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The question whether the duality invariances of the  low-
dimensional maximal supergravities are already reflected in 
the higher-dimensional theories, is an old one. 

dW, Nicolai, 1984

In supergravity and string theory it is relevant to compare 
theories living in space-times of different dimensions. Hence 
it is important to know whether solutions can be ‘uplifted’ and 
whether truncations can be consistent. 

Thirty years ago it was shown in the case of 11D dimensional 
supergravity and its 4D descendant that one can rewrite the 
former in a 4D perspective while retaining all the 11D 
degrees of freedom. In that case the higher-dimensional 
theory indeed shows a pattern that is consistent with         .   E7(7)

Here I intend to return to the original approach and apply it to  
IIB supergravity, while taking many of the more recent 
developments into account. in collaboration with Franz Ciceri 

and Oscar Varela, JHEP 1505
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The initial motivation for the present work was to demonstrate 
that the approach followed for 11D supergravity can also be 
applied to other theories. As compared to IIB supergravity the 
11D theory is rather simple. Unlike the latter the IIB theory is 
reducible. Besides the gravitini and the graviton, there are 
four types of bosonic fields, and one matter fermion (the 
dilatino). But even worse, the IIB theory posseses two 
independant supersymmetries (i.e. N=2). These two features 
give rise to many subtleties in the analysis. 

From the point of view of D=5 maximal supergravity, the 
tensor fields are expected to play a more dominant role. This 
indicates that the vector-tensor hierarchy must enter at an  
earlier stage!

dW, Samtleben, 2005
dW, Nicolai, Samtleben, 2008

dW, Samtleben, Trigiante, 2004
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Implicit connection between space-time electric/magnetic 
(Hodge) duality and the U-duality group

Probes new states in M-Theory!
� dial

7 SL(5) 10 5 5 10 24 15 + 40

6 SO(5, 5) 16c 10 16s 45 144s 10+126s+320

5 E6(+6) 27 27 78 351 27+1728

4 E7(+7) 56 133 912 133+8165

3 E8(+8) 248 3875 3875+147250

2 1 4 6 5 3 rank ➯

The embedding tensor formalism
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Meanwhile there has been quite a variety of new 
developments, such as generalized geometry, double field 
theory, exceptional field theory, vector-tensor hierarchies, and 
more: 

As it turns out, all these schemes do have certain common 
features and relations, although their initial starting points are 
sometimes rather different.

Generalized geometry 

Exceptional field theory
Exceptional geometry
Double field theory

etc.

etc.

Hohm, Hull, Zwiebach, 2010

Hohm, Samtleben, 2013

West, 2001

Coimbra, Strickland-Constable, Waldram, 2011

Cederwall, Edlund, Karlsson, 2013
Aldazaba, Graña, Marqués, Rosabal, 2013

Hillmann, 2009

Berman, Godazgar, Perry, West, 2011
Berman, Cederwall, Kleinschmidt, Waldram, 2012

Koepsell, Nicolai, Samtleben, 2000
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We shall also take advantage of many recent advances and  
extensions of the 11D supergravity program, when applying 
the same strategy in the context of IIB supergravity!

Godazgar, Godazgar, Nicolai, 2013, 2014
Godazgar, Godazgar, Hohm, Nicolai, Samtleben, 2014

dW, Nicolai, 2013

Hohm, Samtleben, 2013
Samtleben, Musaev, 2014

Exceptional Field Theory is in some sense the opposite of 
what I will be presenting.  In that case one extends the D=5 
maximal supergravity by introducing 27 extra coordinates 
transforming according to the fundamental representation of 
        . For consistency the space must subsequently be 
constrained by a covariant section condition that enables one 
to obtain a conventional supergravity. One theory that one 
can obtain in this way is IIB supergravity.

E6(6)
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IIB SUPERGRAVITY 

�� AMNPQAMN
�EM

A ��M

Highly reducible field representation !

Günaydin, Romans, Warner,1986
Its compactification on the five-sphere is expected to lead to 
SO(6) gauged supergravity.

