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Introduction

Strong coupling constant:

αs =
g2

4π

• Fundamental parameter of QCD sector of the Standard Model along
with quark masses, θ, . . .

• Key role for (eg):

• LHC collider physics (H → bb, H → gg , . . .)
• vacuum stability
• . . .
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Continuum QCD

QCD – the theory of strong interactions

L = − 1
4
F a
µνF

µνa +

nf∑
f =1

qf (iγµDµ −mqf )qf

Fµν = ∂µAν − ∂νAµ + ig [Aµ,Aν ]
Dµ = ∂µ + igλaAa

µ

}
‘generalised’ QED, U(1)→ SU(3)

6 quarks:

(
u
d

) (
s
c

) (
t
b

)
8 gluons: Aa

µ

Vertices:
a, µ

i, α j, β b, ν c, ρ

a, µ

q

p

r

c, ρ d, λ

a, µ b, ν
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iΓ
(3)
qq̄A = + + + . . .

Divergencies in loops need regularisation (eg dimensional) and then a
renormalisation procedure, S (eg S = MS). This procedure introduces a
scale µ

gS(µ)2 – the QCD coupling constant runs

Change from one scheme (eg S) to another (eg MS)

g2
MS = g2

S

(
1 + c(1)

g g2
S + . . .

)
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The ‘running’ of the QCD coupling constant as the scale changes is
controlled by the β function,

∂gS(µ)

∂ logµ
= βS(gS(µ))

with

βS (gS) = −b0g
3
S − b1g

5
S − bS2 g

7
S − bS3 g

9
S − . . . ,

Integrating

ΛS

µ
= exp

(
− 1

2b0g2
S

)(
b0g

2
S
)− b1

2b2
0 exp

{
−
∫ gS

0

dξ

[
1

βS(ξ)
+

1

b0ξ3
− b1

b2
0ξ

]}
with (scheme dependent) integration constant ΛS

To leading order

αs(µ) ∼ 4π

b0 ln(µ/ΛS)2
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b coefficients

The first two coefficients are scheme independent:

b0 =
1

(4π)2

(
11− 2

3
nf

)
, b1 =

1

(4π)4

(
102− 38

3
nf

)

MS scheme: [only defined perturbatively]

bMS

2 =
1

(4π)6

(
2857

2
− 5033

18
nf +

325

54
n2
f

)
bMS

3 =
1

(4π)8

[
149753

6
+ 3564 ζ3 −

(
1078361

162
+

6508

27
ζ3

)
nf

+

(
50065

162
+

6472

81
ζ3

)
n2
f +

1093

729
n3
f

]
[4-loops: T. van Ritbergen et al., hep-ph/9701390]

Mass independent, fixed nf scheme
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• µ/ΛMS = 10⇐⇒ µ ∼ 2.5 GeV
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MS is a mass independent, fixed nf scheme

• ‘Relatively’ easy to compute b coefficients

• Cross quark thresholds, need to match nf → nf + 1

α
(nf )
MS

(µ) = α
(nf +1)
MS

(µ)

1 +
∞∑
k=1

k∑
n=0

ckn

[
α

(nf +1)
MS

(µ)

π

]k
lnn

[
µ2

m2
MS

(µ)

]
with

c10 = 0 , c20 =
11

72
, c30 =

564731

124416
− 82043

27648
ζ3 −

2633

31104
nf , . . . c43

• Usually choose µ = mMS(µ) (ie no logs)

• So ‘secret’ scale dependence of b coefficients

• Perturbative matching, only trust (?) at charm mass and above, ie
nf = 3→ 4

• In a MOM scheme (more physical), explicit mass dependence – only
bMOM

0 , bMOM
1 known [Jegerlehner et al., hep-ph/9809485]

But smoother behaviour across quark thresholds
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Determining αMS

Basic method ‘measure’ a short distance quantity O(µ) match in a
perturbative expansion

O(µ) = c1αMS(µ) + c2αMS(µ)2 + . . .

• Continuum determinations
Cross section: need to find a suitable process over a range of high
enough energies, hadronisation problems, . . .

