EGB supergravity and black holes with unbroken

supersymmetries

Olivera Mišković (PUCV)
L. Andrianopoli (Polito), G. Giribet (UBA), D. López (PUCV)
arXiv:2106.01876 (JHEP'21)

YOUNGST@RS - Supergravity and Holography Workshop 2021
13-15 December 2021

Plan

Plan of the talk

- Chern-Simons AdS supergravity
- Hairy black hole solution and BPS state
- Physical properties
- Discussion and open questions

Motivation

Quadratic curvature gravity in AdS_{5} space

- Higher-curvature terms in the framework of AdS/CFT correspondence
- Black holes solutions in supergravity that leave some of SUSY unbroken

Simplest case - AdS_{5} space with the radius ℓ_{0}

- General Relativity with negative cosmological constant $\Lambda=-\frac{6}{\ell_{0}^{2}}$
+ First correction given by the Gauss-Bonnet term

$$
\mathcal{L}_{\mathrm{EGB}}=\kappa\left[R-2 \Lambda+\alpha\left(R^{\mu \nu \alpha \beta} R_{\mu \nu \alpha \beta}-4 R^{\mu \nu} R_{\mu v}+R^{2}\right)\right]
$$

Equations of motion can be factorized

- $\delta \int \mathcal{L}_{\text {EGB }}=0 \Rightarrow \delta_{v v_{1} \cdots v_{4}}^{\eta \mu_{1} \cdots \mu_{4}}\left(R_{\mu_{1} \mu_{2}}^{v_{1} \nu_{2}}+\frac{1}{\ell_{+}^{2}} \delta_{\mu_{1} \mu_{2}}^{v_{1} \nu_{2}}\right)\left(R_{\mu_{3} \mu_{4}}^{v_{3} v_{4}}+\frac{1}{\ell_{-}^{2}} \delta_{\mu_{3} \mu_{4}}^{v_{3} v_{4}}\right)=0$
- There are $k=2$ AdS vacua: $R_{\mu_{1} \mu_{2}}^{v_{1} \nu_{2}}=-\frac{1}{\ell_{ \pm}^{2}} \delta_{\mu_{1} \mu_{2}}^{v_{1} \nu_{2}}, \quad \ell_{ \pm}^{2}=\frac{4 \alpha}{1 \pm \sqrt{1-\frac{8 \alpha}{\ell_{0}^{2}}}}$
- When $\ell_{+} \neq \ell_{-}$, eqs. can be linearized around the AdS background

Chern-Simons coupling point: two vacua coincide, unique AdS radius

$$
\ell \equiv \ell_{+}=\ell_{-}=\ell_{0} / \sqrt{2}, \quad \alpha^{*}=\ell_{0}^{2} / 8, \quad \alpha \rightarrow \alpha^{*} \text { is not continuous }
$$

- Static black holes change their asymptotics compared to Schwarzschild AdS

$$
\begin{aligned}
& g_{t t} \sim 1+\frac{r^{2}}{\ell_{\text {eff }}^{2}}-\frac{\mu}{r^{(D-2 k-1) / k}} \quad(k \text {-fold AdS vacuum in } D \text { dimensions }) \\
& g_{t t}=1+\frac{r^{2}}{\ell_{\text {eff }}^{2}}-\mu \quad D=2 k+1, \text { Dimensionally Continued Black Hole } \\
& g_{t t}=1+\frac{r^{2}}{\ell_{\text {eff }}^{2}}-\mu \quad D=3, \text { BTZ black hole }
\end{aligned}
$$

\Rightarrow The GB term with the coupling α^{*} is not just a correction

Chern-Simons AdS supergravity in $\mathrm{D}=5$

Einstein-Gauss-Bonnet AdS gravity with the coupling $\alpha^{*}=\frac{\ell^{2}}{4}$

- First order formalism (forms in the basis $\mathrm{d} x^{\mu}$, without writing \wedge)

$$
\begin{array}{ll}
\left(e^{a}, \omega^{a b}\right) & \text { vielbein, spin-connection } 1 \text {-forms (independent) } \\
R^{a b}=\mathrm{d} \omega^{a b}+\omega^{a c} \omega_{c}^{b}(\text { curvature }) & T^{a}=D e^{a} \text { (torsion) }
\end{array}
$$

