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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.1)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.8) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.2)

and the level matching constraint

N̄ �N = pp̃ , (0.3)

where N = N
x

+N
y

( N̄ = N̄
x

+ N̄
y

) is the left (right) moving number operator, involving

the sum of the number operator along the circle N
y

(N̄
y

) and the number operator for

the non-compact space-time directions N
x

( N̄
x

).

k =
p

R
+

p̃

R̃
, k̄ =

p

R
� p̃

R̃
(0.4)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

1

2 vectors

2 scalars

g, B,�

y

g
mn

B
mn

g
µ⌫

B
µ⌫

g
µy

g
yy

B
µy

U(1)⇥ U(1)

M2 =
2

↵0 (N + N̄ � 2) +
p2

R2
+

p̃2

R̃2
(0.1)

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

p = p̃ = ±1

N = 0

N̄ �N = pp̃

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1
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Consider the closed bosonic string theory compactified on a circle of radius R. The
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Consider the closed bosonic string theory compactified on a circle of radius R. The
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.7) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.3)

and the level matching constraint

N̄ �N = pp̃ , (0.4)

where N = N
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y

( N̄ = N̄
x

+ N̄
y

) is the left (right) moving number operator, involving

the sum of the number operator along the circle N
y

(N̄
y

) and the number operator for

the non-compact space-time directions N
x

( N̄
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.7) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2
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, (0.3)

and the level matching constraint

N̄ �N = pp̃ , (0.4)

where N = N
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y

( N̄ = N̄
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+ N̄
y

) is the left (right) moving number operator, involving

the sum of the number operator along the circle N
y
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) and the number operator for

the non-compact space-time directions N
x
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).
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+
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1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Can we find the effective action using DFT ?
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Some easy math...
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p = 0

M = M
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p̃ = ±2

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.7) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.3)

and the level matching constraint

N̄ �N = pp̃ , (0.4)

where N = N
x

+N
y

( N̄ = N̄
x

+ N̄
y

) is the left (right) moving number operator, involving

the sum of the number operator along the circle N
y

(N̄
y

) and the number operator for

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.1)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.6) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.2)

and the level matching constraint

N̄ �N = pp̃ , (0.3)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.1)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.6) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.2)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.7) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.3)

and the level matching constraint

N̄ �N = pp̃ , (0.4)

where N = N
x

+N
y

( N̄ = N̄
x

+ N̄
y

) is the left (right) moving number operator, involving

the sum of the number operator along the circle N
y

(N̄
y

) and the number operator for

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.7) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.3)

and the level matching constraint

N̄ �N = pp̃ , (0.4)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (??) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.3)

and the level matching constraint

N̄ �N = pp̃ , (0.4)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.7) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.3)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.7) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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String theory on S1

Momentum state for non-compact coordinate
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.7) more states become massless and the U(1)
L

⇥ U(1)
R

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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x = xL + xR

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.3)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.8) more states become massless and the U(1)
L

⇥ U(1)
R

gauge group is enhanced to SU(2)
L

⇥SU(2)
R

. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:
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+
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2
, (0.4)

and the level matching constraint

N̄ �N = pp̃ , (0.5)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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ỹ(z, z̄) = yL(z)� yR(z̄)

y = yL + yR ' y + 2⇡R
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Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).

k =
p

R
+

p̃

R̃
, k̄ =

p

R
� p̃

R̃
(0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

5

Level-matching

= ✏2

=
p
✏

M±±,M±⌥

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

yL ! yR

where N = Nx + Ny ( N̄ = N̄x + N̄y) is the left (right) moving number operator,

involving the sum of the number operator along the circle Ny (N̄y) and the number

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

5



Effective action from string theory

Computing 3-point functions  <V V V> we read off
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1

4
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12
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µ⌫⇢

Hµ⌫⇢ +
1

4
F i

µ⌫

F iµ⌫ +
1

4
F̄ i

µ⌫

F̄ iµ⌫

+
1

4
M ijF i

µ⌫

F̄ jµ⌫ +D
µ

M ijD
⌫

M ijgµ⌫ + detM

where [Mariana: ser consistentes en H con la definicion en 2.69 (que deberiamos

sacar quizas si ya aparece aca?)]

