Determining the strong coupling from Lattice QCD

R. Horsley

- University of Edinburgh -

together with: T. Onogi, R. Sommer

[Mainz Workshop, September 2015, Mainz]

Introduction	Methods for determining $\alpha_{\overline{MS}}$	Criteria	Running to $\mu = m_Z$	Conclusions

Introduction

Strong coupling constant:

$$\alpha_{s} = \frac{g^{2}}{4\pi}$$

- Fundamental parameter of QCD sector of the Standard Model along with quark masses, $\theta,\,\ldots$
- Key role for (eg):
 - LHC collider physics $(H \rightarrow b\overline{b}, H \rightarrow gg, \ldots)$
 - vacuum stability
 - . . .

Continuum QCD QCD – the theory of strong interactions

$$\mathcal{L} = -rac{1}{4}F^a_{\mu
u}F^{\mu
u a} + \sum_{f=1}^{n_f}\overline{q}_f(i\gamma^\mu D_\mu - m_{q_f})q_f$$

$$\begin{array}{l} F_{\mu\nu} &= \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + ig[A_{\mu}, A_{\nu}] \\ D_{\mu} &= \partial_{\mu} + ig\lambda^{a}A_{\mu}^{a} \end{array} \right\} \text{`generalised' QED, } U(1) \rightarrow SU(3) \\ \\ \begin{array}{c} 6 \text{ quarks:} & \begin{pmatrix} u \\ d \end{pmatrix} & \begin{pmatrix} s \\ c \end{pmatrix} & \begin{pmatrix} t \\ b \end{pmatrix} & 8 \text{ gluons: } A_{\mu}^{a} \end{array} \right\}$$

Vertices:

Divergencies in loops need regularisation (eg dimensional) and then a renormalisation procedure, S (eg $S = \overline{MS}$). This procedure introduces a scale μ

 $g_{\mathcal{S}}(\mu)^2$ – the QCD coupling constant runs

Change from one scheme (eg S) to another (eg \overline{MS})

$$g_{\overline{MS}}^2 = g_{S}^2 \left(1 + c_g^{(1)} g_{S}^2 + \ldots \right)$$

The 'running' of the QCD coupling constant as the scale changes is controlled by the β function,

$$\frac{\partial g_{\mathcal{S}}(\mu)}{\partial \log \mu} = \beta^{\mathcal{S}}(g_{\mathcal{S}}(\mu))$$

with

$$\beta^{\mathcal{S}}(g_{\mathcal{S}}) = -b_0 g_{\mathcal{S}}^3 - b_1 g_{\mathcal{S}}^5 - b_2^{\mathcal{S}} g_{\mathcal{S}}^7 - b_3^{\mathcal{S}} g_{\mathcal{S}}^9 - \dots,$$

Integrating

$$\frac{\Lambda^{\mathcal{S}}}{\mu} = \exp\left(-\frac{1}{2b_0 g_{\mathcal{S}}^2}\right) \left(b_0 g_{\mathcal{S}}^2\right)^{-\frac{b_1}{2b_0^2}} \exp\left\{-\int_0^{g_{\mathcal{S}}} d\xi \left[\frac{1}{\beta^{\mathcal{S}}(\xi)} + \frac{1}{b_0 \xi^3} - \frac{b_1}{b_0^2 \xi}\right]\right\}$$

with (scheme dependent) integration constant $\Lambda^{\mathcal{S}}$

To leading order

$$lpha_{s}(\mu) \sim rac{4\pi}{b_{0}\ln(\mu/\Lambda_{\mathcal{S}})^{2}}$$

b coefficients

The first two coefficients are scheme independent:

$$b_0 = \frac{1}{(4\pi)^2} \left(11 - \frac{2}{3}n_f \right) , \qquad b_1 = \frac{1}{(4\pi)^4} \left(102 - \frac{38}{3}n_f \right)$$

MS scheme:

[only defined perturbatively]

$$\begin{split} b_2^{\overline{\text{MS}}} &= \frac{1}{(4\pi)^6} \left(\frac{2857}{2} - \frac{5033}{18} n_f + \frac{325}{54} n_f^2 \right) \\ b_3^{\overline{\text{MS}}} &= \frac{1}{(4\pi)^8} \left[\frac{149753}{6} + 3564 \, \zeta_3 - \left(\frac{1078361}{162} + \frac{6508}{27} \zeta_3 \right) n_f \right. \\ &+ \left(\frac{50065}{162} + \frac{6472}{81} \zeta_3 \right) n_f^2 + \frac{1093}{729} n_f^3 \end{split}$$