- Chern-Simons AdS $_{5}$ gravity

$$
L_{\mathrm{G}}=\frac{1}{8 \ell} \epsilon_{a b c d e}\left(R^{a b} R^{c d} e^{e}+\frac{2}{3 \ell^{2}} R^{a b} e^{c} e^{d} e^{e}+\frac{1}{5 \ell^{4}} e^{a} e^{b} e^{c} e^{d} e^{e}\right)
$$

The fields e, ω are defined over the flat background

- New features compared to EGB gravity
- It can have $T^{a} \neq 0$ on-shell
- Extended local symmetries: local Lorentz $\left(\mathbf{J}_{a b}\right) \rightarrow$ local $\operatorname{AdS}\left(\mathbf{P}_{a}, \mathbf{J}_{a b}\right)$
- More degrees of freedom than EH (generically)
- A number of d.o.f. can vary depending on a sector of the phase space
- Topological sectors exist in any (odd) D

Chern-Simons AdS supergravity in $\mathrm{D}=5$

Einstein-Gauss-Bonnet AdS gravity with $\alpha^{*}=$ Chern-Simons AdS theory

- Gauge theory for $S O(2,4)$ on the flat background

$$
\begin{aligned}
& {[\mathbf{J}, \mathbf{J}]=\mathbf{J},[\mathbf{J}, \mathbf{P}]=\mathbf{P},[\mathbf{P}, \mathbf{P}]=\mathbf{J} \quad\left(\mathbf{P}_{a}, \mathbf{J}_{a b}=\right.\text { AdS generators) }} \\
& \mathbf{A}=\frac{1}{\ell} e^{a} \mathbf{P}_{a}+\frac{1}{2} \omega^{a b} \mathbf{J}_{a b} \quad(\text { gauge field }) \\
& \mathbf{F}=\mathrm{d} \mathbf{A}+\mathbf{A}^{2}=\frac{1}{\ell} T^{a} \mathbf{P}_{a}+\frac{1}{2}\left(R^{a b}+\frac{1}{\ell^{2}} e^{a} e^{b}\right) \mathbf{J}_{a b}
\end{aligned}
$$

- Chern-Simons action

$$
\begin{array}{lc}
I[\mathbf{A}]=\frac{k}{3} \int_{\mathcal{M}} L(\mathbf{A}), \quad \mathrm{d} L(\mathbf{A})=\frac{1}{3}\left\langle\mathbf{F}^{3}\right\rangle, \quad L(\mathbf{A}) \text { is a CS form } \\
\epsilon_{a b c d e}=\left\langle\mathbf{J}_{a b} \mathbf{J}_{C d} \mathbf{P}_{e}\right\rangle \quad \text { (symmetric invariant tensor) }
\end{array}
$$

- In $D=3$, General Relativity is Chern-Simons gravity for (A)dS/Poincaré gauge group

Chern-Simons AdS supergravity in $\mathrm{D}=5$

Now it is straighforward to perform a supersymmetric extension

$$
\begin{array}{ll}
S O(2,4) \rightarrow \operatorname{SU}(2,2 \mid \mathcal{N}) \\
\mathbf{P}_{a}, \mathbf{J}_{a b} \quad \rightarrow \mathbf{G}_{M}=\left\{\mathbf{P}_{a}, \mathbf{J}_{a b}, \mathbf{T}_{\Lambda}, \mathbf{G}_{1}, \mathbf{Q}_{S}^{\alpha}, \overline{\mathbf{Q}}_{\beta}^{u}\right\} \\
& \quad \operatorname{SO}(2,4) \times S U(\mathcal{N}) \times U(1)_{q} \quad \text { (bosonic sector) } \\
\epsilon_{\text {abcde }} & \rightarrow g_{M N K}=\left\langle\mathbf{G}_{M} \mathbf{G}_{N} \mathbf{G}_{K}\right\rangle \quad \text { (interaction) }
\end{array}
$$