H
µ⌫⇢
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µ
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⌫⇢
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[µF
a
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µ
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µ
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⌫⇢] + f ãb̃c̃Aã

µ
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⌫
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µ

F a

µ⌫

= 2@[µA
a

⌫] + fabcAb

µ

Ac

⌫

, F ã
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ã
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⌫

,

D
µ

Maã = @
µ
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µ

M cã + f ãb̃c̃Ab̃

µ

Mac̃ (0.3)

H = dB + Ai ^ F i + Āi ^ F̄ i

H = dB + Ai ^ F i + Āi ^ F̄ i

F i = dAi + ✏ijkAj ^ Ak

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.
1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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12
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Hµ⌫⇢ +
1

4
F i
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F iµ⌫ +
1

4
F̄ i
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+
1

4
M ijF i
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F̄ jµ⌫ +D
µ

M ijD
⌫

M ijgµ⌫ + detM

where [Mariana: ser consistentes en H con la definicion en ?? (que deberiamos

sacar quizas si ya aparece aca?)]

H
µ⌫⇢

= @
µ

B
⌫⇢
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[µF
a

⌫⇢] + fabcAa

µ

Ab
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, F ã
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,

(0.3)

H = dB + Ai ^ F i + Āi ^ F̄ i

H = dB + Ai ^ F i + Āi ^ F̄ i

F i = dAi + ✏ijkAj ^ Ak

D
µ

M ii = @
µ

M ii + f ijkAj

µ

Mki + f ijkĀj

µ

M ik

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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k 2 R

kL,R = p
R
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where [Mariana: ser consistentes en H con la definicion en 2.90 (que deberiamos
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⌫] + f ãb̃c̃Ab̃

µA
c̃
⌫ ,

(0.3)

H = dB + Ai ^ F i + Āi ^ F̄ i

H = dB + Ai ^ F i + Āi ^ F̄ i

F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
µM

ik

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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where [Mariana: ser consistentes en H con la definicion en 2.93 (que deberiamos

sacar quizas si ya aparece aca?)]
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H = dB + Ai ^ F i � Āi ^ F̄ i

H = dB + Ai ^ F i + Āi ^ F̄ i

F i = dAi + ✏ijkAj ^ Ak

DµM ii = @µM ii + f ijkAj
µM

ki + f ijkĀj
µM

ik

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.

4

k 2 R

kL,R = p
R

± p̃

R̃

↵0 = 1

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫

+
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij � detM

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
F i
µ⌫F

iµ⌫ +
1

4
F̄ i
µ⌫F̄

iµ⌫ +
1

4
M ijF i

µ⌫F̄
jµ⌫ +DµM

ijDµM ij

�detM

where [Mariana: ser consistentes en H con la definicion en 2.93 (que debe-

riamos sacar quizas si ya aparece aca?)]
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ik

Consider the closed bosonic string theory compactified on a circle of radius R. The

4

Higgs mechanism
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where [Mariana: ser consistentes en H con la definicion en 2.98 (que debe-
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Consider the closed bosonic string theory compactified on a circle of radius R. The
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where [Mariana: ser consistentes en H con la definicion en 2.98 (que debe-
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M ij ! ✏ �ij33 +M 0ij

A±

Ā±
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where [Mariana: ser consistentes en H con la definicion en 2.98 (que debe-

riamos sacar quizas si ya aparece aca?)]
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ã
⌫⇢] + f ãb̃c̃Aã
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4

acquire mass2

= ✏

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).

k =
p

R
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p̃

R̃
, k̄ =

p

R
� p̃

R̃
(0.7)

where we have defined

R̃ =
↵0

R
. (0.8)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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= ✏

M±±,M±⌥

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor

and dilaton.

The metric and B-field with one leg along the circle give rise to two massless KK U(1)

gauge vectors and the metric along the circle gives rise to a massless scalar. Apart from

these, at the self-dual radius (0.9) more states become massless and the U(1)L ⇥ U(1)R

gauge group is enhanced to SU(2)L⇥SU(2)R. Nine massless scalars, transforming in the

(3, 3) representation, do also appear. This can be seen from the mass formula:

M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).

k =
p

R
+

p̃

R̃
, k̄ =

p

R
� p̃

R̃
(0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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acquire mass2
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✏

M±±,M±⌥

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.

