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TABLE 1 Summary of Scenarios A, B, and C. Each major project considered by P5 is shown, grouped by project size and listed in time order based on year of peak construction. 
Project sizes are: Large (>$200M), Medium ($50M-$200M), and Small (<$50M). The science Drivers primarily addressed by each project are also indicated, along with the 
Frontier technique area (E=Energy, I=Intensity, C=Cosmic) defined in the 2008 P5 report. 
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Project/Activity Scenario A Scenario B Senario C

Table 1
Summary of Scenarios

 Large Projects

Muon program: Mu2e, Muon g-2 Y, Y Y     � I

HL-LHC Y Y Y �  �  � E

LBNF + PIP-II Y, Y Y, enhanced  �   � I,C

ILC R&D only R&D, Y �  �  � E

NuSTORM N N N  �    I

RADAR N N N  �    I

 Medium Projects

LSST Y Y Y  �  �  C

DM G2 Y Y Y   �   C

Small Projects Portfolio Y Y Y  � � � � All

Accelerator R&D and Test Facilities Y, reduced Y, Y, enhanced � � �  � E,I

CMB-S4 Y Y Y  �  �  C

DM G3 Y, reduced Y Y   �   C

PINGU Further development of concept encouraged  � �   C

ORKA N N N     � I

MAP N N N � � �  � E,I

CHIPS N N N  �    I

LAr1 N N N  �    I

 Additional Small Projects (beyond the Small Projects Portfolio above)

DESI N Y Y  �  �  C

Short Baseline Neutrino Portfolio Y Y Y  �    I

LBNF components 
delayed relative to 
Scenario B.

possibly small  
hardware contri- 
butions. See text.

some reductions with 
redirection to  
PIP-II development

Mu2e small reprofile 
needed

Scenarios Science Drivers

(g-2)μ　theory vs  experiment	


n  ~ 3.6 σ discrepancy ? 
n  SM prediction 
n  New Physics  
n  → Hadronic uncertainties ?	


170 180 190 200 210
aµ × 1010 – 11659000

HMNT (06)

JN (09)

Davier et al, τ (10)

Davier et al, e+e– (10)

JS (11)

HLMNT (10)

HLMNT (11)

experiment

BNL

BNL (new from shift in λ)

[K. Hagiwara et al., J. Phys. G 38, 085003 (2011)]

aexp
µ − aSM

µ = (26.1 ± 8.0) · 10−10 [3.3σ] for aHLxL
µ = (10.5 ± 2.6) · 10−10

(aexp
µ − aSM

µ = (25.0 ± 8.6) · 10−10 [2.9σ] for aHLxL
µ = (11.6 ± 4.0) · 10−10)

BNL	
  E821	
  	
  (~	
  2004)	


NP?	


[FNAL,	
  	
  New	
  (g-­‐2)	
  experiment	
  (E989),	
  is	
  scheduled	
  to	
  taking	
  data	
  in	
  2016,	
  x4	
  	
  precision	
  ]	
  	


The U.S. particle physics community has just updated its vision for the future. The P5 
report presents a strategy for the next decade and beyond that enables discovery and main-
tains our position as a global leader through specific investments by the Department of 
Energy’s Office of Science and the National Science Foundation Directorate for Mathematical 
and Physical Sciences.

Particle physics is a highly successful, discovery-driven science. It explores the funda-
mental constituents of matter and energy, and it reveals the profound connections under-
lying everything we see, including the smallest and the largest structures in the Universe. 
Earlier investments have been rewarded with recent fundamental discoveries, and upcom-
ing opportunities will push into new territory. Particle physics inspires young people to 
engage with science.

Particle physics is global. To address the most pressing scientific questions and maintain 
its status as a global leader, the U.S. must both host a unique, world-class facility and be a 
partner on the highest priority facilities hosted elsewhere.

Choices were required. The updated strategy recommends investments in the best oppor-
tunities, chosen from a large number of excellent options, in order to have the biggest 
impact and make the most efficient use of resources over the coming decade.

Five intertwined scientific Drivers were distilled from the results of a yearlong community- 
wide study:
 Use the Higgs boson as a new tool for discovery
 Pursue the physics associated with neutrino mass
 Identify the new physics of dark matter
 Understand cosmic acceleration: dark energy and inflation
 Explore the unknown: new particles, interactions, and physical principles

Building for Discovery

Higgs boson Neutrino mass Dark matter Cosmic acceleration Explore the unknown

The U.S. particle physics program is poised to move forward into the next era of discovery.

Report of the Particle  
Physics Project   
Prioritization Panel (P5)Strategic Plan for U.S. Particle Physics in the Global Context

P5	
  top	
  recommendaYon	
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SM Theory 	


n  QED, hadronic, EW contributions 
	


+ ...+=

✕ ✕ ✕

+ + + ...
✕ ✕

+ + + ...

✕ ✕

QED	
  	
  	
  (5-­‐loop)	
  
Aoyama	
  et	
  al.	
  
PRL109,111808	
  (2012)	
  	
  
	
  
	
  
Hadronic	
  vacuum	
  
polarizaYon	
  (HVP)	
  
	
  
	
  
	
  
Hadronic	
  light-­‐by-­‐light	
  
(Hlbl)	
  
	
  
	
  
Electroweak	
  (EW)	
  
Knecht	
  et	
  al	
  02	
  
Czarnecki	
  et	
  al.	
  02	


+	
 +	
  …	


+	
 +	
 +	
  …	


muon’s anomalous magnetic moment

• One of the most precisely determined numbers, starting from the construction of QED.

�

�

µ µ

�

� �

µ µhad

�

W W

⇤

µ µ

Hadronic light-by-light scattering contribution to the muon g� 2 from lattice QCD Masashi Hayakawa

could be estimated by purely theoretical calculation. So far, it has been calculated only based on
the hadronic picture [7, 8]. Thus the first principle calculation based on lattice QCD is particularly
desirable.

!

l1l2

Figure 1: hadronic light-by-light scattering contribution to the muon g� 2

The diagram in Fig. 1 evokes the following naive approach; we calculate repeatedly the cor-
relation function of four hadronic electromagnetic currents by lattice QCD with respect to two
independent four-momenta l1, l2 of off-shell photons, and integrate it over l1, l2. Such a task is too
difficult to accomplish with use of supercomputers available in the foreseeable future.

Here we propose a practical method to calculate the h-lbl contribution by using the lattice
(QCD + QED) simulation; we compute

⇤ quark ⌅

QCD+quenched QEDA

�
⇤

quark

⌅

QCD+quenched QEDB⇤ ⌅

quenched QEDA

, (2)

amputate the external muon lines, and project the magnetic form factor, and divide by the factor
3. In Eq. (2) the red line denotes the free photon propagator D!�(x, y) in the non-compact lat-
tice QED solved in an appropriate gauge fixing condition. The black line denotes the full quark
propagator Sf (x, y;U, u) for a given set of SU(3)C gauge configuration

�
Ux,!

⇥
and U(1)em gauge

configuration
�
ux,!

⇥
, where the sum over relevant flavors f is implicitly assumed. The blue line

represents the full muon propagator s(x, y; u). The average ⇥, ⇤ above means the one over the
unquenched SU(3)C gauge configurations and/or the quenched U(1)em gauge configurations 1 as
specified by the subscript attached to it. Since two statistically independent averages overU(1)em
gauge configurations appear in the second term, they are distinguished by the labels A, B.

1For the unquenched QCD plus quenched QED to respect the gauge invariance of QED, the electromagnetic charges
of sea quarks are assumed to be zero.

P
o
S
(
L
A
T
2
0
0
5
)
3
5
3

353 / 3

aµ =
g � 2

2
= (116 592 089 ± 54 ± 33) ⇥ 10�11 BNL-E821

[Andreas Hoecker, Tau 2010, arXiv:1012.0055 [hep-ph]]

Contribution Result (⇥10�11).
QED (leptons) 116 584 718.09 ± 0.15
HVP (lo) 6 923.± 42
HVP (ho) -97.9 ± 0.9
HLBL 105.± 26
EW 154.± 2

Total SM 116 591 802 ± 42HVP(lo) ± 26HLBL ± 02 (49tot).

• 287 ± 80 or 3.6⇥ difference between experiment and SM prediction.

E989 at FNAL is to reduce the total experimental error by,
at least, a factor of four over E821, or 0.14 ppm !

Taku Izubuchi, USQCD All Hands Meeting, JLab, May 6, 2011 20

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

In interacting quantum (field) theory g gets corrections

qp1 p2

+
qp1 p2

k

+ . . .

�µ ! �µ(q) =

✓

�µ
F1(q

2) +
i �µ⌫

q⌫

2m
F2(q

2)

◆

which results from Lorentz and gauge invariance when the muon is
on-mass-shell.

F2(0) =
g � 2

2
⌘ aµ (F1(0) = 1)

(the anomalous magnetic moment, or anomaly)

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD

Introduction
The hadronic vacuum polarization (HVP) contribution (O(↵2))

The hadronic light-by-light (HLbL) contribution (O(↵3))
Summary/Outlook

The magnetic moment of the muon

Compute these corrections order-by-order in perturbation theory by
expanding �µ(q2) in QED coupling constant

↵ =
e

2

4⇡
=

1

137
+ . . .

Corrections begin at O(↵); Schwinger term = ↵
2⇡ = 0.0011614 . . .

hadronic contributions ⇠ 6 ⇥ 10�5 times smaller (leading error).

Tom Blum (UConn / RIKEN BNL Research Center) Hadronic contributions to the muon g-2 from lattice QCD



SM Theory prediction	


n  QED, EW, Hadronic contributions 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

n  Discrepancy between EXP and SM is larger than EW! 
n  Currently the dominant uncertainty comes from HVP, followed by HLbL 

n  x4 more accurate experiment 
n  Goal :  sub 1% accuracy for HVP, and  

           10% accuracy for HLbL 

EQUATIONS

N. YAMADA

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

K.	
  Hagiwara	
  et	
  al.	
  ,	
  J.	
  Phys.	
  G:	
  Nucl.	
  Part.	
  Phys.	
  38	
  (2011)	
  085003	




Hadronic Vacuum Polarization 
(HVP) contributions	




Leading order of hadronic 
contribution (HVP)	


n  Hadronic vacuum polarization (HVP) 
                
 
  quark’s EM current :  

n  Optical Theorem  
 
n  Analyticity 
     	


8	


Vμ	
 Vν　	


Vµ =
X

f

Qf f̄�µf

= (q2gµ� � qµq�)�V (q
2)

Im�V (s) =
s

4⇥�
⇤
tot

(e+e� ! X)

�V (s)��V (0) =
k2

⇥

Z 1

4m2
⇡

ds
Im�V (s)

s(s� k2 � i�)

Dispersion relations and VP insertions in g � 2

Starting point:
� Optical Theorem (unitarity) for the photon propagator

Im�⇤⇥(s) =
s

4⇤�
⌅tot(e+e� ⇥ anything)

� Analyticity (causality), may be expressed in form of a so–called (subtracted)
dispersion relation

�⇤⇥(k
2) � �⇤⇥(0) =

k2

⇤

⌅�

0

ds
Im�⇤⇥(s)

s (s � k2 � i⇧)
.

� �
had ⇥

�
� had
� (q2)

�

had

2

� ⇥had
tot (q2)

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 68

F.	
  Jegerlehner’s	
  lecture	




Leading order of hadronic 
contribution (HVP)	


n  Hadronic vacuum polarization (HVP) 	


×	


Hagiwara,	
  et	
  al.	
  
J.Phys.	
  G38,085003	
  
(2011)	


ρ	
 ω	


9	




HVP from experimental data	


n  From experimental e+ e- total cross section   
σtotal(e+e-) and dispersion relation 

 

   time like   q2 = s >= 4 mπ
2 

EQUATIONS

N. YAMADA

aHVP
µ =

1

4π2

∫ ∞

4m2
π

dsK(s)σtotal(s)(1)

Πµν(q
2) =

∫
d4x

(2π)4
e−iq·x⟨0|T [jµ(x)jν(0)]|0⟩|0⟩(2)

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p2 + k2)γρS

(µ)(p1 + k1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(3)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](4)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(5)

Breakdown

aSM
µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

Date: July 10, 2012.
1

✕

aHVP,LO
µ = (694.91± 4.27)⇥ 10�10

aHVP,HO
µ = (�9.84± 0.07)⇥ 10�10

“Trick” applies to higher order hadronic VP contributions

h e h h h
µ

�

h

a) b) c) d)

Kinoshita, Nizic, Okamoto 1985, Krause 1996, ...
as well as to analytic calculations of higher order diagrams like

Ia Ib Ic Id
µ

�1

�2
�3 �1

�2
�1 �2

�1

3–loop: Hoang et al 95, 4–loop: Broadhurst, Kataev, Tarasov 93, Kinoshita et al

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 72

[	
  	
  ~	
  0.6	
  %	
  err	
  ]	




HVP from Lattice	


n  Analytically continue to Euclidean/space-like momentum K2 = - q2 >0 
n  Vector current  2pt function 

 
 

n  Jµ(x)    conserved current 
n  (µ,ν) = (i,i),   q = 2 Pi / N  x  (real number)  a good approximation if Fourier 

integrand is rapidly suppressed in large |x|   
   X. Feng et al. 2013,    C.Lehner  2014,   L. del Debbio & A. Portelli 2015  

 
 

 

11	


[	
  T.	
  Blum	
  PRL91	
  (2003)	
  052001	
  ]	


-40 -20 0 20 40
t

1e-12

1e-09

1e-06

0.001

1

light point source

strange point source

Pi(i,i)  

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

K
2
  [GeV

2
]

-0.26

-0.24

-0.22

-0.2

-0.18

-0.16

-0.14

Pi(i,i) in Fourier space vs K2



Current conservation & subtractions	


n  conservation =>  transverse tensor 
 
n  In infinite volume, q=0, Πµν(q) = 0 
n  For finite volume, Πµν(0)  is exponentially small                                 

(L.Jin,   use also in HLbL) 

 
n  e.g.  DWF  L=2, 3, 5 fm   Πµν(0) = 8(3)e-4, 2(13)e-5, -1(5)e-8 
n  Subtract Πµν(0) alternates FVE, and  reduce stat error   

“-1” subtraction trick  :  

 
 



“-1” trick, DDS	

n  Current conservation is config-by-config. 

