Determining the strong coupling from Lattice QCD

R. Horsley
- University of Edinburgh -

together with: T. Onogi, R. Sommer
[Mainz Workshop, September 2015, Mainz]

Introduction
Strong coupling constant:

$$
\alpha_{s}=\frac{g^{2}}{4 \pi}
$$

- Fundamental parameter of QCD sector of the Standard Model along with quark masses, θ, \ldots
- Key role for (eg):
- LHC collider physics $(H \rightarrow b \bar{b}, H \rightarrow g g, \ldots)$
- vacuum stability

Continuum QCD
QCD - the theory of strong interactions

$$
\begin{gathered}
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}+\sum_{f=1}^{n_{f}} \bar{q}_{f}\left(i \gamma^{\mu} D_{\mu}-m_{q_{f}}\right) q_{f} \\
\left.\begin{array}{c}
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}+i g\left[A_{\mu}, A_{\nu}\right] \\
D_{\mu}= \\
\partial_{\mu}+i g \lambda^{2} A_{\mu}^{a}
\end{array}\right\} \text { 'generalised' QED, } U(1) \rightarrow S U(3) \\
6 \text { quarks: }\binom{u}{d} \quad\binom{s}{c} \quad\binom{t}{b} \quad \text { 8 gluons: } A_{\mu}^{a}
\end{gathered}
$$

Vertices:

Divergencies in loops need regularisation (eg dimensional) and then a renormalisation procedure, \mathcal{S} (eg $\mathcal{S}=\overline{M S}$). This procedure introduces a scale μ

$$
g_{\mathcal{S}}(\mu)^{2} \text { - the QCD coupling constant runs }
$$

Change from one scheme (eg \mathcal{S}) to another ($\mathrm{eg} \overline{M S}$)

$$
g_{M S}^{2}=g_{\mathcal{S}}^{2}\left(1+c_{g}^{(1)} g_{\mathcal{S}}^{2}+\ldots\right)
$$

The 'running' of the QCD coupling constant as the scale changes is controlled by the β function,

$$
\frac{\partial g_{\mathcal{S}}(\mu)}{\partial \log \mu}=\beta^{\mathcal{S}}\left(g_{\mathcal{S}}(\mu)\right)
$$

with

$$
\beta^{\mathcal{S}}\left(g_{\mathcal{S}}\right)=-b_{0} g_{\mathcal{S}}^{3}-b_{1} g_{\mathcal{S}}^{5}-b_{2}^{\mathcal{S}} g_{\mathcal{S}}^{7}-b_{3}^{\mathcal{S}} g_{\mathcal{S}}^{9}-\ldots,
$$

Integrating

$$
\frac{\Lambda^{\mathcal{S}}}{\mu}=\exp \left(-\frac{1}{2 b_{0} g_{\mathcal{S}}^{2}}\right)\left(b_{0} g_{\mathcal{S}}^{2}\right)^{-\frac{b_{1}}{2 b_{0}^{2}}} \exp \left\{-\int_{0}^{g_{\mathcal{S}}} d \xi\left[\frac{1}{\beta^{\mathcal{S}}(\xi)}+\frac{1}{b_{0} \xi^{3}}-\frac{b_{1}}{b_{0}^{2} \xi}\right]\right\}
$$

with (scheme dependent) integration constant $\wedge^{\mathcal{S}}$

To leading order

$$
\alpha_{s}(\mu) \sim \frac{4 \pi}{b_{0} \ln \left(\mu / \Lambda_{\mathcal{S}}\right)^{2}}
$$

b coefficients

The first two coefficients are scheme independent:

$$
b_{0}=\frac{1}{(4 \pi)^{2}}\left(11-\frac{2}{3} n_{f}\right), \quad b_{1}=\frac{1}{(4 \pi)^{4}}\left(102-\frac{38}{3} n_{f}\right)
$$

$\overline{M S}$ scheme:

$$
\begin{aligned}
b_{2}^{\overline{M s}}= & \frac{1}{(4 \pi)^{6}}\left(\frac{2857}{2}-\frac{5033}{18} n_{f}+\frac{325}{54} n_{f}^{2}\right) \\
b_{3}^{\overline{M s}}= & \frac{1}{(4 \pi)^{8}}\left[\frac{149753}{6}+3564 \zeta_{3}-\left(\frac{1078361}{162}+\frac{6508}{27} \zeta_{3}\right) n_{f}\right. \\
& \left.\quad+\left(\frac{50065}{162}+\frac{6472}{81} \zeta_{3}\right) n_{f}^{2}+\frac{1093}{729} n_{f}^{3}\right]
\end{aligned}
$$