- Dimension: $\mathfrak{D}=\mathcal{N}^{2}+8 \mathcal{N}+15, \quad \mathfrak{D}_{\text {bosonic }}=\mathcal{N}^{2}+15 \neq \mathfrak{D}_{\text {fermionic }}=8 \mathcal{N}$
- $U(1)_{q}$-charged fermions $\left[\mathbf{G}_{1}, \mathbf{Q}\right]=-\mathrm{i}\left(\frac{1}{4}-\frac{1}{\mathcal{N}}\right) \mathbf{Q}$
- Matter fields = gauge fields with fixed interactions, only grav. coupling
- $U(1)_{q}$ field couples gravity with the internal non-Abelian field
$g_{1[a b][c d]}=\frac{1}{2} \eta_{a[c} \eta_{d] b}, \quad g_{1 a b}=-\frac{1}{4} \eta_{a b}, \quad g_{111}=\frac{1}{4^{2}}-\frac{1}{\mathcal{N}^{2}}$
$\mathcal{N}=4$: Fermions become neutral, $U(1)_{q}$ turns to
central extension, the $U(1)_{q}$ field without kinetic term $\left(g_{111}=0\right)$

Chern-Simons AdS supergravity in $\mathrm{D}=5$

Field content when $\mathcal{N}=4$

$$
\begin{array}{llll}
e^{a}, \omega^{a b} & \text { gravitational field; } & \mathcal{A}^{\Lambda} & S U(4) \text { gauge field; } \\
\bar{\psi}^{s}, \psi_{s} & \text { fermions; } & A & U(1)_{q} \text { gauge field; }
\end{array}
$$

Bosonic action

$$
\begin{array}{ll}
L & =L_{\mathrm{G}}(e, \omega)+L_{S U(4)}(\mathcal{A})+L_{U(1)}(A, e, \omega, \mathcal{A}) \\
L_{S U(\mathcal{N})} & =-\frac{1}{3} \operatorname{Tr}\left(\mathcal{A} \mathcal{F}^{2}-\frac{1}{2} \mathcal{A}^{3} \mathcal{F}+\frac{1}{10} \mathcal{A}^{5}\right) \\
L_{U(1)_{q}} & =-\frac{1}{4 \ell^{2}}\left(T^{a} T_{a}-\frac{\ell^{2}}{2} R^{a b} R_{a b}-R^{a b} e_{a} e_{b}\right) A+\frac{1}{4} \mathcal{F}^{\wedge} \mathcal{F}_{\Lambda} A
\end{array}
$$

Equations of motion $\mathcal{E}_{M}=g_{M N K} F^{N} F^{K}=0$

$$
\begin{aligned}
& \mathcal{E}_{a}=\frac{1}{8} \epsilon_{a b c d e} F^{b c} F^{d e}-\frac{1}{2 \ell} T_{a} F \\
& \mathcal{E}_{a b}=\frac{1}{2 \ell} \epsilon_{a b c d e} F^{c d} T^{e}+\frac{1}{2} F_{a b} F \\
& \mathcal{E}=\frac{1}{8}\left(F^{a b} F_{a b}-\frac{2}{\ell^{2}} T^{a} T_{a}\right)+\frac{1}{4} \mathcal{F}^{\Lambda} \mathcal{F}_{\Lambda} \\
& \mathcal{E}_{\Lambda}=\frac{1}{2} \mathcal{F}_{\Lambda} F+\gamma_{\Lambda \Lambda_{1} \Lambda_{2}} \mathcal{F}^{\Lambda_{1}} \mathcal{F}^{\Lambda_{2}}
\end{aligned}
$$

Static black hole solutions

Static, spherically symmetric black hole solutions
Metric field ansatz with the spherical horizon

$$
\begin{aligned}
& \mathrm{d} s^{2}=-N^{2}(r) f^{2}(r) \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{f^{2}(r)}+r^{2} \mathrm{~d} \Omega^{2} \\
& \mathrm{~S}^{3}: \mathrm{d} \Omega^{2}=\sigma_{m n}(\theta) \mathrm{d} \theta^{m} \mathrm{~d} \theta^{n}=\delta_{i j} \tilde{e}^{i} \tilde{e}^{j}
\end{aligned}
$$