On the other hand, unlike point particles, strings can wind an integer number of times

around the compact direction, i.e. Y (z, z̄) ⇠ Y (z, z̄) + 2⇡Rp̃, acquiring winding number

p̃.

In the uncompactified theory, the massless fields are the metric, antisymmetric tensor
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M2 = �K2 =
2

↵0 (N + N̄ � 2) +
k2

2
+

k̄2

2
, (0.5)

and the level matching constraint

N̄ �N = pp̃ , (0.6)

where N = Nx+Ny ( N̄ = N̄x+ N̄y) is the left (right) moving number operator, involving

the sum of the number operator along the circle Ny (N̄y) and the number operator for

the non-compact space-time directions Nx ( N̄x).

k =
p

R
+

p̃

R̃
, k̄ =

p

R
� p̃

R̃
(0.7)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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µ

M ik

TS1

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = yL(z) + yR(z̄) ⇠ Y (z, z̄) + 2⇡R (0.4)

has two e↵ects. On the one hand, univaluedness of the wave function requires discrete

momentum in the compact dimension, like in Kaluza Klein (KK) reduction in field theory.
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F i = dAi + ✏ijkAj ^ Ak

D
µ

M ii = @
µ

M ii + f ijkAj

µ

Mki + f ijkĀj
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Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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2 DFT and enhanced gauge symmetries
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.2)

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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2 DFT and enhanced gauge symmetries
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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mass of order ✏2.
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Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.2)

A generalized frame E
A

on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame e
a

for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆
eae

b = �
a

b)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@E
a

Ea

1

A = eB

0

@e
a

ea

1

A . (2.3)

This gives

E
a

= e
a

� ◆
eaB , (2.4)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆
v1⇠2 + ◆

v2⇠1 = ⌘(V1, V2) = V M

1 ⌘
MN

V N

2 , (2.5)

where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘
MN

has the following o↵-diagonal form

⌘
MN

= ⌘MN =

0

@ 0 1
D

1
D

0

1

A , (2.6)

where 1
D

is the D ⇥ D identity matrix. Note that ⌘
MN

is invariant under ordinary

di↵emorphisms. Defining

⌘
AB

= ⌘(E
A

, E
B

), (2.7)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).

21

ỹ
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Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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ỹ

yL

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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yR y ỹ R R̃ =
y
+
ỹ
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.2)

A generalized frame E
A

on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame e
a

for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆
eae

b = �
a

b)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@E
a

Ea

1

A = eB

0

@e
a

ea

1

A . (2.3)

This gives

E
a

= e
a

� ◆
eaB , (2.4)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆
v1⇠2 + ◆

v2⇠1 = ⌘(V1, V2) = V M

1 ⌘
MN

V N

2 , (2.5)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.3)

A generalized frame E
A

on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame e
a

for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆
eae

b = �
a

b)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@E
a

Ea

1

A = eB

0

@e
a

ea

1

A . (2.4)

This gives

E
a

= e
a

� ◆
eaB , (2.5)

Ea = ea .
6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).

21

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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⇒ to reproduce string theory action
we need dependence on    and 
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.2)

A generalized frame E
A

on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame e
a

for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆
eae

b = �
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b)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
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This gives
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Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely
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V N

2 , (2.5)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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Violating weak / strong constraint ?

Yes, as expected: 
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p̃2

R̃2
(0.1)

R̃ = ↵

0

R

R̃ = ↵0/R

=
p
↵0

N̄ = 1

p = p̃ = ±1

N = 0

N̄ �N = pp̃

Consider the closed bosonic string theory compactified on a circle of radius R. The

periodicity of the string coordinate1

Y (z, z̄) = y(z) + ȳ(z̄) ⇠ Y (z, z̄) + 2⇡R (0.2)

1We use a bar to indicate right-moving quantities (ȳ, N̄ , k̄, ... are the right-moving coordinate, right-

moving oscillation number, right-moving momentum, etc). Not to be confused with complex conjugation.
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ỹ

yL

yR

y

ỹ
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@
y

@
y

@
ỹ
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ỹ

R

R̃

= y + ỹ
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[Mariana: unidades de vuelta] in (2.100), we can straightforwardly see the breaking

of SU(2)L ⇥ SU(2)R into U(1)L ⇥ U(1)R. We see here the same features discussed in

section 0.1: the A± bosons acquire a mass proportional to m� coming from the terms

