Local SUSY: An unconventional approach

Jorge Zanelli z@cecs.cl

Supergravity and Holography Workshop December 13-15, 2021

P. D. Alvarez, L. Delage, A. Guevara, P. Pais, P. Salgado-Rebolledo, E. Rodríguez, M. Valenzuela (CL)
 L. Andrianopoli, B. L. Cerchiai, R. D'Auria, A. Gallerati, R. Noris, M. Trigiante (Torino)
 1109.3944, 1306.1247, 1505.03834, 1606.05239, 1910.03508, 202504178, 2104.05133, 2105.14606, 2110.06828

Supersymmetry (SUSY) is a spacetime symmetry between bosons and fermions. In SUSY, each particle from one class would have an associated particle in the other, known as its *superpartner*, the spin of which differs by a half-integer.

Wikipedia

$$\begin{bmatrix} B' \\ F' \end{bmatrix} = Q \begin{bmatrix} B \\ F \end{bmatrix}$$

F.A. Berezin and G.I. Kac, Math. Sbornik **82** (1970) 343 Yu.A. Golfand and E. P. Likhtman, JETP Lett.**13** (1971) 323 J.-L. Gervais and B. Sakita, Nucl. Phys. **B34** (1971) 632 In our youth, we all fell in love with supersymmetry SUSY:

- Makes **fermions** and **bosons** necessary
- Restricts particle multiplets
- Relates masses and coupling constants
- Provides $E \ge 0$ theorems, stability
- Improves renormalizability (cancellation of infinities)
- Respects hierarchies (protects mass scales)

... after five decades of active search, no evidence of SUSY has been found.

By Natalie Wolchover, Quanta Magazine on November 29, 2012

I. What was SUSY expected to solve?

Can these two symmetries combine into a larger one?

Coleman–Mandula Theorem (1967): Lie algebras representing spacetime and internal symmetries of the S-matrix can only be combined in a trivial manner (as a direct sum):

$$\mathcal{G} = \mathcal{G}_S \oplus \mathcal{G}_I$$

C-M theorem notwithstanding, a few years later, a nontrivial extension of the Poincaré group was found...

Volume 46B, number 1	PHYSICS LETTERS		3 September 1973	
IS	THE NEUTRINO A GOLDSTONE PARTICLE?	2		
Physico-Technic	D.V. VOLKOV and V.P. AKULOV cal Institute, Academy of Sciences of the Ukrainian SSR, Kharko	v 108, USS.	R	
	Received 5 March 1973			
Using the hypotheses, the which describes an interact	hat the neutrino is a goldstone particle, a phenomenological Lagration of the neutrino with itself and with other particles.	angian is co	nstructed,	

where a Lagrangian invariant under combined spacetime translations and shifts in the fermion field was proposed,

$$x^{\mu}
ightarrow x^{\mu} + ar{\epsilon} \gamma^{\mu} \psi$$
 , $\psi
ightarrow \psi + \epsilon$

which seems to violate the C-M theorem...

Spacetime and gauge symmetries can be part of a larger graded Lie algebra

Fermions belong to nontrivial irreducible representations of Lorentz and gauge groups; they couple naturally to the connections for spacetime and internal symmetries $\bar{\psi} \not \phi \psi$, $\bar{\psi} \not A \psi$ Fermions (matter) couple to internal gauge fields and to the spacetime geometry

Standard (rigid/global) SUSY

$$\begin{bmatrix} B' \\ F' \end{bmatrix} = Q \begin{bmatrix} B \\ F \end{bmatrix} = \begin{bmatrix} S_{BB} & S_{BF} \\ S_{FB} & S_{FF} \end{bmatrix} \begin{bmatrix} B \\ F \end{bmatrix}$$
 "Vector" representation

Global (rigid) SUSY [Wess&Zumino, Ramond, Salam&Strathdee, Iliopoulos, Shifman, ...] $\{Q^{\alpha}, \overline{Q}_{\beta}\} = H(\Gamma_0)^{\alpha}_{\beta}, \ [H,Q] = 0$

→ Energy states are degenerate: m_B = m_F
 → Equal numbers of *B*- and *F*-states

Not even approximately true: SUSY must be severely broken

"If this symmetry were true it would have been discovered long ago." P. A. M. Dirac to A. Salam, 1976(?)

