Anomalous Magnetic Moment of the Muon

Taku Izubuchi (RBC\&UKQCD)

RIKEN BNL
Research Center

September $1^{\text {st }}, 2015$, "Fundamental Parameters from Lattice QCD", Mainz, Germany

Collaborators

- HVP \& DWF simulations

RBC/UKQCD (next page),
P. Boyle, R. Hudspith, A. Juettner, K. Maltman, A. Porttelli, M. Spraggs

- HLbL
T. Blum, N. Christ, M. Hayakawa, L. Jin, C. Jung, C. Lehner, ... (+ T. Ishiakwa, N. Yamada)
- NEDM : E. Shintani, T. Blum, C. Lehner, S. Syritsyn, A. Soni,
- Thank you for sending me emails for related works: R. Guputa, G. Pientka (Hotzel), G. Endrodi, G. Bali, J. Green, H. Wittig, A. Shindler,
M. Golterman, H. Horch, C. Alexandrou, B. Chakraborty, C. Davies, E. Gregory

Part of calculation are done by resources from
USQCD (DOE), XSEDE, ANL BG/Q, Edinburgh BG/Q,
$B N L B G / Q$, RIKEN BG/Q and Cluster (RICC)
Support from US DOE, RIKEN, BNL, and JSPS

RBC / UKQCD 2015

The RBC \& UKQCD collaborations

BNL and RBRC
Tomomi Ishikawa
Taku Izubuchi
Chulwoo Jung
Christoph Lehner
Meifeng Lin
Taichi Kawanai
Christopher Kelly
Shigemi Ohta (KEK)
Amarjit Soni
Sergey Syritsyn
CERN
Marina Marinkovic
Columbia University
Ziyuan Bai
Norman Christ
Xu Feng

Luchang Jin
Bob Mawhinney
Greg McGlynn
David Murphy
Daiqian Zhang
University of Connecticut
Tom Blum
Edinburgh University
Peter Boyle
Luigi Del Debbio Julien Frison
Richard Kenway
Ava Khamseh
Brian Pendleton
Oliver Witzel
Azusa Yamaguchi

Plymouth University
Nicolas Garron

University of Southampton
Jonathan Flynn
Tadeusz Janowski
Andreas Juettner
Andrew Lawson
Edwin Lizarazo
Antonin Portelli
Chris Sachrajda
Francesco Sanfilippo
Matthew Spraggs
Tobias Tsang

York University (Toronto)
Renwick Hudspith

$(g-2)_{\mu}$ theory vs experiment

$$
\begin{gather*}
a_{\mu}^{\mathrm{SM}}=116591803(1)_{\mathrm{EW}}(42)_{\mathrm{HVP}}(26)_{\mathrm{HLbL}} \times 10^{-11} \\
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=288(63)_{\exp }(49)_{\mathrm{SM}} \times 10^{-11} \\
{[3.6 \sigma]} \\
{[\text { PDG } 2014, \text { Hoecker \& Marciano] }}
\end{gather*}
$$

■ ~ 3.6σ discrepancy?

- SM prediction
- New Physics
- \rightarrow Hadronic uncertainties ?

Project/Activity
Large Projects

Muon program: Mu2e, Muon g-2	$\mathrm{Y},{ }_{\text {needed }}^{\text {Mue small reprc }}$
HL-LHC	Y
LBNF + PIP-II	$\begin{gathered} \text { LRNF componen } \\ \text { Y, delayedrel elative } \\ \text { Scenario B. } \end{gathered}$
ILC	R\&D only

[FNAL, New (g-2) experiment (E989), is scheduled to taking data in 2016, x4 precision] 4

SM Theory

$$
\gamma^{\mu} \rightarrow \Gamma^{\mu}(q)=\left(\gamma^{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m} F_{2}\left(q^{2}\right)\right)
$$

- QED, hadronic, EW contributions

QED (5-loop) Aoyama et al.
PRL109,111808 (2012)

Hadronic vacuum polarization (HVP)

Hadronic light-by-light (HIbl)

Electroweak (EW) Knecht et al 02
Czarnecki et al. 02

SM Theory prediction

- QED, EW, Hadronic contributions
K. Hagiwara et al. , J. Phys. G: Nucl. Part. Phys. 38 (2011) 085003

$$
a_{\mu}^{\mathrm{SM}}=\left(\begin{array}{lllll}
11 & 659 & 182.8 & \pm 4.9
\end{array}\right) \times 10^{-10}
$$

$$
a_{\mu}^{\exp }-a_{\mu}^{\mathrm{SM}}=28.8(6.3)_{\exp }(4.9)_{\mathrm{SM}} \times 10^{-10} \quad[3.6 \sigma]
$$

- Discrepancy between EXP and SM is larger than EW!
- Currently the dominant uncertainty comes from HVP, followed by HLbL
- x4 more accurate experiment

■ Goal : sub 1% accuracy for HVP, and 10\% accuracy for HLbL

Hadronic Vacuum Polarization (HVP) contributions

Leading order of hadronic contribution (HVP)

- Hadronic vacuum polarization (HVP)
$\mathrm{v}_{\mu} \cdot \mathrm{v}_{\mathrm{v}}=\left(q^{2} g_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi_{V}\left(q^{2}\right)$

$$
\text { quark's EM current : } \quad V_{\mu}=\sum_{f} Q_{f} \bar{f} \gamma_{\mu} f
$$

- Optical Theorem

$$
\operatorname{Im}_{V}(s)=\frac{s}{4 \pi \alpha} \sigma_{\text {tot }}\left(e^{+} e^{-} \rightarrow X\right)
$$

- Analyticity

$$
\Pi_{V}(s)-\Pi_{V}(0)=\frac{k^{2}}{\pi} \int_{4 m_{\pi}^{2}}^{\infty} d s \frac{\operatorname{Im} \Pi_{V}(s)}{s\left(s-k^{2}-i \epsilon\right)}
$$