(DµM
±3)2 = (@µM

±3 ± 2m�A
±
µ ⌥ 2A3M±3 ⌥ Ā±M±⌥ ± Ā⌥M±±)2 (1.28)

and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)

+M3+
�
M�3M+� �M��M+3

�
+M3� �

M+3M�+ �M++M�3
�

where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

ea
4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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(LV U)M = V P@PU
M + (@MVP � @PV

M)UP

LEAEB = FAB
CEC (2.6)

eâ

Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea
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1

A = eB

0

@ea

ea

1

A . (2.8)

This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡Rsd . (2.35)

The form frame along the circle is

ey = � (dy + V1) , (2.36)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)

27

coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =
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where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1

A . (2.44)

The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
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We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
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A , (2.49)
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where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries
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�T S̃1
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+ dy

4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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= @y � @ỹ
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(DµM
±3)2 = (@µM

±3 ± 2m�A
±
µ ⌥ 2A3M±3 ⌥ Ā±M±⌥ ± Ā⌥M±±)2 (1.28)

and similarly for M3± after exchanging left and right. The scalar masses come from the

potential

4 detM = m�(|M++|2 � |M+�|2) (1.29)
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d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.4)
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Here we briefly review some basic features of generalized geometry (GG) and/or DFT.

The theory is defined on a generalized tangent bundle which locally is TM �T ⇤M whose

sections, the generalized vectors V , are formal sums of vectors v plus one forms ⇠

V = v + ⇠ . (2.7)

A generalized frame EA on this bundle is a set of linearly independent generalized vectors

that belong to the group G = O(D,D). It parameterizes the coset O(D,D)/O(1, D �
1)⇥O(D� 1, 1), the quotient being over the maximal compact subgroup of G (a Lorentz

signature assumed on the D-dimensional space-time). Given a frame ea for the tangent

bundle TM , and its dual frame eb in T ⇤M (i.e. ◆eae
b = �ab)6, there is a canonical way to

build the generalized frame through the exponentiated action of the B field,
0

@Ea

Ea

1

A = eB

0

@ea

ea

1

A . (2.8)

This gives

Ea = ea � ◆eaB , (2.9)

Ea = ea .

Upper and lower indices distinguish vectors and forms, respectively.

There exists a natural pairing between generalized vectors, namely

V1 · V2 = ◆v1⇠2 + ◆v2⇠1 = ⌘(V1, V2) = V M
1 ⌘MNV

N
2 , (2.10)

6◆v is the contraction along the vector v (on a one-form, this is ◆v⇠ = vm⇠m).
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas
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and fABC are the structure constants of the internal “double twisted torus”. In that

case, all the information about the internal space is encoded in the structure constants.

The constraint (2.31) states that all the fields in the reduced action depend only on the

external coordinates. In the next section we will discuss in detail the reduction on a

(double) circle, and then we extend this to account for the symmetry enhancement at the

self-dual radius.

2.1 Circle reduction

In this section we reduce the generalized frame and its corresponding generalized metric

on a circle, to set the starting point for the enhancement of the next section.

Here we use the following notation for the indices: µ̂, ⌫̂, · · · = 0, ..., d label the D =

d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡Rsd . (2.35)

The form frame along the circle is

ey = � (dy + V1) , (2.36)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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d + 1-dimensional space-time indices and â, b̂ . . . are their frame index counterparts. To

lighten the notation, the coordinate on the circle, previously called Y , will be called y

from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
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from now on, and its left and right-moving components yL, yR.