Mass independent, fixed n_{f} scheme

- $\mu / \Lambda^{\overline{M s}}=10 \Longleftrightarrow \mu \sim 2.5 \mathrm{GeV}$
$\overline{M S}$ is a mass independent, fixed n_{f} scheme
- 'Relatively' easy to compute b coefficients
- Cross quark thresholds, need to match $n_{f} \rightarrow n_{f}+1$

$$
\alpha_{\overline{M S}}^{\left(n_{f}\right)}(\mu)=\alpha_{\overline{M S}}^{\left(n_{f}+1\right)}(\mu)\left\{1+\sum_{k=1}^{\infty} \sum_{n=0}^{k} c_{k n}\left[\frac{\alpha_{\overline{M S}}^{\left(n_{f}+1\right)}(\mu)}{\pi}\right]^{k} \ln ^{n}\left[\frac{\mu^{2}}{m_{\overline{M S}}^{2}(\mu)}\right]\right\}
$$

with

$$
\begin{equation*}
c_{10}=0, \quad c_{20}=\frac{11}{72}, \quad c_{30}=\frac{564731}{124416}-\frac{82043}{27648} \zeta_{3}-\frac{2633}{31104} n_{f}, \tag{43}
\end{equation*}
$$

- Usually choose $\mu=m_{\overline{M S}}(\mu)$ (ie no logs)
- So 'secret' scale dependence of b coefficients
- Perturbative matching, only trust (?) at charm mass and above, ie $n_{f}=3 \rightarrow 4$
- In a MOM scheme (more physical), explicit mass dependence - only $b_{0}^{\text {nom }}, b_{1}^{\text {nom }}$ known

Determining $\alpha_{\overline{M S}}$

Basic method 'measure' a short distance quantity $\mathcal{O}(\mu)$ match in a perturbative expansion

$$
\mathcal{O}(\mu)=c_{1} \alpha_{\overline{M S}}(\mu)+c_{2} \alpha_{\overline{M S}}(\mu)^{2}+\ldots
$$

- Continuum determinations

Cross section: need to find a suitable process over a range of high enough energies, hadronisation problems, ...

- Lattice
'Design' (Euclidean) \mathcal{O}
Need 2 scales - hadron mass (M_{N}, r_{0}, \ldots) and also need high energies
Main question:
Are we in a perturbative regime? Are there non-perturbative contributions?

Phenomenological determinations of $\alpha_{\overline{M S}}$
PDG (4 categories):

- hadronic τ decays
- hadronic final states of $e^{+} e^{-}$annihilation
- deep inelastic lepton nucleon scattering
- precision electroweak data

This gives [PDG]:

$$
\alpha_{\overline{M S}}\left(M_{Z}\right)=0.1183(12)
$$

For the lattice to help needs also a precision of $\sim 1 \%$

Lattice determinations of $\alpha_{\overline{M S}}$

- Vertices
- Schrödinger functional
- Potential at short distances
- Current two-point functions
- Observables at the lattice spacing scale

Main question: Are we in a low order perturbative regime? Are there non-perturbative contributions?

- Estimation
$L \gg$ hadron size $\sim \Lambda_{\mathrm{QCD}}^{-1}$ and $\quad 1 / a \gg \mu \Longrightarrow L / a \gg \mu / \Lambda_{\mathrm{QCD}}$
$L / a \sim 20-64$ so

$$
\mu \ll L / a \times \Lambda_{\mathrm{QCD}} \sim 5-20 \mathrm{GeV} \Longrightarrow \mu \sim 1-3 \mathrm{GeV} \text { at best }
$$

Is this a perturbative scale ?

- 'Perturbative' series

$$
\mathcal{O}=c_{1} \alpha_{s}+c_{2} \alpha_{s}^{2}+\ldots+c_{n} \alpha_{s}^{n}+\mathrm{O}\left(\alpha_{s}^{n+1}\right)+\mathrm{O}\left(\exp \left(-\gamma / \alpha_{s}\right)\right)
$$

- 'NP' piece $\sim \exp \left(-\gamma / \alpha_{s}\right)$ (instantons, renormalons, ...) or equivalently power corrections: $\sim(\Lambda / \mu)^{\gamma}$
- So ideally want small α_{s}, when both the $\exp \left(-\gamma / \alpha_{s}\right)$ term is negligible and low order PT sufficient

Determination of α_{s} from QCD vertices

- 'Natural’ definition
- Zero incoming ghost momentum in ghost-ghost-gluon vertex
- Simplification: vertex not renormalised (Taylor) 'T' or 'MM' (minimal mom) scheme

$$
\alpha_{\mathrm{T}}(\mu)=D_{\text {lat }}^{\text {ghost }}(\mu, a)^{2} D_{\text {lat }}^{\text {gluon }}(\mu, a) \frac{g_{0}^{2}(a)}{4 \pi}
$$