II. Standard Model of particle physics

Fermions (matter) Bosons (interaction carriers)

Standard Model

<u>Matter</u> <u>Sources</u> (ψ)

- Fermions, S=1/2
- Gauge vectors (fundamental rep.)
- Spacetime scalars (zero forms)
- Lorentz spinors

• 1st order field eqs.

Interaction Carriers (A)

- Bosons S=1
- Gauge connections (adjoint rep.)
- Spacetime vectors (one-forms)
- Lorentz scalars
- 2nd order field eqs.

(BEGH boson ?)

Fermions
$$(l, 7; q, \overline{q})$$

$$L = \overline{\psi}_a (\partial - iA + m)^a_b \psi^b$$

- Spin ½ ir.-rep. of Lorentz group -
- Fundamental ir.-rep. of gauge group

• Spinor under local Lorentz transformations: $\psi'^{\alpha}(x) = S^{\alpha}{}_{\beta}(x)\psi^{\beta}(x)$ αa

• Vector under internal gauge transformations: $\psi'^{a}(x) = [g^{-1}(x)]^{a}{}_{b}\psi^{b}(x)$

Bosons (
$$\gamma$$
, Z, W[±], gluons)

$$L = \left\langle -\frac{1}{4}F \wedge *F - A \wedge *j \right\rangle$$
• Adjoint representation of gauge group

Under internal gauge transformations: $A'(x) = g^{-1}[A(x) + d]g, \quad A = A_{\mu}dx^{\mu}$

"SUSY-SM": for each observed particle, include a partner with equal mass and other q-numbers, but different spin:

SUPERSYMMETRY g ĩ \widetilde{V}_{τ} H H v. Higgsino Higgs W e Quarks Force particles Squarka Sleptons SUSY force **Standard particles SUSY** particles **Observed** Not observed (Dark matter?)

- SUSY breaking mechanism?
- Why are these so heavy?

Spin	Superpartners	Spin
2	Gravitino	3/2
1	Photino	1/2
1	Gluino	1/2
1	Wino [±]	1/2
1	Zino	1/2
0	Higgsino	1/2
1/2	Selectron	0
1/2	Smuon	0
1/2	Stau	0
1/2	Sneutrino	0
1/2	Squark	0
	Spin 2 1 1 1 1 1 1 1 1 1 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	SpinSuperpartners2Gravitino1Photino1Gluino1Gluino1Vino [±] 1Zino0Higgsino1/2Selectron1/2Smuon1/2Stau1/2Sneutrino1/2Squark

The soft SUSY-breaking Lagrangian of the MSSM contains 105 new parameters not found in the Standard Model.

Graham Kribs, Supersymmetry, 2012

Alfonso X, the Wise, commenting on Ptolemy's epicycles (~ 1280) Combine **B** and **F** under a <u>local</u> (graded)symmetry that would: \blacklozenge Respect their roles as connections (**B**) and sections (**F**) in a fiber bundle • Give the right kinetic terms $(\bar{\psi}\partial\psi, F * F)$ and couplings $(\bar{\psi}A\psi)$ ♦ No duplicate fields (no SUSY superpartners) \diamond Allow for massive **F** and massless **B** fields \bullet Contain only spins 1 and $\frac{1}{2}$ (the rest can be composites)

◆ Allow for curved, dynamic spacetime (Gravity)

These features are generically violated by SUSY and SUGRA

III. Unconventional SUSY

How to combine fields in different representations?

N.B.: It is often possible to combine an adjoint representation and a vector into an adjoint of a larger group:

This allows to combine connections and vectors of a given group into a connection for a larger group.

