(sinh 2ρ ∂

∂ρ) is, as above,

the radial part of the Eguchi-Hanson Laplacian. Demanding L2

normalizability of eigenmodes in the generalized metric requires
choosing c1 = 0. Note then that − log(tanh ρ) and the original
HSS function sech2ρ in H have the same 2e−2ρ asymptotic
behavior as ρ→∞. Consequently, the ρ→∞ asymptotic form of
the Schrödinger problem remains unchanged with respect to the
undeformed SS system. Letting c2 = −k with k > 0, all that
happens asymptotically is that the eigenvalue λ = g−2m2

effectively gets replaced by λ̃ = λ(1 + k).

Since the modified function H has factorized out, the zero mode ξ0

turns out to be exactly the same as in the original SS ground-state
solution prior to the NS5-brane inclusion:

ξ0 = log(tanh ρ) .
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The NS5-brane source and boundary conditions on ξ(ρ)

The source action for an NS5-brane smeared over a transverse S2 is

Is =
−T
Ω2

∫
d2Ω

∫
d6ζ

(
− det

(
∂ix

M∂jx
NgMN(x(ζ))

)) 1
2
e−φ/2

With the inclusion of this source, the relevant part of the Einstein
equation for the static SS + NS5 background plus the transverse
part of the 4D gravity fluctuation is:

g2ηµν4EHH̃ − H2
(4)hµνξ − g2Hhµν4EHξ =

− T
g4

√
gEH

(ηµν − hµνξ(ρ))δ2(z)

Integrating this system over a disc around the origin out to radius ε
yields, consistently for the static background and for the
fluctuation term, a relation between the source tension T and the
integration constant k in H̃: k = 2Tg2

π .
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In order to determine fully the boundary condition on the
transverse wavefunction ξ, it turns out to be necessary to expand
the delta-function source slightly and then take a limit.
Accordingly, one replaces the pointlike delta-function by a ring
delta-function d2zδ2(z) = 1

2πdρdχδ(ρ− ε).

The indicial equation for ξ shows that the asymptotic structure of
ξ for any candidate eigenvalue λ is ξ(ρ) = a + b log ρ. From the
NS5-sourced field equation, one then obtains the relation
a = b( πk

2Tg2 − 1) log ε. At the same time, the relation between k

and T is modified to give πk
2Tg2 − 1 = 2

3ε
2 +O(ε4).

Putting these together, one learns a = 2
3bε

2 log ε+O(ε4), so upon
taking ε→ 0 one learns a/b → 0, i.e. θ = 0.

Numerical study of the Schrödinger eigenvalue problem shows that
θ = arctan(a/b) is a monotonic function of the eigenvalue λ. Since
the zero-mode ξ0 = log tanh ρ becomes pure log ρ as ρ→ 0, this
must be the only bound state consistent with the boundary
conditions imposed by the NS5-brane source.
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The above results establish a Kaluza-Klein spectrum with a mass
gap between the massless 4D graviton states supported by the
transverse zero-mode ξ0 = log tanh ρ and the continuum of
massive states supported by the transverse scattering states, with
m2 values beginning at the continuum edge g2(1 + k). Although
this braneworld spectrum does not constitute a fully KK consistent
truncation to 4D of the 10D theory, the mass gap establishes a
band of low energies at which the theory becomes effectively
four-dimensional: gravity is localized on the 4D subspace.

Another aspect of this SS+NS5 system that remains unchanged is
supersymmetry: the modified solution has 8 unbroken 4D
supersymmetries, just like the original SS solution on which it was
based. This may be further broken down to 4D N = 1
supersymmetry by incorporating a Hǒrava-Witten mechanism on
the y coordinate; gauge anomaly cancellation may also be achieved
this way. Pugh, Sezgin & K.S.S., JHEP 1102 (2011) 115 Moreover, the reduction to
4D may also be arranged so as to preserve chirality in the reduced
4D theory. Pugh, Pope & K.S.S., JHEP 1202 (2012) 098
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The braneworld Newton constant
Reducing to 4D on the NS-5 modified SS solution, gravity has an
effective action

g3

16πG(10)

V(5)

∫
dρ
√
gEHH

∫
d4x(∂µhστ (x)∂µhστ (x)|ξ(ρ)|2 + . . .)

where V(5) = g−4π2`y is the volume of the 5 compact directions.

For conventional Kaluza-Klein reduction with ξ(ρ) = const, the ρ
integral diverges and one finds G(4) = 0 for the 4D Newton
constant. For the ξ0(ρ) = log tanh ρ bound state in the SS + NS5
geometry, however, the integral now converges and one obtains a
finite 4D Newton constant. The corresponding gravitational
coupling constant κ(4) =

√
32πG(4) is

κ(4) =
√

32πg

√
G(10)

V(5)

∫
dρ sinh 2ρ(1− k cosh 2ρ log tanh ρ)ξ3

(
∫
dρ sinh 2ρ(1− k cosh 2ρ log tanh ρ)ξ2)

3
2

= 144
√

6ζ(3)

(
G(10)g

5

π7`y

) 1
2 (1 + 2k)

(2 + 3k)
3
2

.
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Conclusions and further questions

• Inclusion of an NS5-brane on a Salam-Sezgin hyperbolic 10D
spacetime solution of type IIA supergravity successfully localizes
massless gravity near the NS5-brane subsurface. This is in contrast
to situations previously considered, e.g. with asymptotically
maximally symmetric spacetimes, where localization fails and was
thought to be impossible when attempted with natural string or
M-theory constructions.
• Incorporation of this structure into a string theory construction
remains an important topic for investigation. The linear dilaton
background is a familiar enough string theory background. As one
approaches ρ→ 0, the Güven NS-5 brane dominates. There may
be a relation, e.g. to the Compère & Marolf boundary conditions
for AdS/CFT that retain the boundary metric degrees of freedom.
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