We start from a generalized frame of the form (2.9) in d+1 dimensions and split it into d

non-compact directions and the circle direction y. Vectors split as vµ̂ = (vµ, vy) [Mariana:

decidir notacion. Cambiarla con el macro por favor!] with µ = 0, ..., d�1 and the

coordinates X µ̂ = (Xµ, y), y labellings the circle, and the frame indices are â = {a, d}.
Here we make the identification [Mariana: quizas necesitamos comentar un poco

mas...]

y ⇠ y + 2⇡ . (2.35)

p
gyy = R

gµy
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#

where ed is defined in (2.37). The dual frame splits as

êâ =

0

@ea � ◆eaV1@y

��1@y

1

A . (2.44)

The 2-form field also splits into

B̂2 = B2 +B1 ^ (dy + V1) , (2.45)

where B2 has no legs along the circle (◆@yB2 = 0) and B1 is a one-form on the base

(B1 = Bµdxµ).

Collecting all the pieces together, the generalized frame (2.9) takes the form

Ea = ea � (◆eaV1) @y � (◆eaB1)dy � ◆0eaC
+

Ed = ��1(@y +B1) (2.46)

Ed = �(dy + V1)

Ea = ea

where ◆0 denotes the contraction in the first component, i.e (◆0eaC
+)⌫ = eaµC+

µ⌫ and

C+ = (B2 + V1 ^B1) + V1B1 . (2.47)

Let us concentrate now on the internal components. We have
0

@Ed

Ed

1

A =

0

@��1 0

0 �

1

A

0

@@y +B1

dy + V1

1

A . (2.48)

We can perform a rotation in order to write the expressions in terms of left and right

sectors, as they appear in section 1, where the O(1, 1) matrix ⌘ takes the form (2.15).

Using the rotation matrix defined in (2.14) we get
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J +A

1

A , (2.49)
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coordinates is of the form (2.17). In this case [Mariana: confuso esto? ademas

verifiquen que no haya hecho lio entre E e E 0]

fABC = fMNP E 0
A
ME 0

B
NE 0

C
P = (LE0

A
E 0

B)
ME 0

CM , (2.34)

and fABC are the structure constants of the internal “double twisted torus”. In that
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⌘MN =

0

@0 1

1 0

1

A , (2.1)

⌘LR =

0

@1 0

0 �1

1

A , (2.2)
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' @ỹ
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ỹ

R

R̃
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@y

@y@ỹ( ) = 0

⌘MN@M@N( ) = 0
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0

@ea � ◆eaB

ea
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A . (2.3)

H = �ABEA ⌦ EB , (2.4)

H =

0

@ g�1 �g�1B

Bg�1 g � Bg�1B

1

A . (2.5)

O(D,D)
O(D)⇥O(D)
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=

0

@ U+ �U�

�U� U+

1

A

0

@J̄ � Ā

J +A

1

A , (2.50)

where we have defined7

A =
1p
2
(V1 +B1) , J =

1p
2
(@y + dy) , (2.51)

Ā =
1p
2
(V1 � B1) , J̄ =

1p
2
(@y � dy) ,

and

U± =
1

2
(��1 ± �) . (2.52)

Using the relation between � and M33 given in (2.40), we get

U+ = cosh(12M
33) = 1 +O(M33)2 ,

U� = sinh(12M
33) =

1

2
M33 +O(M33)3 . (2.53)

Computing the generalized metric (2.19) in the C+, C� basis we get

HC =

0

@(U+)2 + (U�)2 �2U+U�

�2U+U� (U+)2 + (U�)2

1

A (2.54)

=

0

@ cosh(M33) � sinh(M33)

� sinh(M33) cosh(M33)

1

A ⇡

0

@ 1 �M33

�M33 1

1

A+O(M33)2 .

Note that this has precisely the form (2.21) if we identify

M33 = h0 (2.55)

where h0 is defined as the perturbation of h (in one dimension we have b = 0),

h ⇡ 1 + h0 . (2.56)

Having discussed the scalar fields, which depend on the external coordinates, let us

now go back to the frame (2.50), and concentrate only on the piece that depends on

the “internal coordinates”, encoded in J , J̄ . Following the standard procedure in DFT,

7As in section 1, a bar indicates a right-moving sector, not complex conjugate.
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y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)
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A =
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@U+ U�

U� U+

1

A

0

@J + A

J̄ � Ā

1

A , (2.38)

A = V1 +B1 , J = @y + dy , (2.39)

Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form

⌘MN = ⌘MN =

0

@ 0 1D

1D 0

1

A , (2.11)

where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form

⌘AB = ⌘AB =

0

@ 0 1D

1D 0

1

A . (2.13)