Cremmer, 1980

The existence of this theory was inferred from the IIB superstring 
theory. The theory has a non-linearly realized                          
symmetry.  Its field configuration contains the vielbein, a 
complex chiral gravitino, a complex anti-chiral fermion (dilatino), 
a complex scalar, and a number of anti-symmetric tensor gauge 
fields:

SL(2) ⇠= SU(1, 1)

Upon truncation:
Its compactification on a five-torus leads to ungauged 5D 
maximal supergravity with a non-linear realized          invariance.E6(6)

Green, Schwarz, 1982
Schwarz, West,1983
Schwarz,1983
Howe, West,1984
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1
120 i "ABCDEFGHIJ FFGHIJ =FABCDE � 1

8 i  ̄M �̆[M �̆ABCDE�̆
N ] N

+ 1
16 i �̄ �̆ABCDE �

The Lagrangian description is subtle. It involves a Chern-Simons 
term and there is a supersymmetric constraint on the five-form 
field strength:

FMNPQR = 5 @[MANPQR] � 15
8 i"↵� A

↵
[MN @PA

�
QR]

Bosonic supersymmetry variations
�EM

A = 1
2 (✏̄ �̆

A M + ✏̄c �̆A c
M )

��↵ = 1
2"

↵��� ✏̄
c�

�A↵
MN = � 1

2�
↵
�
�̄ �̆MN ✏� 4 ✏̄ �̆[M N ]

c
�
+ 1

2"
↵���

�
✏̄ �̆MN�+ 4  ̄[M

c �̆N ]✏
�

�AMNPQ = 1
2 i✏̄ �̆[MNP Q] +

1
2 i ̄[M �̆NPQ]✏+

3
8 i "↵�A

↵
[MN �A�

PQ]

Note:  M , M
c, ✏, ✏c

�,�c
positive chirality spinors

negative chirality spinors
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THE  10 = 5 + 5  SPLIT :

Extended tangent space group:

Spin(9, 1)⇥U(1) �! Spin(4, 1)⇥USp(4)⇥U(1)

�! Spin(4, 1)⇥USp(8)

8
SU(4)⇥U(1)�!

�
4, 1

2

�
�
�
4,� 1

2

�

48
SU(4)⇥U(1)�!

�
4, 3

2

�
�
�
4,� 3

2

�
�
�
20, 1

2

�
�
�
20,� 1

2

�

USp(8) : 8 + 48 gravitini  a µdilatini  �

Identification with a               spinor and tri-spinor:USp(8)

by means of a gauge choice

Fermion decomposition:  M � � �!  µ �  a � �

5D spinors(4+ 4) + (20+ 20+ 4+ 4)
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Make use of the standard Kaluza-Klein ansätze: 

and likewise for the other fields, including the fermion fields.

EM
A(x, y) =

0

@
��1/2

eµ
↵

Bµ
m
em

a

0 em
a

1

A

Cremmer, Julia, 1979

In this way the fields transform consistently with respect to the 
diffeomorphisms of the lower-dimensional space-time. The 
diffeomorphisms in the internal space are not so systematic. 
They will be related to a form of exceptional geometry.

Hohm, Samtleben, 2013

� 2 USp(8)/[USp(4)⇥U(1)]

To realize a local             covariance one needs compensating 
phases!

USp(8)

� =
det[ema(x, y)]

det[̊ema(y)]
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Counting vector and tensor fields

We expect 27+27 vectors and tensors! Some of them are 
provided by the dual six-form fields:

Hence we obtain 27 vector fields and 22 tensor fields. The 
remaining 5 tensor fields can be provided by a descendant 
of the 10D dual graviton.