 
 

n  removes x=0 contact term from rhs, now local current could be used 
J(x) = Zv  J(local)(x) without finite correction 

n  Reduces statistical error for small q , dominant in integral of aµ 

n  Further extended to Π(0)  subtraction (Direct Double Subtraction) 
 

n  Bernecker & Meyer 2011 
n  Lehner TI 2014 
n  BMWc (Malak et al) 2014 
n  HPQCD 2014 
n  Del Debbio & Portelli  2015    
n  L. Jin et al. 2015 



n  The subtractions reduces noise significantly 
n    

 
n  aµ Integrand  peaks around K2 ~  (mµ/2)2	


0 0.05 0.1 0.15 0.2 0.25
0

0.005

0.01

0.015

0.02

0.025

light quark

strange quark

Integrand vs K
2
 [GeV

2
]

0 1 2 3 4

0

0.01

0.02

0.03

0.04

0.05

0.06

Pihat  vs K
2
  [GeV

2
]



Strange quark contribution	


n  Matt Spragss (RBC/UKQCD)  [Tue, 15:00] 
n  Mobius DWF, Nf=2+1,Physical mass,  L=5.5fm, a=0.114, 0.09 fm 
n  Many fits, moment, and cuts are used to examine systematics 
n  parts of systematic errors are being estimated 
n  consistent with HPQCD’s value (next page) 

R0,1 GeV2

GeV2



 
Use of Time-Moments  

 [ HPQCD, PRD89(2014)114501 ]	

n  Compute Time-moments of 2pt   
 
 
 
 
 
n  subtractions by taking derivatives,   use local currents 
n  Pade approximation, determined from Πj ,  for high q2 integration 

3

TABLE I: The lattice QCD gluon field configurations used here come from the MILC collaboration [22, 23]. � = 10/g2 is
the QCD gauge coupling, and w0/a [24] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [25]. We take
w0=0.1715(9) fm fixed from f⇡ [24]. L and T give the length in the space and time directions for each lattice. am

sea
` , am

sea
s

and am

sea
c are the light (m` ⌘ mu = md), strange, and charm sea quark masses in lattice units and am

val
s , the valence

strange quark mass, tuned from the mass of the ⌘s, aM⌘s . ZV,ss gives the vector current renormalization factor obtained
nonperturbatively [26]. The lattice spacings are approximately 0.15 fm for sets 1–2, 0.12 fm for sets 3–8, and 0.09 fm for sets 9–
10. Light sea-quark masses range from ms/5 to the physical value and lattice volumes ranging from 2.5 fm to 5.8 fm. The
number of configurations is given in the final column. We used 16 time sources on each (12 on sets 1 and 2).

Set � w0/a am

sea
` am

sea
s am

sea
c am

val
s aM⌘s ZV,ss L/a⇥ T/a ncfg

1 5.80 1.1119(10) 0.01300 0.0650 0.838 0.0705 0.54024(15) 0.9887(20) 16⇥48 1020
2 5.80 1.13670(50) 0.00235 0.0647 0.831 0.0678 0.526799(81) 0.9887(20) 32⇥48 1000
3 6.00 1.3826(11) 0.01020 0.0509 0.635 0.0541 0.43138(12) 0.9938(17) 24⇥64 526
4 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42664(9) 0.9938(17) 24⇥64 1019
5 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42637(6) 0.9938(17) 32⇥64 988
6 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0507 0.41572(14) 0.9938(17) 32⇥64 300
7 6.00 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42617(9) 0.9938(17) 40⇥64 313
8 6.00 1.4149(6) 0.00184 0.0507 0.628 0.0527 0.423099(34) 0.9938(17) 48⇥64 1000
9 6.30 1.8869(39) 0.00740 0.0370 0.440 0.0376 0.31384(9) 0.9944(10) 32⇥96 504
10 6.30 1.9525(20) 0.00120 0.0363 0.432 0.0360 0.30480(4) 0.9944(10) 64⇥96 621

in units of e. Here

f(q2) ⌘ m

2
µ

q

2
A

3(1 � q

2
A)

1 +m

2
µ

q

2
A

2
(2)

where

A ⌘
q
q

4 + 4m2
µ

q

2 � q

2

2m2
µ

q

2
. (3)

Note that in our calculation we have ignored quark-line-
disconnected contributions to the HVP. These are sup-
pressed by quark mass factors since they would vanish
for equal mass u, d and s quarks since
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Here we have allowed for a renormalization factor Z
V

for
the lattice vector current. Note that time-moments re-
move any contact terms between the two currents. G2n is
easily calculated from the correlators calculated in lattice
QCD, remembering that time runs from 0 at the origin
in both positive and negative directions to a maximum
value of T/2 in the centre of the lattice.

FIG. 2: Fractional error in the muon anomaly aµ caused by
replacing the quark vacuum polarization from one-loop per-
turbation theory with its [n, n] and [n, n � 1] Padé approxi-
mants. The exact result is always between the [n, n� 1] and
[n, n] approximants. The quark mass is set equal to the kaon
mass in this test case.
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Fig. 2 which shows the precision of di↵erent approxi-
mants compared with the exact result for a simple test
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FIG. 4: Lattice QCD results for the connected contribution to
the muon anomaly aµ from vacuum polarization of s quarks.
Results are for three lattice spacings, and two light-quark
masses: m

lat
` = ms/5 (lower, blue points), and m

lat
` = m

phys
`

(upper, red points). The dashed lines are the corresponding
values from the fit function, with the best-fit parameter val-
ues: ca2 = 0.29(13), csea = �0.020(6) and cval = �0.61(4).
The gray band shows our final result, 53.41(59)⇥10�10, with
m

lat
` = m

phys
` , after extrapolation to a = 0.

TABLE III: Error budgets for connected contributions to the
muon anomaly aµ from vacuum polarization of s and c quarks.
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s
µ a

c
µ

Uncertainty in lattice spacing (w0, r1): 1.0% 0.6%
Uncertainty in ZV : 0.4% 2.5%

Monte Carlo statistics: 0.1% 0.1%
a

2 ! 0 extrapolation: 0.1% 0.4%
QED corrections: 0.1% 0.3%

Quark mass tuning: 0.0% 0.4%
Finite lattice volume: < 0.1% 0.0%
Padé approximants: < 0.1% 0.0%

Total: 1.1% 2.7%
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For our lattices with physical u/d sea masses �xsea is very
small. a

2 errors from staggered ‘taste-changing’ e↵ects
will remain and they are handled by c

a

2 . The four fit
parameters are a2

µ

, c
a

2 , csea and cval; we use the following
(broad) Gaussian priors for each:

a

s

µ

= 0 ± 100 ⇥ 10�10

c

a

2 = 0(1) csea = 0(1) cval = 0(1). (11)

Our final result for the connected contribution for

TABLE IV: Contributions to aµ from s and c quark vacuum
polarization. Only connected parts of the vacuum polariza-
tion are included. Results, multiplied by 1010, are shown for
each of the Padé approximants.

Quark [1, 0]⇥ 1010 [1, 1]⇥ 1010 [2, 1]⇥ 1010 [2, 2]⇥ 1010

s 57.63(67) 53.28(58) 53.46(59) 53.41(59)
c 14.58(39) 14.41(39) 14.42(39) 14.42(39)

s quarks to g � 2 is:

a

s

µ

= 53.41(59) ⇥ 10�10
. (12)

The fit to [2, 2] Padé results from all 10 of our configu-
ration sets is excellent, with a �

2 per degree of freedom
of 0.22 (p-value of 0.99). In Fig. 4 we compare our fit
with the data from configurations with m

s

/m

`

equal 5
and with the physical mass ratio.
The error budget for our result is given in Table III.

The dominant error, by far, comes from the uncertainty
in the physical value of the Wilson flow parameter w0,
which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polar-
ization to be of order 0.1% from perturbation theory [20],
suppressed by the small charge of the s quark. Our re-
sults show negligible dependence (< 0.1%) on the spatial
size of the lattice, which we varied by a factor of two. Also
the convergence of successive orders of Padé approximant
indicates convergence to better than 0.1%; results from
fits to di↵erent approximants are tabulated in Table IV.
Note that the a2 errors are quite small in our analysis.

This is because we use the highly corrected HISQ dis-
cretization of the quark action. Our final (a = 0) result
is only 0.6% below our results from the 0.09 fm lattices
(sets 9 and 10). The variation from our coarsest lattice to
a = 0 is only 1.8%. We compared this with results from
the clover discretization for quarks, which had finite-a
errors in excess of 20% on the coarsest lattices.
Finally we also include results for c quarks in Tables III

and IV. These are calculated from the moments (and er-
ror budget) published in [20]. Our final result for the con-
nected contribution to the muon anomaly from c-quark
vacuum polarization is:

a

c

µ

= 14.42(39) ⇥ 10�10
. (13)

The dominant source of error here is in the determination
of the Z

V

renormalization factors. This error could be
substantially reduced by using the method we used for
the s-quark contribution [26].

III. DISCUSSION/CONCLUSIONS

The ultimate aim of lattice QCD calculations of
a

µ,HVP is to improve on results from using, for exam-
ple, �(e+e� ! hadrons) that are able to achieve an un-
certainty of below 1%. We are not at that stage yet.
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which we use to set the lattice spacings. We estimate the
uncertainty from QED corrections to the vacuum polar-
ization to be of order 0.1% from perturbation theory [20],
suppressed by the small charge of the s quark. Our re-
sults show negligible dependence (< 0.1%) on the spatial
size of the lattice, which we varied by a factor of two. Also
the convergence of successive orders of Padé approximant
indicates convergence to better than 0.1%; results from
fits to di↵erent approximants are tabulated in Table IV.
Note that the a2 errors are quite small in our analysis.

This is because we use the highly corrected HISQ dis-
cretization of the quark action. Our final (a = 0) result
is only 0.6% below our results from the 0.09 fm lattices
(sets 9 and 10). The variation from our coarsest lattice to
a = 0 is only 1.8%. We compared this with results from
the clover discretization for quarks, which had finite-a
errors in excess of 20% on the coarsest lattices.
Finally we also include results for c quarks in Tables III

and IV. These are calculated from the moments (and er-
ror budget) published in [20]. Our final result for the con-
nected contribution to the muon anomaly from c-quark
vacuum polarization is:
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c

µ

= 14.42(39) ⇥ 10�10
. (13)

The dominant source of error here is in the determination
of the Z

V

renormalization factors. This error could be
substantially reduced by using the method we used for
the s-quark contribution [26].

III. DISCUSSION/CONCLUSIONS

The ultimate aim of lattice QCD calculations of
a

µ,HVP is to improve on results from using, for exam-
ple, �(e+e� ! hadrons) that are able to achieve an un-
certainty of below 1%. We are not at that stage yet.
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n  sub 2%  total error ! 
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to pipi amplitude 
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use larger values for 
smaller errors(?).
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independent of ɑ2, finite 
volume…


• [2,2] Padé approximants 
converged to better than 
0.2% — negligible error.


• Total error is less than 2%; 
statistics dominate.
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BMWc staggered 
A. Sastre, B. Toth Lattice 2015	


n  Nf=2+1+1 4-Stout staggered, Symanzik tree Gauge, 10 ensemble @ physical 
quark mass,  a=0.063-0.133 fm, L ~ 6fm 

n  ~1,000 lattice, a few K measurements / lattice = a few Million measurements !  
n  connected : Hybrid (low+high q2)  method 
n  disconnected :  Hopping Parameter Expansion (with tuned coeffs), TSM, SU(3) 
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HVP on BMWc ensemble 
Eric Gregory Lattice 2015	


n  Extract smooth function π(s) from Taylor expansion, with 
derivatives measured from vector correlator. 

n  1065 config @ physical Mpi, 1/a=2.131 GeV, ~6fm, 2HEX-
smeared Wilson-type  

n  strange contribution ~15% smaller than HPQCD, RBC/UKQCD	
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n  Gunnar Bali, Gergely Endrodi,arXiv:1506.08638 
Relates magnetic susceptibilities with 
oscillatory magnetic background and constant 
one, extract HVP. Also include disconnected 
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depends on G(t) at all times t. Next-to-leading order
chiral perturbation theory arguments show the discon-
nected contribution to also account for �1/9 of the to-
tal ⇧R(p2) [44]. However, this observation builds on the
fact that the correlator of the iso-singlet vector current
ū�

µ

u + d̄�

µ

d is momentum-independent to this order of
chiral perturbation theory — which we found is not at all
satisfied by the lattice data. Thus, direct computation of
the disconnected terms cannot be avoided in a systematic
study. Our numerical results will shed light onto the size
of the disconnected contribution at low p

2.