Torsion field $\left(T_{\mu \nu}^{a}\right) \rightarrow$ two scalar fields

$$
T_{n r m}=\tau(r) r \sigma_{n m}, \quad T_{n m k}=2 r^{2} \varphi(r) \sqrt{\sigma} \epsilon_{n m k}
$$

Particularity of a three-dimensional geometry
It can have constant curvature and torsion
Our solution will be asymptotically with constant curvature and torsion

Static black hole solutions

Dimensionally continued black holes

- Special case $f^{2}=\frac{r^{2}}{\ell^{2}}-M, T^{a}=0$ [Banados, Teitelboim, Zanelli '94]

$$
\begin{array}{ll}
M>0 & \text { Black holes } \\
M=0 & \text { Black hole ground state } \\
-1<M<0 & \text { Naked singularities } \\
M=-1 & \text { AdS space }
\end{array}
$$

- Global AdS space with $S U(4) \times U(1)_{q}$ fields, BPS states
[Miskovic, Troncoso, Zanelli '06]
- Black holes with $\varphi(r)=$ C, BPS states [Canfora, Giacomini, Troncoso '08]
- Black holes with $U(1)_{q}$ charges [Giribet, Merino, Miskovic, Zanelli '14]
- Goal: BPS black holes with SU(4) fields

Static black hole solutions

Hairy black hole with four integration constants $\left(\mu, C, b_{0}, b\right)$

$$
\begin{aligned}
& \tau=\frac{b \ell^{2}}{2 r+b \ell^{2}}, \quad f=\sqrt{\frac{r^{2}}{\ell^{2}}+b r+1-\mu}, \quad N=1-\frac{b_{0} \ell}{2 f} \\
& \varphi^{2}=\left[C^{2}-\frac{b \ell^{2}}{2} \frac{\mu+\frac{b^{2} \ell^{2}}{4}}{r+\frac{b L^{2}}{2}}+\frac{b^{2} \ell^{4}}{4} \frac{\left(r+\frac{b \ell^{2}}{3}\right)\left(\mu+\frac{b^{2} \ell^{2}}{4}-\kappa\right)}{\left(r+\frac{b \ell^{2}}{2}\right)^{3}}\right]\left(1+\frac{b \ell^{2}}{2 r}\right)
\end{aligned}
$$

- Auxiliary function $\Xi(r)=1+\frac{r^{2}}{\ell^{2}}-\varphi^{2}-v^{2}$
- Asymptotic behaviour

$$
\begin{aligned}
& f^{2} \rightarrow \frac{r^{2}}{\ell^{2}}+b r, \quad N \rightarrow 1, \quad \varphi^{2} \rightarrow C^{2}, \quad \tau \rightarrow 0,\left.\quad F\right|_{S^{3}} \rightarrow \text { const } \\
& \Xi \rightarrow \mu-C^{2}+\frac{b^{2} \ell^{2}}{4}=\text { const }
\end{aligned}
$$

- μ is the mass parameter, C is the axial torsion charge,
- b, b_{0} are gravitational hair

Static black hole solutions

Singularity

- Solution with $\Xi \neq 0$ has scalar curvature singularity at $r=0$
- Extremality parameter of two BH horizons

$$
p^{2}=\left(\frac{r_{+}-r_{-}}{4 \ell}\right)^{2}=\mu-1+\frac{b^{2} \ell^{2}}{4} \geq 0
$$

- Hawking temperature is $T=\frac{N\left(r_{+}\right)}{2 \pi}\left(\frac{r_{+}}{\ell^{2}}+\frac{b}{2}\right)$
- When $p^{2}<0, p^{2} \neq-1$ we get naked singularities
- When $p^{2}=-1$, the space is maximally symmetric globally $\left(\operatorname{AdS}_{5}\right)$

Static black hole solutions

We are interested in the solutions that leave some supersymmetries unbroken (BPS states)

- Let us choose $b=b_{0}=0$ (usual asympotically AdS space)
- The only torsion component, the axial torsion field $\varphi(r)$, can be seen as a scalar matter field on the curved (metric) background
- As a result, we get $U(1)_{q}$-neutral and Ξ-charged black hole

$$
\begin{aligned}
& \mathrm{d} s^{2}=-\left(1+\frac{r^{2}}{\ell^{2}}-\mu\right) \mathrm{d} t^{2}+\frac{\mathrm{d} r^{2}}{1+\frac{r^{2}}{\ell^{2}}-\mu}+r^{2} \mathrm{~d} \Omega^{2} \\
& A_{t}=0, \quad \Xi=\mu-C^{2} \neq 0, \quad \varphi=C, \\
& \tau=0, \quad N=1,
\end{aligned}
$$