Bµ
m �A↵

µm �Aµmnp 5+ 10+ 10

A↵
µ⌫ �Aµ⌫mn 2+ 10

A↵MNPQRS �! A↵µmnpqr �A↵µ⌫mnpq � · · ·
(following e.g. Godazgar, Godazgar, Nicolai, 2013)

representation consistent with the vector-tensor hierarchy!Aµ⌫ m;npqrs

Curtright, 1985
Hull, 2000

Bekaert, Boulanger, Henneaux, 2001
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@[MFNPQRSTU ]↵ = 0

F↵MNPQRST = � 1
7E "MNPQRSTUVW

�
"↵� �

��� + "�� �
��↵

�
@UAVW �

� 120 "↵� A[MN
�
⇥
@PAQRST ] � 1

8 i"�� APQ
� @RAST

�
⇤

� 1
7 i "↵��

�
⇥
 ̄U �̆[U �̆MNPQRST �̆V ] V

c + �̄ �̆U �̆MNPQRST U

⇤

� 1
7 i�↵

⇥
 ̄U

c �̆[U �̆MNPQRST �̆V ] V �  ̄U �̆MNPQRST �̆
U �

⇤

The field equation for             takes the following form

The dual six-form field

A↵
MN

with   

Now apply a supersymmetry transformation,  
�F↵MNPQRST = 6 @[M�A↵NPQRST + · · ·

up to equations of motion.
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�A↵MNPQRS = � 1
6 i"↵��

�
�
�̄�MNPQRS✏+ 2✏̄�[MNPQR 

c
S]

�

+ 1
6 i�↵

�
✏�MNPQRS�� 2 c

[M�NPQRS]✏
�

� 20 "↵�A
�
[MN

�
�APQRS] � 1

8 i"��A
�
PQ �A

�
RS]

�

In this way we find

which can be treated in the same manner as the previous 
vector and tensor fields.

The fact that the vector fields are complete is an interesting 
feature of the IIB supergravity. Furthermore the tensor fields 
will play a more major role in this case (as is to be expected)!
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A↵
mn

KK =A↵
mn

A↵
µm

KK =A↵
µm �Bµ

p A↵
pm

A↵
µ⌫

KK =A↵
µ⌫ + 2B[µ

p A↵
⌫]p +Bµ

p B⌫
qA↵

pq

Cµ
m =Bµ

m

Cµ
↵
m =A↵

µm
KK

Cµmnp =Aµmnp
KK � 3

16 i"↵�A
↵
µ[m

KK A�
np]

Determination of the ‘proper’ vector fields:

Kaluza-Klein decompositions (example):

Further redefinitions required by the vector-tensor hierarchy:

Cremmer, Julia, 1979

dW, Samtleben, Trigiante, 2004

ESSENTIAL!
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�Cµ
m = 1

2�
�1/3ea

m
⇥
i
�
✏̄�a µ + ✏̄c �a µ

c
�

+ ✏̄ �µ(�
a
b +

1
3�

a�b) 
b + ✏̄c �µ(�

a
b +

1
3�

a�b) 
bc
⇤

Supersymmetry variations of some of the vectors

�Cµ
↵
m = � 1

2�
�1/3�↵

⇥
2i ✏̄�m µ

c � 2 ✏̄ �µ(�m
n � 1

3�m�n) n
c + ✏̄c �m�µ�

c
⇤

� 1
2�

�1/3"↵���
⇥
2i ✏̄c �m µ � 2 ✏̄c�µ(�m

n � 1
3�m�n) n + ✏̄�m�µ�

⇤

+ 1
2 i�

�1/3A↵
mp

⇥
✏̄�p µ + ✏̄c �p µ

c
⇤

+ 1
2�

�1/3A↵
mp

⇥
✏̄ �µ(ea

p + 1
3�

p�a) 
a + ✏̄c �µ(ea

p + 1
3�

p�a) 
ac
⇤

Note: spinors will eventually be written as eight-component 
symplectic Majorana spinors.

where � =
det[ema(x, y)]

det[̊ema(y)]
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Note: agreement with the vector-tensor hierarchy is essential for these results!