[4-loops: T. van Ritbergen et al., hep-ph/9701390]

Mass independent, fixed n_f scheme

Introduction

Methods for determining $\alpha_{\overline{MS}}$

Criteria

 \overline{MS} is a mass independent, fixed n_f scheme

- 'Relatively' easy to compute b coefficients
- Cross quark thresholds, need to match $n_f
 ightarrow n_f + 1$

$$\alpha_{\overline{MS}}^{(n_{f})}(\mu) = \alpha_{\overline{MS}}^{(n_{f}+1)}(\mu) \left\{ 1 + \sum_{k=1}^{\infty} \sum_{n=0}^{k} c_{kn} \left[\frac{\alpha_{\overline{MS}}^{(n_{f}+1)}(\mu)}{\pi} \right]^{k} \ln^{n} \left[\frac{\mu^{2}}{m_{\overline{MS}}^{2}(\mu)} \right] \right\}$$

with

$$c_{10} = 0, \quad c_{20} = \frac{11}{72}, \quad c_{30} = \frac{564731}{124416} - \frac{82043}{27648}\zeta_3 - \frac{2633}{31104}n_f, \quad \dots c_{43}$$

- Usually choose $\mu = m_{\overline{\scriptscriptstyle MS}}(\mu)$ (ie no logs)
- So 'secret' scale dependence of b coefficients
- Perturbative matching, only trust (?) at charm mass and above, ie $n_f=3 \rightarrow 4$
- In a MOM scheme (more physical), explicit mass dependence only b_0^{MOM} , b_1^{MOM} known [Jegerlehner et al., hep-ph/9809485] But smoother behaviour across quark thresholds

Determining $\alpha_{\overline{\rm MS}}$

Basic method 'measure' a short distance quantity $\mathcal{O}(\mu)$ match in a perturbative expansion

```
\mathcal{O}(\mu) = c_1 \alpha_{\overline{\scriptscriptstyle MS}}(\mu) + c_2 \alpha_{\overline{\scriptscriptstyle MS}}(\mu)^2 + \dots
```

• Continuum determinations

Cross section: need to find a suitable process over a range of high enough energies, hadronisation problems, \ldots

• Lattice

```
'Design' (Euclidean) \mathcal{O}
```

Need 2 scales - hadron mass (M_N, r_0, \ldots) and also need high energies

Main question:

Are we in a perturbative regime? Are there non-perturbative contributions?

Phenomenological determinations of $\alpha_{\rm \overline{\scriptscriptstyle MS}}$

PDG (4 categories):

- hadronic τ decays
- hadronic final states of e^+e^- annihilation
- deep inelastic lepton nucleon scattering
- precision electroweak data

This gives [PDG]:

 $\alpha_{\overline{\rm MS}}(M_Z) = 0.1183(12)$

For the lattice to help needs also a precision of $\sim 1\%$

Lattice determinations of $\alpha_{\rm \overline{\scriptsize MS}}$

- Vertices
- Schrödinger functional
- Potential at short distances
- Current two-point functions
- Observables at the lattice spacing scale

Main question: Are we in a low order perturbative regime? Are there non-perturbative contributions?

• Estimation

 $L \gg hadron \ size \sim \Lambda_{
m QCD}^{-1}$ and $1/a \gg \mu \implies L/a \ggg \mu / \Lambda_{
m QCD}$

 $L/a\sim 20-64$ so

 $\mu \ll L/a imes \Lambda_{
m QCD} \sim 5-20\, {
m GeV} \Longrightarrow \mu \sim 1-3 {
m GeV}$ at best

Is this a perturbative scale ?