<u>Generalizing the idea</u>:

Combine an internal gauge connection $A^r_{\mu}dx^{\mu}$, a spinor χ^{α} and the Lorentz connection ω^{ab} into a single <u>connection</u> field:

This is still rather conventional

- → McDowell-Mansouri SUGRA in 4D (1976)
- \rightarrow Chern-Simons Supergravity in odd Dimensions, any $\langle \dots \rangle$

Technical issue: \mathcal{A} is a connection 1-form \rightarrow the spinor χ^{α} must also be a 1-form, $\chi^{\alpha} = \chi^{\alpha}_{\ \mu} dx^{\mu} \Rightarrow s = \frac{3}{2}$ gravitino (not in the SM)

There is an alternative:
$$\chi^{\alpha}{}_{\mu} \equiv (\Gamma_{\mu})^{\alpha}{}_{\beta}\psi^{\beta}$$
 (*Matter Ansatz*)
where $\Gamma_{\mu} = \Gamma_{a}e^{a}_{\mu}$
Standard $s = \frac{1}{2}$ *spinor*

Dirac matrices (tangent space) $\{\Gamma_a, \Gamma_b\} = 2\eta_{ab}I$

Vielbein/soldering form: Projects from tangent space onto the spacetime manifold.

Fermion:
$$\chi^{\alpha}{}_{\mu} \in 1 \otimes \frac{1}{2} = \frac{3}{2} \oplus \frac{1}{2}$$

Matter ansatz: $\chi_{\mu} = \Gamma_{\mu} \psi \implies \psi = \frac{1}{4} \Gamma^{\mu} \chi_{\mu}$ (D=4)
 $\implies \left(\delta^{\nu}_{\mu} - \frac{1}{4} \Gamma_{\mu} \Gamma^{\nu}\right) \chi_{\nu} = 0$

Standard Supergravity:
$$\Gamma^{\mu}\chi_{\mu} = 0 \quad \Rightarrow \quad \chi^{\alpha}{}_{\mu} \in 1 \otimes \frac{1}{2} = \frac{3}{2} \bigoplus \chi^{\mu}$$

U-SUSY: $\left(\delta^{\mu}_{\nu} - \frac{1}{4}\Gamma_{\nu}\Gamma^{\mu}\right)\chi_{\mu} = 0 \quad \Rightarrow \quad \chi^{\alpha}{}_{\mu} \in 1 \otimes \frac{1}{2} = \chi^{0} \oplus \frac{1}{2}$

Unconventional SUSY uses the discarded spin-1/2 sector of Supergravity

Example in 3 dimensions

Consider a connection for an algebra that includes internal, spacetime, and supersymmetry generators

- Superalgebra su(1,2|2)

The one-form
$$\mathcal{A} = A^{A}T_{A} + \frac{1}{2}\omega^{ab}J_{ab} + \overline{\psi}_{\alpha}^{r}(\Gamma)_{\beta}^{\alpha}Q_{r}^{\beta} + \overline{Q}_{\alpha}^{r}(\Gamma)_{\beta}^{\alpha}\psi_{r}^{\beta}$$
 transforms as
a connection under the $su(1,2|2)$ superalgebra: $\delta \mathcal{A} = d\Lambda + [\mathcal{A},\Lambda] = D_{\mathcal{A}}\Lambda$
SO(1,2): $[J^{ab}, J^{cd}] = \eta^{bc}J^{ad} - \eta^{ac}J^{bd} + \eta^{ad}J^{bc} - \eta^{bd}J^{ac},$
SU(2): $[T_{A}, T_{B}] = i\varepsilon_{ABC}T_{C}, \qquad [T_{A}, J^{ab}] = 0$
SUSY: $\{Q_{r}^{\alpha}, \overline{Q}_{\beta}^{s}\} = i\delta_{\beta}^{\alpha}T_{A}(\sigma^{A})_{r}^{s} + \frac{1}{2}\delta_{r}^{s}J^{ab}(\Gamma_{ab})_{\beta}^{\alpha}$
 $[J^{ab}, Q] = \frac{1}{2}\Gamma^{ab}Q; \qquad [J^{ab}, \overline{Q}] = -\frac{1}{2}\Gamma^{ab}\overline{Q},$
 $[T,Q] \sim Q; \qquad [T,\overline{Q}] \sim -\overline{Q},$

All fields are scalars under general coordinate transformations (diff. forms). General covariance is automatically built in

The system has a metric structure and local Lorentz symmetry: Gravity!