F. Jegerlehner's lecture 8

Leading order of hadronic contribution (HVP)

- Hadronic vacuum polarization (HVP)

$=\frac{\alpha}{\pi^{2}} \int_{m_{\pi}^{2}}^{\infty} \frac{d s}{s} \operatorname{Im} \Pi(s) K(s) \quad K(s)=\int_{0}^{1} d x \frac{x^{2}(1-x)}{x^{2}+\left(s / m_{\mu}^{2}\right)(1-x)}$
$=\frac{1}{3}\left(\frac{\alpha}{\pi}\right)^{2}\left[\int_{m_{\pi}^{2}}^{s_{\mathrm{cut}}} d s \frac{K(s)}{s} R_{\mathrm{had}}^{\mathrm{data}}(s)+\int_{s_{\mathrm{cut}}}^{\infty} d s \frac{K(s)}{s} R_{\mathrm{had}}^{\mathrm{pQCD}}(s)\right]$

Hagiwara, et al. J.Phys. G38,085003 (2011)

HVP from experimental data

- From experimental $\mathrm{e}+\mathrm{e}$ - total cross section $\sigma_{\text {total }}(\mathrm{e}+\mathrm{e}-)$ and dispersion relation

$$
a_{\mu}^{\mathrm{HVP}}=\frac{1}{4 \pi^{2}} \int_{4 m_{\pi}^{2}}^{\infty} d s K(s) \sigma_{\text {total }}(s)
$$

time like $\quad q^{2}=s>=4 m_{\pi}{ }^{2}$

$$
\begin{aligned}
& a_{\mu}^{\mathrm{HVP}, \mathrm{LO}}=(694.91 \pm 4.27) \times 10^{-10} \quad[\sim 0.6 \% \mathrm{err}] \\
& a_{\mu}^{\mathrm{HVP}, \mathrm{HO}}=(-9.84 \pm 0.07) \times 10^{-10} \quad[\quad
\end{aligned}
$$

c)
d)

HVP from Lattice

- Analytically continue to Euclidean/space-like momentum $\mathrm{K}^{2}=-q^{2}>0$
- Vector current 2pt function

$$
a_{\mu}=\frac{g-2}{2}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d K^{2} f\left(K^{2}\right) \hat{\Pi}\left(K^{2}\right)
$$

$$
\Pi^{\mu \nu}(q)=\int d^{4} x e^{i q x}\left\langle J^{\mu}(x) J^{\nu}(0)\right\rangle
$$

- $\mathrm{J}^{\mu}(\mathrm{x})$ conserved current
- $(\mu, \nu)=(\mathrm{i}, \mathrm{i}), \quad \mathrm{q}=2 \mathrm{Pi} / \mathrm{N} \times$ (real number) a good approximation if Fourier integrand is rapidly suppressed in large $|\mathrm{x}|$
X. Feng et al. 2013, C.Lehner 2014, L. del Debbio \& A. Portelli 2015

Pi(i,i)

$\mathrm{Pi}(\mathrm{i}, \mathrm{i})$ in Fourier space vs K2

Current conservation \& subtractions

- conservation => transverse tensor

$$
\Pi^{\mu \nu}(q)=\left(\hat{q}^{2} \delta^{\mu \nu}-\hat{q}^{\mu} \hat{q}^{\nu}\right) \Pi\left(\hat{q}^{2}\right)
$$

- In infinite volume, $\mathrm{q}=0, \Pi_{\mu \nu}(\mathrm{q})=0$
- For finite volume, $\Pi_{\mu \nu}(0)$ is exponentially small (L.Jin, use also in HLbL)

$$
\begin{aligned}
& \int_{V} d x^{4}\left\langle V_{\mu}(x) \mathcal{O}(0)\right\rangle=\int_{V} d x^{4} \partial_{x_{\nu}}\left(x_{\mu}\left\langle V_{\nu}(x) \mathcal{O}(0)\right\rangle\right) \\
= & \int_{\partial_{\nu} V} d x^{3} x_{\mu}\left\langle V_{\nu}(x) \mathcal{O}(0)\right\rangle \propto L^{4} \exp (-M L / 2) \rightarrow 0
\end{aligned}
$$

- e.g. DWF $L=2,3,5 \mathrm{fm} \Pi_{\mu \nu}(0)=8(3) \mathrm{e}-4,2(13) \mathrm{e}-5,-1(5) \mathrm{e}-8$
- Subtract $\Pi_{\mu \nu}(0)$ alternates FVE, and reduce stat error "-1" subtraction trick :

$$
\Pi^{\mu \nu}(q)-\Pi^{\mu \nu}(0)=\int d^{4} x\left(e^{i q x}-1\right)\left\langle J^{\mu}(x) J^{\nu}(0)\right\rangle
$$

"-1" trick, DDS

- Current conservation is config-by-config.
 $J(\mathrm{X})=\mathrm{Zv} \mathrm{J}^{(\text {local })}(\mathrm{x})$ without finite correction
- Reduces statistical error for small q , dominant in integral of a_{μ}
- Further extended to $\Pi(0)$ subtraction (Direct Double Subtraction)
- Bernecker \& Meyer 2011
- Lehner TI 2014
- BMWc (Malak et al) 2014
- HPQCD 2014

$$
\Pi\left(\hat{q}^{2}\right)-\Pi(0)=\left\langle\sum_{t} \Re\left(\frac{e^{i q t}-1}{q^{2}}+\frac{t^{2}}{2}\right) \Re C_{i i}\right\rangle
$$