- $D_{\text {lat }}^{\text {ghost }}, D_{\text {lat }}^{\text {gluon }}$ (bare lattice) dressed ghost/gluon 'form factors' propagator functions in the Landau gauge

$$
\begin{array}{r}
D^{a b}(p)=-\delta^{a b} \frac{D^{\text {ghost }}(p)}{p^{2}}, \quad D_{\mu \nu}^{a b}(p)=\delta^{a b}\left(\delta_{\mu \nu}-\frac{p_{\mu} p_{\nu}}{p^{2}}\right) \frac{D^{\text {gluon }}(p)}{p^{2}} \\
{\left[D^{\text {ghost } \left./ \text { gluon }(p)=D_{\text {lat }}^{\text {ghost } / \text { gluon }}(p, 0)(\text { continuum })\right]}\right.}
\end{array}
$$

- Thus there is now no need to compute the ghost-ghost-gluon vertex, just the ghost and gluon propagators
$\alpha_{T}:$ ETM: $n_{f}=4$

- condensate necessary (to increase fit region) $\alpha_{T}(p) \rightarrow \alpha_{T}(p)+\frac{d}{p^{6}}$

Determination of α_{s} from the Schrödinger functional

- Developed by ALPHA collaboration, presently for $n_{f}=0,2,4$
- Split determination of α_{s} at large μ and hadronic scale into two lattice calculations - connected by 'step scaling'
- SF (finite volume) scheme, choose a large scale

$$
\mu=\frac{1}{L} \sim 10, \ldots, 100 \mathrm{GeV} \quad a / L \ll 1
$$

- Choose

$$
g_{\max }^{\mathrm{SF} 2}=g^{\mathrm{SF}}\left(1 / L_{\max }\right)^{2} \quad \text { so that } \quad L_{\max } \sim 0.5 \mathrm{fm} \sim 1 /(400 \mathrm{MeV})
$$

Determine $L_{\text {max }}$ in terms of hadronic scale r_{0}

- Connect by changing scale $L \rightarrow L / 2$ in steps to give

$$
g^{\mathrm{SF}}(\mu)^{2} \quad \text { at } \quad \mu=2^{k} \times\left(\frac{r_{0}}{L_{\max }}\right) \times r_{0}^{-1}
$$

- At high scale convert $g^{\mathrm{SF}}(\mu)^{2}$ to $\overline{M S}$ scheme
(Can check) Non perturbative running of α_{s}

SSF for coupling

ALPHA: $n_{f}=4$
[arXiv:1011.2332]

PACS-CS: $n_{f}=3$
[arXiv:0906.3906]

Determination of α_{s} from the potential at short distances

Force/potential between (infinitely) massive quark-anti-quark pair

$$
F(r)=\frac{d V(r)}{d r}=C_{F} \frac{\alpha_{q q}(r)}{r}
$$

alternatively

$$
V(r)=-C_{F} \frac{\alpha_{V}(r)}{r}, \quad \tilde{V}(r)=-C_{F} \frac{\alpha_{V}(Q)}{Q^{2}},
$$

- Defines different schemes
- Determine $V(r)$ from Wilson loops

$$
\langle W(r, t)\rangle=\left|c_{0}\right|^{2} e^{-V(r) t}+\sum_{n \neq 0}\left|c_{n}\right|^{2} e^{-V_{n}(r) t}
$$

- Need to fix $V(r)$ at some $r=r_{\text {ref }}$ - introduces new renormalisation scale (renormalon) [Force better]
- At $N^{2} L O, \alpha_{M S}^{4} \ln \alpha_{\overline{M S}}$ terms

Potential results: Bazarov et al arXiv:1205.6155, $n_{f}=3$, NNNLO

Determination of α_{s} from the vacuum polarisation function at short distances

$$
\left\langle J_{\mu}^{a} J_{\nu}^{b}\right\rangle=\delta^{a b}\left[\left(\delta_{\mu \nu} Q^{2}-Q_{\mu} Q_{\nu}\right) \Pi^{(1)}(Q)-Q_{\mu} Q_{\nu} \Pi^{(0)}(Q)\right]
$$

- Q_{μ} is a space like momentum
- $J_{\mu} \equiv V_{\mu}, A_{\mu}$ for (non-singlet) vector/axial-vector currents