III. VACUUM POLARIZATION FROM
SUSCEPTIBILITIES

A. The method

The photon vacuum polarization tensor (1) can also be
interpreted as a momentum space current-current corre-
lation function

⇧
µ⌫

(p) =
1

V4

D
e
j

µ

(p) ej
⌫

(�p)
E
, (11)

where V4 denotes the four-dimensional volume of the sys-
tem and e

j

µ

is the Fourier transform of the electromag-
netic current defined in equation (2):

e
j

µ

(p) =

Z
d4x eipxj

µ

(x) . (12)

Depending on the lattice definition of j
µ

, the polarization
tensor (11) may or may not renormalize multiplicatively
with Z

2
V

. Here, we work with a conserved current, i.e.
Z

V

= 1.
In the following we will relate the vacuum polariza-

tion to the leading response of the free energy density f

of the system to background electromagnetic fields. To
illustrate the relation between the two objects on a qual-
itative level, it is instructive to represent the vacuum
polarization tensor by the diagram

⌫µ

where a momentum p flows in and out of the photon legs.
Here, the gray blob indicates all possible closed loops
formed by quark and gluon propagators — i.e. the per-
turbative expression for the free energy density f . The
legs may be thought of as photons corresponding to a
background electromagnetic field A

µ

with momentum p.
Pulling out these legs is achieved by taking appropri-
ate derivatives of f with respect to the background field.
While background electric fields turn the Euclidean QCD
action complex and are thus problematic in lattice simu-
lations, background magnetic fields can be realized with-
out complications. Employing the latter gives access to
the spatial components ⇧

ij

and hence to all components

⇧
µ⌫

since in Euclidean spacetime at zero temperature
the indices can be relabelled at will.

To find the background field corresponding to ⇧
µ⌫

(p),
we define the magnetic fields

Bp(x) = B sin(px) e3 , B0 = B e3 , (13)

pointing in the third spatial direction. While Bp is an os-
cillatory magnetic field with oscillation frequency p, B0

is a homogeneous background. The corresponding sus-
ceptibilities are obtained as the second derivatives of the
free energy density with respect to the amplitude of the
magnetic field:

�

p

= �@

2
f [Bp]

@(eB)2
. (14)

These susceptibilities are normalized by the square of the
elementary charge e > 0 to ensure that only the renor-
malization group-invariant combination eB appears in
the definitions.

The explicit calculation in appendix A shows that

2�
p

= ⇧(p2) , �0 = ⇧(0) . (15)

These relations form a new representation of the vacuum
polarization function in terms of susceptibilities with re-
spect to the magnetic fields defined in equation (13) and
are the main result of this article.

Unlike the conventional method, where the polariza-
tion function is extracted from the same set of posi-
tion space current-current correlators for all momenta,
equation (15) gives access to ⇧(p2) at one single lattice
momentum p. While this certainly increases the costs
of calculating ⇧ over a large range of momenta, it also
allows for a better signal-to-noise ratio within momen-
tum regions of particular interest. As argued above,
for the determination of the hadronic contribution to
the muon anomalous magnetic moment ahad,LO

µ

, low mo-

menta p

2 ⇠ 0.03GeV2 are much more important than
the high-p region. While hj

µ

(x)j
⌫

(0)i mixes informa-
tion about all allowed values of p, here such a mixing
is avoided.

Just as the vacuum polarization tensor, �
p

and �0 can
also be separated into connected and disconnected con-
tributions. We will demonstrate in section IV below that,
using this new approach, an unprecedented accuracy can
be achieved for both the connected and the disconnected
contributions to the vacuum polarization function, al-
ready at moderate computational costs. An additional
advantage of the method is that it gives direct access to
⇧(0).

To summarize, to arrive at a prediction for ahad,LO
µ

it is
desirable to improve the accuracy in the low-p region and
to calculate ⇧(0) independently. The method we propose
accomplishes both of these requirements.
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FIG. 6. Statistical error of the total (connected plus dis-
connected) ⇧(p2 = 0.03GeV2) as a function of the number
of inversions. Compared are the results obtained from oscil-
latory susceptibilities, using point sources and random wall
sources. In addition, the error of the connected oscillatory
susceptibility alone is shown. Note the logarithmic scale.

approach with random wall sources and that with point
sources. We demonstrate that the statistical error of
⇧(p2) can be pushed well below that of existing stud-
ies in the literature – even with the disconnected terms
taken into account.

We calculated ⇧(p2) using all three methods on 120
configurations from the � = 3.45 ensemble for a single
momentum p

2 = 0.03GeV2 using an increased number
of sources. Figure 6 shows the statistical error as a func-
tion of the number of inversions Ninv. The details of our
implementation can be found in appendices B and C. As
visible in the figure, the oscillatory susceptibility method
allows to save 50� 60% of the computational e↵ort with
respect to the random wall approach. This di↵erence
mainly comes from the disconnected contributions, which
can be calculated very accurately via susceptibilities. In
fact, the statistical error in this approach is dominated
by the connected contribution,4 as is also visible in the
figure. As expected, the conventional method with point
sources is not applicable for the determination of the dis-
connected terms. Obviously, it is favorable in terms of
the total computer time spent to increase the number
of configurations instead of the number of inversions per
configuration. We remark that the total number of exact
inversions necessary to achieve a given error can be con-
siderably reduced by methods like the hopping parameter

4 To see why this is the case, note that the number of estimates
increases quadratically with N

inv

for the disconnected terms but
only linearly for the connected ones, see the discussion in ap-
pendix B. Therefore, the error on the latter eventually overtakes
that of the former, before both show the expected asymptotic
�2 ' c

1

(1 + c
2

/N
inv

) fall-o↵. The inherent gauge noise c
1

can
only be reduced by increasing the number of configurations.

expansion [59, 60], truncated eigenmode substitution [61–
63], the truncated solver method [64–66] and, in the case
of Wilson-like fermions, employing spin-explicit stochas-
tic sources [67–69].
Finally, we discuss the disconnected contribution ⇧dis

in more detail. A particular feature of ⇧dis is that it re-
quires no additive renormalization. To see this, note that
⇧dis(0) vanishes in the perturbative continuum limit,
since it is of order g

6(a) in the strong coupling [21],
which dampens the logarithmic divergence and results
in ⇧dis(0) to fall o↵ as 1/ log2(a) for a ! 0. In our three-
flavor case the disconnected term even vanishes identi-
cally in perturbation theory due to

P
f=u,d,s

q

f

= 0, once

quark masses can be neglected, i.e. a�1 � m

s

. Based
on this observation, in figure 7 we plot the unsubtracted
disconnected vacuum polarization for all our lattice spac-
ings. (The number of inversions was Ninv = 800 for each
momentum, with the exception of the left-most point.)
Overall, ⇧dis is consistent with zero, where the two points
that deviate by more than two standard deviations from
this assumption are statistically expected and no system-
atic dependence on the lattice spacing or on the volume
is apparent. With the exception of three outliers with
large error bars, all central values are below 2 · 10�4 in
magnitude.

FIG. 7. Disconnected contribution to ⇧(p2) as a function of
p2 for our five lattice spacings.

Using all available estimators (Ninv = 20 000) for the
� = 3.45 ensemble at p2 = 0.03GeV2, our most accurate
determinations for the unsubtracted and the subtracted
vacuum polarizations read

p

2 = 0.03GeV2 : ⇧ = �0.058362(117) ,

⇧dis = +0.000021(026) ,

⇧R = +0.002355(198) .

(23)

Here, ⇧(p2) and ⇧dis(p2) were measured using the oscil-
latory susceptibility method. (We highlight again that
the error of ⇧dis is much smaller than that of the total

9

⇧.) The vacuum polarization at zero momentum was ob-
tained via random wall sources. Based on the discussion
above about the vanishing of ⇧dis(0) in the continuum
limit, only the connected part of ⇧(0) is necessary for
the subtraction. The relative error of the so-obtained
⇧R at this momentum is 8%, and is dominated by the
error of ⇧(0). Clearly, towards higher p2, where the mag-
nitude of ⇧(p2) increases, the relative error on ⇧R rapidly
decreases.

V. SUMMARY

We developed a new approach to determine the
hadronic vacuum polarization ⇧(p2) on the lattice. It
is based on calculating magnetic susceptibilities �

p

with
respect to oscillatory background fields for p2 > 0 and a
homogeneous background for p

2 = 0. The proof of the
equivalence between �

p

and ⇧(p2) is given in appendix A.
The oscillatory susceptibilities are obtained by evaluat-
ing the appropriate expectation values using noisy esti-
mators, as described in appendix B. Unlike the conven-
tionally used approach, based on position space current-
current correlators, which mixes information about all
possible lattice momenta, the present method enables us
to determine the vacuum polarization with increased pre-
cision for individual low momenta. The low momentum
region is of relevance for an accurate determination of
the leading hadronic contribution to the muon anoma-
lous magnetic moment. In principle, the lattice determi-
nation of ⇧(p2)�⇧(0) at a selected set of low momenta
can also be combined with experimental results for the
R-ratio to increase the accuracy of ahad,LO

µ

.
The proposed method not only reduces statistical er-

rors at low momenta but also allows for an independent
measurement of ⇧(0), instead of having to rely on ex-
trapolations of ⇧(p2) from p

2
> 0. We discussed three

di↵erent methods to determine the homogeneous suscep-
tibility �0 = ⇧(0). The most straightforward method,
which relies only on simulations at zero magnetic field
(the so-called half-half method), was found to su↵er
from large finite-volume e↵ects of up to 10% of the full
value. Instead, we combined existing results on �0 from
refs. [47, 57] that are based on simulations at non-zero
background fields. We also tested stochastic wall sources
to obtain ⇧(0) as the second moment of a momentum
projected current-current correlation function and found
that it can compete with the accuracy of the homoge-
neous susceptibility for a su�ciently large number of ran-
dom sources.

The method was tested on staggered N

f

= 2+1 flavor
ensembles with various lattice spacings. Already on a few
hundred configurations, a statistical accuracy below one
percent is achieved for ⇧(p2). The disconnected contri-
butions have been included in all cases. Figure 8 shows
an order-of-magnitude comparison of our statistical ac-
curacy to that of existing calculations in the literature,
wherever data or figures with error bars are available for

FIG. 8. The statistical error of the vacuum polarization at
low momenta around p2 = 0.03GeV2 for several lattice stud-
ies in the literature and for the present work (shaded area).
Open points denote the error of the unsubtracted ⇧(p2), while
full symbols indicate that of the renormalized ⇧

R

(p2). Stud-
ies involving only the connected contribution are indicated in
yellow, while those also taking into account the disconnected
terms in blue. The determination using the experimental R-
ratio is also included for comparison (solid green point).

⇧ at p

2 ⇡ 0.03GeV2 [17, 24, 27, 30–34, 40]. (Note that
the approach followed in ref. [35] involves parameterizing
the lattice data for the zero-momentum projected two-
point function G(t) of equation (9), making a compar-
ison for ⇧ di�cult.) We remark that this incomplete
comparison does not distinguish between di↵erent lat-
tice volumes, spacings or pion masses but just serves as
a qualitative indicator of the accuracy. It reveals that
our statistical errors, obtained on a comparably small
number of gauge configurations, are by far the smallest
within the lattice studies shown in figure 8. However, the
approach of employing the experimental R-ratio is still
by about an order of magnitude more accurate. Never-
theless, by applying the methods used in this paper to
ensembles with substantially higher statistics, the desired
accuracy may be reached in the near future.

ACKNOWLEDGMENTS

This research was funded by the DFG (SFB/TRR 55).
The authors acknowledge useful discussions with Bastian
Brandt, Vladimir Braun, Falk Bruckmann, Pavel Buiv-
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disconnected loop, isospin breaking 
effects	


n  -10% of connected Pi-Pi in ChPT [ Della Morte, Juettner, 2010] 
n  Mainz group  

  
n  HPQCD 2015,  -3% of connected based on phenomenological 

estimate of ρ ω difference 
n  ETMC 2011, 2015 
n  Francis et al (Mainz)  use same random source for strange and light 

for error reduction to exploit the SU(3) limit, noise ~  (ml – ms) 
n  Marina Marikovic (latice2015) , isospin breaking effect using 

ROME123 method 

The leading disconnected contribution to the anomalous magnetic moment of the muon Vera Gülpers

Figure 1: The connected and the disconnected contribution to the hadronic vacuum polarization.