- Del Debbio \& Portelli 2015
- L. Jin et al. 2015
- The subtractions reduces noise significantly
- $\hat{\Pi}\left(K^{2}\right)=\Pi\left(\hat{K}^{2}\right)-\Pi(0)$
- a_{μ} Integrand peaks around $K^{2} \sim\left(m_{\mu} / 2\right)^{2}$

$$
a_{\mu}=\frac{g-2}{2}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d K^{2} f\left(K^{2}\right) \hat{\Pi}\left(K^{2}\right)
$$

Pihat vs $\mathrm{K}^{2}\left[\mathrm{GeV}^{2}\right]$

Strange quark contribution

- Matt Spragss (RBC/UKQCD) [Tue, 15:00]
- Mobius DWF, Nf=2+1, Physical mass, $L=5.5 f m, a=0.114,0.09 \mathrm{fm}$
- Many fits, moment, and cuts are used to examine systematics
- parts of systematic errors are being estimated
- consistent with HPQCD's value (next page)

Use of Time-Moments [HPQCD, PRD89(2014)114501]

- Compute Time-moments of 2pt

$$
\begin{array}{rlr}
G_{2 n} & \equiv a^{4} \sum_{t} \sum_{\vec{x}} t^{2 n} Z_{V}^{2}\left\langle j^{i}(\vec{x}, t) j^{i}(0)\right\rangle & \hat{\Pi}\left(q^{2}\right)=\sum_{j=1}^{\infty} q^{2 j} \Pi_{j} \\
& =\left.(-1)^{n} \frac{\partial^{2 n}}{\partial q^{2 n}} q^{2} \hat{\Pi}\left(q^{2}\right)\right|_{q^{2}=0} . & \Pi_{j}=(-1)^{j+1} \frac{G_{2 j+2}}{(2 j+2)!} .
\end{array}
$$

- Pade approximation, determined from Πj, for high q2 integration

$$
\begin{array}{ll}
\text { Strange } & a_{\mu}^{s}=53.41(59) \times 10^{-10} . \\
& {[1.1 \% \sim \text { lattice spacing error }]} \\
& \\
\hline 1 \% & a_{\mu}^{c}=14.42(39) \times 10^{-10} . \\
\text { charm } & {[2.7 \% \sim \text { Z_V error }]}
\end{array} .
$$

HPQCD light quark HVP

Bipasha Chakraborty at Lattice 2015

- $a=0.09,0.12,0.16 \mathrm{fm}$
- switch to multi-exp at $\mathrm{t}^{*}=1.5 \mathrm{fm}$
- sub 2% total error !
- ETMC-type ρ correction + ChPT pipi sub/add
$\rightarrow 10 \%$ correction at physical point
- Large finite volume effects, even for $L \sim 5.8 \mathrm{fm}, 5.1 \mathrm{fm}$ at physical poit
- also from taste pion effects to pipi amplitude
- estimate disc. loop $\hat{\Pi}_{j}^{\text {latt }} \rightarrow\left(\hat{\Pi}_{j}^{\text {latt }}-\hat{\Pi}_{j}^{\text {latt }}(\pi \pi)\right)\left[\frac{m_{\rho}^{2+2 j}}{f_{\rho}^{2}}\right]_{\text {latt }}\left[\frac{f_{\rho}^{2}}{m_{\rho}^{2+2 j}}\right]_{\text {expt }}+\hat{\Pi}_{j}^{\text {cont }(\pi \pi)} \begin{gathered}\text { phenomenological, } \\ -3 \% \text { of connected }\end{gathered}$

Finite Volume effects

- 2011 Bernecker Meyer
- Malak et al. (15, BMWc)
$w / o \Pi_{\mu v}(0)$ subtraction, $+40 \%$ FVE at Mpi L=5
- FVE for $\Pi_{\mu \nu}(0)$ subtracted ones get small
- t^{2} moment undershoots -30% or so at Mpi L $=5$
- Maarten Golterman Lattice 2015

Compares different H4 Irrepps, find 10+\% difference. Also ChPT analysis for different FV treatment (Irreps, subtractions)

```
A
[0,1] Padé: }\quad\mp@subsup{a}{\mu}{\textrm{HVP}}(1\mp@subsup{\textrm{GeV}}{}{2})=8.4(4)\times1\mp@subsup{0}{}{-8
A 44:
[0,1] Padé: }\quad\mp@subsup{a}{\mu}{\textrm{HVP}}(1\mp@subsup{\textrm{GeV}}{}{2})=9.2(3)\times1\mp@subsup{0}{}{-8
quadr. conf. pol.: }\quad\mp@subsup{a}{\mu}{\textrm{HVP}}(1\mp@subsup{\textrm{GeV}}{}{2})=9.6(4)\times1\mp@subsup{0}{}{-8
```


Mainz HVP
 Hanno Horch Lattice 2015

- Nf=2 O(a)-imp Wilson, CLS, Mpi $=185-495 \mathrm{MeV}, a=0.05,0.07,0.08 \mathrm{fm}$
- TBC
- ETMC rho rescaling
- extended frequentist's method

BMWc staggered A. Sastre, B. Toth Lattice 2015

- $\mathrm{Nf}=2+1+14$-Stout staggered, Symanzik tree Gauge, 10 ensemble @ physical quark mass, $a=0.063-0.133 \mathrm{fm}, \mathrm{L} \sim 6 \mathrm{fm}$
- ~1,000 lattice, a few K measurements / lattice $=$ a few Million measurements !
- connected: Hybrid (low+high q2) method
- disconnected: Hopping Parameter Expansion (with tuned coeffs), TSM, SU(3) cancellation

$$
a=0.095 \mathrm{fm}, \quad \text { physical quark masses, } \quad 64^{3} \times 96
$$

	Fit	Derivative
$\Pi_{1}^{u d}\left(\mathrm{GeV}^{-2}\right)$	$0.162(2)$	$0.167(3)$
$\Pi_{2}^{u d}\left(\mathrm{GeV}^{-4}\right)$	$-0.29(2)$	$-0.34(4)$
$a_{\mu}^{\text {hi, } u d}$	$52.05(8) \times 10^{-10}$	

