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Reminding T-Duality

T-duality is an old subject in string theory. It implies that in
many cases two different geometries for the extra-dimensions are
physically equivalent.

T-duality is a discrete symmetry. It implies that string physics at
a very small scale cannot be distinguished from the one at a
large scale. It is also a clear indication that ordinary geometric
concepts can break down in string theory at the string scale.

In the simplest case of circular compactifications, T-duality is
encoded, for bosonic closed strings, in the simultaneous
transformations R ↔ α′/R and pa ↔ w a/α′ under which
X a = X a

L + X a
R ↔ X̃a ≡ X a

L − X a
R , with w a playing the role of

momentum mode for X̃a. These transformations leave the mass
spectrum invariant.

In toroidal compactifications (with constant backgrounds Gµν
and Bµν) T-duality is described by O(D,D;Z) transformations.
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O(D,D) Duality in String Theory

Already on the classical level the indefinite orthogonal group
O(D,D;R) appears naturally in the Hamiltonian description of
the usual bosonic string model.

With ∗ the Hodge operator with respect to h = diag(−1, 1), the
action is:

S [X ; G ,B] =
T

2

∫ [
Gab(X )dX a ∧ ∗dX b + Bab(X )dX a ∧ dX b

]

Varying S with respect to X a yields the equation of motion:

d ∗ dX a + Γa
bcdX b ∧ ∗dX c =

1

2
G amHmbcdX b ∧ dX c (1)

with H = dB and Γa
bc = 1

2G am(∂bGmc + ∂cGmb − ∂mGbc) the
coefficients of the Levi Civita connection.
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O(D,D) Duality in String Theory

The dynamics of the theory is determined by the equations of
motion for the coordinates X a accompanied with the constraints
(in the conformal gauge):

Gab(Ẋ aẊ b + X ′aX ′b) = 0 GabẊ aX ′b = 0. (2)

These derive from the vanishing of the energy-momentum
tensor Tαβ = 0, i.e. from the equation of motion for a general
world-sheet metric h.

The Hamiltonian density can be determined from the Lagrangian
density by performing a Legendre transformation with respect to
the canonical momentum
Pa = ∂L

∂Ẋ a
= 1

2πα′

(
−GabẊ b + BabX ′b

)
and Ẋ a.

By virtue of the constraint GabẊ aX ′b = 0, the Hamiltonian
density can also result from a Legendre transformation with
respect to the canonical winding

Wa = ∂L
∂X ′a = 1

2πα′

(
GabX ′b − BabẊ b

)
and X ′a.
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O(D,D) Invariance of the String
Hamiltonian Density

The Hamiltonian density can be written equivalently as:

H = − 1

4πα′

(
∂σX

2πα′P

)t

M(G ,B)

(
∂σX

2πα′P

)
= − 1

4πα′

(
∂τX

−2πα′W

)t

M(G ,B)

(
∂τX

2πα′W

)
where the generalised metric is introduced:

M(G ,B) =

(
G − BG−1B BG−1

−G−1B −G−1

)
(3)

Defining the generalised vectors AP(X ) and AW (X ) in
TM

⊕
T ∗M with components

AP(X ) =

(
∂σX

2πα′P

)
AW (X ) =

(
∂τX

2πα′W

)
one can see that the Hamiltonian density is proportional to the
squared length of AP and AW as measured by the generalised
metric M.
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Constraints and Generalised Vectors

In terms of the generalised vector AP the constraints, i.e. the
components of the energy-momentum tensor can be rewritten
as:

At
PMAP = 0 At

PΩAP = 0. (4)

The first constraint sets the Hamiltonian density to zero, hence
the second constraint completely determines the dynamics and it

is rewritten in terms of the matrix Ω =

(
0 1
1 0

)
, i.e. the

invariant metric of the group O(D,D) defined by the D × D
matrices T satisfying the condition T tΩT = Ω. In particular the
generalised metric is an element of O(D,D).
All the admissible generalised vectors satisfying the constraints
are related by O(D,D) transformations, which implies a
simultaneous inverse transformation of the generalised metric.
This, in turn, leaves the Hamiltonian density and the
energy-momentum tensor invariant.
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O(D,D;R) in the presence of constant
backgrounds

In the presence of constant backgrounds (G ,B), the equations
of motion for the string coordinates are a set of conservation
laws on the world-sheet:

∂αJαa = 0→ Jαa = Gab∂αX b + εαβBab∂βX b (5)

Locally, one can express such currents as:

Gab∂αX b + εαβBab ≡ −εαβ∂βX̃a → dual coordinates

in terms of which the action S can be rewritten as:

S [X ; G ,B] =
T

2

∫ [
G̃abdX̃ a ∧ ∗dX̃ b + B̃ab(X )dX̃ a ∧ dX̃ b

]
with G̃ = G − BG−1B and B̃ = −G̃ B−1G .