1. Introduction

The anomalous magnetic moment of the muon aµ is one of the most precisely measured quan-
tities in particle physics. A deviation of ⇡ 3s between the experimental and the theoretical value
has persisted for many years. From the theory side, the largest fraction of the error comes from the
hadronic vacuum contribution (hvp), which is the leading order QCD contribution to aµ . Currently,
the best estimate of the hvp relies on a semi-phenomenological approach using the cross section
of e+ e� ! hadrons. In the past few years, a lot of effort has been undertaken to calculate the hvp
from first principles using lattice techniques [1, 2, 3, 4]. However, the quark-disconnected contri-
bution to the hvp is generally neglected. This may be a significant source of systematic error, since
in partially quenched chiral perturbation theory, it was estimated that the disconnected contribution
could be as large as �10% of the connected one [5].

We explicitly compute the disconnected contribution to the hvp with O(a)-improved Wilson
fermions using the mixed-representation method [6, 7], where the hadronic vacuum polarization is
calculated using the vector correlator

Ggg
(x0) =�1

3

Z
d3x

⌦
jg
k(x) jg

k(0)
↵

with jg
k =

2
3

ugku� 1
3

dgkd + . . . (1.1)

as follows:

P̂(Q2
) = 4p2

•Z

0

dx0 Ggg
(x0)


x2

0 �
4

Q2 sin2
✓

1
2

Qx0

◆�
. (1.2)

The vector correlator Ggg
(x0) receives a connected and a disconnected contribution as shown in

figure 1. We calculate the required disconnected quark loops using stochastic sources and a hopping
parameter expansion as described in [8].

2. Results for the vector correlator

In the following we will concentrate on the vector correlator for light and strange quarks
combined. The corresponding electromagnetic current

j`sµ = j`µ + js
µ =

1
2
(ugµu�dgµd)

| {z }
I=1, jr

µ

+

1
6
(ugµu+dgµd �2sgµs)

| {z }
I=0

(2.1)

can be split into an isovector part corresponding to the r-current and an isoscalar part. Performing
the Wick contractions one finds for the light and strange vector current

G`s
(t) =

5
9

G`
con(t)+

1
9

Gs
con(t)+

1
9

G`s
disc(t) with G`

con(t) = 2Grr
(t) (2.2)

2
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Figure 3: The connected (red) and the total (yellow) vector correlator for light quarks (left) and light and
strange quarks (right). The horizontal line in both plots shows level of the statistical error on the disconnected
contribution.

3. The vector correlator for large euclidean times

In order to estimate the maximum possible contribution from quark-disconnected diagrams we
require information about the behavior of the vector correlator for large euclidean times in addition
to our data. For large euclidean times, the vector correlator is dominated by the isovector part [6],
due to its lower threshold:

Ggg
(t) = Grr

(t)
�
1+O(e�mp t

)

�
. (3.1)

If we rewrite equation (2.2) as

1
9

G`s
disc(t)

Grr
(t)

=

Ggg
(t)�Grr

(t)
Grr

(t)| {z }
!0 for t!•

�1
9

✓
1+2

Gs
con(t)

G`
con(t)

◆

| {z }
!1 for t!•

�! �1
9
, (3.2)

we find an asymptotic value of �1/9 for the ratio of the light and strange disconnected correlator
G`s

disc(t) to the r-correlator for large euclidean times. This ratio (3.2) is plotted against t in figure 4.
The green line on the left-hand side shows the asymptotic value �1/9. As one can see, we can
clearly distinguish the ratio from its asymptotic value up to t ⇡ 15a.

To give a conservative upper limit for the disconnected contribution, we assume that the ratio
(3.2) falls monotonically from zero to �1/9 at some point. Furthermore, our estimate for G`s

disc(t)
has to be consistent with both our data and with its theoretical asymptotic value. Thus, the dis-
connected contribution would be maximized if the the ratio were basically zero up to t ⇡ 15a and
then suddenly dropped to �1/9, as indicated by the blue line. If we take this as an estimate of the
disconnected vector correlator, we can give a conservative upper bound for the magnitude of the
disconnected contribution to aµ .

4. Hadronic vacuum polarization and aµ

From the vector correlator, one can calculate the hadronic vacuum polarization (cf. equa-
tion (1.2)). We calculate P̂`s

(Q2
) once only for the connected vector correlator (for the details of

the analysis, see [9]) and once with the disconnected estimate as described above, i.e.

4
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For convenience, we consider the disconnected correlator G`s
disc(t) for light and strange quarks

combined, since one can write the disconnected Wick contractions as

G`s
disc(x0) =�

Z
d3x

D
j`sk (x) j`sk (0)

E

disc

=�
Z

d3x
D
( j`k(x)� js

k(x))( j`k(0)� js
k(0))

E

disc
,

(2.3)

i.e. we only need differences of light and strange quark loops. Thus, we expect that stochastic
noise can be canceled when light and strange quark loops are calculated using the same stochastic
sources. Figure 2 shows our results for the disconnected correlator for light quarks only in red and
for combined light and strange quarks in green for the E5 ensemble (cf. table 1). As expected,
we find that the stochastic error for the combined light and strange disconnected correlator is sig-
nificantly smaller than the error on the light quark correlator alone. Although we can reduce the
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Figure 2: The disconnected vector correlator for light quarks (red) and combined light and strange quarks
(green). Note, that the scales on both plots are different.

statistical error significantly when light and strange loops are calculated with the same stochastic
sources, we find that the disconnected correlator G`s

disc(x0) is still consistent with zero within our
current accuracy.

We can add the disconnected correlator to the connected one to obtain the total vector correla-
tor. Figure 3 shows the connected (red) and the total vector correlator (yellow) for the E5 ensemble.
Results for light quarks as well as light and strange quarks combined are shown on the left- and the
right-hand side, respectively. The horizontal line in both plots shows the level of the statistical error
on the disconnected contribution, i.e. it indicates the point from which on our total vector correla-
tor is dominated by the noise of the disconnected contribution. This point sets in for significantly
larger euclidean times in the case of the combined light and strange quark correlator.

Although we do not find a non-vanishing signal for the disconnected correlator, we can still
use our results to give a limit for the maximum possible contribution to the hadronic vacuum
polarization from quark-disconnected diagrams. Here, we will solely consider the case of combined
light and strange quarks, for which the statistical error is significantly smaller.
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Leading isospin breaking correction to the HVP

•    Main obstacle in implementing this method (in general): , 
➡many diagrams have to be computed 
➡including the 3-pt, 4-pt functions and the disconnected ones (beyond el-quenched) 

• Computation with Nf=2 O(a) improved Wilson configurations, …

(a) (b) (c) (d) (e)

X

(f)

X

(g)

X

(h)

X

(i)

Figure 1: Contributions to the leading isospin breaking e↵ects to the connected part of the HVP.

(a) (b)

Figure 2: Some examples of the disconnected contributions which are part of the leading isospin breaking
e↵ects to the connected part of the HVP, beyond electro-quenched approximation.

X

q=u,d,...

e2q = � e2qe
2

+ 2(mq �m0
q)

X

� 2e2qe
2 � 2e2qe

2

= + (9)

For a start, it would be nice to compute at least electro-quenched contribution, namely setting (see ref. [1]):

rf = 1, and (10)

gs = g

0
s . (11)

In this case, only diagrams in Figure 1 contribute.
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O(mu �md)

•    In the phenomenological determination of              , correctly applied IB correction 
resolved the discrepancy between           and     data   [Jegerlehner,Szafron ‘11] 

•    R123 method [arXiv:1303.4896] for computing leading isospin breaking corrections(LIBE) 
➡Applied to the connected pat of the HVP   

•    Main advantage w. respect to simulating QED+QCD: 
➡Diagrams obtained individually (before multiplying with               ,                         coeff.) 
➡No extrapolation in 

• Leading isospin breaking correction (electro-quenched approximation):

O(↵em)

ahad,LO
µ

↵em

e+e� ⌧



Recent results	


3+1 new results 
for Lattice15 
 
aµ(strange) x 1010 
 53.41(59)       HPQCD 14 
 53.6(1.9)        ETMC  
                      (Grit Hotzel et al) 
                 also RBC/UKQCD & BMW  
  ~ 44                E. Gregory et al. 
 
aµ (charm) x 1010   
  14.42(39)      HPQCD 14 
  14.18(61)     ETMC 
                   also BMWc 

400 600 800

a
µ

HVP
 (x 10

10
)

(stat. only)

Aubin and Blum 2006

UKQCD 2011

ETMC 2014

ETMC 2011

Mainz 2011

Mainz 2015 (ud+sQcQ)

(u,d contribution)

BMW 2013

(preliminary, stat. only)

e
+
e

-
 (Davier 2011)

u, d, s, c sea

u, d, s sea

u, d sea

E. Gregory et al (BMWc 2HEXs ) 2015

HPQCD 2015  (corrected, udsc+disc)

[	
  added	
  to	
  Ruth	
  Van	
  de	
  Water’	
  15-­‐04	
  compilaYon,	
  which	
  was	
  on	
  Blum	
  TI’s	
  compilaYon	
  14	
  ]	
  	




HVP Summary and future prospects	

 
•  Direct subtraction methods ( Mainz formula, Doulbe Direct Subtraction, Sin-

cardinal, moment method )  avoids fit procedures.  
One needs to check the Tmax truncation error, could fail. 
 

•  Error reduction technique  
(AMA, TSM, A2A, HPE, noise method 
 with dilution) continue to help 
 

•  Consistent results, with increasing  accuracies ! 
 
 
•  Sizable finite volume effects  10+% at physical point,  MpiL = 

4 ?　　→  need larger volume lattice,  or  Twist Averaging (C. Lehner TI 2014) ? 
 
•  Disconnected quark loop 
•  EM Isospin, ud mass difference 

•  Magnetic susceptibility 
•  Also electron, tau anomalous moment, ETMC arXiv:1501.05110 

coupling runnings Gregorio Herdoiza, 
                           Vera  Guelpers lattice 2015 
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Introduction HVP HLbL Summary/Outlook References Doing the integral: fits, moments, sums, ... finite volume e↵ects strange disconnected diagrams HVP summary

Finite volume e↵ects [Lehner and Izubuchi, 2015]

1-volume for valence quarks by average over twisted bc’s

Towards the large volume limit Christoph Lehner

Figure 3 shows a numerical comparison of results using RBC/UKQCD’s 163 and 243 en-
sembles that only differ in their respective physical volume. This allows for a test of remnant
finite-volume errors introduced by the sea sector. The integral over q2 is performed using both the
Trapezoidal and Simpson’s rule, choosing a step-size such that their difference is below 1/100 of
the statistical error. We find that the relative error of aµ is consistent with the almost q2-independent
integrand uncertainty shown in Fig. 4.
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Figure 3: Strange quark contribution on RBC/UKQCD’s 163 and 243 ensembles with a�1 ⇡ 1.73 GeV,
ml = 0.01 (mp ⇡ 422 MeV), and ms = 0.04. The 163 (243) measurement was performed using 2 (1) exact
and 32 (16) inexact sources on 60 (78) configurations. The left figure shows the times-lice t contribution to
P̂(k = mµ), where mµ is the physical muon mass. The right figure shows the integrand of aµ as a function
of q2. Note that the stochastic noise is well-behaved for small momenta.

4. Stochastic integration of photon momenta

In this section we demonstrate an efficient method to use the twist-averaging procedure to
sample over the photon momenta. A wise choice of sampling weight, i.e., the use of importance-
sampling techniques can yield a substantial benefit. The following discussion is explicitly given
in one dimension but all expressions and methods translate in a straightforward way to the more
general four-dimensional case.

We continue the discussion of the HVP diagram to illustrate the method. The full diagram
with lattice regulator can be written as
Z p

�p
dk Gµn(k)Pµn(k) =

Z p

�p
dk Gµn(k)

Z 2p

0

dq1

2p
dq2

2p Â
x2{0,...,L�1},n2

eik(nL+x)+in(q1�q2)Cµn(x,q1,q2)

(4.1)

for an appropriately defined Gµn . Poisson’s summation formula yields
Z p

�p
dk Gµn(k)

Z 2p

0

dq1

2p
dq2

2p Â
x2{0,...,L�1}

eikxd̂ (k � (q2 �q1)/L)Cµn(x,q1,q2) (4.2)

with d̂ (k) = 2p
L Ân2 d (k + 2pn/L). By writing

R p
�p dk g(k) = 1

L Ân=0,...,L�1
R 2p

0 dqkg(2pn/L +

qk/L) and performing the integral over qk, we obtain a method to stochastically sample the photon
momenta through the random choice of twist angles.