HVP on BMWc ensemble Eric Gregory Lattice 2015

- Extract smooth function $\pi(s)$ from Taylor expansion, with derivatives measured from vector correlator.
- 1065 config @ physical Mpi, 1/a=2.131 GeV, ~6fm, 2HEXsmeared Wilson-type
- strange contribution $\sim 15 \%$ smaller than HPQCD, RBC/UKQCD

HVP \& magnetic susceptibilities

- Gunnar Bali, Gergely Endrodi,arXiv:1506.08638 Relates magnetic susceptibilities with oscillatory magnetic background and constant one, extract HVP. Also include disconnected loop

$$
\begin{aligned}
& 2 \chi_{p}=\Pi\left(p^{2}\right), \quad \chi_{0}=\Pi(0) . \quad \chi_{p}=-\frac{\partial^{2} f\left[\mathbf{B}^{p}\right]}{\partial(e B)^{2}} . \\
& \mathbf{B}^{p}(x)=B \sin (p x) \mathbf{e}_{3}, \quad \mathbf{B}^{0}=B \mathbf{e}_{3},
\end{aligned}
$$

Compared to older results

disconnected loop, isospin breaking
 no On effects

- -10\% of connected Pi-Pi in ChPT [Della Morte, Juettner, 2010]
- Mainz group

$$
\frac{1}{9} \frac{G_{\text {disc }}^{\text {sc }}(t)}{G^{\rho \rho}(t)}=\underbrace{\frac{G^{\gamma \gamma}(t)-G^{\rho \rho}(t)}{G^{\rho \rho}(t)}}-\frac{1}{9} \underbrace{\left(1+2 \frac{G_{\mathrm{con}}^{s}(t)}{G_{\text {con }}^{\text {con }}(t)}\right)} \rightarrow-\frac{1}{9}
$$

- HPQCD 2015, -3\% of connected based on phenomenological estimate of $\rho \omega$ difference
- ETMC 2011, 2015
- Francis et al (Mainz) use same random source for strange and light for error reduction to exploit the $\mathrm{SU}(3)$ limit, noise ~ ($\mathrm{ml}-\mathrm{ms}$)
- Marina Marikovic (latice2015) , isospin breaking effect using ROME123 method

Recent results

3+1 new results for Lattice15

$\frac{a_{\mu}(\text { strange })}{} \times 10^{10}$	
$53.41(59)$	HPQCD 14
$53.6(1.9)$	ETMC
	(Grit Hotzel et al)
	also RBC/UKQCD \& BMW
~ 44	E. Gregory et al.

[added to Ruth Van de Water' 15-04 compilation, which was on Blum TI's compilation 14]

HVP Summary and future prospects

- Direct subtraction methods (Mainz formula, Doulbe Direct Subtraction, Sincardinal, moment method) avoids fit procedures. One needs to check the Tmax truncation error, could fail.
- Error reduction technique (AMA, TSM, A2A, HPE, noise method with dilution) continue to help
- Consistent results, with increasing accuracies !

- Sizable finite volume effects $10+\%$ at physical point, MpiL = $4 ? \rightarrow$ need larger volume lattice, or Twist Averaging (C. Lehner TI 2014) ?
- Disconnected quark loop
- EM Isospin, ud mass difference
- Magnetic susceptibility
- Also electron, tau anomalous moment, ETMC arXiv:1501.05110 coupling runnings Gregorio Herdoiza,

Vera Guelpers lattice 2015

Twist angle Averaging (TA)

 C. Lehner TI, Lattice 2014| QCD setup | | CL lattice 2014 |
| :---: | :---: | :---: |
| $U_{\mu}(x)$ | $U_{\mu}(x)$ | $U_{\mu}(x)$ |
| $\Psi\left(x+\hat{L}_{1}+\hat{L}_{2}\right)$ | $\Psi\left(x+2 \hat{L}_{1}+\hat{L}_{2}\right)$ | $\Psi\left(x+3 \hat{L}_{1}+\hat{L}_{2}\right)$ |
| $U_{\mu}(x)$ | $U_{\mu}(x)$ | $U_{\mu}(x)$ |
| $\Psi\left(x+\hat{L}_{1}\right)$ | $\Psi\left(x+2 \hat{L}_{1}\right)$ | $\Psi\left(x+3 \hat{L}_{1}\right)$ |

Valence fermions Ψ living on a repeated gluon background U_{μ} with periodicity L_{1}, L_{2} and vectors $\hat{L}_{1}=\left(L_{1}, 0\right), \hat{L}_{2}=\left(0, L_{2}\right)$

Let ψ^{θ} be the quark fields of your finite-volume action with twisted-boundary conditions

$$
\psi_{x+L}^{\theta}=e^{i \theta} \psi_{x}^{\theta}
$$

Then one can show that

$$
\begin{equation*}
\left\langle\Psi_{x+n L} \bar{\Psi}_{y+m L}\right\rangle=\int_{0}^{2 \pi} \frac{d \theta}{2 \pi} e^{i \theta(n-m)}\left\langle\psi_{x}^{\theta} \bar{\psi}_{y}^{\theta}\right\rangle \tag{2}
\end{equation*}
$$

where the $\langle\cdot\rangle$ denotes the fermionic contraction in a fixed background gauge field $U_{\mu}(x)$. (4d proof available.)

This specific prescription produces exactly the setup of the previous page, it allows for the definition of a conserved current, and allows for a prescription for flavor-diagonal states.