One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with

RA
B =

1p
2

0

@1 �1

1 1

1

A , (2.14)

namely (EC)A = RA
BEB. In this basis ⌘AB has the diagonal form

(R⌘RT )AB = (R⌘RT )AB =

0

@�1D 0

0 1D

1

A . (2.15)

As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)
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Scherk-Schwarz
reduction 

y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)
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@U+ U�

U� U+

1

A

0

@J + A

J̄ � Ā

1

A , (2.38)

A = V1 +B1 , J = @y + dy , (2.39)

Ā = V1 � B1 , J̄ = @y � dy ,

and

U± =
1

2
(��1 ± �) . (2.40)

= e
1
2M

33

= eM
33/2

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)
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Effective action valid at energies

In order for the e↵ective action description to be valid, neglecting other massive states,

the mass scales E involved should be such that E ⇠ |m�| = ✏/
p
↵0 << 1/

p
↵0.

E ⇠ 1p
↵0 ✏ << 1p

↵0

We compute all possible three point amplitudes involving the gravity sector massless

states, the massless gauge bosons A3, Ā3, the massless scalar M3,3, the massive scalars

M±,±,M±,⌥ and the massive vectors A0±, Ā0±. We showed that the well defined massive

vectors have vertex operators of the form V 0± = V ± � ⇠M±,3 where M±,3 is a Goldstone

boson. Therefore, amplitude computations would require partial evaluations involving V ±

and M±,3. For instance the computation of the 3-point amplitude hV 0±(z1)V 0⌥(z2)V3(z3)i
splits into four components. These partial amplitudes will be ill-defined since the compo-

nent fields are anomalous and generically the conformal volume will not factorize. This

manifests as a mismatching of powers of zij = zi � zj and z̄ij = z̄i � z̄j that do not

reconstruct the conformal volume factor |z12z23z13|2 that must factorize. It is after after

summing up partial results and using the gauge condition (0.25) that a sensible amplitude

is obtained.

Interestingly enough, it is possible to check that the OPE of massive vectors V 0±(✏)

with other vertices produces the same results as OPE’s calculated with the massless

operator V ±(✏0) but using the e↵ective polarization ✏0 introduced in (0.30). From the

practical point of view this observation leads to an important simplification. For instance

only one amplitude, instead of four, needs to be computed in the amplitude involving

three vectors. The explicit computations are straightforward and follow the well-known

steps given in textbooks. We summarize these steps below and show a couple of relevant

examples.

• Write down the 3-point amplitude and perform all contractions with the propagators

hXµ(z, z̄)X⌫(w, w̄)i = �↵0

2
⌘µ⌫ln|z � w|2 ,

hy(z)y(w)i = �↵0

2
ln(z � w) ,

hȳ(z̄)ȳ(w̄)i = �↵0

2
ln(z̄ � w̄)

13

y ⇠ y + 2⇡Rsd . (2.36)

The form frame along the circle is

ey = � (dy + V1) , (2.37)

0

@E
L

E
R

1

A =

0

@U+ U�

U� U+

1

A

0

@J + A

J̄ � Ā
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So far, no enhancement of symmetry , no double field theory
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where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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2 DFT and enhanced gauge symmetries
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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= @y � @ỹ
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5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)
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massive.

[Mariana:algomasparadecir?]

2DFTandenhancedgaugesymmetries

TS
1
�T⇤S1

@y

+dy

<@y+dy,@y+dy>=2◆@ydy=2

<V,V>=⌘MNV
M

V
N

⌘MN=

0

@
01

10

1

A,(2.1)

'@ỹ
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massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries

TS1 � T ⇤S1

@
y

+ dy

< @
y

+ dy, @
y

+ dy >= 2◆
@ydy = 2

< V, V >= ⌘
MN

V MV N

⌘
MN

=

0

@0 1

1 0

1

A , (2.1)

' @
ỹ
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the
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Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.41)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.42)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.43)
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where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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y � ỹ
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To account for the enhancement of symmetry, we need to enlarge the generalized tangent space

= @y � @ỹ
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where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.

[Mariana: algo mas para decir?]