5

Allows continuous variation of momentum (avoid fit. also
sine-cardinal constr: exp. small errors [del Debbio and Portelli, 2015])
“direct double subtraction” found ind. of [Bernecker and Meyer, 2011]

⇧̂(q2) =

*
X

t

<
✓
e iqt � 1

q2
+

1

2
t2

◆
<Cµµ(t)

+

sub ⇧µµ(0) and ⇧(0) on each config: reduced statistical errors
Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD



Twist angle Averaging (TA) 
C. Lehner TI, Lattice 2014	


Uµ(x)

Uµ(x)

Uµ(x)

Uµ(x)

Uµ(x)

Uµ(x)

 (x + L̂1 + L̂2)  (x + 2L̂1 + L̂2)  (x + 3L̂1 + L̂2)

 (x + L̂1)  (x + 2L̂1)  (x + 3L̂1)

Valence fermions  living on a repeated gluon background Uµ with
periodicity L1, L2 and vectors L̂1 = (L1, 0), L̂2 = (0, L2)

CL lattice 2014QCD setup

27 / 29



Let  ✓ be the quark fields of your finite-volume action with
twisted-boundary conditions

 ✓
x+L

= e i✓ ✓
x

.

Then one can show that

⌦
 

x+nL

 ̄
y+mL

↵
=

Z 2⇡

0

d✓

2⇡
e i✓(n�m)

D
 ✓

x

 ̄✓
y

E
, (2)

where the h·i denotes the fermionic contraction in a fixed
background gauge field Uµ(x). (4d proof available.)

This specific prescription produces exactly the setup of the
previous page, it allows for the definition of a conserved current,
and allows for a prescription for flavor-diagonal states.

CL lattice 2014
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Tau decay & Lattice HVPs	


n  ｔau -> had + nu decay dispersive analysis  

n  current methods :  analytic w(s) => I=0 
    cut integral from experiment 
      no data above mτ2, larger error for higher s 

    circle integral from pQCD+OPE 
      slow αs convergence, D>4 OPE contributions [K. Maltman et al.] 
n  By using w(s) with space-like poles, and take circle radius to infinity 

    and evaluate the residues using Lattice,  
    one may suppress the problems 

n  Provide  checks for lattice vs exp data 
    (no disconnected, could study isospin breaking effects) 
n  alternative determinations for Vus 
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FIG. 17 Integration contour for the r.h.s. in Eq. (83).

The correlation function Π(J) is analytic in the complex s plane everywhere except on the positive real
axis where singularities exist. Hence by Cauchy’s theorem, the imaginary part of Π(J) is proportional to the
discontinuity across the positive real axis

1

π

s0∫

0

ds w(s)ImΠ(s) = −
1

2πi

∮

|s|=s0

ds w(s)Π(s) , (83)

where w(s) is an arbitrary analytic function, and the contour integral runs counter-clockwise around the circle
from s = s0 + iϵ to s = s0 − iϵ as indicated in Fig. 17.

The energy scale s0 = m2
τ is large enough that contributions from nonperturbative effects are expected

to be subdominant and the use of the OPE is appropriate. The kinematic factor (1 − s/s0)2 suppresses the
contribution from the region near the positive real axis where Π(J)(s) has a branch cut and the OPE validity
is restricted due to large possible quark-hadron duality violations (Braaten, 1988; Poggio et al., 1976).

The theoretical prediction of the vector and axial-vector ratio Rτ,V/A can hence be written as

Rτ,V/A =
3

2
|Vud|2SEW

⎛

⎝1 + δ(0) + δ′EW + δ
(2,mq)
ud,V/A +

∑

D=4,6,...

δ(D)
ud,V/A

⎞

⎠ , (84)

with the massless perturbative contribution δ(0), the residual non-logarithmic electroweak correction δ′EW =
0.0010 (Braaten and Li, 1990) (cf. the discussion on radiative corrections in Section V.A), and the dimension

D = 2 perturbative contribution δ
(2,mq)
ud,V/A from quark masses, which is lower than 0.1% for u, d quarks. The

term δ(D) denotes the OPE contributions of mass dimension D

δ(D)
ud,V/A =

∑

dimO=D

Cud,V/A(s, µ)
⟨Oud(µ)⟩V/A

(−√
s0)D

, (85)

where the scale parameter µ separates the long-distance nonperturbative effects, absorbed into the vacuum
expectation elements ⟨Oud(µ)⟩, from the short-distance effects that are included in the Wilson coefficients

Cud,V/A(s, µ) (Wilson, 1969). Note that δ(D)
ud,V +A = (δ(D)

ud,V + δ(D)
ud,A)/2.

1. The Perturbative Prediction

The perturbative prediction used by the experiments follows the work of (Le Diberder and Pich, 1992a).
The perturbative contribution is given in the chiral limit. Effects from quark masses have been calculated

|us|V
0.215 0.22 0.225

 decays, PDG 2013l3K
 0.0014±0.2253 

 decays, PDG 2013l2K
 0.0010±0.2253 

CKM unitarity, PDG 2013
 0.0010±0.2255 

 s inclusive, HFAG 2014→ τ
 0.0021±0.2176 

, HFAG 2014νπ → τ / ν K→ τ
 0.0019±0.2232 

, HFAG 2014ν K→ τ
 0.0020±0.2212 

 average, HFAG 2014τ
 0.0014±0.2204 

HFAG-Tau
Summer 2014

Figure 2: |V
us

| averages of this document compared with the FlaviaNet results [77].

6.2 |V
us

| from B(⌧ ! K⌫)/B(⌧ ! ⇡⌫) and from B(⌧ ! K⌫)

We follow the same procedure of the HFAG 2012 report to compute |V
us

| from the ratio of branching fractions
B(⌧ ! K

�⌫⌧ )/B(⌧ ! ⇡�⌫⌧ ) = (6.431 ± 0.094) · 10�2 [the wrong value corresponding to B(⌧ ! K

�⌫⌧ )/B(⌧ !
⇡�⌫⌧ ) = (3.903 ± 0.054) · 10�2 has been incorrectly been quoted until 25 June 2015] from the equation

B(⌧ ! K

�⌫⌧ )
B(⌧ ! ⇡�⌫⌧ )

=
f

2

K

|V
us

|2

f

2

⇡ |Vud

|2

�
1 � m

2

K

/m2

⌧

�
2

(1 � m

2

⇡/m
2

⌧ )
2

r

LD

(⌧� ! K

�⌫⌧ )
r

LD

(⌧� ! ⇡�⌫⌧ )
.

We use f

K

/f⇡ = 1.1920 ± 0.0050 from the FLAG 2013 Lattice averages with N

f

= 2 + 1 [83]. We compute
|V

us

|⌧K/⇡ = 0.2232 ± 0.0019, 1.0� below the CKM unitarity prediction.

We proceed like in 2012 also to determine |V
us

| from the branching fraction B(⌧� ! K

�⌫⌧ ) using

B(⌧� ! K

�⌫⌧ ) =
G

2

F

f

2

K

|V
us

|2m3

⌧ ⌧⌧
16⇡—h

✓
1 � m

2

K

m

2

⌧

◆
2

S

EW

.

We use f

K

= 156.3±0.9 MeV from FLAG 2013 with N

f

= 2+1 [83]. We obtain |V
us

|⌧K

= 0.2212±0.0020, which is
1.9� below the CKM unitarity prediction. CODATA 2010 results [84] and PDG 2013 have been used for the physics
constants.

6.3 |V
us

| from ⌧ summary

We summarize the |V
us

| results reporting the values, the discrepancy with respect to the |V
us

| determination from
CKM unitarity, and an illustration of the measurement method:

|V
us

|
uni

= 0.22547 ± 0.00095 from
p

1 � |V
ud

|2 (CKM unitarity) ,

|V
us

|⌧s

= 0.2176 ± 0.0021 � 3.4� from �(⌧� ! X

�
s

⌫⌧ ) ,

|V
us

|⌧K/⇡ = 0.2232 ± 0.0019 � 1.0� from �(⌧� ! K

�⌫⌧ )/�(⌧� ! ⇡�⌫⌧ ) ,

|V
us

|⌧K

= 0.2212 ± 0.0020 � 1.9� from �(⌧� ! K

�⌫⌧ ) .

Averaging the three above |V
us

| determinations (taking into account all correlations due to the usage of the fitted ⌧
branching fractions and the other mentioned inputs) we obtain:

|V
us

|⌧ = 0.2204 ± 0.0014 � 2.9� average of 3 |V
us

| ⌧ measurements.
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n  OPAL, ALEPH	

18
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FIG. 5 Inclusive vector plus axial-vector (left) and vector minus axial-vector spectral function (right) as measured
in (ALEPH Coll., 2005) (dots with errors bars) and (OPAL Coll., 1999b) (shaded one standard deviation errors). The
lines show the predictions from the parton model (dotted) and from massless perturbative QCD using αS(M2

Z) = 0.120
(solid). They cancel to all orders in the difference.

To build the vector spectral function ALEPH has measured the two- and four-pion final states exclusively,
while only parts of the six-pion state. The total six-pion branching fraction has been determined using
isospin symmetry (ALEPH Coll., 1997b). However, one has to account for the fact that the six-pion channel
is contaminated by isospin-violating τ− → η(3π)−ντ decays, as reported by CLEO (CLEO Coll., 1997a;
Weinstein, 2001). A small fraction of the ωπ−ντ decay channel that is not reconstructed in the four-pion final
state is added using the simulation. Similarly, one corrects for the ηπ−π0ντ decay mode where the η decays
into pions. For the η → 2γ mode, the τ decay is classified in the h−3π0ντ final state, since the two-photon
mass is inconsistent with the π0 mass and consequently each photon is reconstructed as a π0. The K−K0ντ

mass distribution is taken entirely from the simulation (recall that this mode is pure vector). The spectral
functions for the final states KKπ and KKππ (see Section III.E for the discussion on the G-parity of these
modes) are obtained from the Monte Carlo simulation, where large systematic errors are applied to cover this
approximation (ALEPH Coll., 1997b).

In analogy to the vector spectral function, the inclusive axial-vector spectral function is obtained by sum-
ming up the exclusive axial-vector spectral functions with the addition of small unmeasured modes taken from
the Monte Carlo simulation. The small fraction of the ωπ−π0ντ decay channel that is not accounted for in
the 2π−π+2π0ντ final state is added from the simulation. Also considered are the axial-vector η(3π)−ντ final
states (CLEO Coll., 1997a; Weinstein, 2001). CLEO observed that the dominant part of this mode issues
from the τ− → f1(1285)π−ντ intermediate state, with B(τ− → f1π−ντ ) = (0.068 ± 0.030)%, measured in
the f1 → ηπ+π− and f1 → η2π0 decay modes (CLEO Coll., 1997a; Weinstein, 2001). Since the f1 meson is
isoscalar, the branching fractions relate as B(τ− → ηπ−π+π−ντ ) = 2×B(τ− → ηπ−2π0ντ ). The distributions
are taken from the ordinary six-pion phase space simulation accompanied by large systematic errors. The
KKπ final states contribute mostly to the inclusive axial-vector spectral function, with errors that are fully
anticorrelated with the inclusive vector spectral function. The invariant mass distributions for these channels
are taken from the simulation.

2. Inclusive V ± A spectral functions

For the total v1 +a1 hadronic spectral function it is not necessary to distinguish in the experiment whether
a given event belongs to one or the other current. The one, two and three-pion final states dominate and
their exclusive measurements are added with proper accounting for the (anti)correlations. The remaining
contributing topologies are treated inclusively, i.e., without separation of the vector and axial-vector decay
modes. This reduces the statistical uncertainty. The effect of the feed-through between τ final states on the
invariant mass spectrum is described by the Monte Carlo simulation and resolution effects are corrected by
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FIG. 6 Inclusive hadronic vector plus axial-vector spectral function from τ decays into S = ±1 final states with its
different contributions as indicated from (ALEPH Coll., 1999b) and (OPAL Coll., 2004). The kaon pole is not included
in the ALEPH plot. The parton model prediction is given by the dashed line.

functions, we have on the e+e− side

σ(e+e− → π+π−) =
4πα2

s
v0(s) , (42)

where the spectral function v0(s) is related to the pion form factor F 0
π (s) by

v0(s) =
β3

0(s)

12
|F 0

π (s)|2 , (43)

and where β3
0(s) is the threshold kinematic factor. Similarly, on the τ side the relation between spectral

function (34) and the charged pion form factor reads

v−(s) =
β3
−(s)

12
|F−

π (s)|2 . (44)

Isospin symmetry implies v−(s) = v0(s). The threshold functions β0,− are defined by

β0,− = β(s, mπ− , mπ+,0) , (45)

where

β(s, m1, m2) =

[(

1 −
(m1 + m2)2

s

)(

1 −
(m1 − m2)2

s

)]1/2

. (46)
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Hadronic Light-by-Light (HLbL) 
contributions	


Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Hadronic light-by-light (HLbL) scattering

+ + · · ·

Model calculations: (105 ± 26) ⇥ 10�11

[Prades et al., 2009, Benayoun et al., 2014]

Model systematic errors di�cult to quantify

Dispersive approach di�cult, but progress is being made
[Colangelo et al., 2014b, Colangelo et al., 2014a, Pauk and Vanderhaeghen, 2014b,

Pauk and Vanderhaeghen, 2014a, Colangelo et al., 2015]

First non-PT QED+QCD calculation [Blum et al., 2015]

Very rapid progress with Pert. QED+QCD [Jin et al., 2015]

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD



Hadronic Light-by-Light	


n  4pt function of EM currents 
n  No experimental data directly help 
n  many Lorentz structure	