• Lattice
‘Design’ (Euclidean) O
Need 2 scales - hadron mass (MN , r0, . . .) and also need high
energies
Main question:
Are we in a perturbative regime? Are there non-perturbative
contributions?
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Phenomenological determinations of αMS

PDG (4 categories):

• hadronic τ decays

• hadronic final states of e+e− annihilation

• deep inelastic lepton nucleon scattering

• precision electroweak data

This gives [PDG]:

αMS(MZ ) = 0.1183(12)

For the lattice to help needs also a precision of ∼ 1%



Introduction Methods for determining α
MS

Criteria Running to µ = mZ Conclusions

Lattice determinations of αMS

• Vertices

• Schrödinger functional

• Potential at short distances

• Current two-point functions

• Observables at the lattice spacing scale
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Main question: Are we in a low order perturbative regime? Are there
non-perturbative contributions?

• Estimation

L� hadron size ∼ Λ−1
QCD and 1/a� µ =⇒ L/a ≫ µ/ΛQCD

L/a ∼ 20 – 64 so

µ� L/a× ΛQCD ∼ 5− 20 GeV =⇒ µ ∼ 1− 3GeV at best

Is this a perturbative scale ?

• ‘Perturbative’ series

O = c1αs + c2α
2
s + . . .+ cnα

n
s + O(αn+1

s ) + O(exp(−γ/αs))

• ‘NP’ piece ∼ exp(−γ/αs) (instantons, renormalons, . . .) or
equivalently power corrections: ∼ (Λ/µ)γ

• So ideally want small αs , when both the exp(−γ/αs) term is
negligible and low order PT sufficient
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Determination of αs from QCD vertices
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• ‘Natural’ definition

• Zero incoming ghost momentum in ghost-ghost-gluon vertex

• Simplification: vertex not renormalised (Taylor)
‘T’ or ‘MM’ (minimal mom) scheme

αT(µ) = Dghost
lat (µ, a)2Dgluon

lat (µ, a)
g2

0 (a)

4π

a, µ

cb

p

• Dghost
lat , Dgluon

lat (bare lattice) dressed ghost/gluon ‘form factors’
propagator functions in the Landau gauge

Dab(p) = −δab Dghost(p)

p2
, Dab

µν(p) = δab
(
δµν −

pµpν
p2

)
Dgluon(p)

p2

[Dghost/gluon(p) = D
ghost/gluon
lat

(p, 0) (continuum)]

• Thus there is now no need to compute the ghost-ghost-gluon vertex,
just the ghost and gluon propagators
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αT : ETM: nf = 4 [arXiv:1201.5770]
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p (GeV)
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α
T
(p

)
β=1.90, aµ

l
=0.0040

β=1.95, aµ
l
=0.0055

β=2.10, aµ
l
=0.0020

OPE + d/p
6

OPE
4-loops pert.

• condensate necessary (to increase fit region) αT (p)→ αT (p) + d
p6
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Determination of αs from the Schrödinger functional
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• Developed by ALPHA collaboration, presently for nf = 0, 2, 4

• Split determination of αs at large µ and hadronic scale into two
lattice calculations – connected by ‘step scaling’

• SF (finite volume) scheme, choose a large scale

µ =
1

L
∼ 10 , . . . , 100 GeV a/L << 1

• Choose

gSF 2
max = gSF(1/Lmax)2 so that Lmax ∼ 0.5 fm ∼ 1/(400 MeV)

Determine Lmax in terms of hadronic scale r0

• Connect by changing scale L→ L/2 in steps to give

gSF(µ)2 at µ = 2k ×
(

r0

Lmax

)
× r−1

0

• At high scale convert gSF(µ)2 to MS scheme
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(Can check) Non perturbative running of αs
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Nf = 4
2-loop β function
3-loop β function

ALPHA: nf = 4 [arXiv:1011.2332]
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SSF for coupling

L/a=4

L/a=6

L/a=8

Const fit w/ 6, 8

PT 3 loops

polynomial fit

PACS-CS: nf = 3 [arXiv:0906.3906]

3/(4π) ∼ 0.25
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Determination of αs from the potential at short distances
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Force/potential between (infinitely) massive quark–anti-quark pair

F (r) =
dV (r)

dr
= CF

αqq(r)

r

alternatively

V (r) = −CF
αV (r)

r
, Ṽ (r) = −CF

αV (Q)

Q2
,

• Defines different schemes

• Determine V (r) from Wilson loops

〈W (r , t)〉 = |c0|2e−V (r)t +
∑
n 6=0

|cn|2e−Vn(r)t

• Need to fix V (r) at some r = rref - introduces new renormalisation
scale (renormalon) [Force better]

• At N2LO, α4
MS

lnαMS terms
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Potential results: Bazarov et al arXiv:1205.6155, nf = 3, NNNLO

tree level
1 loop
2 loop

N
2LL

3 loop + us. res.