'Perturbative' series

 $\mathcal{O} = c_1 \alpha_s + c_2 \alpha_s^2 + \ldots + c_n \alpha_s^n + \mathcal{O}(\alpha_s^{n+1}) + \mathcal{O}(\exp(-\gamma/\alpha_s))$

- 'NP' piece $\sim \exp(-\gamma/\alpha_s)$ (instantons, renormalons, ...) or equivalently power corrections: $\sim (\Lambda/\mu)^{\gamma}$
- So ideally want small α_s , when both the exp $(-\gamma/\alpha_s)$ term is negligible and low order PT sufficient

Conclusions

Determination of α_s from QCD vertices

 a, μ

- 'Natural' definition
- Zero incoming ghost momentum in ghost-ghost-gluon vertex
- Simplification: vertex not renormalised (Taylor) 'T' or 'MM' (minimal mom) scheme

$$\alpha_{\rm T}(\mu) = D_{\rm lat}^{\rm ghost}(\mu, a)^2 D_{\rm lat}^{\rm gluon}(\mu, a) \frac{g_0^2(a)}{4\pi}$$

• $D_{\rm lat}^{\rm ghost}$, $D_{\rm lat}^{\rm gluon}$ (bare lattice) dressed ghost/gluon 'form factors' propagator functions in the Landau gauge

$$D^{ab}(p) = -\delta^{ab} \, rac{D^{ ext{ghost}}(p)}{p^2} \,, \quad D^{ab}_{\mu
u}(p) = \delta^{ab} \left(\delta_{\mu
u} - rac{p_\mu p_
u}{p^2}
ight) rac{D^{ ext{gluon}}(p)}{p^2}$$

 $[D^{\rm ghost/gluon}(\textbf{\textit{p}}) = D^{\rm ghost/gluon}_{\rm lat}(\textbf{\textit{p}},0) \; (\text{continuum})]$

• Thus there is now no need to compute the ghost-ghost-gluon vertex, just the ghost and gluon propagators

• condensate necessary (to increase fit region) $\alpha_T(p) \rightarrow \alpha_T(p) + \frac{d}{p^6}$

Introduction	Methods for determining $\alpha \overline{MS}$	Criteria	Running to $\mu = m_Z$	Conclusions

Determination of $\alpha_{\rm s}$ from the Schrödinger functional

- Developed by ALPHA collaboration, presently for $n_f = 0, 2, 4$
- Split determination of α_s at large μ and hadronic scale into two lattice calculations connected by 'step scaling'
 - SF (finite volume) scheme, choose a large scale

$$\mu = rac{1}{L} \sim 10\,,\ldots\,,100\,{
m GeV} \qquad {\it a/L} << 1$$

Choose

$$g_{
m max}^{
m SF\,2}=g^{
m SF}(1/L_{
m max})^2$$
 so that $L_{
m max}\sim 0.5\,{
m fm}\sim 1/(400\,{
m MeV})$

Determine L_{\max} in terms of hadronic scale r_0

• Connect by changing scale $L \rightarrow L/2$ in steps to give

$$g^{
m SF}(\mu)^2$$
 at $\mu=2^k imes\left(rac{r_0}{L_{
m max}}
ight) imes r_0^{-1}$

- At high scale convert $g^{
m SF}(\mu)^2$ to $\overline{\it MS}$ scheme

(Can check) Non perturbative running of α_s

SSF for coupling

Introduction	Methods for determining $\alpha \overline{MS}$	Criteria	Running to $\mu = m_Z$	Conclusions

Determination of $\alpha_{\rm s}$ from the potential at short distances

Force/potential between (infinitely) massive quark-anti-quark pair

$$F(r) = \frac{dV(r)}{dr} = C_F \frac{\alpha_{qq}(r)}{r}$$

alternatively

$$V(r) = -C_F rac{lpha_V(r)}{r}, \qquad ilde{V}(r) = -C_F rac{lpha_V(Q)}{Q^2},$$

- Defines different schemes
- Determine V(r) from Wilson loops

$$\langle W(r,t) \rangle = |c_0|^2 e^{-V(r)t} + \sum_{n \neq 0} |c_n|^2 e^{-V_n(r)t}$$

- Need to fix V(r) at some $r = r_{ref}$ introduces new renormalisation scale (renormalon) [Force better]
- At N^2LO , $\alpha^4_{\overline{\rm MS}} \ln \alpha_{\overline{\rm MS}}$ terms

Potential results: Bazarov et al arXiv:1205.6155, $n_f = 3$, NNNLO

Introduction	Methods for determining $\alpha \overline{MS}$	Criteria	Running to $\mu = m_Z$	Conclusions