EQUATIONS

N. YAMADA

Γ(Hlbl)
µ (p2, p1) = ie6

∫
d4k1

(2π)4

d4k2

(2π)4

Π(4)
µνρσ(q, k1, k3, k2)

k2
1 k2

2 k2
3

×γνS
(µ)(p/2 + k/2)γρS

(µ)(p/1 + k/1)γσ

Π(4)
µνρσ(q, k1, k3, k2) =

∫
d4x1 d4x2 d4x3 exp[−i(k1 · x1 + k2 · x2 + k3 · x3)]

×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩

aSM
µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
µ = (11 659 208.9 ± 6.3) × 10−10 [PDG](2)

aEXP
µ − aSM

µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
aSM

µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)

Date: July 5, 2012.
1

EQUATIONS

N. YAMADA

V (x) = −µ⃗l · B⃗(1)

µ⃗l = gl
e

2ml
S⃗l(2)

al =
gl − 2

2
(3)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(4)

aµ = (11 659 182.8 ± 4.9) × 10−10(5)

(6)

Date: July 4, 2012.
1

Form factor :

✕



HLbL from Models	

n  Model estimate with non-perturbative 

constraints at the chiral / low energy limits 
using anomaly :  (9—12) x 10-10  with 25-40% 
uncertainty	


⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 85

My own calculation: h3 ⌅ [�10, 10] GeV�2

X aµ(LbL; X) ⇥ 1011

⇥0, �, �⇤ 93.91 ± 12.40 a1, f ⇤1, f1 28.13 ± 5.63 a0, f ⇤0, f0 �5.98 ± 1.20

JN09 based on Nyffeler 09:

aLbL;had
µ = (116 ± 39) ⇥ 10�11

Summary of results
Contribution BPP HKS KN MV PdRV N/JN

⇥0, �, �⇤ 85±13 82.7±6.4 83±12 114±10 114±13 99±16
⇥,K loops �19±13 �4.5±8.1 � 0±10 �19±19 �19±13

axial vectors 2.5±1.0 1.7±1.7 � 22± 5 15±10 22± 5
scalars �6.8±2.0 � � � �7± 7 �7± 2

quark loops 21± 3 9.7±11.1 � � 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 105±26 116±39

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 92

F.	
  Jegerlehner	




HVP like approach on lattice ?	


n  Calculate 4pt of EM currents 

n  One needs to calc. or fit all (q, k1,k2,k3) 
combination 

 
n  Need to repeat (Volume)3 times  ! 

EQUATIONS

N. YAMADA
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(2π)4

d4k2

(2π)4
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×⟨0|T [jµ(0)jν(x1)jρ(x2)jσ(x3)]|0⟩
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µ = (11 659 182.8 ± 4.9) × 10−10 (using [1])(1)

aEXP
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µ = (26.1 ± 8.0) × 10−10(3)

Breakdown
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µ = (11 659 182.8 ±4.9 ) × 10−10

aQED
µ = (11 658 471.808 ±0.015 ) × 10−10

aEW
µ = ( 15.4 ±0.2 ) × 10−10

ahad,LOVP
µ = ( 694.91 ±4.27 ) × 10−10

ahad,HOVP
µ = ( −9.84 ±0.07 ) × 10−10

ahad,lbl
µ = ( 10.5 ±2.6 ) × 10−10

V (x) = −µ⃗l · B⃗(4)

µ⃗l = gl
e

2ml
S⃗l(5)

al =
gl − 2

2
(6)

Γµ(q) = γµ F1(q
2) +

iσµνqν

2 ml
F2(q

2)(7)

F1(q
2) = 1, F2(q

2) = 0(8)

F1(0) = 1, F2(0) = al(9)

al = F2(0)(10)
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Direct 4pt calculation for selected 
kinematical range	


n  Jeremy Green (Mainz)  Latice 2015,   arXiv: 1507.01577 
n  Compute connected contribution of 4 pt function in momentum space 
n  forward amplitudes related to γ*γ*-> hadron cross section via dispersion 

relation 3
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FIG. 3. The forward scattering amplitude M
TT

at a fixed
virtuality Q2

1

= 0.377GeV2, as a function of the other photon
virtuality Q2

2

, for di↵erent values of ⌫. The curves represent
the predictions based on Eq. (10), see the text for details.

for some fixed functions f

1,2

and all values of {µ
a

}
and X

4

. The contact terms are present when two or
three lattice conserved currents coincide, and serve to
ensure that the conserved-current relations hold, e.g.,

�(X4)
µ4 ⇧lat

µ1µ2µ3µ4
= 0, where �(X)

µ

is the backward lat-
tice derivative.

The fully-connected contribution to Eq. (12) is evalu-
ated using the method of sequential propagators. First,
a point-source propagator is computed from X

3

. Then,
it is combined with the function f

1

or f

2

to form the
source for a new (sequential) propagator. These sequen-
tial propagators are then used to form sources for double-
sequential propagators that depend on both f

1

and f

2

.
Finally, the fully-connected contraction is formed using
all three kinds of propagators; this is illustrated in Fig. 2.
For generic complex f

1

and f

2

, this requires one point-
source, 16 sequential and 32 double-sequential propaga-
tors, although these counts can be reduced in various spe-
cial cases. We have verified that in our implementation
the four-point function matches the lattice perturbation
theory calculation if the gauge link variables are set to
unity, and that the conserved-current conditions hold on
each gauge configuration.

For evaluating the momentum-space correlator, we set
the functions to be plane waves, f

a

(X) = e

�iPa·X and
compute the Fourier modes with respect to X

4

. Thus,
⇧E

µ1µ2µ3µ4
(P

4

;P
1

, P

2

) can be evaluated e�ciently at fixed
P

1,2

for all P
4

available on the lattice.

FIG. 4. The dependence of the amplitude M
TT

on ⌫, both
photon virtualities being fixed at 0.377 GeV2, at three dif-
ferent pion masses. The dashed and dotted curves show the
⇡0 and ⇡0 + ⌘0 contributions (there is no ⌘ meson in two-
flavor QCD), the solid curve includes all single-meson and
⇡+⇡� contributions, and the dash-dotted curves additionally
include the high-energy contribution for the case of real pho-
tons at the physical pion mass.

IV. RESULTS

We have used three lattice QCD ensembles with two
degenerate flavors of non-perturbatively O(a) improved
Wilson quarks and a plaquette gauge action. The en-
sembles are at a single lattice spacing a = 0.063fm [16],
correspond to pion masses m

⇡

= 451, 324 and 277MeV,
and are respectively of spatial linear size 32, 48 and 48,
the time direction being twice as long; see [17] for more
details. Only the up and down quark contributions to
the electromagnetic current are included. The local vec-
tor current J

l

µ

is renormalized non-perturbatively [18].
The results shown here were obtained using fairly low
statistics, with a maximum of 300 samples.
Due to the finite volume of the lattice, the momenta

take discrete values. The subtracted forward scatter-
ing amplitude, M

TT

(�Q

2

1

,�Q

2

2

, ⌫)�M
TT

(�Q

2

1

,�Q

2

2

, 0)
(which is even in ⌫), is obtained by linearly interpolating
the second term between the available Q

2

2

to match the
first term. It is shown in Fig. 3 at fixed pion mass and
fixed Q

2

1

, and also in Fig. 4 with both photon virtualities
fixed. For the latter, linear interpolation in Q

2

2

was also
used in the first term, except for the points at maximal
⌫. At fixed ⌫, the amplitude tends to decrease as the
virtualities are increased, at fixed virtualities it tends to
increase with |⌫|, and at fixed kinematics we do not find
a significant dependence on the pion mass.

We compare the lattice data with results from the sum
rule, Eq. (10), using a phenomenological model for the
transverse �

⇤
�

⇤ ! hadrons cross section, �
0

+ �

2

, based
on Ref. [8]. We include pseudoscalar, scalar, axial-vector,
and tensor mesons, as well as ⇡

+

⇡

� states [19] (using
scalar QED dressed with form factors). The �

⇤
�

⇤ !
meson form factors have not been measured experi-

2

conventional notation, we have

Mforw

µ1µ2µ3µ4
(q

1

, q

2

) ⌘ M
µ1µ2µ3µ4(q1, q2 ! q

1

, q

2

) (5)

= e

4 (�i⇧
µ1µ3µ4µ2(�q

2

;�q

1

, q

1

)).

The forward scattering amplitude can be decomposed
into eight Lorentz-invariant amplitudes [11]. They are
functions of the virtualities q2

1

and q

2

2

of the photons, as
well as of the variable ⌫ ⌘ q

1

· q
2

. Using the projector
R

µ⌫ onto the subspace orthogonal to q

1

and q

2

, we focus
here on the amplitude [12]

M
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(q2
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2

, ⌫) =
1

4
R

µ1µ3
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µ2µ4Mforw

µ1µ2µ3µ4
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). (6)

Combining Eqs. (5) and (3), we can access the amplitude
M

TT

from the Euclidean correlator,

M
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The largest value of |⌫| that can be reached with Eu-
clidean kinematics is limited by the virtualities of the
photons [13], |⌫|  (Q2

1

Q

2

2

)1/2  1

2

(Q2

1

+Q

2

2

) ⌘ ⌫

0

, while
the nearest singularity is the s-channel ⇡0 pole located
at ⌫

⇡

= 1

2

(m2

⇡

+ Q

2

1

+ Q

2

2

). A technical issue arises
when Q

1

and Q

2

are collinear: the projector R

E

µ⌫

be-
comes ambiguous. To resolve the issue, we note that
R

E

µ⌫

= R

µ⌫

� U

1µ

U

1⌫

, where R

µ⌫

⌘ �

µ⌫

� Q

1µ

Q

1⌫

/Q

2

1

and U

1

is the unit vector parallel to the projection of
Q

2

onto the subspace orthogonal to Q

1

. The average of
the applied projector over the directions of U

1

in that
subspace yields

hhRE
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µ2µ4
ii
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R

µ1µ3Rµ2µ4 (9)

+ 1
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⇣
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µ1µ2Rµ3µ4 +R

µ1µ4Rµ3µ2

⌘
.

We use this averaged projector in Eq. (7) when Q

1

and
Q

2

are collinear.
In [8], it was shown that the HLbL amplitude M

TT

(⌫),
for fixed spacelike photon virtualities, can be obtained
from the following dispersive sum rule,

M
TT

(q2
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, 0) (10)
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)(⌫0),

where �

0

and �

2

are the total cross sections
�

⇤(q 2

1

)�⇤(q 2

2

) ! hadrons with total helicity 0 and 2 re-
spectively. It can be shown [8] that M

TT

vanishes at
⌫ = 0 if either of the photons is real. It is interesting to
test the sum rule for the ⇡0 pole contribution. Using the

FIG. 1. Four-point function quark contraction topologies.
The vertices represent vector currents and the lines are quark
propagators. In this work, we compute only the leftmost,
fully-connected class of diagrams.

1X X2

X4

1X X2

X4

1X X2

X40 0 0

FIG. 2. Fully-connected four-point function quark contrac-
tions. Each panel represents two contractions with oppo-
site directions of quark flow. The solid quark lines are com-
puted using a point-source propagator, the dashed lines using
sequential propagators, and the dotted lines using double-
sequential propagators.

expression for ⇧
µ⌫⇢�

given in [14] and Eqs. (5, 6), one
finds
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0
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with F(q2
1

, q

2

2

) the pion transition form factor as defined
in [14]. For q2

2

= 0, the same result is obtained from the
sum rule, using the expression for the ��

⇤ ! ⇡

0 cross-
section given in [8].
In summary, the amplitude M

TT

can be computed on
the lattice via Eq. (7) and from e

+

e

� collider data via
Eq. (10). In the following, we present a comparison of
the two approaches.

III. IMPLEMENTATION OF THE EUCLIDEAN
FOUR-POINT FUNCTION IN LATTICE QCD

In numerical lattice QCD calculations of n-point func-
tions, the quark path integral is evaluated analytically to
yield a sum of contractions of quark propagators. For the
four-point function of vector currents, these fall into five
distinct topologies, illustrated in Fig. 1. In this work, we
compute only the six contractions that are fully quark-
connected.
We use a Wilson-type quark action, three lattice con-

served currents Jc

µ

and one site-local current J l

µ

(see for
instance [15] for an explicit definition). Generically, we
evaluate the fully-connected contribution to
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) + contact termsi, (12)



Our strategy	


n  4pt function has too much information to parameterize  
n  Do Monte Carlo integration for QED two-loop with 4 pt function π(4) which  

is sampled in lattice QCD 
n  Photon & lepton part of diagram is derived either in lattice QED+QCD 

[Blum et al 2014] (stat noise from QED), or exactly derive for given loop 
momenta [L. Jin et al 2015] (no noise from QED+lepton).	


l  set	
  spacial	
  momentum	
  for	
  	
  
	
  	
  	
  -­‐	
  external	
  EM	
  vertex	
  q	
  

	
  	
  	
  -­‐	
  in-­‐	
  and	
  out-­‐	
  	
  muon	
  p,	
  p’	
  
	
  	
  	
  	
  	
  	
  	
  	
  q	
  =	
  p-­‐p’	
  
	
  
•  set	
  Yme	
  slice	
  of	
  muon	
  	
  

source(t=0),	
  	
  sink(t’)	
  and	
  operator	
  (top)	
  
	
  
•  take	
  large	
  Yme	
  separaYon	
  for	
  
ground	
  state	
  matrix	
  element	


✕

(0,	
  p)	
 (t’,	
  p’)	


(top,	
  q)	


muon	


3	
  photons	




Introduction HVP HLbL Summary/Outlook References Perturbative QED in configuration space disconnected diagrams

Non-perturbative QED method [Blum et al., 2015]

Subtraction Method 12/32

• Evalutate the quark and muon propagators in the background quenched QED fields. Thus
generate all kinds of diagrams.