The equations of motion for the coordinates χ = (X , X̃ ) can be
combined into a single equation O(D,D)-invariant:

M∂αχ = Ωεαβ∂
βχ (6)

For B = 0, the equations of motion become the duality
conditions: ∂αX a = −εαβ∂βX̃ a.
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O(D,D;R)→ O(D,D;Z)

If the closed string coordinates are defined on a compact target
manifold, the dual coordinates will satifisfy the same periodicity
conditions and then T-duality maps two theories of the same
type into one another → exact symmetry.

For closed strings, toroidal compactification means:

X a(σ, τ) ≡ X a(σ + π, τ) + 2πLa La =
d∑

i=1

wiRie
a
i (7)

with wi being the winding numbers and ea
i vector basis on T d .

In the compact space O(D,D;R)→ O(D,D;Z). The latter
becomes the T-duality group of the toroidal compactification.
For closed strings on compactified dimensions, this group
becomes a symmetry not only of the mass spectrum and the
vacuum partition function but also of the scattering amplitudes.

10 / 44
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T-dual invariant bosonic string
formulation

The presence of the O(D,D) symmetry suggests to extend the
standard formulation of String Theory, based on the Polyakov
action, by introducing this symmetry at the level of the
world-sheet sigma-model. It would be interesting, therefore,
looking for a manifestly O(D,D)-dual invariant formulation of
the string theory.

The introduction of both the coordinates X a and the dual ones
X̃a is required. Such formulation is based on a doubling of the
string coordinates in the target space.
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Doubling Coordinates: Motivation

The main goal of this new action would be to explore more
closely aspects of stringy geometry and, in particular, of string
gravity. In fact, if interested in writing down the complete
effective field theory of such generalised sigma-model, one
should consider, correspondingly to the introduction of X a and
X̃a, a dependence of the fields associated with string states on
such coordinates. In this way, double string effective field theory
becomes a double field theory.

What the well-known effective gravitational action of a closed
string

S =
∫

dX
√

G e−2φ
[
R + 4(∂φ)2 − 1

12HµνρHµνρ
]

becomes when G , B and φ are dependent on X a and X̃a? Which
symmetries and what properties would it have? This could shed
light on aspects of string gravity unexplored thus far.

How the string theory would look like when the T-duality is
manifested in the sigma-model Lagrangian density?
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Hodge-Duality Symmetry for 2D Scalar
Fields

The usual Lagrangian of a 2D scalar field φ

L = − 1
2∂αφ∂

αφ = 1
2η
αβ∂αφ∂βφ = 1

2 φ̇
2 − 1

2φ
′2

can be rewritten in a manifestly invariant form under φ↔ φ̃, its
Hodge dual defined by ∂αφ̃ = −εαβ∂βφ (ε01 = 1).

Two steps are necessary.

The first consists in rewriting L in a first order form, after
introducing an auxiliary field p whose equation of motion
reproduces p = φ̇.

The second consists in trading p for the new field φ̃ defined
through p ≡ φ̃′. It is easy to see that this procedure leads to the
following symmetric Lagrangian:

Lsym =
1

2

[
φ̇φ̃′ + φ′ ˙̃φ− φ′2 − φ̃′2

]
The manifest Lorentz invariance has disappeared, but it holds
on-shell.
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through p ≡ φ̃′. It is easy to see that this procedure leads to the
following symmetric Lagrangian:

Lsym =
1

2

[
φ̇φ̃′ + φ′ ˙̃φ− φ′2 − φ̃′2

]
The manifest Lorentz invariance has disappeared, but it holds
on-shell.
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Free scalars fields in 2D - Equations of
motion

The equations of motion for φ and φ̃ result to be respectively:

∂σ

[
∂σφ− ∂τ φ̃

]
= 0 ; ∂σ

[
∂σφ̃− ∂τφ

]
= 0

∂σφ− ∂τ φ̃ = f (τ) ; ∂σφ̃− ∂τφ = f̃ (τ) (8)

Hence, they can be rewritten as first-order equations:

∂σφ− ∂τ φ̃ = 0

∂σφ̃− ∂τφ = 0

by invoking another symmetry of Lsym, i.e. the one under a shift:

φ→ φ+ g(τ)

φ̃→ φ̃+ g̃(τ)

The equations of motion reproduce on-shell the duality
conditions, after gauging away f (τ) and f̃ (τ).
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Floreanini-Jackiw Lagrangians for
chiral fields

The symmetric Lagrangian Lsym can be diagonalized by
introducing a pair of scalar fields φ+ and φ− defined by:

φ ≡ 1√
2

(φ+ + φ−) ; φ̃ ≡ 1√
2

(φ+ − φ−) (9)

in terms of which it becomes the sum of two Floreanini-Jackiw
Lagrangians, the one associate with φ+ and the other with φ−:

Lsym = L+(φ+) + L−(φ−) (10)

with

L±(φ±) = ±1

2
φ̇±φ

′

± −
1

2
φ

′2
± (11)

It is only on-shell that φ± become functions of σ ± τ :

φ̇+ = φ′+ φ̇− = −φ′− (12)
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Symmetries

Lsym is invariant under space-time translations acting as (the
constant parameters of the transformations are omitted):

δτφ = φ̇ ; δσφ = φ
′

(13)

and under modified global Lorentz transformations:

δLφ = τφ′ + σφ̃′ ; δLφ̃ = τ φ̃′ + σφ′

that on-shell become the usual two-dimensional Lorentz
rotations:

δLφ = τφ′ + σφ̇ ; δLφ̃ = τ φ̃′ + σ ˙̃φ

The Lorentz invariance is recovered on-shell.
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Chiral and Non-chiral Basis

The free Lagrangians considered here can be rewritten, in both
cases, as:

L0 =
1

2

(
Cij∂0Φi∂1Φj + Mij∂1Φi∂1Φj

)
. (14)

In the chiral basis Φi = (φ+, φ−) (i = 1, 2)

C =

(
1 0
0 −1

)
and M =

(
−1 0
0 −1

)
;

in the non-chiral basis Φi = (φ, φ̃)

C ≡ Ω =

(
0 1
1 0

)
and M =

(
−1 0
0 −1

)
.

C and M, will become respectively, in the string case, the
O(D,D) invariant metric and the generalised metric.
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Two-dimensional scalar fields on
curved space

In order to couple Lsym, or the two FJ Lagrangians for chiral
scalar fields, to the external 2-bein ea

α one is to replace ∂a → eαa
and to multiply by e ≡ detea

α:

Lsym =
1

2
e
[
eα0 eβ1 ∂nφ∂mφ̃+ eα1 eβ0 ∂αφ∂βφ̃

−eα1 eβ1 ∂αφ∂βφ− eα1 eβ1 ∂αφ̃∂βφ̃
]

After eliminating φ̃ through its equation of motion, one returns
to the usual scalar Lagrangian:

L =
1

2
eηabe α

a eβb ∂αφ∂βφ (15)
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General String Sigma-Model

General string “sigma model”:

S = −T

2

∫
d2σe

[
Cij∇0χ

i∇1χ
j + Mij∇1χ

i∇1χ
j
]

(16)

ea
α → zweibein defined on the string world-sheet.

Cij = Cji and Mij = Mji ; ∇aχ
i = eαa ∂αχ

i , the functions χi the
string coordinates in an N-dimensional Riemannian target space.

Symmetries

1 Invariance under diffeomorphisms:

σα → σ′α(σ)
2 Invariance under Weyl transformations:

eaα → λ(σ)eaα

3 Request of invariance under local Lorentz transformations:
eaα → e′aα = Λa

b(σ)ebα where Λa
b is an arbitrary Lorentz matrix

SO(1, 1).
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Requiring local Lorentz invariance

The action S is not manifestly invariant under the group
SO(1, 1) of local Lorentz transformations:

δea
α = α(σ)εab(σ)eb

α (17)

but such invariance has to hold since physical observables are
independent on the choice of the vielbein. Hence, the theory is
required to be locally Lorentz invariant on shell.