N
3LL

0.2 0.3 0.4 0.5 0.6

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

r � r0

r
0
E
0
Hr
L+
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n
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Determination of αs from the vacuum polarisation function at short
distances
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〈JaµJbν 〉 = δab[(δµνQ
2 − QµQν)Π(1)(Q)− QµQνΠ(0)(Q)]

• Qµ is a space like momentum

• Jµ ≡ Vµ,Aµ for (non-singlet) vector/axial-vector currents

Set ΠJ(Q) ≡ Π
(0)
J (Q) + Π

(1)
J (Q), OPE of the vacuum polarisation

function ΠV+A(Q) = ΠV (Q) + ΠA(Q):

ΠV+A|OPE(Q2, αs)

= c + C0(Q2) + CV+A
m (Q2)

m̄2(Q)

Q2
+

∑
q=u,d,s

CV+A
q̄q (Q2)

〈mQ q̄q〉
Q4

+CGG (Q2)
〈αsGG 〉

Q4
+ O(Q−6)

CV+A
X known up to 4-loops (in MS scheme)

• c is Q–independent and divergent ultraviolet cutoff →∞
• NP condensates eg 〈αsGG〉
• terms in CX which do not have a series expansion in αs

[Use of Adler function, D(Q2) ≡ −Q2dΠ(Q2)/dQ2 is a scheme independent finite quantity, and so avoids some of these problems]
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ΠV+A: JLQCD/TWQCD: nf = 2 [arXiv:0807.0556]
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c+C
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s
/πGG>/Q
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• condensate necessary
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Determination of αs from current two-point functions [moment method]
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G (t) = a6
∑
~x

〈J†(x)J(0)〉 J = m0hqhγ5qh′

∼ t−3 singularity as t → 0

qh , qh′ mass degenerate,

m0h , heavy valence quarks

• Consider (finite) moments (n ≥ 4)

Gn =

t=T/2−a∑
t=−(T/2−a)

tnG (t)

• moments dominated by t ∼ 1/m0h, ie short distances

• moments become increasingly perturbative for decreasing n

•

Rn ∼
Gn

G
(0)
n

∼ 1 + rn1αMS + rn2αMS + rn3α
3
MS + . . .

• rni = rni (µ/m
MS

h (µ)) known (continuum PT)

• leads to a determination of both αMS and mMS

h (heavy quark mass)
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Rn(a,mηh): HPQCD: nf = 3 [arXiv:1004.4285]

• µ = 3mh ∼ mηh/0.75
• lattice spacings (dashed lines), together with continuum limit (lines)
• large masses ⇒ large lattice artifacts:

global fit to (αMS)n, (Λ/(mηh/2))j [heavy quark mass], (amηc )2i

[lattice spacing]. i ≥ 10 together with Bayesian fits
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Determination of αs from observables at the lattice spacing scale
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General method:

• evaluate a short distance quantity O at the scale of the lattice
spacing ∼ 1/a

• then determine its relationship to αMS via a power series expansion

Much work using this method [eg HPQCD arXiv:0807.1687, Maltman et al arXiv:0807.2020]

Y =
nmax∑
n=1

cnα
n
V ′(q

∗)

• Y : (logarithm) of small Wilson loops, Wmn, Creutz ratios, ‘tadpole
improved’ Wilson loops, ‘boosted’ bare coupling,

• scale q∗ = d/a, d ≈ 3 (average gluon momentum at one loop)

•

αMS(q0) = αV ′(q0) + d1αV ′(q0)2 + d2αV ′(q0)3 + · · · q0 = 7.5 GeV

d1, d2 are (known) one, two loop coefficients
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• As q ∼ 1/a cannot separate out discretisation effects from PT, so
possible a2, a4 (power law or condensate) corrections

• Smaller loops are at higher scale, less effected

Another example: Boosted coupling constant

•

α�(1/a) =
1

4π

g2
0

u4
0

, u0 = W11

• Perturbative relation

1

αMS(µ)
=

1

α�(1/a)
+ 4π(2b0 ln aµ− tP1 ) + (4π)2(2b1 ln aµ− tP2 )α�(1/a)

t�1 and t�2 are known

• choose µ so constant term vanishes: similar µ ∼ 3/a found
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αV ′ : HPQCD: nf = 3 [arXiv:0807.1687]

Running of αV ′ at various scales

• various αV ′ from each Y at various lattice sizes ie q∗ = d/a scales

• nmax = 10, first three cn known, then Bayesian analysis

• effect of condensates small: but more pronounced for smaller scales

• convert at q∗ = d/a = 7.5 GeV to MS scheme

• independent analysis by Maltman et al [arXiv:0807.1687]
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FLAG [arXiv:1310.8555]

Development of ‘goodness’ criteria:

‘primary’ coupling: αeff = αSF , αV , α
� , αT ,O/c1 , . . .