Determination of $\alpha_{\rm s}$ from the vacuum polarisation function at short distances

 $\langle J^a_{\mu}J^b_{\nu}\rangle = \delta^{ab}[(\delta_{\mu\nu}Q^2 - Q_{\mu}Q_{\nu})\Pi^{(1)}(Q) - Q_{\mu}Q_{\nu}\Pi^{(0)}(Q)]$

- Q_{μ} is a space like momentum
- $J_{\mu} \equiv V_{\mu}, A_{\mu}$ for (non-singlet) vector/axial-vector currents

Set $\Pi_J(Q) \equiv \Pi_J^{(0)}(Q) + \Pi_J^{(1)}(Q)$, OPE of the vacuum polarisation function $\Pi_{V+A}(Q) = \Pi_V(Q) + \Pi_A(Q)$:

$$\begin{split} &\Pi_{V+A}|_{\text{OPE}}(Q^2,\alpha_s) \\ &= c + C_0(Q^2) + C_m^{V+A}(Q^2) \frac{\bar{m}^2(Q)}{Q^2} + \sum_{q=u,d,s} C_{\bar{q}q}^{V+A}(Q^2) \frac{\langle m_Q \bar{q}q \rangle}{Q^4} \\ &+ C_{GG}(Q^2) \frac{\langle \alpha_s GG \rangle}{Q^4} + \mathcal{O}(Q^{-6}) \end{split}$$

 C_X^{V+A} known up to 4-loops (in \overline{MS} scheme)

- c is Q-independent and divergent ultraviolet cutoff $ightarrow\infty$
- NP condensates eg $\langle \alpha_s GG \rangle$
- terms in C_X which do not have a series expansion in α_s

[Use of Adler function, $D(Q^2) \equiv -Q^2 d\Pi(Q^2)/dQ^2$ is a scheme independent finite quantity, and so avoids some of these problems]

Π_{V+A} : JLQCD/TWQCD: $n_f = 2$

[arXiv:0807.0556]

condensate necessary

Introduction	Methods for determining $\alpha \overline{MS}$	Criteria	Running to $\mu = m_Z$	Conclusions

Determination of α_s from current two-point functions

[moment method]

•

• Consider (finite) moments (
$$n \ge 4$$
)

$$G_n = \sum_{t=-(T/2-a)}^{t=T/2-a} t^n G(t)$$

- moments dominated by $t \sim 1/m_{0h}$, ie short distances
- moments become increasingly perturbative for decreasing n

 $R_n \sim \frac{G_n}{G_n^{(0)}} \sim 1 + r_{n1}\alpha_{\overline{\text{MS}}} + r_{n2}\alpha_{\overline{\text{MS}}} + r_{n3}\alpha_{\overline{\text{MS}}}^3 + \dots$

- $r_{ni} = r_{ni}(\mu/m_h^{\overline{MS}}(\mu))$ known (continuum PT)
- leads to a determination of both $\alpha_{\overline{\scriptscriptstyle MS}}$ and $m_h^{\overline{\scriptscriptstyle MS}}$ (heavy quark mass)

 $R_n(a, m_{\eta_h})$: HPQCD: $n_f = 3$

- $\mu = 3m_h \sim m_{\eta_h}/0.75$
- lattice spacings (dashed lines), together with continuum limit (lines)
- large masses \Rightarrow large lattice artifacts: global fit to $(\alpha_{\overline{MS}})^n$, $(\Lambda/(m_{\eta_h}/2))^j$ [heavy quark mass], $(am_{\eta_c})^{2i}$ [lattice spacing]. $i \ge 10$ together with Bayesian fits

Introduction	Methods for determining $\alpha_{\overline{MS}}$	Criteria	Running to $\mu = m_Z$	Conclusions

Determination of $\alpha_{\rm s}$ from observables at the lattice spacing scale

General method:

- evaluate a short distance quantity ${\cal O}$ at the scale of the lattice spacing $\sim 1/a$
- then determine its relationship to $\alpha_{\rm \overline{MS}}$ via a power series expansion

Much work using this method [eg HPQCD arXiv:0807.1687, Maltman et al arXiv:0807.2020]

$$Y = \sum_{n=1}^{n_{\max}} c_n \alpha_{V'}^n(q^*)$$

- Y: (logarithm) of small Wilson loops, *W_{mn}*, Creutz ratios, 'tadpole improved' Wilson loops, 'boosted' bare coupling,
- scale $q^* = d/a$, $d \approx 3$ (average gluon momentum at one loop)