Since the variation of S under an infinitesimal local Lorentz
transformation results to be:

δS

δea
α

δea
α = α(σ)

e

2
εabt b

a

the above requirement implies:

εabtab = 0 t b
a ≡ −

2

T

1

e

δS

δea
α

eb
α (18)
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The Weyl invariance implies:

ηabtab = 0 .

The equations of motion for ea
α give tab = 0 providing

constraints that have to imposed at classical and quantum
levels, analogously to what happens in the ordinary formulation
with Tαβ = − 2

T
√
g

δS
δgαβ = 0. Hence, on the solutions of these

equations the local Lorentz invariance holds.

Local symmetries (Reparametrization + Weyl + Local Lorentz
inv.) allow to fix the flat gauge

e a
α = δ a

α .
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Constraints and Equations of Motion

The constraint εabtab = 0 can be rewritten in the following way:[
Cij∂0χ

j + Mij∂1χ
j
]

(C−1)ik
[
Ckl∂0χ

l + Mkl∂1χ
l)
]

+
[
C −MC−1M

]
ij
∂1χ

i ∂1χ
j = 0. (19)

Equations of motion for χi :

∂1
[
Cij∂0χ

j + Mij∂1χ
j
]
− Γl

ikClj∂0χ
j∂1χ

k

− 1
2 (∂iMjk)∂1χ

j∂1χ
k = 0

Boundary conditions:[(
1
2Cij∂0χ

j + Mij∂1χ
j
)]σ=π
σ=0

= 0
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Constant Backgrounds

When C and M are constant, the equations of motion for χi

drastically simplifies into:

∂1
[
Cij∂0χ

j + Mij∂1χ
j
]

= 0 .

The further local gauge invariance of the action under shifts as:

δχi = f i (τ, σ) with ∇1f i = 0 (20)

allows to rewrite the equation of motion for χi as:

Cij∂0χ
j + Mij∂1χ

j = 0 (21)

with boundary conditions dictated by the vanishing of the
surface integral:

1

2

∫
dτCij

[
∂0χ

jδχi
]
|σ=τσ=0 = 0 (22)

describing both open strings with Dirichlet boundary conditions
and closed strings.

23 / 44



Classical and
Quantum

Aspects of the
String Double
Sigma Model

Franco
Pezzella

Introduction
and Motivation

Hodge-Dual
Symmetric
Free Scalar
Fields in 2D

Double Sigma
Model (Closed
Strings)

Duality
Symmetric
Free Closed
Strings

Quantization
of the Double
String Model

Conclusion and
Perspectives

Constant Backgrounds

When C and M are constant, the equations of motion for χi

drastically simplifies into:

∂1
[
Cij∂0χ

j + Mij∂1χ
j
]

= 0 .

The further local gauge invariance of the action under shifts as:

δχi = f i (τ, σ) with ∇1f i = 0 (20)

allows to rewrite the equation of motion for χi as:

Cij∂0χ
j + Mij∂1χ

j = 0 (21)

with boundary conditions dictated by the vanishing of the
surface integral:

1

2

∫
dτCij

[
∂0χ

jδχi
]
|σ=τσ=0 = 0 (22)

describing both open strings with Dirichlet boundary conditions
and closed strings.

23 / 44



Classical and
Quantum

Aspects of the
String Double
Sigma Model

Franco
Pezzella

Introduction
and Motivation

Hodge-Dual
Symmetric
Free Scalar
Fields in 2D

Double Sigma
Model (Closed
Strings)

Duality
Symmetric
Free Closed
Strings

Quantization
of the Double
String Model

Conclusion and
Perspectives

Emerging out of O(D,D)

This causes the constraint on the ε-trace to become:[
C −MC−1M

]
ij
∂1χ

i ∂1χ
j = 0

implying the restriction on C and M: C = MCM.

After rotating and rescaling χi , C can always be put in the diagonal
form:

C = (1, · · · , 1,−1, · · · ,−1)

with N+ eigenvalues 1 and N− eigenvalues −1 and N = N+ + N−.
So the action can be interpreted as describing N+ chiral and N−
antichiral scalars interacting via the bilinear term
(Mij + δij)∇1χ

i∇1χ
j and the absence of a quantum Lorentz anomaly

requires N+ = N− = D = N
2 . Hence, N = 2D.