Set $\Pi_{J}(Q) \equiv \Pi_{J}^{(0)}(Q)+\Pi_{J}^{(1)}(Q)$, OPE of the vacuum polarisation function $\Pi_{V+A}(Q)=\Pi_{V}(Q)+\Pi_{A}(Q)$:

$$
\begin{aligned}
& \Pi_{V+A} \mid \mathrm{OPE}\left(Q^{2}, \alpha_{s}\right) \\
& =c+C_{0}\left(Q^{2}\right)+C_{m}^{V+A}\left(Q^{2}\right) \frac{\bar{m}^{2}(Q)}{Q^{2}}+\sum_{q=u, d, s} C_{\bar{q} q}^{V+A}\left(Q^{2}\right) \frac{\left\langle m_{Q} \bar{q} q\right\rangle}{Q^{4}} \\
& \quad+C_{G G}\left(Q^{2}\right) \frac{\left\langle\alpha_{s} G G\right\rangle}{Q^{4}}+\mathrm{O}\left(Q^{-6}\right)
\end{aligned}
$$

C_{X}^{V+A} known up to 4-loops (in $\overline{M S}$ scheme)

- c is Q-independent and divergent ultraviolet cutoff $\rightarrow \infty$
- NP condensates eg $\left\langle\alpha_{s} G G\right\rangle$
- terms in C_{X} which do not have a series expansion in α_{s}

- condensate necessary

Determination of α_{s} from current two-point functions

$$
\begin{aligned}
G(t) & =a^{6} \sum_{\vec{x}}\left\langle J^{\dagger}(x) J(0)\right\rangle \quad J=m_{0 h} \bar{q}_{h} \gamma_{5} q_{h^{\prime}} \\
& \sim t^{-3} \text { singularity as } t \rightarrow 0
\end{aligned}
$$

$$
q_{h}, q_{h^{\prime}} \text { mass degenerate, }
$$

$$
m_{0 h}, \text { heavy valence quarks }
$$

- Consider (finite) moments ($n \geq 4$)

$$
G_{n}=\sum_{t=-(T / 2-a)}^{t=T / 2-a} t^{n} G(t)
$$

- moments dominated by $t \sim 1 / m_{0 h}$, ie short distances
- moments become increasingly perturbative for decreasing n

$$
R_{n} \sim \frac{G_{n}}{G_{n}^{(0)}} \sim 1+r_{n 1} \alpha_{\overline{M S}}+r_{n 2} \alpha_{\overline{M S}}+r_{n 3} \alpha_{\overline{M S}}^{3}+\ldots
$$

- $r_{n i}=r_{n i}\left(\mu / m_{h}^{\overline{M S}}(\mu)\right)$ known (continuum PT)
- leads to a determination of both $\alpha_{\overline{M S}}$ and $m_{h}^{\overline{M S}}$ (heavy quark mass)

$$
R_{n}\left(a, m_{\eta_{h}}\right): \mathrm{HPQCD}: n_{f}=3
$$

- $\mu=3 m_{h} \sim m_{\eta_{h}} / 0.75$
- lattice spacings (dashed lines), together with continuum limit (lines)
- large masses \Rightarrow large lattice artifacts:
global fit to $\left(\alpha_{\overline{M S}}\right)^{n},\left(\Lambda /\left(m_{\eta_{h}} / 2\right)\right)^{j}\left[\right.$ heavy quark mass], $\left(a m_{\eta_{c}}\right)^{2 i}$ [lattice spacing]. $i \geq 10$ together with Bayesian fits

Determination of α_{s} from observables at the lattice spacing scale

General method:

- evaluate a short distance quantity \mathcal{O} at the scale of the lattice spacing $\sim 1 / a$
- then determine its relationship to $\alpha_{\overline{M S}}$ via a power series expansion

Much work using this method
[eg HPQCD arXiv:0807.1687, Maltman et al arXiv:0807.2020]

$$
Y=\sum_{n=1}^{n_{\max }} c_{n} \alpha_{V^{\prime}}^{n}\left(q^{*}\right)
$$

- Y: (logarithm) of small Wilson loops, $W_{m n}$, Creutz ratios, 'tadpole improved' Wilson loops, 'boosted' bare coupling,
- scale $q^{*}=d / a, d \approx 3$ (average gluon momentum at one loop)

$$
\alpha_{\overline{M S}}\left(q_{0}\right)=\alpha_{V^{\prime}}\left(q_{0}\right)+d_{1} \alpha_{V^{\prime}}\left(q_{0}\right)^{2}+d_{2} \alpha_{V^{\prime}}\left(q_{0}\right)^{3}+\cdots \quad q_{0}=7.5 \mathrm{GeV}
$$

d_{1}, d_{2} are (known) one, two loop coefficients

- As $q \sim 1$ /a cannot separate out discretisation effects from PT, so possible a^{2}, a^{4} (power law or condensate) corrections
- Smaller loops are at higher scale, less effected