* quark +

QCD+quenched QEDA

�
*

quark

+

QCD+quenched QEDB

* +

quenched QEDA

= 3⇥

xsrc xsnk
y

0
, �

0
z

0
, ⌫

0
x

0
, ⇢

0

xop, µ

z, ⌫

y, � x, ⇢

Figure 7. PoS LAT2005 (2006) 353. hep-lat/0509016. One typical diagram remains after subtraction
is shown on the left, 5 others are not shown.

• After subtraction, the lowest order signal remains is O(e6) which is exact LbL diagram.

• Solved the 3-loop problem. Now we only need to compute point source propagators in
the backgrounds of QED fields.

• Lower order noise problem. The signal after subtraction is O(e6). But even after charge
conjugation average on the muon line, the noise is still O(e4).

• Unwanted higher order effects. In practice, one normally choose e = 1.

• “Disconnect diagram” problem. Noise will likely increase in larger volume.

5 10 15 20 25 30
tsep

-0.1
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0.1
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0.4

F 2((
2π

/L
)2 )

QED (mloop=m
µ
=0.1, 243)

QED, (mloop=m
µ
=0.1, 163)

QED pert. theory, F2(0)
QCD+QED (m

π
=330 MeV)

hadronic models, F2(0)

quark-connected part of HLbL

a�1 = 1.7848 GeV, (2.7 fm)3

m
⇡

= 330 MeV, m
µ

= 190 MeV

Consistent with model
expectations (J. Bijnens)

Agreement with models accidental

O(↵2) noise, O(↵4) corrections

Tom Blum (UCONN / RBRC) Progress on the muon anomalous magnetic moment from lattice QCD

QCD+QED method [Blum et al 2014]	

2

FIG. 2. Two classes of diagrams contributing to aµ(HLbL).
On the left, all QED vertices lie on a single quark loop, The
right diagram is one of six diagrams where QED vertices are
distributed over two (or three) quark loops.

the vacuum expectation value of an operator involving
quark fields requires the inversion of the quark Dirac op-
erator Dmq

[

UQCD
]

for each gluon field (QCD configu-
ration), UQCD. The cost of inversion of this operator
for every pair of source and sink points on the lattice
is prohibitive since it requires solving the linear equa-
tion Dmq

[

UQCD
]

xr = br for Nsites number of sources,
br, where Nsites is the total number of lattice points. In
most problems, such as hadron spectroscopy, all of these
inversions are not necessary. For our problem, the corre-
lation of four electromagnetic currents must be computed
for all possible values of two independent four-momenta.
This implies (3 × 4 × Nsites)2 separate inversions, per
QCD configuration, quark species, and four-momentum
of the external photon to calculate the connected diagram
in Fig. 2, which is astronomical. Therefore, a practical
method with substantially less computational cost is in-
dispensable.
A non-perturbative QCD+QED method which treats

the photons and muon on the lattice along with the
quarks and gluons has been proposed as such a candi-
date by us. To obtain the result for the diagram in Fig. 2
the following quantity is computed [9],

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL

= −
∑

q=u,d,s

(Qqe)
2
∑

k

{〈

γµSq(top,−q; k)γνSq(k; top,−q)

δνρ

k̂2
G(t′,p′;−k)γρG(−k; 0,−p)

〉

QCD+QED

−⟨γµSq(top,−q; k)γνSq(k; top,−q)⟩QCD+QED

δνρ

k̂2
⟨G(t′,p′;−k)γρG(−k; 0,−p)⟩QED

}

, (1)

where ψ annihilates the state with muon quantum num-
bers, and jµ is the electromagnetic current 1 for the
quarks. k is a Euclidean four-momentum, p is a three-
momentum, each quantized in units of 2π/L. δµν/k̂2

(k̂µ ≡ 2 sin(kµ/2)) is the lattice photon propagator in

1 The point-split, exactly conserved, lattice current is used for the
internal vertices while the local current is inserted at the external
vertex.

FIG. 3. Perturbative expansion of the first term in Eq. (1)
with respect to QED. The symbols ⟨, ⟩QCD+q-QED and
⟨, ⟩q-QED represent the average over QCD+QED configura-

tions (UQCD, AQED) and that over AQED, respectively. Terms
represented by the ellipsis contain four or more internal pho-
tons and so their orders are higher than α3.

Feynman gauge. Sq and G denote Fourier transforma-
tion of D−1

mq
and D−1

mµ
, respectively, and spin and color

indices have been suppressed. One takes t′ ≫ top ≫ 0 to
project onto the muon ground state

lim
t′≫top≫0

⟨ψ(t′,p′) jµ(top,q)ψ(0,p)⟩HLbL =

⟨0|ψ(0,p′)|p′, s′⟩
2E′V

⟨p′, s′|Γµ|p, s⟩
⟨p, s|ψ(0,p)|0⟩

2EV

×e−E′(t′−top)e−Etop , (2)

where the matrix element of interest is parametrized as

⟨p′, s′|Γµ|p, s⟩ ≡

ū(p′, s′)

(

F1(q
2)γµ + i

F2(q2)

2mµ
[γµ, γν ]qν

)

u(p, s). (3)

u(p, s) is a Dirac spinor, and q = p′ − p is the space-like
four-momentum transferred by the photon. To extract
the form factors F1 and F2, Eq. (1) is traced over spins
after multiplication by one of the projectors, (1 + γt)/4
or i (1 + γt)γjγk/4, where j, k = x, y, z and k ̸= j. The
contribution to the anomaly is then found from aµ ≡
(gµ − 2)/2 = F2(0).
For now quenched QED (q-QED) is used for the QED

average in (1), implying no fermion-antifermion pair cre-
ation/annihilation via the photon. Note that only the
sea quarks need to be charged under U(1); the lepton
vacuum polarization corresponds to higher order contri-
butions which we ignore. This approximation was cho-
sen to make this first calculation computationally easier,
even though it is incomplete. We can remove it to get
the complete physical result, as discussed at the end of
this letter. The first term, expanded in q-QED, can be
reorganized as in Fig. 3, according to the number of pho-
tons exchanged between the quark loop and the open
muon line. If the second term in Eq. (1) is subtracted,
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Introduction
The hadronic vacuum polarization (HVP) contribution (O(�2))

The hadronic light-by-light (HLbL) contribution (O(�3))
aµ(HLbL) Summary/Outlook

aµ(HLbL) in 2+1f lattice QCD+QED (PRELIMINARY)

Stable as measurements increase (20 ⇥ 40 ⇥ 80 ⇥ 160 configs)
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Tom Blum (UConn / RIKEN BNL Research Center) The muon anomalous magnetic moment



Coordinate space Point photon method  
[ Jin, Blum, Christ, Hayakawa, TI, Lehner, et al. 2015]	


n  Treat all 3 photon propagators exactly   (3 analytical photons) , which makes the quark 
loop and the lepton line connected :   
   disconnected problem in Lattice QED+QCD  -> connected problem with analytic photon 

n  QED 2-loop in coordinate space. Stochastically sample, (two of) quark-photon vertex 
location x,y 

 
 
 

n  Short separations, Min[ |x|,|y|,|x-y| ] < R ~ O(1) fm, which has a large contribution due 
to confinement, are summed for all points 

n  longer separations, Min[ |x|,|y|,|x-y| ]  >= R,  are stochastically with a probability shown 
above  ( Adaptive Monte Carlo sampling ) 
 

n  All lepton and photon part produce  no noise for given x,y  ( Ls = ∞ DWF muon ) 
     We could examine different lepton/photon e.g.  QED_L (Hayakwa-Uno 2008) with larger 
box, Twisting Averaging [Lehner TI LATTICE14]  or Infinite Vol. Photon propagators    [C. Lehner, 
L.Jin, TI LATTICE15] 
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Figure 3. Distribution of the r for 32ID lattice.

For simplicity, we only write local current in above formulas. In actual computation,

however, we need to compute lattice conserved current at xop to ensure the quark loop to

be finite at short distance. We can then use three local current at x, y, and z, provided that

Z3
V is multiplied to the final results. See Appendix ???.

We use domain wall action not only for quarks but for the muon as well. We compute

the muon propagators with domain wall height M5 = 1 and infinite Ls. Since all the muon

photon interactions have been explicitly included in the formula, all the muon propagators

are free field fermion propagators. To calculate these free propagators, we can use Fourier

transformations and analytical expressions. So we can enjoys the nice properties without

addition cost compare with the conventional cheaper fermions, e.g. Wilson fermion. We

also use local currents for the photon muon interactions at x′, y′, and z′.

Since we need to sum over all six different permutations of the three internal photons, all

pairs of x, y and combinations of photon polarizations should be computed separately. The

work need to be done for the muon line is proportion to M2. So for large M , the cost for

the free muon propagators can be comparable with the cost for quark propagators. In our

simulations, we usually choose M = 16, which balances the cost for muon and quarks. Also,

M = 16 is not yet too large, so the over all statistics is still roughly proportion to M2.

Above derivation take the limit that tsep → +∞. In practice, if we calculate the QED

part using lattice, we will have finite tsep, which is set to be half of the lattice time extent

11

0	




Infinite volume photon propagator 
Christoph Lehner	


Introduction HVP HLbL Summary/Outlook References Doing the integral: fits, moments, sums, ... finite volume e↵ects strange disconnected diagrams HVP summary

C. Lehner’s talk at Lattice 2015 (Kobe)

Reducing finite volume e↵ects in QCD+QED simulations

1 volume photon on finite lattice (QED1)

mass correction in simple scalar model
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Current conservation & ”-1” trick	


n  For HVP,  conservation =>  transverse tensor 
 
n  In infinite volume, q=0, Πµν(q) = 0 
n  For finite volume, Πµν(0)  is exponentially small   

e.g.  DWF  L=2, 3, 5 fm   Πµν(0) = 8(3)e-4, 2(13)e-5, -1(5)e-8 
n  For general case with mass gap M,   (L.Jin) 

 
n  Subtract Πµν(0) alternates FVE, and  reduce stat error   

“-1” subtraction trick  :  

 
 



Point Source Photon Method 20/32

Label size mπL mπ/GeV #qcdtraj tsep
F2±Err
(α/π)3

Cost
BG/Q rack days

16I 163× 32 3.87 0.423 16 16 0.1235± 0.0026 0.63
24I 243× 64 5.81 0.423 17 32 0.2186± 0.0083 3.0
24IL 243× 64 4.57 0.333 18 32 0.1570± 0.0069 3.2
32ID 323× 64 4.00 0.171 47 32 0.0693± 0.0218 10

Table 2. Central values and errors. a−1 = 1.747GeV except for 32ID where a−1 = 1.371GeV.
Muon mass and pion mass ratio is fixed at physical value. For comparison, at physical point, model
estimation is 0.08± 0.02.
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Figure 13. 323× 64 lattice, with a−1= 1.371GeV, mπ= 171MeV, mµ= 134MeV.
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• In previous setup, noise will remain relatively constant in large volume, but would blow
up if the external momentum transfer q becomes small.

ū(p′)Γµ(p′, p)u(p) = ū(p′)

[
F1(q2)γµ+ i

F2(q2)
4m

[γµ, γν]qν

]
u(p) (12)

F2(0) =
gµ− 2
2

≡ aµ (13)

• To make the noise also vanish when q → 0, we need the external current be exactly
conserved, configuration by configuration.

• To prove Ward identity, we need to compute all possible external photon insertion options.

xsrc xsnky
′
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′
z
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Figure 14. All three different possible insertions for the external photon. They are equal to each other
after stochastic average. 5 other possible permutations of the three internal photons are not shown.

Conserved current & moment method	


n  To tame UV divergence, one of quark-photon vertex (external current)  is set to be conserved 
current (other three are local currents). All possible insertion are made to realize conservation 
of external curents. 

 
 
 
 
n  This allows the “-1” subtraction trick  seen in HVP.  Now  external current is also local x ZV 

n  By exploiting the translational covariance for fixed external momentum of lepton and external 
EM field, q->0 limit value is directly computed via the first moment of the relative coordinate, 
xop – (x+y)/2,  by using “-1” trick, one could show 
   

 
 

     to directly get F2(q2) without q2 → 0 extrapolation. 
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• Study of finite volume effect in muon leptonic light by light contribution to muon g− 2
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Figure 17. Pure QED computation. Muon leptonic light by light contribution to muon g− 2.