C becomes the O(D,D) invariant metric while C = MCM implies
that M is an O(D,D) element.
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Non-chiral coordinates

It is possible to make a change of coordinates in the 2D-dimensional
target space according to the definition:

Xµ ≡ 1√
2

(
Xµ
+ + Xµ

−
)

; X̃µ ≡ δµν 1√
2

(
X ν
+ − X ν

−
)

It makes the matrix C become off-diagonal:

Cij = −Ωij ; Ωij =

(
0µν I νµ
Iµν 0µν

)
with (Ω)ij = (Ω−1)ij .

The expression for M results to be:

Mij =

(
(G − B G−1B)µν (B G−1) νµ

(−G−1 B)µν (G−1)µν

)
being M parametrized by D2.
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O(D,D) INVARIANCE

The sigma-model action can be expressed, in the non-chiral basis, as:

S = −T

2

∫
d2σ

[
Ωij∂0χ

i∂1χ
j −Mij∂1χ

i∂1χ
j
]
.

It is invariant under the combined O(D,D) transformations of χi and
the matrix of the couplings parameters in M:

χ′ = Rχ ; M ′ = R−tMR−1 ; RtΩR = Ω ; R ∈ O(D,D).

.

The O(D,D) invariant metric Ω is itself an element of O(D,D).
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Recovering the familiar T-duality
invariance

Define the duality transformation R = Ω under which Xµ → X̃µ.

The action, expressed in terms of Xµ and X̃µ, after this
transformation, becomes:

S = −T

2

∫
d2σ

[
∂0Xµ∂1X̃µ + ∂0X̃µ∂1Xµ

−(G − B G−1B)µν∂1Xµ∂1X ν − (B G−1) νµ ∂1Xµ∂1X̃ν

+ (G−1 B)µν∂1X̃µ∂1X ν − (G−1)µν∂1X̃µ∂1X̃ν
]

and exhibits what in string theory is the familiar T-duality invariance,
in presence of backgrounds, i.e. X ↔ X̃ together with a
transformation of the generalised metric given by M ′ = M−1, i.e.

G ↔ (G − BG−1B)−1

BG−1 ↔ −G−1B
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Correspondence with the Standard
Formulation in Constant Backgrounds

In order to understand the relation to the standard formulation, one
can integrate over X̃µ by eliminating it through the use of the
equations of motion. In the case of G ,B constant one gets the
standard sigma-model action:

S [X ] = −T

2

∫
d2σ(

√
G Gmm + εmn)(G + B)µν∂mXµ∂nX ν

which describes the toroidal compactification under proper
periodicity conditions on X . If, instead, one eliminates X from its
equation of motion one obtains the dual model for X̃ :

S [X̃ ] = −T

2

∫
d2σ(

√
G Gmn + εmn)(G + B)−1µν∂mX̃µ∂nX̃ ν

The action S [X , X̃ ] is therefore a first-order action which interpolates
between S [X ] and S [X̃ ] and is manifestly duality symmetric.
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Free Closed Doubled Strings

From the above formulation it is easy to derive the free action for
doubled strings. This corresponds to the case in which:

C = −
(

0 1
1 0

)
and M =

(
G 0
0 G−1

)
(23)

with Gµν being the flat metric in the target space. One gets:

S0 = S [Xµ, e] + S [X̃µ, e]

= − 1

4πα′

∫
d2σe

[
∇0Xµ∇1X̃µ +∇0X̃µ∇1Xµ

−Gµν∇1Xµ∇1X ν − G̃µν∇1X̃µ∇1X̃ν
]

= S [Xµ
+ , e] + S [Xµ

−, e] (24)

with G̃µν = G−1µν , ∇a = e α
a ∂α and µ = 1, · · · ,D. This is invariant

under Xµ ↔ X̃µ together with Gµν ↔ G̃µν .
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Inserting Vertex Operators

The free action S0 still describes D and not 2D scalar degrees of
freedom (only the zero mode of X and X̃ are independent on-shell).