Cµ⌫
↵ =A↵

µ⌫
KK � C[µ

p C⌫]
↵
p

Cµ⌫ mn =Aµ⌫mn
KK � 1

16 i"↵�A
↵
µ⌫

KK A�
mn � C[µ

p C⌫]pmn

�Cµ⌫
↵ + C[µ

p �C↵
⌫]p + C↵

[µ p �C⌫]
p

= � 1
2�

�2/3�↵
⇥
� 4 ✏̄ �[µ ⌫]

c + 4
3 i✏̄ �µ⌫�

m m
c + i ✏̄c�µ⌫�

c
⇤

� 1
2�

�2/3"↵���
⇥
� 4 ✏̄c�[µ ⌫] +

4
3 i ✏̄

c�µ⌫�
m m + i ✏̄ �µ⌫�

⇤

Determination of the proper vector and tensor fields:

such that 

�Cµ⌫ mn + C[µ
p �C⌫]pmn + C[µ pmn �C⌫]

p + 1
4 i"↵� C[µ

↵
[m �C⌫]

�
n]

= 1
4�

�2/3
⇥
i✏̄�mn�[µ ⌫] � ✏̄ �µ⌫�[m(�pn] �

1
3�n]�

p) p

⇤

+ 1
4�

�2/3
⇥
� i✏̄c �mn �[µ ⌫]

c + ✏̄c�µ⌫�[m(�n]
p � 1

3�n]�
p) p

c
⇤

� 1
16 i�

�2/3"↵� A
↵
mn �

�
⇥
� 4 ✏̄ �[µ ⌫]

c + 4
3 i✏̄ �µ⌫�

m m
c + i ✏̄c�µ⌫�

c
⇤

+ 1
16 i�

�2/3 A↵
mn �↵

⇥
� 4 ✏̄c�[µ ⌫] +

4
3 i ✏̄

c�µ⌫�
m m + i ✏̄ �µ⌫�

⇤

Likewise for the dual vector and tensor field!
Friday, 25September, 15



Dual           representations for vectors and tensorsE6(6)

27
SL(2)⇥SL(6)�! (1,15) + (2,6)

SL(2)⇥SO(5)�! (1,5) + (1,10) + (2,5) + (2,1)

dual graviton

Cµ
M

Cµ⌫ M

27
SL(2)⇥SL(6)�! (1,15) + (2,6)

SL(2)⇥SO(5)�! (1,5) + (1,10) + (2,5) + (2,1)

Cµ
m = Cµ

m

Cµmnp = 1
128

p
5 e̊ "mnpqr Cµ

qr

Cµ↵mnpqr = � 1
6

p
5 e̊ "mnpqr Cµ↵

Cµ
↵
m = i "↵� Cµ �m

Cµ⌫ mn = Cµ⌫ mn

Cµ⌫
↵ = Cµ⌫

↵

Cµ⌫ m;npqrs / e̊ "npqrs Cµ⌫ m

Cµ⌫ ↵mnpq = 1
6

p
5i e̊ "mnpqr "↵� Cµ⌫

�r
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�Cµ⌫ M � 2 dMNP C[µ
N �C⌫]

P

�Cµ⌫
↵m � 1

8 i "
↵�

⇥
C[µ �n �C⌫]

mn + C[µ
mn �C⌫] �n

⇤
� i "↵�

⇥
C[µ

m �C⌫]� + C[µ� �C⌫]
m
⇤

�Cµ⌫
↵ + i "↵�

⇥
C[µ

m �C⌫] �m + C[µ �m �C⌫]
m
⇤

�Cµ⌫ mn + 1
128

p
5 e̊ "mnpqr

⇥
C[µ

p �C⌫]
qr + C[µ

qr �C⌫]
p
⇤
� 1

4 i "
↵� C[µ↵[m �C⌫]�n]

�Cµ⌫ m � i "↵�
⇥
C[µ↵m �C⌫] � � C[µ↵ �C⌫] �m

⇤
+ 1

256

p
5̊e "mnpqr C[µ

np �C⌫]
qr

DECOMPOSE

dMNP /

8
>><

>>:

d(mn|↵p|�q) = �mn
pq "↵�

d(mn|pq|r) = e̊ "mnpqr

d(m|↵n|�) = �mn "↵�

6= 0
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�eµ
a = 1

2 ✏̄i�
a µ

i

�VM
ij =iVM

kl
h
4⌦p[k�̄lmn]✏

p + 3⌦[kl�̄mn]p✏
p
i
⌦mi ⌦nj

�Aµ
M =2

h
i⌦ik ✏̄k µ

j + ✏̄k�µ�
ijk

i
Vij

M

�Bµ⌫ M =
4p
5
VM

ij
h
2  ̄[µ i�⌫]✏

k ⌦jk � i �̄ijk�µ⌫✏
k
i
+ 2 dMNP A[µ

N �A⌫]
P

Comparison to the 5D transformation rules

Note: In the generalized vielbeine one has to include 
the local compensating phase factor