Tau decay \& Lattice HVPs

- tau -> had + nu decay dispersive analysis

$$
\int_{C} d s \hat{\Pi}(s) w(s)=I
$$

- current methods : analytic w(s) => I=0 cut integral from experiment no data above $\mathrm{m}_{\tau}{ }^{2}$, larger error for higher s circle integral from pQCD+OPE

- By using w(s) with space-like poles, and take circle radius to infinity

$$
w(s)=\frac{1}{\left(s+Q_{1}^{2}\right)\left(s+Q_{2}^{2}\right) \cdots\left(s+Q_{m}^{2}\right)}
$$

and evaluate the residues using Lattice, one may suppress the problems

- Provide checks for lattice vs exp data (no disconnected, could study isospin breaking effects)
- alternative determinations for Vus

- OPAL, ALEPH

FIG. 5 Inclusive vector plus axial-vector (left) and vector minus axial-vector spectral function (right) as measured in (ALEPH Coll., 2005) (dots with errors bars) and (OPAL Coll., 1999b) (shaded one standard deviation errors). The lines show the predictions from the parton model (dotted) and from massless perturbative QCD using $\alpha_{S}\left(M_{Z}^{2}\right)=0.120$ (solid). They cancel to all orders in the difference.

Hadronic Light-by-Light (HLbL) contributions

Hadronic Light-by-Light

- 4pt function of EM currents

- No experimental data directly help
- many Lorentz structure

$$
\begin{gathered}
\Gamma_{\mu}^{(\mathrm{Hlbl})}\left(p_{2}, p_{1}\right)= \\
\quad i e^{6} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{\Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{3}, k_{2}\right)}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \\
\quad \times \gamma_{\nu} S^{(\mu)}\left(\not p_{2}+\not k_{2}\right) \gamma_{\rho} S^{(\mu)}\left(\not p_{1}+\not k_{1}\right) \gamma_{\sigma} \\
\Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{3}, k_{2}\right)=\int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} \exp \left[-i\left(k_{1} \cdot x_{1}+k_{2} \cdot x_{2}+k_{3} \cdot x_{3}\right)\right] \\
\\
\times\langle 0| T\left[j_{\mu}(0) j_{\nu}\left(x_{1}\right) j_{\rho}\left(x_{2}\right) j_{\sigma}\left(x_{3}\right)\right]|0\rangle
\end{gathered}
$$

Form factor : $\Gamma_{\mu}(q)=\gamma_{\mu} F_{1}\left(q^{2}\right)+\frac{i \sigma^{\mu \nu} q_{\nu}}{2 m_{l}} F_{2}\left(q^{2}\right)$

HLbL from Models

■ Model estimate with non-perturbative constraints at the chiral / low energy limits using anomaly : (9-12) x 10^{-10} with $25-40 \%$ uncertainty
F. Jegerlehner

Contribution	BPP	HKS	KN	MV	PdRV	N/JN
$\pi^{0}, \eta, \eta^{\prime}$	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	0 ± 10	-19 ± 19	-19 ± 13
axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	-	-	-	-7 ± 7	-7 ± 2
quark loops	21 ± 3	9.7 ± 11.1	-	-	2.3	21 ± 3
total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	105 ± 26	116 ± 39

HVP like approach on lattice ?

- Calculate 4pt of EM currents

$$
\begin{aligned}
\Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{3}, k_{2}\right)= & \int d^{4} x_{1} d^{4} x_{2} d^{4} x_{3} \exp \left[-i\left(k_{1} \cdot x_{1}+k_{2} \cdot x_{2}+k_{3} \cdot x_{3}\right)\right] \\
& \times \underline{\langle 0| T\left[j_{\mu}(0) j_{\nu}\left(x_{1}\right) j_{\rho}\left(x_{2}\right) j_{\sigma}\left(x_{3}\right)\right]|0\rangle}
\end{aligned}
$$

- One needs to calc. or fit all (q, k1,k2,k3) combination

$$
\begin{aligned}
\Gamma_{\mu}^{(\mathrm{HIll})}\left(p_{2}, p_{1}\right)= & i e^{6} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \frac{\Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{3}, k_{2}\right)}{k_{1}^{2} k_{2}^{2} k_{3}^{2}} \\
& \times \gamma_{\nu} S^{(\mu)}\left(p_{2}+k_{2}\right) \gamma_{\rho} S^{(\mu)}\left(p_{1}+k_{1}\right) \gamma_{\sigma}
\end{aligned}
$$

■ Need to repeat (Volume) ${ }^{3}$ times !

Direct 4pt calculation for selected kinematical range

- Jeremy Green (Mainz) Latice 2015, arXiv: 1507.01577
- Compute connected contribution of 4 pt function in momentum space
- forward amplitudes related to $\gamma^{*} \gamma^{*}$-> hadron cross section via dispersion relation

FIG. 3. The forward scattering amplitude $\mathcal{M}_{\text {TT }}$ at a fixed virtuality $Q_{1}^{2}=0.377 \mathrm{GeV}^{2}$, as a function of the other photon virtuality Q_{2}^{2}, for different values of ν. The curves represent the predictions based on Eq. (10), see the text for details.

Our strategy

- 4pt function has too much information to parameterize
- Do Monte Carlo integration for QED two-loop with 4 pt function $\pi^{(4)}$ which is sampled in lattice QCD
- Photon \& lepton part of diagram is derived either in lattice QED+QCD [Blum et al 2014] (stat noise from QED), or exactly derive for given loop momenta [L. Jin et al 2015] (no noise from QED+lepton).

$$
\begin{aligned}
& \Gamma_{\mu}^{(\mathrm{Hlbl})}\left(p_{2}, p_{1}\right)=i e^{6} \int \frac{d^{4} k_{1}}{(2 \pi)^{4}} \frac{d^{4} k_{2}}{(2 \pi)^{4}} \Pi_{\mu \nu \rho \sigma}^{(4)}\left(q, k_{1}, k_{2}, k_{3}\right) \\
\times & {\left[S\left(p_{2}\right) \gamma_{\nu} S\left(p_{2}+k_{2}\right) \gamma_{\rho} S\left(p_{1}+k_{1}\right) \gamma_{\sigma} S\left(p_{1}\right)+(\text { perm. })\right] }
\end{aligned}
$$

- set spacial momentum for - external EM vertex q
- in- and out- muon p, p^{\prime}

$$
q=p-p^{\prime}
$$

- set time slice of muon source($t=0$), $\operatorname{sink}\left(\mathrm{t}^{\prime}\right)$ and operator (t_{op})
- take large time separation for ground state matrix element

QCD+QED method [Blum et al 2014]

- One photon is treated analytically
- other two sampled stochastically a la LQED
- needs subtraction
- use AMA for error reduction
- use Furry's theorem to reduce α^{2} noise

unsubtracted term

Subtraction term

- Connected part only
- QED only calculation consistent with QED loop calculation for larger volume
- QED+QCD
- ball park of model values
-significant exited state effects?