 $\alpha_{\overline{MS}}(q_0) = \alpha_{V'}(q_0) + d_1 \alpha_{V'}(q_0)^2 + d_2 \alpha_{V'}(q_0)^3 + \cdots \qquad q_0 = 7.5 \,\text{GeV}$

 d_1, d_2 are (known) one, two loop coefficients

- As $q \sim 1/a$ cannot separate out discretisation effects from PT, so possible a^2 , a^4 (power law or condensate) corrections
- Smaller loops are at higher scale, less effected

Another example: Boosted coupling constant

$$lpha^{\Box}(1/a) = rac{1}{4\pi} rac{g_0^2}{u_0^4}\,, \qquad u_0 = W_{11}$$

Perturbative relation

$$\frac{1}{\alpha_{\overline{MS}}(\mu)} = \frac{1}{\alpha^{\Box}(1/a)} + 4\pi(2b_0 \ln a\mu - t_1^{P}) + (4\pi)^2(2b_1 \ln a\mu - t_2^{P})\alpha^{\Box}(1/a)$$

$$t_1^{\Box} \text{ and } t_2^{\Box} \text{ are known}$$

• choose μ so constant term vanishes: similar $\mu \sim 3/a$ found

 $\alpha_{V'}$: HPQCD: $n_f = 3$

[arXiv:0807.1687]

Running of $\alpha_{V'}$ at various scales

- various $\alpha_{V'}$ from each Y at various lattice sizes ie $q^* = d/a$ scales
- $n_{\max} = 10$, first three c_n known, then Bayesian analysis
- effect of condensates small: but more pronounced for smaller scales
- convert at $q^* = d/a = 7.5 \text{ GeV}$ to \overline{MS} scheme
- independent analysis by Maltman et al

[arXiv:0807.1687]

FLAG

[arXiv:1310.8555]

Development of 'goodness' criteria:

'primary' coupling: $\alpha_{\text{eff}} = \alpha_{\mathcal{F}}, \alpha_{V}, \alpha^{\Box}, \alpha_{T}, \mathcal{O}/c_{1}, \dots$

- Renormalisation scale:
 - \star all points relevant in the analysis have $lpha_{
 m eff} <$ 0.2
 - $\, \odot \,$ all points have $\alpha_{\rm eff} <$ 0.4 and at least one $\alpha_{\rm eff} \leq$ 0.25
 - otherwise
- Perturbative behaviour:
 - \star verified over a range of a factor 2 in $lpha_{
 m eff}$ (with no power corrections)
 - $^{\rm O}$ agreement with perturbation theory over a range of a factor 1.5 in $\alpha_{\rm eff}$ (possibly with power corrections)
 - otherwise
- Continuum extrapolation¹ (at reference point of $\alpha_{\rm eff} = 0.3$):
 - \star three lattice spacings with $\mu a < 0.5$
 - \odot three lattice spacings with $1 < \mu a < 1.5$ (reach down to 1)
 - otherwise

¹for Wilson loops replace by Lattice spacings [as $q^* = d/a$]

- \star 3 or more lattice spacings, at least 2 points below a = 0.1 fm
- $\odot\,$ 2 lattice spacings, at least 1 point below $a=0.1\,{\rm fm}$
- otherwise