Internal non-Abelian field

Non-Abelian field $\mathcal{F}=\frac{1}{2} \mathcal{F}_{m n} \mathrm{~d} \theta^{m} \wedge \mathrm{~d} \theta^{n}$

- Transversal space is the maximally symmetric 3 -sphere S^{3} or its identifications, the (locally) isometry group is $S O$ (4)

$$
\left\{\begin{array}{l}
S^{3} \simeq \frac{S O(4)}{S(3)} \simeq S U(2) \\
\pi_{3}(S U(2))=\mathbb{Z}
\end{array} \Rightarrow \text { Nontrivial winding of } S U(2)\right. \text { around the sphere }
$$

- Breaking internal symmetry

$$
\begin{aligned}
& S U(4) \simeq S O(6) \rightarrow S U(2)_{+} \times S U(2)_{-} \times U(1)_{c} \text { (maximal subgroup) } \\
& S U(4) \rightarrow S U(2)_{D} \times U(1)_{c} \quad \text { (suitable for static solutions) }
\end{aligned}
$$

- The Killing spinor will be a $U(1)_{c}$-charged Dirac spinor on \mathbb{S}^{3}
- We can also consider quotient spaces of the 3-sphere, for example the topological space $\mathbb{R} \mathbb{P}^{3} \equiv \mathrm{~S}^{3} / \mathbb{Z}_{2}$ (real projective 3-space) that has identified antipodal points on the sphere

Internal non-Abelian field

Explict construction of the non-Abelian field

- $S U(4) \simeq S O(6)$ generators $\mathbf{T}_{I J}$ with $I=0,1, \hat{\imath}, 5$

$$
\begin{aligned}
S U(4) & \rightarrow S U(2)_{+} \times S U(2)_{-} \times U(1)_{c} \\
\rightarrow & S U(2)_{D} \times U(1)_{c} \\
\mathbf{T}_{I J} & \rightarrow\left\{\mathbf{T}_{+\hat{\imath}}, \quad \mathbf{T}_{-\hat{\imath}}, \quad \mathbf{T}_{c}=\mathbf{T}_{15}\right\}
\end{aligned} \rightarrow \quad\left\{\mathbf{T}_{\hat{\imath}}, \quad \mathbf{T}_{c}\right\}
$$

- We define $\mathbf{T}_{ \pm \hat{\imath}}=\frac{1}{2}\left(\pm \mathbf{T}_{0 \hat{\imath}}-\mathbf{T}_{\hat{\imath}}\right)$ and $\mathbf{T}_{\hat{\imath}}=\frac{1}{2} \epsilon_{\hat{\imath}}^{\hat{\jmath}} \mathbf{T}_{\hat{\jmath} \hat{k}}(\hat{\imath}=2,3,4)$
- Constant $S U(2)_{D}$-curvature solution of the strength $\tilde{\Xi}$

$$
\begin{aligned}
\mathcal{A}^{i} & =\tilde{\omega}^{i}-B \tilde{e}^{i}, \quad \tilde{\omega}_{i} \equiv \frac{1}{2} \epsilon_{i}^{j k} \tilde{\omega}_{j k} \\
\mathcal{F}^{i} & =\frac{1}{2} \tilde{\Xi} \epsilon^{i j k} \tilde{e}_{i} \tilde{e}_{j} \mathbf{T}_{\hat{k}}, \quad \tilde{\Xi}=1-B^{2} \\
\mathcal{A}^{15} & =\mathrm{d} \Omega(\theta) \quad \text { (pure gauge) }
\end{aligned}
$$

- $B=$ new integration constant, the amplitude of the internal $S U(2)_{D}$ soliton