Coordinate space Point photon method

[Jin, Blum, Christ, Hayakawa, TI, Lehner, et al. 2015]

- Treat all 3 photon propagators exactly (3 analytical photons), which makes the quark loop and the lepton line connected :
disconnected problem in Lattice QED+QCD -> connected problem with analytic photon
- QED 2-loop in coordinate space. Stochastically sample, (two of) quark-photon vertex location x, y

- Short separations, $\operatorname{Min}[|x|,|y|,|x-y|]<R \sim O(1) f m$, which has a large contribution due to confinement, are summed for all points
- longer separations, $\operatorname{Min}[|x|,|y|,|x-y|] \quad>=R$, are stochastically with a probability shown above (Adaptive Monte Carlo sampling)
- All lepton and photon part produce no noise for given x, y (Ls $=\infty$ DWF muon)

We could examine different lepton/photon e.g. QED_L (Hayakwa-Uno 2008) with larger box, Twisting Averaging [Lehner TI LATTICE14] or Infinite Vol. Photon propagators [C. Lehner, L.Jin, TI LATTICE15]

Infinite volume photon propagator Christoph Lehner

$$
\begin{aligned}
\hat{k}_{\mu} & =2 \sin k_{\mu} / 2 \\
G(x) & =\int_{-\pi}^{\pi} \frac{d^{4} k}{(2 \pi)^{4}} \frac{e^{i k x}}{\hat{k}^{2}} \\
G_{l}\left(k^{\prime}\right) & =\sum_{x \in V} G(x) e^{-i k^{\prime} x} \\
k^{\prime} & =2 \pi n_{\mu} / L_{\mu}
\end{aligned}
$$

Current conservation \& "-1" trick

- For HVP, conservation => transverse tensor

$$
\Pi^{\mu \nu}(q)=\left(\hat{q}^{2} \delta^{\mu \nu}-\hat{q}^{\mu} \hat{q}^{\nu}\right) \Pi\left(\hat{q}^{2}\right)
$$

- In infinite volume, $\mathrm{q}=0, \Pi_{\mu \nu}(\mathrm{q})=0$
- For finite volume, $\Pi_{\mu \nu}(0)$ is exponentially small e.g. DWF L=2, 3, $5 \mathrm{fm} \Pi_{\mu \nu}(0)=8(3) \mathrm{e}-4,2(13) \mathrm{e}-5,-1(5) \mathrm{e}-8$
- For general case with mass gap M, (L.Jin)

$$
\begin{aligned}
& \int_{V} d x^{4}\left\langle V_{\mu}(x) \mathcal{O}(0)\right\rangle=\int_{V} d x^{4} \partial_{x}\left(x\left\langle V_{\mu}(x) \mathcal{O}(0)\right\rangle\right) \\
= & \int_{\partial V} d x^{3} x\left\langle V_{\mu}(x) \mathcal{O}(0)\right\rangle \propto L^{4} \exp (-M L / 2) \rightarrow 0
\end{aligned}
$$

- Subtract $\Pi_{\mu \nu}(0)$ alternates FVE, and reduce stat error "-1" subtraction trick :
$\Pi^{\mu \nu}(q)-\Pi^{\mu \nu}(0)=\int d^{4} x\left(e^{i q x}-1\right)\left\langle J^{\mu}(x) J^{\nu}(0)\right\rangle$

Label size $\quad m_{\pi} L \quad m_{\pi} / \mathrm{GeV}$ \#qcdtraj $t_{\text {sep }} \quad \frac{F_{2} \pm \mathrm{Err}}{(\alpha / \pi)^{3}} \quad \frac{\text { Cost }}{\text { BG/Q rack days }}$

16I	$16^{3} \times 32$	3.87	0.423	16	16	0.1235 ± 0.0026	0.63
24I	$24^{3} \times 64$	5.81	0.423	17	32	0.2186 ± 0.0083	3.0
24IL	$24^{3} \times 64$	4.57	0.333	18	32	0.1570 ± 0.0069	3.2
32ID	$32^{3} \times 64$	4.00	0.171	47	32	0.0693 ± 0.0218	10

Table 2. Central values and errors. $a^{-1}=1.747 \mathrm{GeV}$ except for 32ID where $a^{-1}=1.371 \mathrm{GeV}$. Muon mass and pion mass ratio is fixed at physical value. For comparison, at physical point, model estimation is 0.08 ± 0.02.

Figure 13. $32^{3} \times 64$ lattice, with $a^{-1}=1.371 \mathrm{GeV}, m_{\pi}=171 \mathrm{MeV}, m_{\mu}=134 \mathrm{MeV}$.

Conserved current \& moment method

- To tame UV divergence, one of quark-photon vertex (external current) is set to be conserved current (other three are local currents). All possible insertion are made to realize conservation of external curents.