Generate tables: Observables at the lattice spacing scale

• O(50) publications, for $N_f = 0, 2, 3, 4$

Collaboration Ref. N.										
Collaboration	Ref.	INf	4	~	~	~	scale	$\Lambda_{\overline{MS}}[MeV]$	TOAMS	
HPQCD 10 ^a [§] HPQCD 08A ^a Maltman 08 ^a HPQCD 05A ^a	[73] [514] [517] [513]	$2+1 \\ 2+1 \\ 2+1 \\ 2+1 \\ 2+1$	A A A A	0 0 0 0	* * 0	* * 0 0	$\begin{array}{l} r_1 = 0.3133(23){\rm fm} \\ r_1 = 0.321(5){\rm fm}^{\dagger\dagger} \\ r_1 = 0.318{\rm fm} \\ r_1^{\dagger\dagger} \end{array}$	340(9) $338(12)^{\star}$ $352(17)^{\dagger}$ $319(17)^{\star\star}$	0.812(22) 0.809(29) 0.841(40) 0.763(42)	
$\begin{array}{c} \text{QCDSF/UKQCD} \\ \text{SESAM 99}^c \\ \text{Wingate 95}^d \\ \text{Davies 94}^e \\ \text{Aoki 94}^f \end{array}$	$\begin{array}{c} 05[518] \\ [519] \\ [520] \\ [521] \\ [522] \end{array}$	2 2 2 2 2 2	A A A A	* • * *		*	$ \begin{array}{l} r_{0} = 0.467(33){\rm fm} \\ c\bar{c}(1{\rm S}{\rm -1P}) \\ c\bar{c}(1{\rm S}{\rm -1P}) \\ \Upsilon \\ c\bar{c}(1{\rm S}{\rm -1P}) \\ \Gamma \end{array} $	261(17)(26)	$0.617(40)(21)^b$	
$\begin{array}{c} \text{QCDSF/UKQCD} \\ \text{SESAM 99}^c \\ \text{Wingate 95}^d \\ \text{Davies 94}^e \\ \text{El-Khadra 92}^g \end{array}$	$\begin{array}{c} 05[518] \\ [519] \\ [520] \\ [521] \\ [523] \end{array}$	0 0 0 0	A A A A	*****		*	$\begin{array}{l} r_{0} = 0.467(33){\rm fm} \\ c\bar{c}(1{\rm S-1P}) \\ c\bar{c}(1{\rm S-1P}) \\ \Upsilon \\ c\bar{c}(1{\rm S-1P}) \\ \end{array}$	259(1)(20) 234(10)	$0.614(2)(5)^b$ $0.593(25)^h$	

^{*a*} The numbers for Λ have been converted from the values for $\alpha_s^{(5)}(M_Z)$.

 $\frac{1}{2} \alpha_{(3)}^{(3)}(5 \text{ GeV}) = 0.2034(21), \alpha_{(5)}^{(5)}(M_Z) = 0.1184(6), \text{ only update of intermediate scale and } c, b quark masses,$

Generate tables: Vertices

• O(50) publications, for $N_f = 0, 2, 3, 4$

			ation star	uali dus	Oative Scale	unn ^{Tar} iour extrapolation		
Collaboration Ref.	N_f	Iqnd	, on	Derta	COC.	scale	$\Lambda_{\overline{\rm MS}}[{\rm MeV}]$	$r_0 \Lambda_{\overline{\rm MS}}$
ETM 13D [544] ETM 12C [545] ETM 11D [546]	$2+1+1 \\ 2+1+1 \\ 2+1+1$	A A A	0 0 0	0 0 0	;	f_{π} f_{π} f_{π}	$\begin{array}{c} 314(7)(14)(10)^{\$} \\ 324(17)^{\$} \\ 316(13)(8)(^{+0}_{-9})^{\star} \end{array}$	$\begin{array}{c} 0.752(18)(34)(81)^{\dagger} \\ 0.775(41)^{\dagger} \\ 0.756(31)(19)(^{+0}_{-22})^{\dagger} \end{array}$
Sternbeck 12 [547]	$^{2+1}$	С				only running of a	α_s in Fig. 4	
Sternbeck 12 [547] Sternbeck 10 [548] ETM 10F [549] Boucaud 01B [539]	2 2 2 2	C C A A	0 0 0	* 0 0	•	Agreement with f_{π} $K^* - K$	$r_0 \Lambda_{\overline{\text{MS}}}$ value of [59] $330(23)(22)(^{+0}_{-33})$ $264(27)^{\star\star}$	$\begin{array}{c} 0.60(3)(2)^{\#} \\ 0.72(5)^{+} \\ 0.669(69) \end{array}$
Sternbeck 12 [547] Sternbeck 10 [548] Ilgenfritz 10 [550] Bouward 08 [542]	0 0 0	C C A	*	*	÷	Agreement with only running of a	$r_0 \Lambda_{\overline{\text{MS}}}$ value of [505 α_s in Fig. 13 $224(2)(^{+8})$	$[0.62(1)^{\#}$
Boucaud 08 [543] Boucaud 05 [540] Soto 01 [551] Boucaud 01A [552] Boucaud 00B [553]	0 0 0 0	A A A A	000	0000		$\sqrt{\sigma} = 445 \text{ MeV}$ $\sqrt{\sigma} = 445 \text{ MeV}$ $\sqrt{\sigma} = 445 \text{ MeV}$ $\sqrt{\sigma} = 445 \text{ MeV}$	224(3)(-5) 320(32) 260(18) 233(28) MeV only running of a	0.39(1)(-1) 0.85(9) 0.69(5) 0.62(7)