IV. Unconventional Actions

The action is the integral of a gauge-invariant D-form.

$$I = \int L(\mathcal{A}) = \int L(A, \psi, ...)$$

There are two standard options:

• <u>Chern-Simons</u> (odd *D* only)

$$L_{2n+1} = \left\langle \mathcal{A}(d\mathcal{A})^n + c_1 \mathcal{A}^3 (d\mathcal{A})^{n-1} + \dots + c_n \mathcal{A}^{2n+1} \right\rangle$$

and

• Yang-Mills (any *D*)

$$L_{\mathrm{YM}} = \langle \mathcal{F} \wedge \mathfrak{F} \rangle$$

where $\mathcal{F} = d\mathcal{A} + \mathcal{A}\mathcal{A}$, () = invariant trace, and \circledast = Hodge dual

<u>3D</u>: The Chern-Simons form gives a gauge (quasi-) invariant action for \mathcal{A} : $L = \frac{1}{2} \left\langle \mathcal{A}d\mathcal{A} + \frac{2}{3} \mathcal{A}\mathcal{A}\mathcal{A} \right\rangle$

where the bracket is the invariant symmetric trace in the algebra.

Long wavelength limit of graphene, including curvature, torsion, SU(2). The only propagating degree of freedom is the spin-1/2 Dirac fermion.

Field equations:

$$\delta A: \qquad F^{A} = \frac{i}{2} \varepsilon_{abc} \overline{\psi} \Gamma^{A} \Gamma^{a} \psi e^{b} e^{c} \qquad (1)$$

$$(F^{A}_{\mu\nu} = \varepsilon_{\mu\nu\lambda} j^{\lambda A}) \qquad (F^{ab}_{\mu\nu} = \varepsilon_{\mu\nu\lambda} j^{\lambda A}) \qquad (2)$$

$$\delta \omega^{ab}: \qquad R^{ab} = -2 \overline{\psi} \psi e^{a} e^{b} \qquad (2)$$

$$\delta \overline{\psi}: \qquad [\vartheta + iA - \frac{1}{4} \Gamma^{a} \omega_{ab} \Gamma^{b} + \omega] \psi = 0 \qquad (3)$$

$$\delta e^{a}: \qquad \overline{\psi} \varepsilon_{abc} \Gamma^{c} [\overline{d} e^{b} - e^{b} \overline{d} + 2iA e^{b}] \psi = 2 \overline{\psi} \psi T_{a} \qquad (4)$$
• Standard equations for CS *SU*(2), gravity and spin ½ in 2+1 dimensions.

• Standard equations for CS SU(2), gravity and sp • ψ gets "mass" from torsion: $\mu = \eta_{ab} e^a_{\mu} T^b_{\nu\lambda} \varepsilon^{\mu\nu\lambda}$

$$DT^{a} = 0 \Rightarrow T_{a} = \frac{1}{6}\mu\varepsilon_{abc}e^{b}e^{c}, \ \mu = \text{const}$$

Example in 4 dimensions

• Minimal susy extension of SU(2), SO(3,1) leads to osp(4|2):

$$\mathcal{A} = A_r \mathbf{K}^r + A \mathbf{Z} + \bar{Q}_i \Gamma \psi^i + \bar{\psi}_i \Gamma Q^i + f^a \mathbf{J}_a + \frac{1}{2} \omega^{ab} \mathbf{J}_{ab}$$

$$SU(2) \times U(1)$$

Internal symmetry

$$SU(2) \times U(1)$$

$$SU(2)$$

$$\left\{\bar{Q}_{\alpha}^{i}, Q_{j}^{\beta}\right\} = -i\delta_{\alpha}^{\beta} \left(\sigma^{r}\right)_{j}^{i} \mathbf{K}_{r} + \left(\frac{1}{2}(\Gamma^{a})_{\ \alpha}^{\beta} \mathbf{J}_{a} - \frac{1}{2}(\Sigma^{ab})_{\ \alpha}^{\beta} \mathbf{J}_{ab}\right)\delta_{j}^{i}$$

• Curvature:

$$\mathcal{F} = d\mathcal{A} + \mathcal{A} \mathcal{A} = F_r \mathbf{K}^r + F\mathbf{Z} + \overline{Q}_i \mathcal{F}^i + \overline{\mathcal{F}}_i Q^i + F^a \mathbf{J}_a + \frac{1}{2} F^{ab} \mathbf{J}_{ab}$$

Type equation here.