BPS states

BPS states

- Parameters of the solution $\left(B, C, p^{2}=\mu-1\right) \Xi=1-C^{2}, \tilde{\Xi}=1-B^{2}$

$$
\begin{aligned}
\mathbf{A}= & \left(\frac{r}{\ell} \mathbf{J}_{01}+f \mathbf{P}_{0}\right) \frac{\mathrm{d} t}{\ell}+\frac{\mathrm{d} r}{\ell f} \mathbf{P}_{1}+\tilde{e}^{i}\left(\frac{r}{\ell} \mathbf{P}_{i}-f \mathbf{J}_{1 i}\right) \\
& +\left(\tilde{\omega}^{i}-C \tilde{e}^{i}\right) \mathbf{J}_{i}+\left(\tilde{\omega}^{i}-B \tilde{e}^{i}\right) \mathbf{T}_{i}+\mathrm{d} \Omega \mathbf{T}_{c} \\
\mathbf{F}= & C \epsilon_{i j}{ }^{k} \tilde{e}^{i} \tilde{e}^{j}\left(\frac{r}{\ell} \mathbf{P}_{k}-f \mathbf{J}_{1 k}\right)+\frac{1}{2} \epsilon_{i j}{ }^{k} \tilde{e}^{i} \tilde{e}^{j}\left(\Xi \mathbf{J}_{k}+\tilde{\Xi} \mathbf{T}_{k}\right)
\end{aligned}
$$

- The field does not vanish at the boundary, but it has finite energy
- Supersymmetry transformations $\psi_{s}=0 \Rightarrow \delta_{\epsilon} \psi_{s}=\nabla \epsilon_{s}=$

$$
\left(d+\frac{1}{4} \omega^{a b} \Gamma_{a b}+\frac{1}{2 \ell} e^{a} \Gamma_{a}\right) \epsilon_{s}-\frac{1}{4} \mathcal{A}^{I J}\left(\tilde{\Gamma}_{I J}\right)_{s}^{u} \epsilon_{u}=0
$$

- BPS states $p^{2}=0, B=C, \Xi=\tilde{\Xi}$ (extremal black holes)

BPS states

Killing spinors

- Solutions for the parameters $\epsilon(r, \theta)=\sqrt{\frac{r}{\ell}} \mathrm{e}^{\Omega(\theta) \mathbf{T}_{c}} \eta_{0}, \eta_{0}$-constant spinor
- Ω gives a phase to the spinor on the sphere

$$
\eta_{s}(\theta)=\mathrm{e}^{-\frac{i}{2} \Omega(\theta)} \eta_{0(+) s}+\mathrm{e}^{\frac{i}{2} \Omega(\theta)} \eta_{0(-) s}, \quad\left(\tilde{\Gamma}_{1}\right)_{s}^{u} \eta_{0(\pm) u}= \pm \eta_{0(\pm) s}
$$

- First projection condition: $\Gamma_{1} \eta_{0}=-\eta_{0}$
- Three more projection conditions: The tangent space $\widehat{S U}(2)_{D}$ symmetry on S^{3} (and the corresponding indices i, j, \ldots) has to match with the internal $S U(2)_{D}$ symmetry (labeled with indices $\hat{\imath}, \hat{\jmath}, \ldots$)

$$
\left(\mathbf{J}_{i}\right)_{\beta}^{\alpha} \eta_{0 s}^{\beta}=\left(\mathbf{T}_{\hat{\imath}}\right)_{s}^{u} \eta_{0 u}, i \equiv \hat{\imath} \in\{2,3,4\} \Rightarrow \mathbf{1} / \mathbf{1 6} \text {-BPS states }
$$

BPS states

The spinors are globally well-defined

- General solution has an additional phase factor

$$
\eta=\mathcal{P} \mathrm{e}^{\int_{\mathcal{C}(\theta)}\left[-\frac{i}{2}\left(\tilde{\omega}^{i}-C e^{i}\right) \Gamma_{i}+\mathcal{A}\right]} \eta_{0} \quad(\mathcal{P} \text { path ordering })
$$

- Global behavior is studied by looking at the closed paths γ

$$
\mathcal{P} \mathrm{e}^{\oint_{\gamma}\left[-\frac{i}{2}\left(\tilde{\omega}^{i}-C \tilde{e}^{i}\right) \Gamma_{i}+\mathcal{A}\right]} \eta_{0}=\lambda(\gamma) \eta_{0} \quad \text { (holonomy condition) }
$$

- The holonomy condition depends on the manifold Σ, holonomy of the fields and the spin structure, and the (anti)periodicity $\lambda(\gamma)= \pm 1$.