• Renormalisation scale:
F all points relevant in the analysis have αeff < 0.2

◦ all points have αeff < 0.4 and at least one αeff ≤ 0.25
� otherwise

• Perturbative behaviour:
F verified over a range of a factor 2 in αeff (with no power corrections)

◦ agreement with perturbation theory over a range of a factor 1.5 in
αeff (possibly with power corrections)

� otherwise

• Continuum extrapolation1 (at reference point of αeff = 0.3):
F three lattice spacings with µa < 0.5

◦ three lattice spacings with 1 < µa < 1.5 (reach down to 1)
� otherwise

1for Wilson loops replace by Lattice spacings [as q∗ = d/a]
F 3 or more lattice spacings, at least 2 points below a = 0.1 fm

◦ 2 lattice spacings, at least 1 point below a = 0.1 fm
� otherwise
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Generate tables: Observables at the lattice spacing scale

• O(50) publications, for Nf = 0, 2, 3, 4

Collaboration Ref. Nf pu
bl

ic
at

io
n

st
at

us

re
no

rm
al

iz
at

io
n

sc
al

e

p
er

tu
rb

at
iv

e
b
eh

av
io

ur

la
tt

ic
e

sp
ac

in
gs

scale ΛMS[ MeV] r0ΛMS

HPQCD 10a § [73] 2+1 A ◦ ⋆ ⋆ r1 = 0.3133(23) fm 340(9) 0.812(22)

HPQCD 08Aa [514] 2+1 A ◦ ⋆ ⋆ r1 = 0.321(5) fm†† 338(12)⋆ 0.809(29)

Maltman 08a [517] 2+1 A ◦ ◦ ◦ r1 = 0.318 fm 352(17)† 0.841(40)

HPQCD 05Aa [513] 2+1 A ◦ ◦ ◦ r1
†† 319(17)⋆⋆ 0.763(42)

QCDSF/UKQCD 05[518] 2 A ⋆  ⋆ r0 = 0.467(33) fm 261(17)(26) 0.617(40)(21)b

SESAM 99c [519] 2 A ◦   cc̄(1S-1P)

Wingate 95d [520] 2 A ⋆   cc̄(1S-1P)
Davies 94e [521] 2 A ⋆   Υ

Aoki 94f [522] 2 A ⋆   cc̄(1S-1P)

QCDSF/UKQCD 05[518] 0 A ⋆ ◦ ⋆ r0 = 0.467(33) fm 259(1)(20) 0.614(2)(5)b

SESAM 99c [519] 0 A ⋆   cc̄(1S-1P)

Wingate 95d [520] 0 A ⋆   cc̄(1S-1P)
Davies 94e [521] 0 A ⋆   Υ

El-Khadra 92g [523] 0 A ⋆ ◦ ◦ cc̄(1S-1P) 234(10) 0.593(25)h

a The numbers for Λ have been converted from the values for α
(5)
s (MZ).

§ α
(3)

MS
(5 GeV) = 0.2034(21), α

(5)

MS
(MZ) = 0.1184(6), only update of intermediate scale and c, b quark masses,

supersedes HPQCD 08A and Maltman 08.
† α

(5)

MS
(MZ) = 0.1192(11).

⋆ α
(3)
V (7.5 GeV) = 0.2120(28), α

(5)

MS
(MZ) = 0.1183(8), supersedes HPQCD 05.