- This allows the "-1" subtraction trick seen in HVP. Now external current is also local $x Z_{v}$
- By exploiting the translational covariance for fixed external momentum of lepton and external EM field, $q->0$ limit value is directly computed via the first moment of the relative coordinate, xop - $(\mathrm{x}+\mathrm{y}) / 2$, by using " -1 " trick, one could show

$$
\left.\frac{\partial}{\partial q_{i}} \mathcal{M}_{\nu}(\vec{q})\right|_{\vec{q}=0}=i \sum_{x, y, z, x_{\mathrm{op}}}\left(x_{\mathrm{op}}-(x+y) / 2\right)_{i} \times
$$

to directly get $F_{2}\left(q^{2}\right)$ without $q^{2} \rightarrow 0$ extrapolation.

QED only study

$a=\mathrm{am}_{\mu} / 106 \mathrm{MeV}$

$$
\begin{aligned}
a_{\mu}^{(6)}(\mathrm{lbl}, e)= & {\left[\frac{2}{3} \pi^{2} \ln \frac{m_{\mu}}{m_{e}}+\frac{59}{270} \pi^{4}-3 \zeta(3)\right.} \\
& \left.-\frac{10}{3} \pi^{2}+\frac{2}{3}+O\left(\frac{m_{e}}{m_{\mu}} \ln \frac{m_{\mu}}{m_{e}}\right)\right]\left(\frac{\alpha}{\pi}\right)^{3}
\end{aligned}
$$

$$
\begin{array}{r}
L=11.9 \mathrm{fm} \longmapsto \\
0.3089 \pm 0.0137 \\
L=5.9 \mathrm{fm} \\
0.2587 \pm 0.0024 \\
L=3.0 \mathrm{fm} \\
0.1721 \pm 0.0022
\end{array}
$$

Theory	
Continuum extrapolation	
Continuum extrapolation 2nd order fit	
\longmapsto	\diamond
\longmapsto	

Dramatic Improvement! Luchang Jin et al., paper in prep.

$$
\begin{array}{lr}
\mathrm{a}=0.11 \mathrm{fm}, 24^{3} \times 64(2.7 \mathrm{fm})^{3}, & q=2 \pi / L \quad N_{\text {prop }}=81000 \longmapsto \longmapsto \\
\mathrm{~m}_{\pi}=329 \mathrm{MeV}, \quad \mathrm{~m}_{\mu}=\sim 190 \mathrm{MeV}, \mathrm{e}=1 & N_{\text {prop }}=26568
\end{array}
$$

Also calculation speed up, x 200, using AMA, zMobius (Ls=10) compared to traditional CG (Ls=24)

Disconnected diagrams in HLbL

- Missing disconnected diagrams

Two strategies for disconnected

- Compute disconnected loops made of valence quark

- Using dynamical QED+QED

Hayakawa, Latticer2015 talk

Disconnected quark loop using Dynamical QED + QCD

- M. Hayakawa Lattice2015 talk

$$
\frac{1}{3}\left\{\left(\mathcal{M}_{C}-\mathcal{S}_{C}\right)+\left(\mathcal{M}_{C^{\prime}}-\mathcal{S}_{C^{\prime}}\right)+\left(\mathcal{M}_{D}-\mathcal{S}_{D}\right)-\mathcal{K}_{D}\right\}
$$

Figure: The same diagram of $\left(2_{E}, 2\right)$-type is generated in three ways from \mathcal{M}_{C} (left) and \mathcal{M}_{D} (middle, right). The red stuffs are generated by the ensemble average of ($\mathrm{QCD}+\mathrm{QED}$).

Summary of HLBL

- Connected part is in a good shape
- Finite Volume effect from photon : Twisting Averaging, Infinite volume photon propagator
- Current plans (2015-16) :
- $\mathrm{Nf}=2+1 \mathrm{DWF} /$ Mobius ensemble at physical point, $\mathrm{L}=5.5 \mathrm{fm}$, $\mathrm{a}=0.11 \mathrm{fm}$ at ALCC @Argonne
- using AMA with zMobius fermion [C. Jung.
(more than x100 generic cost reduction to traditional CG)
- Also HVP, EM splitting, EW 2-loop VVA [M. Knect] ... as byproducts.
- Disconnected quark loop. Can we come up an estimation how large would it be ?

Backup slides

Covariant Approximation Averaging (CAA) a new class of Error reduction techniques

AMA+MADWF(fastPV)+zMobius accelerations

- We utilize complexified 5d hopping term of Mobius action [Brower, Neff, Orginos], zMobius, for a better approximation of the sign function.

$$
\epsilon_{L}\left(h_{M}\right)=\frac{\prod_{s}^{L}\left(1+\omega_{s}^{-1} h_{M}\right)-\prod_{s}^{L}\left(1-\omega_{s}^{-1} h_{M}\right)}{\prod_{s}^{L}\left(1+\omega_{s}^{-1} h_{M}\right)+\prod_{s}^{L}\left(1-\omega_{s}^{-1} h_{M}\right)}, \quad \omega_{s}^{-1}=b+c \in \mathbb{C}
$$

- $1 / \mathrm{a} \sim 2 \mathrm{GeV}$, Ls=48 Shamir ~ Ls=24 Mobius (b=1.5, c=0.5) ~Ls=10 zMobius (b_s, c_s complex varying) ~ 5 times saving for cost AND memory

- The even/odd preconditioning is optimized (sym2 precondition) to suppress the growth of condition number due to order of magnitudes hierarchy of b_s, c_s [also Neff found this]

$$
\text { sym2: } 1-\kappa_{b} M_{4} M_{5}^{-1} \kappa_{b} M_{4} M_{5}^{-1}
$$

- Fast Pauli Villars ($\mathrm{mf}=1$) solve, needed for the exact solve of AMA via MADWF (Yin, Mawhinney) is speed up by a factor of 4 or more by Fourier acceleration in 5D
[Edward, Heller]
- All in all, sloppy solve compared to the traditional CG is 160 times faster on the physical point 48 cube case. And ~ 100 and 200 times for the 32 cube, $\mathrm{Mpi}=170 \mathrm{MeV}, 140$, in this proposal (1,200 eigenV for 32cube).

$$
\underbrace{\frac{20,000}{600}}_{\text {MADWF }+ \text { zMobius }+ \text { deflation }} \times \underbrace{\frac{600 * 32 / 10}{300}}_{\text {AMA }+ \text { zMobius }}=33.3 \times 6.4=\underline{210 \text { times faster }}
$$

Examples of Covariant Approximations (contd.)