2 DFT and enhanced gauge symmetries
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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where in the first line we have used that M�+ = (M+�)⇤, M�� = (M++)⇤. We have

therefore four massive scalars, namely M±±,M±⌥. Recall from section ?? that these are

states that have only winding or momentum, and no oscillation modes along the circle.

Note that half f them acquire a negative mass4. This is because we are dealing with

the bosonic string, where the ground state is a tachyon. When R < Rsd, the states

which have only winding are not massive enough to compensate for the negative energy

of the tachyon. In the heterotic string, such problem does not arise, and all states have

positive mass. The other four bosons M3± and M±3 remain massless at this level5 and

as discussed, are the Goldstone bosons which are eaten by the vectors A±, Ā± to become

massive.
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4Which half are tachyonic depends on the sign of m�. For m� > 0, corresponding to R < R̃, or in

other words R <
p
↵0, the states that have winding M±⌥ are tachyonic, while those with momentum

M±± have positive mass, as expected.
5From the mass formula (0.5) one would say that all M ij except for the KK boson M33 are massive.

Note however that M±± and M±⌥ have (squared) mass of order ✏, while M3±, M±3 have (squared)

mass of order ✏2.
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]
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On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.46)
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J̄ ı̄(y, ỹ)
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1

A , (2.41)

0

@E3

E 3̄

1

A =

0

@ 1 1
2M

33̄

1
2M

3̄3 1

1

A

0

@J3 + A3

J̄ 3̄ � Ā3̄
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where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form
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As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.

2.4 E↵ective action from DFT

L = R� 1

12
Hµ⌫⇢H

µ⌫⇢ +
1

4
HIJF

Iµ⌫F J
µ⌫ + (DµH)IJ(D

µH)IJ (2.88)
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fIJKfLMN
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HILHJMHKN � 3HIL⌘JM⌘KN + 2 ⌘IL⌘JM⌘KN
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

the gauging described in section ??, or by a generalized Scherk-Schwarz compactification

(2.18) where the E 0
i give rise to the generalized fluxes of the SU(2)L ⇥ SU(2)R algebra. All

the dependence on the internal coordinates disappears in this procedure, and one is left

with an action in terms of fields that depend on external coordinates, and the gaugings.

The e↵ective action in d = D � n dimensions (where for us n will be 3) is [8]

Seff =

Z
ddx

p
ge�2'

✓
⇤� 2(d� 26)
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where HIJ with I, J = 1, . . . , 2n is the generalized metric containing the scalar fields

coming from the internal components of the n-dimensional metric and B-field, defined in

(2.20) [Carmen: Cuando definamos lo de la constante cosmológica hay que ver

cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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0 1 M MĀ
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0 1 M �MĀ
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⇡ 1 + 1
2 < M33 >

✏

U+ ⇡ 1

U� ⇡ 1
2M

33

0

@ 1 1
2M

33

1
2M

33 1

1

A (2.49)

30

Generalized Scherk-Schwarz reduction of DFT action Aldazabal, Baron, Marques, Nuñez 11
Geissbuhler 11

geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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coming from the internal components of the n-dimensional metric and B-field, defined in
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cómo escribimos esos términos]R is the d-dimensional Ricci scalar, the field strengths
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ã
⌫⇢] + f ãb̃c̃Aã
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H = dB + Ai ^ F i + Āi ^ F̄ i
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on top of the d + 1 ones of the external space and the circle, and the frame depends on

on all of them. So in terms of “how many extra coordinates one needs to realize the

algebra”, this is more expensive than in the previous way. Also, from the point of view

of the string compactified on a circle, the role of the S3 is far less clear. Furthermore, S3

is simply connected and therefore there is no topological winding number. It is the fact

that the CFT is the same as that of the SU(2)-WZW at level 1 what allows to give some

geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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geometric interpretation of this way of realizing the algebra. Note however that the S3 in

the case at hand has a stringy size, and is therefore far from having large radius in string

units, which is the limit where the supergravity description the SU(2)-WZW model as

strings propagating on an S3 with H flux is valid. It is probably more appropiate then to

think of the S3 as realizing a “very quantum” circle of stringy size that becomes fuzzy.
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Given J i, J̄ i realizing the SU(2)L ⇥ SU(2)R algebra (2.77)10, the e↵ective action

in d dimensions can be obtained from that of DFT with O(d + 3, d + 3) symmetry by