Topological properties

Pontryagin numbers

- Topological conserved current: $\left.\left\langle\mathbf{F}^{2}\right\rangle\right|_{\Gamma}=\mathrm{d}\left({ }^{*} J_{\text {top }}\right)$ locally
- Globally Pontryagin topological invariant on $\partial \Gamma=S^{3}$
- Possible Pontryagin numbers

$$
\begin{array}{ll}
S U(2,2, \mid 4) & P=\frac{1}{4 \pi^{2}} \int_{\Gamma}\left\langle\mathbf{F}^{2}\right\rangle \in \mathbb{R} \\
S U(2)_{D} \subset S U(4) & n_{1}=\frac{1}{4 \pi^{2}} \int_{\Gamma}\left\langle\mathcal{F}^{2}\right\rangle \in \mathbb{Z} \\
\widehat{S U}(2)_{D} \subset S O(2,4) & n_{2}=\frac{1}{4 \pi^{2}} \int_{\Gamma}\left\langle\hat{\mathcal{F}}^{2}\right\rangle \in \mathbb{Z} \\
\widehat{S U}(2)_{D} \times S U(2)_{D} & n=n_{1}+n_{2} \in \mathbb{Z}
\end{array}
$$

Topological properties

- Hopf's coordinates $\mathrm{d} \Omega^{2}=\mathrm{d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \varphi_{1}^{2}+\cos ^{2} \theta \mathrm{~d} \varphi_{2}^{2}$

$$
\left\{\begin{aligned}
\mathcal{A}^{2} & =-B \mathrm{~d} \theta \\
\mathcal{A}^{3} & =-\sin \theta\left(B \mathrm{~d} \varphi_{1}+\mathrm{d} \varphi_{2}\right) \\
\mathcal{A}^{4} & =-\cos \theta\left(B \mathrm{~d} \varphi_{2}+\mathrm{d} \varphi_{1}\right)
\end{aligned}\right.
$$

- $B=$ the magnitude of the internal soliton, $C=$ magnitude of the axial soliton
- Topological numbers

$$
\begin{array}{ll}
n_{1} & =B\left(2-B^{2}\right) \\
n_{2} & =-C\left(2-C^{2}\right) \\
n & =-C\left(2-C^{2}\right)+B\left(2-B^{2}\right) \\
P & =n-\frac{3}{2} C p^{2}
\end{array}
$$

- The magnitudes $B\left(n_{1}\right)$ and $C\left(n_{2}\right)$ are quantized by topology

Topological properties

- BPS condition $B=C, p^{2}=0 \quad \Rightarrow \quad n_{\text {BPS }}, P_{\text {BPS }}=0$ (soliton-antisoliton system unwinds)
- Balance of forces between gravity and internal symmetry is usual for BPS states in standard supergravity.

Comparison between CS and standard supergravity

Chern-Simons: $S U(2)$ charges quantized; $\quad \mu$ is not quantized $\left(p^{2}=\mu-1\right)$
Standard: $\quad U(1)$ charges quantized; $\quad \mu$ is not quantized

Hamiltonian conserved charges

Hamiltonian charge

- Charge formula linearized around an AdS background X
- Noether charge in CS AdS gravity without T^{a}
[Mora, Olea, Troncoso, Zanelli '06] X
- Wald's formula without $T^{a} \mathbf{X}$
- Hamiltonian charge $\sqrt{ } \quad \delta Q[\Lambda]=2 k \int_{S^{3}}\langle\Lambda \mathbf{F} \delta \mathbf{A}\rangle$
- Gauge parameters have to satisfy $D \Lambda=0, \delta \Lambda \rightarrow 0$
- The $U(1)_{q} \times S U(2)_{D} \times U(1)_{c}$ parameters: $\Lambda^{1}=1, \quad \Lambda^{i}=0, \quad \Lambda^{c}=1$
- The $S O(2,4)$ parameter: $\Lambda_{0}=\frac{r}{\ell^{2}} \mathbf{J}_{01}+\left(\frac{r}{\ell^{2}}-\frac{p^{2}}{2 r}+\cdots\right) \mathbf{P}_{0}$
- Λ_{0} corresponds to the time-like Killing vector $\xi=\partial_{t}$
- $\delta E=\delta Q\left[\Lambda_{0}\right]$ is integrable when $\delta C=0$