Generate tables

• O(20) extrapolate to $n_f = 5$ at $\mu = M_Z$

Mathon Status ormalisation turiative colariout Manun ertapolation										
Collaboration	Ref.	N_f	Ind	2,000	Der	000	$\alpha_{\overline{\rm MS}}(M_{\rm Z})$	Method	Table	
ETM 13D ETM 12C ETM 11D	[544] [545] [546]	$2+1+1 \\ 2+1+1 \\ 2+1+1$	A A A	0 0 0	0 0 0	;	$\begin{array}{c} 0.1196(4)(8)(16)\\ 0.1200(14)\\ 0.1198(9)(5)(^{+0}_{-5}) \end{array}$	gluon-ghost vertex gluon-ghost vertex gluon-ghost vertex	37 37 37	
Bazavov 12 HPQCD 10 HPQCD 10 PACS-CS 09A Maltman 08 HPQCD 08B HPQCD 08A HPQCD 05A	[503] [73] [486] [517] [85] [514] [513]	$2+1 \\ 2+1 $	A A A A A A A	0 0 ★ 0 0	0 ★ ★ 0 ■	0 ★ 0 0 ■ ★ 0	$\begin{array}{c} 0.1156(\substack{\pm 21\\ 22})\\ 0.1183(7)\\ 0.1184(6)\\ 0.118(3)^{\#}\\ 0.1192(11)\\ 0.1192(11)\\ 0.1174(12)\\ 0.1183(8)\\ 0.1170(12) \end{array}$	$Q-\bar{Q}$ potential current two points Wilson loops Schrödinger functiona Wilson loops current two points Wilson loops Wilson loops Wilson loops	33 36 35 1 32 35 36 35 35	
QCDSF/UKQCD Boucaud 01B SESAM 99 Wingate 95 Davies 94 Aoki 94 El-Khadra 92	05[518] [539] [519] [520] [521] [522] [523]	$\begin{array}{c} 0,2 \rightarrow 3\\ 2 \rightarrow 3\\ 0,2 \rightarrow 3\\ 0,2 \rightarrow 3\\ 0,2 \rightarrow 3\\ 2 \rightarrow 3\\ 0 \rightarrow 3\end{array}$	A A A A A A	* • * * * *		*	$\begin{array}{c} 0.112(1)(2)\\ 0.113(3)(4)\\ 0.1118(17)\\ 0.107(5)\\ 0.115(2)\\ 0.108(5)(4)\\ 0.106(4) \end{array}$	Wilson loops gluon-ghost vertex Wilson loops Wilson loops Wilson loops Wilson loops Wilson loops	35 37 35 35 35 35 35 35	

 $^{\#}$ Result with a linear continuum extrapolation in a.

Introduction	Methods for determining $\alpha \overline{MS}$	Criteria	Running to $\mu = m_Z$	Conclusions

- In final estimation of $\alpha_{\overline{\scriptscriptstyle MS}}(M_Z)$ use results with
 - no red squares
 - as matching perturbative, use only $n_f = 3$ results and run to charm when match to $n_f = 4$ (and then match at bottom for $n_f = 5$)
- weighted average for final central value conservatively estimate error (estimate perturbative uncertainty)
 - perturbative truncation errors potentially largest source of errors
 - HPQCD 08A Maltman 08 central difference for $\alpha_{\overline{MS}}$ (for g^{\Box}) \sim 0.0009 (on overlapping data sets)
 - estimate taking (estimated size) of c_4 as uncertainty

•
$$\alpha_{\overline{MS}}(M_Z) = 0.1184(12)$$

Conclusions

- Tremendous progress
- Weighted average with PDG results:

 $\alpha_{\overline{\rm MS}}(M_Z)=0.1183(8)$