Where:

$$F = dA - \frac{i}{4}\overline{\psi}_{i} \notin \psi^{i} \qquad U(1)$$

$$F_{r} = dA_{r} + \frac{1}{2}\epsilon_{r}^{st} A_{s} A_{t} - \frac{i}{2}\overline{\psi} \notin \sigma_{r} \notin \psi \qquad SU(2)$$

$$\mathcal{F}^{i} = d(\notin\psi^{i}) + iA_{r}(\sigma^{r})^{i}_{j}\psi^{j} + \frac{1}{4}\Omega^{AB}\Gamma_{AB}\psi^{i} \qquad SUSY$$

$$F^{a} = df^{a} + \frac{1}{2}\omega^{a}_{b}f^{b} + \frac{1}{2}\overline{\psi}_{i}\notin\Gamma^{a}\notin\psi^{i}$$

$$F^{ab} = R^{ab} + f^{a}f^{b} - \overline{\psi}_{i}\notin\Gamma^{ab}\notin\psi^{i}$$

$$SO(3,2)$$

- *Osp*(4|2) or SO(3,2)-invariant traces in 4D. The largest symmetry group that has an invariant trace is $SU(2) \times U(1) \times SO(3,1) \rightarrow Largest$ gauge symmetry of the action.
- f^a is no longer a gauge field

4D Lagrangian (identifying $f_{\mu}^{a} = \lambda^{1/2} e_{\mu}^{a}$):

$$L = \left\{ -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} & Maxwell / YM \right\}$$

+ $\frac{i}{2} [\bar{\psi} \bar{\nabla} \psi - \bar{\psi} \bar{\nabla} \psi] + \bar{\psi} \Gamma_5 \Gamma_a T^a \psi & Dirac \right\}$
+ $\mu^{-2} [(\bar{\psi} \psi)^2 - (\bar{\psi} \Gamma_5 \psi)^2] \left\{ \sqrt{-g} d^4 x \frac{Nambu-Jona \ Lasinio}{\sqrt{-g} d^4 x} \frac{Nambu-Jona \ Lasinio}{\sqrt{-g} d^4 x} + \frac{1}{16} \varepsilon_{abcd} [R^{ab} - \lambda e^a e^b] [R^{cd} - \lambda e^c e^d] \frac{Einstein + cc}{\sqrt{-g} d^4 x} \right\}$

- Standard couplings: $\nabla_{v} = \partial_{v} iA_{v} + \frac{1}{4}\Gamma_{ab}\omega_{v}^{ab} \frac{i\mu}{2}\Gamma_{v}$
- No $\partial_{\mu}\partial_{\nu}\psi$ terms: fermions behave as standard matter
- Cosmological constant $\Lambda \sim -\lambda^2$
- Newton's constant $G \sim \lambda^{-1}$

Phenomenological, low energy, 4D theory.

V. SUSY breaking

For D=4, the only invariant 4-forms are *characteristic classes* (Chern-Weil theorem).

This rules out locally SO(3,2) -invariant actions.

- \rightarrow SO(3,2) is broken down to SO(3,1)
- → Local SUSY must also be broken
- The surviving local symmetry is $U(1) \times SU(2) \times SO(3,1)$

There might exist SUSY-invariant vacua, but this is not a invariance of the action.

Local SUSY could be an approximate symmetry for some configurations or in asymptotic regions, like Poincaré or AdS invariance. (Contingent symmetries)

In odd *D* SUSY transformations such as

$$\begin{aligned} \delta A_{\mu} &= -\frac{i}{2} \left(\overline{\varepsilon} \Gamma_{\mu} \psi + \overline{\psi} \Gamma_{\mu} \varepsilon \right) \\ \delta \omega_{\mu}^{a} &= \overline{\varepsilon} \Gamma^{a} \Gamma_{\mu} \psi + \overline{\psi} \Gamma^{a} \Gamma_{\mu} \varepsilon \\ \delta \psi &= \frac{1}{2} \nabla \varepsilon , \qquad \delta e_{\mu}^{a} = 0 \end{aligned}$$

change the action by a boundary term. However, the condition

$$\left(\delta^{\mu}_{\nu} - \frac{1}{4}\Gamma_{\nu}\Gamma^{\mu}\right)\nabla_{\mu}\epsilon = 0$$

restricts this possibility to certain backgrounds (BPS states).