Hamiltonian conserved charges

Total gravitational energy $E=Q\left[\Lambda_{0}\right]=H\left[\partial_{t}\right]$

$$
E=M_{\mathrm{BH}}+E_{\mathrm{int}}+E_{\mathrm{AdS}}+E_{\mathrm{s}}
$$

$$
\begin{array}{llll}
M=\frac{3 k \pi^{2}}{\ell} \mu^{2} & \text { BH mass } & E_{\mathrm{AdS}}=-\frac{3 k \pi^{2}}{2 \ell} & \text { AdS vacuum } \\
E_{\text {int }}=-\frac{3 k \pi^{2}}{2 \ell} \mu C^{2} & \text { interaction } & E_{\mathrm{S}}=\frac{3 k \pi^{2}}{\ell} C^{2} & \text { soliton vacuum }
\end{array}
$$

- Torsionless limit $E_{C \rightarrow 0}=\frac{3 k \pi^{2}}{2 \ell}\left(\mu^{2}-1\right)$ gives the correct result obtained from BH thermodynamics [Crisostomo, Troncoso, Zanelli '00]
- BPS limit $E_{\text {BPS }}=0$ (the smallest black hole, similar to the BTZ black hole)
- Abelian charges

$$
Q_{c}=0, \quad Q_{q}=-\pi^{2}\left(3 C p^{2}+n_{1}+n_{2}+B-C\right), \quad Q_{q}^{B P S}=0
$$

- $U(1)_{q}$ field is locally vanishing, but because it interacts with both the geometry and the internal symmetry, it leads to non-trivial global effects.

Conclusions

Similarities with standard supergravities

- BPS states are extremal states
- The space of extremal solutions is larger than the space of BPS solutions namely, the state $B=-C$ is extremal, but it is not a BPS state.
- The energy spectrum is continuous, except in the BPS limit where it is discrete. (Superstring theory: the black p-brane charges are associated with the number of coincident D-branes.)
- The Ξ-charged solution resembles the case of the Reissner-Nordström black holes in $\mathcal{N}=2$ supergravity where the $U(1)_{q}$ charge is a central extension in the superalgebra.

Conclusions

Additional results

- We compure Ξ-carged $\frac{1}{16}$-BPS states and Ξ-neutral $\frac{1}{2}$-BPS states
- The Ξ-neutral solutions with $\mu=C^{2}$ have fully discrete energy spectrum
- We compare S^{3} and $\mathbb{R} \mathbb{P}^{3}$ topology and the results are similar, only the charges on S^{3} have the reflection symmetry under $B \leftrightarrow-B, C \leftrightarrow-C$
- We find inequivalent solution $\left(Q_{C} \neq 0\right)$ where the $S U(2)_{D}$ internal soliton is replaced by the right $S U(2)_{+}$soliton, where the left one identically vanishes.
- The CS theory discussed here is topological (with zero d.o.f.)

Conclusions

Open questions

- Non-static $S U(2)_{+} \times S U(2)_{-}$solution, possibly (anti) self-dual
- Role of the topological invariant $\int_{\mathcal{M}}\left\langle\left(g^{-1} \mathrm{~d} g\right)^{5}\right\rangle$.
- Computing the charge algebra and the central charge
- Finding the Bogomol'nyi bound using $\left\{\mathbf{Q}_{s}^{\alpha},\left(\mathbf{Q}^{\dagger}\right)_{\beta}^{\mu}\right\} \geq 0$
- Black hole entropy and black hole thermodynamics
... etc.

THANK YOU!

Acknowledgments

Acknowledgments:

FONDECYT grant ${ }^{\circ} 1190533$ \& ANID-SCIA- ANILLO ACT210100

Holography and its applications to High Energy Physics,
Quantum Gravity and Condensed Matter Systems