� 2 USp(8)/[USp(4)⇥U(1)]

Enables you to read off the generalized vielbeine from the 
variations proportional to the gravitini.
Combining all the information you can also determine the 
expression for the spinor field        in terms of the 10D fields
and    , generalized vielbein postulate, etc.

 a�ijk

�

dW, Samtleben, Trigiante, 2004
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The generalized vielbeine           :          Vij
M

Note the presence of the phase    .�

Vij
m = � 1

4 i�
�1/3

�
�T⌦�m6�7 �

�
ij

Vij ↵m = � 1
4�

�1/3
⇥
(�↵ � "↵��

�)
�
�T⌦�m �

�
ij
+ (�↵ + "↵��

�)
�
�T⌦�m�7 �

�
ij

⇤

� "↵�A
�
mn Vij

n

Vij ↵ = � 1
10

p
5�2/3

⇥
(�↵ � "↵��

�)
�
�T⌦�6 �

�
ij
+ (�↵ + "↵��

�)
�
�T⌦�6�7 �

�
ij

⇤

� 1
8"↵�A

�
mn Vij

mn

� 1
15

p
5 e̊�1"mnpqr

⇥
Amnpq Vij↵r � 2 "↵� A

�
mn Apqrs Vij

s
⇤

� 1
40

p
5i "↵� e̊

�1"mnpqr
⇥
A�

mn A
�
pqVij �r +

1
3"�� A

�
sm A�

np A
�
qr Vij

s
⇤

Vij
mn = � 2

5

p
5i�2/3

�
�T⌦�mn�7 �

�
ij

+ 2
5

p
5i e̊�1"mnpqrA↵

pq Vij ↵r

+ 16
15

p
5 e̊�1"mnpqr

⇥
Apqrs � 3

16 i"↵�A
↵
pqA

�
rs

⇤
Vij

s
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C�1�̄ijk
T = ⌦il ⌦jm ⌦kn �

lmn

Symplectic Majorana condition:

We found several (equivalent) expressions for the 
tri-spinor        . The most elegant and efficient one is�ijk

�ABC = � 3
8 i
h�
�6 ⌦̄

�
[AB

�
�7�

�
C] +

�
�7�6 ⌦̄

�
[AB �C]

i

� 3
4 i
�
�a�6�7 ⌦̄

�
[AB  a

C] � 1
4 i ⌦̄

[AB
�
�6�7�

a a

�
C]

Here we combined the spinors on the right-hand side to 
eight-component symplectic Majorana spinors. For 
these extended spinors it was convenient to extend the 
SO(5) gamma matrices to SO(6) gamma matrices. We 
still have to include the phase factor    , which will 
convert the indices             into            . 

�
A,B, . . . i, j, . . .
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Likewise one determines the vielbeine            from the 
supersymmetry transformations of the tensor fields.   

VM
ij

Under supersymmetry the vielbeine transform in the 
same way as in the five-dimensional theory, up to a 
field-dependent infinitesimal USp(8) transformation:

As it turns out the vielbeine           and           are both  
             matrices, which are each others inverse (up to 
a phase) just as in five dimensions!

Vij
M VM

ij

27⇥ 27

All bosons now transform as in 5D supergravity.