Another example: Boosted coupling constant

$$
\alpha^{\square}(1 / a)=\frac{1}{4 \pi} \frac{g_{0}^{2}}{u_{0}^{4}}, \quad u_{0}=W_{11}
$$

- Perturbative relation

$$
\begin{aligned}
& \frac{1}{\alpha_{\overline{M S}}(\mu)}=\frac{1}{\alpha^{\square}(1 / a)}+4 \pi\left(2 b_{0} \ln a \mu-t_{1}^{P}\right)+(4 \pi)^{2}\left(2 b_{1} \ln a \mu-t_{2}^{P}\right) \alpha^{\square}(1 / a) \\
& t_{1}^{\square} \text { and } t_{2}^{\square} \text { are known }
\end{aligned}
$$

- choose μ so constant term vanishes: similar $\mu \sim 3 /$ a found

Running of $\alpha_{V^{\prime}}$ at various scales

- various $\alpha_{V^{\prime}}$ from each Y at various lattice sizes ie $q^{*}=d / a$ scales
- $n_{\text {max }}=10$, first three c_{n} known, then Bayesian analysis
- effect of condensates small: but more pronounced for smaller scales
- convert at $q^{*}=d / a=7.5 \mathrm{GeV}$ to $\overline{M S}$ scheme
- independent analysis by Maltman et al

Development of 'goodness' criteria:
'primary' coupling: $\quad \alpha_{\text {eff }}=\alpha_{\text {SF }}, \alpha_{V}, \alpha^{\square}, \alpha_{T}, \mathcal{O} / c_{1}, \ldots$

- Renormalisation scale:
\star all points relevant in the analysis have $\alpha_{\text {eff }}<0.2$
- all points have $\alpha_{\text {eff }}<0.4$ and at least one $\alpha_{\text {eff }} \leq 0.25$
- otherwise
- Perturbative behaviour:
* verified over a range of a factor 2 in $\alpha_{\text {eff }}$ (with no power corrections)
- agreement with perturbation theory over a range of a factor 1.5 in $\alpha_{\text {eff }}$ (possibly with power corrections)
- otherwise
- Continuum extrapolation ${ }^{1}$ (at reference point of $\alpha_{\text {eff }}=0.3$):
\star three lattice spacings with $\mu a<0.5$
- three lattice spacings with $1<\mu a<1.5$ (reach down to 1)
- otherwise
${ }^{1}$ for Wilson loops replace by Lattice spacings [as $q^{*}=d / a$]
* 3 or more lattice spacings, at least 2 points below $a=0.1 \mathrm{fm}$
- 2 lattice spacings, at least 1 point below $a=0.1 \mathrm{fm}$
- otherwise

Generate tables: Observables at the lattice spacing scale

- $O(50)$ publications, for $N_{f}=0,2,3,4$

${ }^{a}$ The numbers for Λ have been converted from the values for $\alpha_{s}^{(5)}\left(M_{Z}\right)$.
${ }^{\S} \alpha \stackrel{(3)}{\underline{-1}}(5 \mathrm{GeV})=0.2034(21), \alpha_{\underline{(5)}}^{-\infty}\left(M_{Z}\right)=0.1184(6)$. onlv update of intermediate scale and c, b quark masses,

Generate tables: Vertices

- $O(50)$ publications, for $N_{f}=0,2,3,4$

Generate tables

- $O(20)$ extrapolate to $n_{f}=5$ at $\mu=M_{Z}$

[^0]- In final estimation of $\alpha_{\overline{M S}}\left(M_{z}\right)$ use results with
- no red squares
- as matching perturbative, use only $n_{f}=3$ results and run to charm when match to $n_{f}=4$ (and then match at bottom for $n_{f}=5$)
- weighted average for final central value conservatively estimate error (estimate perturbative uncertainty)
- perturbative truncation errors potentially largest source of errors
- HPQCD 08A - Maltman 08 central difference for $\alpha_{\overline{M S}}$ (for g^{\square})
~ 0.0009 (on overlapping data sets)
- estimate taking (estimated size) of c_{4} as uncertainty

- $\alpha_{\overline{M S}}\left(M_{Z}\right)=0.1184(12)$

Conclusions

- Tremendous progress
- Weighted average with PDG results:

$$
\alpha_{\overline{M S}}\left(M_{Z}\right)=0.1183(8)
$$

[^0]: \# Result with a linear continuum extrapolation in a.