A bosonic vacuum ($\psi = 0$) is invariant provided [$\nabla \varepsilon = 0$] [Killing spinor]

 \mathcal{N} globally defined Killing spinors implies \mathcal{N} unbroken global (rigid) SUSYs. Hence, SUSY is again a conditional symmetry that depends on the vacuum.

VI. Overview and summary

Ingredients:

• $\operatorname{Ad}_G + \operatorname{Fund}_G \hookrightarrow \operatorname{Ad}_{G'} G \subseteq G'$

• Superconnection: $\mathcal{A} = \begin{bmatrix} \frac{1}{2}\omega^{ab}\mathbf{J}_{ab} + \cdots \end{bmatrix} + \begin{bmatrix} \bar{Q}^{i}\chi_{i} + \bar{\chi}^{i}Q_{i} \end{bmatrix} + \begin{bmatrix} A^{r}\mathbf{T}_{r} \end{bmatrix}$ $\begin{bmatrix} \text{spacetime} \\ \text{symmetry} \end{bmatrix} \begin{bmatrix} \text{charged} \\ \text{fermion} \end{bmatrix} \begin{bmatrix} \text{internal} \\ \text{symmetry} \end{bmatrix}$

- Matter ansatz: $\chi^{\alpha}_{\mu} = (\Gamma_{\mu})^{\alpha}_{\ \beta} \psi^{\beta}, \ \left(\delta^{\mu}_{\nu} \frac{1}{D}\Gamma_{\nu}\Gamma^{\mu}\right)\chi_{\mu} \equiv 0$
- Invariant trace for the largest subgroup:
- Hodge dual [⊛]

<u>Consequences of u-SUSY</u> (What is new?)

- All fields are part of the same superconnection A
 F (matter) sections
 B (interactions) connections
- Not all internal and spacetime symmetries are allowed
- Only $s = \frac{1}{2}$, 1 fundamental fields ($s = 0, \frac{3}{2}$, 2 are composite)
- Only standard kinetic terms (Yang-Mills, Dirac, Chern-Simons)
- Only standard gauge couplings $(\sim \overline{\psi} A \psi \checkmark, \overline{\psi} A_1 A_2 A_3 \psi \bigstar)$
- No SUSY pairs, no matching d.o.f., no hidden sectors

(What is new?)

- (Bare) coupling constants and masses are fixed
- Odd *D*: action is invariant under gauge supergroup
- Even *D*: Action is not SUSY invariant
- F = 0 vacua have full SUSY
- Nambu Jona-Lasinio couplings
- Gravity is necessarily included:
 - Spinors in tangent space \rightarrow Vielbein
 - Local Lorentz symmetry \rightarrow spin connection

Gravity!

In the end, what is the role of SUSY?

Guiding principle

- Relates spacetime and internal groups that can be combined
- Superalgebra, gauge couplings, coupling constants, masses
- Necessary presence of gravity
- Invariance under supergroup broken down to (Internal gauge group) X (Lorentz group)
- Invariance under entire supergroup for some vacua: BPS states

Open questions

• Observable effects (e.g., in graphene)

• Vacua

- Renormalizability? Hierarchy? ...
- $U(1) \times SU(2) \times SU(3)$?
- Unconventional SUGRA:

$$\overline{\chi}_{\mu}\Gamma^{\mu\nu\lambda}\nabla_{\nu}\chi_{\lambda} \rightarrow \frac{(D-1)(D-2)}{2} \ \overline{\psi}\phi\psi$$

• B-E-G-H-boson?

Perhaps we have been living with SUSY all along but looking for the wrong signals.

The reports of my death have been greatly exaggerated... (Mark Twain)