- All Mode Averaging AMA
Sloppy CG or Polynomial approximations

$$
\begin{aligned}
& \mathcal{O}^{\text {(appx) }}=\mathcal{O}\left[S_{l}\right], \\
& S_{l}=\sum_{\lambda} v_{\lambda} f(\lambda) v_{\lambda}^{\dagger}, \\
& f(\lambda)= \begin{cases}\frac{1}{\lambda}, & |\lambda|<\lambda_{\mathrm{cut}} \\
P_{n}(\lambda) & |\lambda|>\lambda_{\mathrm{cut}}\end{cases} \\
& P_{n}(\lambda) \approx \frac{1}{\lambda}
\end{aligned}
$$

If quark mass is heavy, e.g. ~ strange,

accuracy control :

- low mode part : \# of eig-mode
- mid-high mode : degree of poly.

Twisted boundary condition

- On a torus, the action must be singlevalued, while fields do not have to be.
- Impose the twisted boundary condition on quark fields.

$$
\begin{aligned}
q(x+L)= & q(x) \exp (i \theta) \\
\rightarrow \mathrm{p}= & (2 \pi \mathrm{n}+\theta) / \mathrm{L} \\
& (\theta: \text { arbitrary input })
\end{aligned}
$$

- q^{2} can be arbitrary small.
- Breaking isospin, Vector ward identity is broken, could be exactly subtracted [Aubin et al 2012]
- Noise in small q2

HVP comparison

$\operatorname{Pi}(\mathrm{Q} 2)-\operatorname{Pi}\left(\mathrm{Q} 2 \sim 0.25 \mathrm{GeV}^{2}\right)$
$\mathrm{Pi}(\mathrm{Q} 2)-\mathrm{Pi}\left(\mathrm{Q} 2 \sim 0.25 \mathrm{GeV}^{2}\right)$

Absolute error $\mathrm{Pi}(\mathrm{Q} 2)$

- AsqTad, DWF, ETM
- around

Mpi ~ 300 MeV , L~3fm, $1 / \mathrm{a}=1.7-3.3 \mathrm{GeV}$

- AsqTad: 48^3x144, theta(twist) $=0.55,0.5,0.4$

Fit functions

- Vector Meson Dominance

$$
\Pi_{V}^{\text {tree }}\left(Q^{2}\right)=\frac{2}{3} \frac{f_{V}^{2}}{Q^{2}+m_{V}^{2}}
$$

- Multi point Pade fit [2012, Aubin et al.]

$$
\Pi\left(Q^{2}\right)=\Pi(0)-Q^{2}\left(a_{0}+\sum_{n=1}^{[P / 2]} \frac{a_{n}}{b_{n}+Q^{2}}\right)
$$

Conditions: $a_{n}>0, \quad \underline{b}_{n}>4 m_{\pi}^{2}$

- In principle, these are only true at the continuum limit (but not necessarily infinite volume limit)

Pade fit results

- solid: correlated fit (q2 <=0.6 GeV2) , dash : uncorrelated fit (q2 <= 1 GeV 2)

	$\chi^{2} /$ dof	$10^{10} a_{\mu}^{\mathrm{HLO}, Q^{2} \leq 1}$	$\Pi(0)$	a_{i}	b_{i}	a_{0}
VMD	$38.6 / 18$	$646(8)$	$0.1222(6)$	$0.0595(8)$	$0.64($ fixed $)$	-
$[0,1]$	$14.3 / 17$	$550(20)$	$0.1203(7)$	$0.0646(16)$	$0.83(5)$	-
$[1,1]$	$13.9 / 16$	$572(41)$	$0.1206(8)$	$0.052(16)$	$0.68(20)$	$0.005(7)$
$[1,2]$	$13.9 / 15$	$572(37)$	$0.1206(8)$	$0.052(14)$	$0.68(19)$	-
				$1(6)$	$0.3(1.0) \times 10^{3}$	
$[2,2]$	$13.9 / 14$	$572(38)$	$0.1206(8)$	$0.052(14)$	$0.68(18)$	$0.003(27)$
				$1(31)$	$0.4(6.0) \times 10^{3}$	

[Aubin et al. Phys. Rev. D 86 (2012) 054509]

■ Pade approximation converges, results stable.

AMA + twisting

- AsqTad plot from Golterman (preliminary)

- Assumptions behind the Fit $\&$ discretization error ?

Subtraction Strategy: Derivative of Twisting Angle [Divitiis et al. PLB 718(2012) 589]

$$
\begin{aligned}
\square \mathrm{p}_{\mathrm{i}} & =\left(2 \pi \mathrm{n}+\theta_{\mathrm{i}}\right) / \mathrm{L} \\
C^{\mu v}(p) & =\frac{1}{\left(T L^{3}\right)^{2}} \sum_{x, y} e^{i p(y-x+\hat{v} / 2-\hat{\mu} / 2)}\left(V_{e m}^{\mu}(x) V_{e m}^{v}(y)\right) \\
& =\left(\delta^{\mu v} \hat{p}^{2}-\hat{p}^{\mu} \hat{p}^{\nu}\right) \Pi\left(p^{2}\right),
\end{aligned}
$$

$$
\Pi(0)=-\left.\frac{\partial^{2} \hat{C}^{12}(p)}{\partial p_{1} \partial p_{2}}\right|_{p^{2}=0}
$$