S0 can be perturbated by Sint [X , X̃ ] with the insertion of vertex
operators involving both X and X̃ . If Sint does not depend on X̃ one
can integrate X̃ out in the path integral of the theory and reproduce
the usual results of the standard formulation.

Assuming that strings are compactified on a circle of radius R, one
should expect that: at large scales R >>

√
α′ the relevant

interactions are Sint(X ) ; at intermediate scales R ≡
√
α′ the relevant

interactions involve both X and X̃ while at R <<
√
α′ the relevant

interactions are Sint(X̃ ).

The duality symmetric formulation may be considered as a natural
generalization of the standard one at the string scale.
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Equivalence between non-covariant and
covariant actions

The action

S = −T

2

∫
d2σ

[
Cij∂0χ

i ∂1χ
j + Mij∂1χ

i∂1χ
j
]

(25)

is candidate to describe, with C and M constant, bosonic closed
strings in a background and compactified on a torus TD . It exhibits a
manifest T -duality invariance O(D,D) with the fields χi interpreted
as string coordinates on the double torus T 2D .

It can be shown to be equivalent to the following covariant action
(Hull, 2005):

S = −T

2

∫
d2σ∂αχiMij∂αχ

j (26)

with the self-duality relation imposed in order to halve the degrees of
freedom from 2D to D (also Duff, 1987):

∂αχ
i = εαβη

ijMjk(∂βχk) (27)

equivalent to the condition εabtab = 0.
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Non-Constant Backgrounds

Aim: to introduce interactions and understand if the local Lorentz
constraint still holds under the form C = MCM in case of
non-constant backgrounds.

First case:

C constant and M only X -dependent (or only X̄ -dependent).

In the case in which C = Ω and M only X -dependent, in deriving the
equations of motion for Xµ and X̃µ one has to keep in consideration
the contribution coming from the term

1
2 (∂iMjk)∂1χ

j∂1χ
k .
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The equations of motion for Xµ and X̃µ respectively become:

∂1

[
−∂0X̃µ + (G − BG−1B)µν∂1X ν + (BG−1) νµ ∂1X̃ν

]
=

1

2
∂1X ν

[
∂µ(G − BG−1B)νρ∂1X ρ + ∂µ(BG−1)νρ∂1X̃ρ

]
and

∂1

[
−∂0Xµ + (−G−1B)µν∂1X ν + (G−1)µν∂1X̃ν

]
=

1

2
∂1X̃ν

[
∂̄µ(−G−1B)νρ∂1X ρ + ∂̄µ(G−1)νρ∂1X̃ρ

]
= 0

where ∂̄µ denotes the derivative with respect to X̃µ.
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Also in this case, one can use the invariance of the equation of
motion for X̃µ under shifts for putting:

−∂0Xµ + (−G−1B)µν∂1X ν + (G−1)µν∂1X̃ν = 0. (28)

When this expression is substituted in the condition εabtab = 0, that
is valid for any kind of backgrounds:[

Cij∂0χ
j + Mij∂1χ

j
]

(C−1)ik
[
Ckl∂0χ

l + Mkl∂1χ
l)
]

+
[
C −MC−1M

]
ij
∂1χ

i ∂1χ
j = 0. (29)

one can easily see that the off-diagonal structure of C makes the first
term vanish and so one gets again the condition C = MCM
characterizing the O(D,D) invariance.

The same result is obtained if one considers C = Ω and M only
X̄ -dependent.
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Further Osservation on C = Ω and
M = M(X )

In the case of C = Ω,M = M(X ) the constraint C = MCM is still
valid and the expression for M keeps on being:

Mij =

(
(G − B G−1B)µν (B G−1) νµ

(−G−1 B)µν (G−1)µν

)
but now with X -dependent G and B.

Starting from S(Xµ, X̃µ) and eliminating X̃µ through the equation of
motion, one can get the usual sigma-model action for Xµ:

S [X ] = −T

2

∫
d2σ

(√
gg ab + εab

)
(G + B)µν∂aXµ∂bX ν (30)

that corresponds to the usual formulation of the world sheet of the
string in arbitrary background (G + B).

If Xµ is eliminated, then one gets the dual sigma model for X̃µ:

S [X̃ ] = −T

2

∫
d2σ

(√
gg ab + εab

)
(G + B)−1µν∂aX̃µ∂bX̃ ν (31)
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C and M both non-constant

Second Case:

C and M both depending only on X (or X̄ ).