⇤A
B = � 1

16 ✏̄�7[�ab�+ 4�[a b]]
�
�ab6�A

B

+ 1
48 ✏̄�7[�abc6�+ 2�abcd6 

d]
�
�abc)AB

+ 1
4 ✏̄�7�ac 

c
�
�a6�A

B + 1
4 ✏̄�7�6[a b]

�
�ab)AB
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⇣ �
Dm +

�
em

a �a�6

⌘
⌘ = 0

Consistent truncation
To establish that the maximal five-dimensional SO(6) gauged 
supergravity can be viewed as a consistent truncation of IIB 
supergravity compactified on the five-sphere, one can follow 
the same procedure as before. In this case the Killing spinors 
must be solutions of

These Killing spinors will capture the       dependence of the 
various fields in such a way that the supersymmetry 
transformations are consistent. The      dependence of the 
generalized vielbeine is captured in terms of the corresponding 
expressions of the five-dimensional theory.

ym

x

µ

The   -dependence is described by the coset representative of    . Apart 
from the Killing spinors, from which one constructs Killing vectors              ,          
one has the vector fields           , subject to                           .Y â(y) Y â(y)Yâ(y) = 1

y S5

Kâb̂
m(y)
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Then one exploits a number of quadratic contractions between 
the generalized vielbeine, some of which explicitly contain 
some of the IIB supergravity fields:

V̄klm Vkl
n / ��2/3gmn

V̄ikm Vkj
n + V̄ik n Vkj

m = � 1
4�

i
j V̄klm Vkl

n

V̄ij m Vij
np = 32

15

p
5 e̊�1"npqrs

⇥
Aqrst +

3
16 i"↵� A

↵
qrA

�
st

⇤
V̄ij m Vij

t

⌦̄ik ⌦̄jl Vij
m Vkl↵n = i"↵�A

�
np V̄ij m Vij

p

"↵� ⌦ik ⌦jl V� ij V� kl = 5
4�

�4/3
�
�↵

� � 2�↵�
�
�

Then expand the generalized vielbeine in terms of the    
  -dependent quantities indicated earlier.y
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��2/3
g

mn(x, y) = 2 ⌦̄ik ⌦̄jl
Uij

âb̂(x)Ukl
ĉd̂(x) Km

âb̂(y)K
n
ĉd̂(y)

��2/3
⇥
Amnpq +

3
16 i"↵� A

↵
[mnA

�
p]q

⇤
= 1

64

p
5 ⌦̄ik ⌦̄jl

Uij
âb̂(x)Ukl

ĉd̂(x) gqr(x, y)

⇥ e̊ "mnptuK
r
âb̂(y)K

tu
ĉd̂(y)

��2/3
A

↵
mn = 2i "↵� ⌦̄ik ⌦̄jl

Uij
âb̂(x)Ukl �ĉ(x)K

p
âb̂(y) gp[m(x, y) @n]Y

ĉ(y)

��4/3
�
�↵

� � 2�↵�
�
�
= 4

5"↵� ⌦ik ⌦jl U
�â ij(x)U�b̂ kl(x)Yâ(y)Yb̂(y)

The first two identities enable the determination of the internal 
metric: 

5D 27-bein

The next two identities enable the determination of the 
remaining scalars: 

The last identities determines the dilaton:

Note: for convenience we suppressed the background volume form
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A more complete analysis can be given along these lines. 

These results only reproduce the results that have already been 
determined by similar methods or on the basis of generalized 
geometry arguments. They have been partially confirmed by 
explictit comparison of five- and ten-dimensional supergravity 
solutions.

Lee, Strickland-Constable, Waldram, 2014
Pilch, Warner, 2000
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Conclusion
The results of this analysis are qualitatively in line with what has 
been achieved for 11-dimensional supergravity. Apart from 
many complications of a technical nature, there are interesting 
new features, such as the role played by the vector-tensor 
hierarchy.  

The results are still incomplete and there are still many open 
questions. Besides establishing a more complete set of 
truncation ansätze and verifying their mutual consistency, the 
relation with Exceptional Field Theory is especially worth 
pursuing. This especially because the geometry of the internal 
dimensions has traditionally been ignored. 

See, however, Gadazgar, Gadazgar, Nicolai, 2014

The higher-rank tensor fields do not constitute full                 
representations of           . This is a generic phenomenon that 
will be come more dominant for increasing rank.

E6(6)

See, e.g. West, 2001
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