†† Scale is originally determined from Υ mass splitting. r1 is used as an intermediate scale. In conversion to
r0ΛMS, r0 is taken to be 0.472 fm.
⋆⋆ α

(3)
V (7.5 GeV) = 0.2082(40), α

(5)

MS
(MZ) = 0.1170(12).

b This supersedes [524–526]. α
(5)

MS
(MZ) = 0.112(1)(2). The Nf = 2 results were based on values for r0/a

which have later been found to be too small [59]. The effect will be of the order of 10–15%, presumably an
increase in Λr0.
c α

(5)

MS
(MZ) = 0.1118(17).

d α
(3)
V (6.48 GeV) = 0.194(7) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.107(5).

e α
(3)
P (8.2 GeV) = 0.1959(34) extrapolated from Nf = 0, 2. α

(5)

MS
(MZ) = 0.115(2).

f Estimated α
(5)

MS
(MZ) = 0.108(5)(4).

g This early computation violates our requirement that scheme conversions are done at the two-loop level.
h Used r0 = 0.5fm to convert to r0ΛMS. Λ

(4)

MS
= 160(+47

−37)MeV, α
(4)

MS
(5GeV) = 0.174(12). We converted this

number to give α
(5)

MS
(MZ) = 0.106(4).

Table 35: Wilson loop results.
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Generate tables: Vertices

• O(50) publications, for Nf = 0, 2, 3, 4

Collaboration Ref. Nf pu
bl

ic
at

io
n

st
at

us

re
no

rm
al

iz
at

io
n

sc
al

e

p
er

tu
rb

at
iv

e
b
eh

av
io

ur

co
nt

in
uu

m
ex

tr
ap

ol
at

io
n

scale ΛMS[ MeV] r0ΛMS

ETM 13D [544] 2+1+1 A ◦ ◦  fπ 314(7)(14)(10)§ 0.752(18)(34)(81)†

ETM 12C [545] 2+1+1 A ◦ ◦  fπ 324(17)§ 0.775(41)†

ETM 11D [546] 2+1+1 A ◦ ◦  fπ 316(13)(8)(+0
−9)

⋆ 0.756(31)(19)(+0
−22)

†

Sternbeck 12 [547] 2+1 C only running of αs in Fig. 4

Sternbeck 12 [547] 2 C Agreement with r0ΛMS value of [59]

Sternbeck 10 [548] 2 C ◦ ⋆  0.60(3)(2)#

ETM 10F [549] 2 A ◦ ◦ ◦ fπ 330(23)(22)(+0
−33) 0.72(5)+

Boucaud 01B [539] 2 A ◦ ◦  K∗ − K 264(27)⋆⋆ 0.669(69)

Sternbeck 12 [547] 0 C Agreement with r0ΛMS value of [505]

Sternbeck 10 [548] 0 C ⋆ ⋆  0.62(1)#

Ilgenfritz 10 [550] 0 A ⋆ ⋆  only running of αs in Fig. 13
Boucaud 08 [543] 0 A ◦ ◦

√
σ = 445 MeV 224(3)(+8

−5) 0.59(1)(+2
−1)

Boucaud 05 [540] 0 A  ◦
√
σ = 445 MeV 320(32) 0.85(9)

Soto 01 [551] 0 A ◦ ◦ ◦ √
σ = 445 MeV 260(18) 0.69(5)

Boucaud 01A [552] 0 A ◦ ◦ ◦ √
σ = 445 MeV 233(28) MeV 0.62(7)

Boucaud 00B [553] 0 A ◦ ◦ ◦ only running of αs

Boucaud 00A [554] 0 A ◦ ◦ ◦ √
σ = 445 MeV 237(3)(+ 0

−10) 0.63(1)(+0
−3)

Becirevic 99B[555] 0 A ◦ ◦
√
σ = 445 MeV 319(14)(+10

−20) 0.84(4)(+3
−5)

Becirevic 99A[556] 0 A ◦ ◦
√
σ = 445 MeV  353(2)(+25

−15)  0.93(+7
−4)

Boucaud 98B [557] 0 A  ◦
√
σ = 445 MeV 295(5)(15) 0.78(4)

Boucaud 98A [558] 0 A  ◦
√
σ = 445 MeV 300(5) 0.79(1)

Alles 96 [538] 0 A  ◦
√
σ = 440 MeV++ 340(50) 0.91(13)

† We use the 2+1 value r0 = 0.472 fm.
§ α

(5)

MS
(MZ) = 0.1200(14).

⋆ First error is statistical; second is due to the lattice spacing and third is due to the chiral extrapolation.
α

(5)

MS
(MZ) = 0.1198(9)(5)(+0

−5).
# Only r0ΛMS is given.
+ The determination of r0 from the fπ scale is found in [240].
⋆⋆ α

(5)

MS
(MZ) = 0.113(3)(4).

++ The scale is taken from the string tension computation of [506].