In this case one has to consider, in the equation of motion for X̃µ,
also the contribution coming from

−Γl
ikClj∂0χ

j∂1χ
k

When rewritten explicitly, this quantity vanishes when the index runs
over the ones of X̃µ and therefore it does not give any contribution to
the equation of motion of this coordinate.

One can conclude that the condition C = MCM still holds under the
hypothesis that C and/or M are dependent only on X (or only on X̃ ).
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hypothesis that C and/or M are dependent only on X (or only on X̃ ).
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Third case:

both C and M depending on the coordinates χi .

One can think to introduce a small parameter ε =
√
α′

rc
and to expand

C and M up to the second order according to:

C = C0 + εC1 + ε2C2

M = M0 + εM1 + ε2M2 (32)

By linearizing the condition εabtab = 0 and the equations of motion
for the coordinates, one gets, at the order ε:

(εabtab)on-shell = −1

2
Qij∂1χ

i∂1χ
j + O(ε)

Q = C1 − (C−10 M0)tM1 −M1(C−10 M0)

+(C−10 M0)tC1(C−10 M0)

Hence, the linearized condition on C0 and M0 is Q = 0.
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This condition can be actually derived by linearizing the condition
C = MCM. So at this order the O(D,D) condition keeps on holding,
being the first term in the expression of the ε-trace order ε2:[

Cij∂0χ
j + Mij∂1χ

j
]

(C−1)ik
[
Ckl∂0χ

l + Mkl∂1χ
l)
]

+
[
C −MC−1M

]
ij
∂1χ

i ∂1χ
j = 0. (33)

This means that the latter plays a role going to the order ε2 and the
contribution coming from it adds to the one coming from the term
proportional to C −MCM. Starting from this order, it seems that the
O(D,D) invariance does not hold anymore or one can ask if the
deformation is compatible with O(D,D) (discussions with Olaf Hohm
and Hai Lin). This is the case that seems to reproduce the
α′-corrections found in double field theory (Hohm and Zwiebach,
2014)
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Constraints of the FJ Lagrangian

The quantization of the action in the flat gauge and for constant
backgrounds corresponds to the quantization of the Floreanini-Jackiw
Lagrangians.

In the case of a discrete number of degrees of freedom qi with
i = 1, · · · ,N it looks like:

L =
1

2
qicij q̇

j − V (q) with detcij 6= 0.

It is first-order and is characterized by N primary second-class
constraints:

Tj ≡ pj −
1

2
qicij (34)

with

{Ti ,Tj} = cij 6= 0
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Quantization of the FJ Lagrangians

In order to quantize the theory, the Dirac quantization method has to
be applied with the corresponding brackets:

{f , g}DB ≡ {f ,Tj}DB c(−1)jk {Tk , g}PB

According to the usual transition rule i {f , g}DB → {f , g} from the
classical to the quantum theory, the following commutators are
obtained:

[qi , qj ] = ic−1ij ; [qi , pj ] =
1

2
iδij ; [pi , pj ] = −1

4
icij
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Quantization of the Double Sigma
Model - Non Commutativity

When translated to the string case, one gets, among the others, a
non-commutativity relation between Xµ and X̃µ:[

X (τ, σ), X̃ (τ, σ′)
]

=
i

T
Iε(σ − σ′) (35)

with ε(σ) ≡ 1
2 [θ(σ)− θ(−σ)].

The Dirac quantization method implies that Xµ and X̃µ behave like
non-commuting phase space type coordinates, but it can be shown
that their expressions in terms of Fourier modes generate the usual
oscillator algebra of the standard formulation (De Angelis, Gionti,
Marotta, FP - 2014).

From this perspective, this non-commutativity may lead to the
interpretation of high-energy scattering in the X -space as effectively
”probing” the X̃ -space.
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Conclusion

An O(D,D) manifest formulation has been analyzed, providing a
generalization of the standard formulation at the string scale. It is
based on the Floreanini-Jackiw Lagrangians for chiral and antichiral
scalar fields.

The O(D,D;Z) T-duality invariance naturally emerges out in the
case of toroidal compactifications.

A doubling of the string coordinates is naturally required and the
quantization requires a non-commuting geometry.
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The End

Thank you for your attention.
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