10Here we do not need to know the way in which the algebra is realized. It could be in either of the

ways presented in the previous section, or in whatever other way one may come up with.
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@y@ỹ( ) = 0

⌘MN@M@N( ) = 0

EA =

0

@ea � ◆eaB

ea

1

A . (2.3)

H = �ABEA ⌦ EB , (2.4)

H =

0

@ g�1 �g�1B

Bg�1 g � Bg�1B

1

A . (2.5)

O(D,D)
O(D)⇥O(D)

(LV U)M = V P@PU
M + (@MVP � @PV

M)UP

(LV1V2)
M = V P

1 @PV
M
2 + (@MV1P � @PV

M
1 )V P

2

[V1, V2]C =
1

2
(LV1V2 � LV2V1) (2.6)

LEAEB = FAB
CEC (2.7)

22

⌘

' @ỹ
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generalized Lie derivative 

Algebra
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H(y, ỹ) = E 0t E 0
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Geometry of the “internal space”
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]
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On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a

Ale comentar/corregir esto]

gyy =
R2

↵0 =< �2 > . (2.54)

On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.55)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is

usually done [Mariana: unificat notacion, en la seccion 2 se llamo v33, despues

v]

M33 = ✏+M 033 (2.56)
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where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the
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= @y � @ỹ
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H(x, y, ỹ) = (UE 0)t UE 0

0

@Rt 0

0 Rt

1

A

0

@R 0

0 R

1

A (2.53)

=

0

@1 0

0 1

1

A (2.54)

0

@Rt 0

0 Rt

1

A

0

@ 1 M

M t 1

1

A

0

@R 0

0 R

1

A (2.55)

=

0

@ 1 RtMR

RtM tR 1

1

A (2.56)

where V1 = Vµdxµ is a one-form on the base Md. This implies that the metric on the

circle, which is the square of the physical radius in string units, is [Sergio: Le dejo a
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On the other hand, the scalar field � should be parameterized in terms of the fluctuation

M33 introduced in section ??, namely

� = exp(12M
33). (2.58)

Both in the circle reduction and in the SU(2)L ⇥ SU(2)R enhancement to be discussed

later, the only field that is allowed to take expectation value is M33. Shifting M33, as is
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where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary

di↵emorphisms. Defining

⌘AB = ⌘(EA, EB), (2.12)

where A,B = 1, .., 2D are frame indices, it is easy to see that when the frame EA is of

the form (2.9), ⌘AB has also the o↵-diagonal form
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One can alternatively use a right-left basis C�, C+ by rotating the A,B frame indices with
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namely (EC)A = RA
BEB. In this basis ⌘AB has the diagonal form
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As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)
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where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)
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where M,N = 1, ..., 2D are double space-time indices. Therefore, the O(D,D) metric

⌘MN has the following o↵-diagonal form

⌘MN = ⌘MN =

0

@ 0 1D

1D 0

1

A , (2.11)

where 1D is the D ⇥ D identity matrix. Note that ⌘MN is invariant under ordinary
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As in ordinary geometry, the generalized tangent bundle admits a generalized metric

defined as

H = SABEA ⌦ EB , (2.16)

where SAB = diag(sab, sab), sab being the Minkowski metric.

In Scherk-Schwarz compactifications [14] one splits the frame into a piece that depends

on the external coordinates x and a piece that involves the internal ones y. The same is

done in generalized Scherk-Schwarz compactifications [8], namely

EA(x, y) = UA
A0
(x)E 0

A0(y) . (2.17)
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• DFT description of strings very close to self-dual radius

Conclusions

• Winding modes → explicit dependence on dual coordinate

violate weak constraint

satisfy level-matching

•  Enhancement of symmetry → extend the generalized tangent space O(3,3)

• When M=0, “6d double space” is a torus, no dependence on 

• Moduli (M≠0) bring in dependence on  

= @y � @ỹ
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yL

yR

y

ỹ
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and

• By appropriate generalized Scherk-Schwarz reduction of DFT action we 
fully recover string theory action