Table 37: Results for the gluon–ghost vertex.
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Generate tables

• O(20) extrapolate to nf = 5 at µ = MZ

Collaboration Ref. Nf pu
bl

ic
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uu
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αMS(MZ) Method Table

ETM 13D [544] 2+1+1 A ◦ ◦  0.1196(4)(8)(16) gluon-ghost vertex 37
ETM 12C [545] 2+1+1 A ◦ ◦  0.1200(14) gluon-ghost vertex 37
ETM 11D [546] 2+1+1 A ◦ ◦  0.1198(9)(5)(+0

−5) gluon-ghost vertex 37

Bazavov 12 [503] 2+1 A ◦ ◦ ◦ 0.1156(+21
−22) Q-Q̄ potential 33

HPQCD 10 [73] 2+1 A ◦ ◦ ◦ 0.1183(7) current two points 36
HPQCD 10 [73] 2+1 A ◦ ⋆ ⋆ 0.1184(6) Wilson loops 35

PACS-CS 09A [486] 2+1 A ⋆ ⋆ ◦ 0.118(3)# Schrödinger functional 32
Maltman 08 [517] 2+1 A ◦ ◦ ◦ 0.1192(11) Wilson loops 35
HPQCD 08B [85] 2+1 A    0.1174(12) current two points 36
HPQCD 08A [514] 2+1 A ◦ ⋆ ⋆ 0.1183(8) Wilson loops 35
HPQCD 05A [513] 2+1 A ◦ ◦ ◦ 0.1170(12) Wilson loops 35

QCDSF/UKQCD 05[518] 0, 2 → 3 A ⋆  ⋆ 0.112(1)(2) Wilson loops 35
Boucaud 01B [539] 2 → 3 A ◦ ◦  0.113(3)(4) gluon-ghost vertex 37
SESAM 99 [519] 0, 2 → 3 A ⋆   0.1118(17) Wilson loops 35
Wingate 95 [520] 0, 2 → 3 A ⋆   0.107(5) Wilson loops 35
Davies 94 [521] 0, 2 → 3 A ⋆   0.115(2) Wilson loops 35
Aoki 94 [522] 2 → 3 A ⋆   0.108(5)(4) Wilson loops 35
El-Khadra 92 [523] 0 → 3 A ⋆ ◦ ◦ 0.106(4) Wilson loops 35

# Result with a linear continuum extrapolation in a.

Table 38: Results for αMS(MZ). Nf = 3 results are matched at the charm and bottom
thresholds and scaled to MZ to obtain the Nf = 5 result. The arrows in the Nf column
indicates which Nf (Nf = 0, 2 or a combination of both) were used to first extrapolate to
Nf = 3 or estimate the Nf = 3 value through a model/assumption. The exact procedures
used vary and are given in the various papers.

Nf = 2 + 1 and Nf = 2 + 1 + 1 simulations. For comparison, we also include results from
Nf = 0, 2 simulations, which are not relevant for phenomenology. For the Nf ≥ 3 simulations,
the conversion from Nf = 3 to Nf = 5 is made by matching the coupling constant at the
charm and bottom quark thresholds and using the scale as determined or used by the authors.
For Nf = 0, 2 the results for αMS in the summary table come from evaluations of αMS at a
low scale and are extrapolated in Nf to Nf = 3.

As can be seen from the tables and figures, at present there are several computations
satisfying the quality criteria to be included in the FLAG average. We note that none of

those calculations of α
(5)

MS
(MZ) satisfy all of our more stringent criteria: a ⋆ for the renor-

malization scale, perturbative behaviour and continuum extrapolation. The results, however,
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• In final estimation of αMS(MZ ) use results with
• no red squares
• as matching perturbative, use only nf = 3 results and run to charm

when match to nf = 4 (and then match at bottom for nf = 5)

• weighted average for final central value
conservatively estimate error (estimate perturbative uncertainty)

• perturbative truncation errors potentially largest source of errors
• HPQCD 08A – Maltman 08 central difference for αMS (for g�)
∼ 0.0009 (on overlapping data sets)

• estimate taking (estimated size) of c4 as uncertainty
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• αMS(MZ ) = 0.1184(12)



Introduction Methods for determining α
MS

Criteria Running to µ = mZ Conclusions

Conclusions

0.11 0.12 0.13

α
s
(M

Z
)

τ decays

DIS

e
+
e

−

Z pole

Lattice

Average

          

• Tremendous progress
• Weighted average with PDG results:

αMS(MZ ) = 0.1183(8)
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