QED only study	


 
a = a m

µ
 / 106 MeV 

 

e

a(6)
µ (lbl, e) =

⇧
2
3
⌅2 ln

mµ

me
+

59
270

⌅4 � 3 ⇤(3)

�10
3

⌅2 +
2
3

+ O

⇤
me

mµ
ln

mµ

me

⌅⌃ ��

⌅

⇥3
.⇥’s

µ

⇥

Again a light loop which yields a unexpectedly large contribution

a(6)
µ (lbl, e) ⇤ 20.947 924 89(16)

��
⇥

⇥3
= 2.625 351 02(2) ⇥ 10�7 .

� EQUAL internal masses case which yields a pure number which is usually
included in the a(6)

⇤ universal part:

µ
a(6)

µ (lbl, µ) =
⇤
5
6

⇤(5)� 5
18

⌅2 ⇤(3)� 41
540

⌅4 � 2
3
⌅2 ln2 2

+
2
3

ln4 2 + 16a4 �
4
3

⇤(3)� 24⌅2 ln 2 +
931
54

⌅2 +
5
9

⌅ ��

⌅

⇥3
,⇥’s

µ

⇥

F. Jegerlehner SFB/TR 09 Meeting, Aachen, November 14, 2011 61



Dramatic Improvement ! 
 Luchang Jin et al. , paper in prep.	
Zero External Momentum Transfer Improvement 29/32
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Figure 20. Phys.Rev.Lett. 114 (2015) 1, 012001. arXiv:1407.2923. Compare with latest method and
result.

• 243× 64 lattice with a−1= 1.747GeV and mπ= 333MeV. mµ= 175MeV.

• For comparison, at physical point, model estimation is 0.08 ± 0.02. The agreement is
accidental, the lattice value has a strong dependence on mµ.

a=0.11	
  fm,	
  243x64	
  	
  (2.7	
  fm)3,	
  	
  
mπ	
  =	
  329	
  MeV,	
  	
  	
  mμ	
  =~	
  190	
  MeV,	
  e=1	


more	
  than	
  x10	
  error	
  reduced	
  !	


Also	
  calculaYon	
  speed	
  up,	
  x	
  200,	
  	
  using	
  AMA,	
  zMobius	
  (Ls=10)	
  
compared	
  to	
  tradiYonal	
  CG	
  (Ls=24)	




Disconnected diagrams in HLbL 
	


n  Missing disconnected diagrams  
 
 
 
 
 
 

⇥0, �, �⇥

83(12)⇥ 10�11

L.D.

�19(13)⇥ 10�11

L.D.

⇥±, K±

+62(3)⇥ 10�11

q = (u, d, s, ...)

S.D.

LD contribution requires low energy effective hadronic models : simplest case

⇥0�� vertex

Basic problem: (s, s1, s2)–domain of F⇥0�����(s, s1, s2); here (0, s1, s2)–plane

Two scale problem: “open regions”

RLA

???

???

pQCD

One scale problem: “no problem”

RLA pQCD

– Data, OPE,
??? – QCD factorization,

– Brodsky-Lepage approach
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Two strategies for disconnected	


n  Compute disconnected loops made of valence 
quark 

 
 
n  Using dynamical QED+QED 
    Hayakawa, Latticer2015 talk 
 
   	


NOT Yet Disconnected Diagrams 10/32
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Figure 6. All possible disconnected diagrams. Permutations of the three internal photons are not
shown.

• We will not discuss disconnected diagrams in this talk.

• The gluons exchange between and with quark loops are not drawn. Common practice in
lattice QCD.

• Possible strategies for the calculation of all disconnected diagrams are being developed
and we hope to begin numerical experiments this year.



Disconnected quark loop using 
Dynamical QED + QCD	


n  M. Hayakawa Lattice2015 talk	
Nonperturbative QED method

1

3
{(MC − SC) + (MC′ − SC′) + (MD − SD)−KD}

MC =

QCD+QED

SC =

QCD+QED

QCD+QED
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Nonperturbative QED method

1

3
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,
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Nonperturbative QED method

QCD QCD QCD

Figure: The same diagram of (2E , 2)-type is generated in three ways
from MC (left) and MD (middle, right). The red stuffs are generated by
the ensemble average of (QCD + QED).



Summary of HLBL	


n  Connected part is in a good shape 
 

n  Finite Volume effect from photon :  Twisting 
Averaging, Infinite volume photon propagator  

n  Current plans (2015-16) :   
 
•  Nf=2+1 DWF/ Mobius ensemble at physical point, L=5.5 fm, 

a=0.11fm at ALCC @Argonne   
•  using AMA with zMobius fermion  [ C. Jung.  

      ( more than x100 generic cost reduction to traditional CG) 
  

•   Also HVP, EM splitting, EW 2-loop  VVA [M. Knect] ... as 
byproducts.  

n  Disconnected quark loop.  Can we come up an 
estimation how large would it be ? 



Backup slides	




n  O(imp) has smaller error 
O(appx) need to be cheap &  not to be too 
accurate  
NG  suppresses the bulk part of noise cheaply 
        

Expensive	
  	
  :	
  	
  infrequently	
  measured	
  	
 Cheap	
  	
  	
  :	
  	
  frequently	
  measured	
  	


La:ce	
  
Symmetry	


Covariant Approximation Averaging ( CAA )  
 a new class of Error reduction techniques	


[	
  Blum,	
  TI,	
  Shintani	
  PRD	
  88	
  (2013)	
  094503	
  ]	


Original	


unbiased	
  
imporved	


ensemble	


ensemble	
  	


ε	


ε	


+	


New	
  bias-­‐free	
  esYmator	
  even	
  without	
  covariant	
  
approximaYon	
  by	
  a	
  stochasYc	
  choice	
  of	
  source	
  
locaYon	
  for	
  the	
  exact/rest	
  computaYon	
  is	
  now	
  
available	
  	
  :	
  	
  	
  	
  	
  Appendix	
  D	
  	
  of	
  	
  arXiv:1402.0244	
  	




AMA+MADWF(fastPV)+zMobius accelerations  	

n  We utilize  complexified  5d hopping term of Mobius action [Brower, Neff, Orginos], 

zMobius,  for a better approximation of the sign function. 
 
 
 
 

n  1/a~2 GeV, Ls=48 Shamir ~  Ls=24 Mobius (b=1.5, c=0.5) ~ Ls=10 zMobius (b_s, c_s 
complex varying) ~5 times saving for cost AND memory 

 
 
 
 
 
 
 
 
 
n  The even/odd preconditioning is optimized (sym2 precondition) to suppress the growth of 

condition number due to order of magnitudes hierarchy of b_s, c_s  [also Neff found this]  
 
 
 

n  Fast Pauli Villars (mf=1) solve, needed for the exact solve of AMA via MADWF (Yin, 
Mawhinney) is speed up by a factor of 4 or more by Fourier acceleration in 5D   
  [Edward, Heller] 

n  All in all, sloppy solve compared to the traditional CG is 160 times faster on the physical 
point 48 cube case. And ~100 and 200 times for the 32 cube, Mpi=170 MeV, 140, in this 
proposal (1,200 eigenV for 32cube) . 
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Examples of Covariant Approximations 
(contd.)	


n  All Mode Averaging 
AMA 
 Sloppy CG  or 
 Polynomial  
   approximations 
 

0 0.5 1 1.5 2 2.5

1

10

100

1000

Figure 3: Polynomial approximation of 1/�, Npoly = 10, the mini-max approximation for
the relative error, for � � [0.052, 1.672].

8

accuracy	
  control	
  :	
  
•  	
  low	
  mode	
  part	
  :	
  #	
  of	
  eig-­‐mode	
  
•  	
  mid-­‐high	
  mode	
  :	
  	
  degree	
  of	
  poly.	
If	
  quark	
  mass	
  is	
  heavy,	
  e.g.	
  	
  ~	
  strange,	
  	
  

low	
  mode	
  isolaYon	
  may	
  be	
  unneccesary	




Twisted boundary condition	


n  On a torus, the action must be single-
valued, while fields do not have to 
be. 

n  Impose the twisted boundary 
condition on quark fields. 
 

   q(x+L) = q(x)exp(iθ)   
       →   p =( 2π n  + θ)/ L 
                    (θ:arbitrary input) 
 
n  q2 can be arbitrary small. 

 
  

n  Breaking isospin, Vector ward identity 
is broken, could be exactly 
subtracted  [ Aubin et al 2012]  

n  Noise in small q2 
 	


Introduction
The hadronic vacuum polarization (HVP) contribution (O(�2))

The hadronic light-by-light (HLbL) contribution (O(�3))
aµ Implications for new physics

Summary/Outlook

aµ(HVP) [talk by Benni Jaeger (Mainz group)]
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n  AsqTad, DWF, ETM  
n  around  

Mpi ~ 300 MeV, L~3fm,  
1/a=1.7-3.3 GeV 

n  AsqTad :  48^3x144,  
theta(twist)=0.55, 0.5, 0.4 
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HVP comparison	


0.01 0.1 1

Q
2
 [GeV

2
]

0.0001

0.001

Asqtad Mpi=315 MeV, 1/a=3.36 GeV

DWF Mpi=330 MeV, 1/a=1.74 GeV

DWF Mpi=330 MeV, 1/a=2.33 GeV

ETMC Mpi=370 MeV, 1/a=2.4 GeV

Absolute error Pi(Q2)



0 0.2 0.4 0.6 0.8 1

q
2
 (GeV

2
)

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

-Π
(q

2
)

Combined
θ

y
=0.55

θ
x
=0.5

θ
z
=0.4

Figure 2: Minus the vacuum polarization as a function of q2 in GeV2 for 2+1
flavors of quarks for the Asqtad superfine ensemble (a ⇡ 0.06fm), a volume
of 483⇥144, and a pion mass of roughly 315 MeV. The vacuum polarization
was evaluated using the AMA approximation (21 configurations), and three
values of the twist as shown. The magenta points are the untwisted results.

One can also use the vacuum polarization to determine the electron and
tau g�2’s, as well as the leading hadronic contribution to the electromagnetic
running coupling. Given the importance of this test of the Standard Model,
and the application to other physical quantities, our calculation’s impact,
and the goals of the USQCD collaboration, our proposal clearly meets the
criteria of a Class A proposal.
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Fit functions	


n  Vector Meson Dominance 
 
 
n  Multi point Pade fit   [ 2012, Aubin et al.] 

   Conditions :   an >0,   bn >  4 mπ
2 

n  In principle, these are only true at the 
continuum limit (but not necessarily infinite 
volume limit) 
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• Firstly, the chosen expression must describe the data closely, and must do so re-
gardless of the range of data included in the fit. As such we require the reduced �2

of the fit to be consistently low as a function of Q2
C

which defines the range of data
in the fit.

• Secondly, in order to deduce that the fit-form results in an integral over momentum
which is relatively stable, we desire that the result for a(2)had

µ

is again relatively
stable as a function of Q2

C

.

Ref. [13] also illustrated the use of a fit form originating in the expression for the
vacuum polarisation calculated in chiral perturbation theory. The dominant component
of this expression is due to the vector meson contribution, which at tree-level is

⇧tree

V

(Q2) =
2

3

f 2
V

Q2 +m2
V

(3.2)

where the vector decay constant f
V

is defined

h⌦|J
µ

|V, p, ✏i = m
V

f
V

✏
µ

(p). (3.3)

Motivated by this expression the fit-form we use is closely related, di↵ering only in
the inclusion of the contribution of an additional vector resonance,

⇧(Q2) = A� F 2
1

Q2 +m2
1

� F 2
2

Q2 +m2
2

. (3.4)

The one-loop contribution from the pseudoscalar sector, shown in [13] to have small
momentum dependence, will not strongly a↵ect our results and so, in our e↵ort to make
a continuous description of the lattice data, it will be omitted from our fit ansatz.

We fit the lattice vacuum-polarisation data in two ways:

• Firstly using A, F1,2 and m1,2 as free parameters.

• Also, fixing the parameter m1 to the mass of the vector meson mV as measured in
[19]. This we do by constraining m1 to lie in the one-sigma band defined by the
estimate of mV and its variance. This method was found to maintain the stability
of the fit routine, while incorporating the extra information provided by mV. In
this fit A, F1,2 and m2 remain as true free parameters.

The behaviour of such fits are shown in Fig. 3. Clearly such a form is a very good
representation of the data, over practically the whole range of Q2

C

. In addition the

results for a(2)had
µ

using such fits are very stable as the fit range is varied, allowing far
greater confidence in the reliability of the result. In particular we conclude that using
a fit form (3.4) with the mass of the first pole fixed to the ground-state vector meson
mass to be the optimal method of describing the lattice data for the hadronic vacuum
polarisation.

In Fig. 4 we see the value of the fit parameter m1 from (3.4) as determined from fits to
the lattice vacuum polarisation. The value of mV obtained in [19] is shown in green, and
this defines the band in which m1 was constrained to reside in the fixed version of this fit.
We have not attempted to model O(4) breaking e↵ects present in our data. Though such
e↵ects do appear to be present to a moderate degree on certain ensembles, they do not
prevent the extraction of a reasonable signal from our data at this point. These e↵ects
could also be alleviated by the use of twisted boundary conditions [24].
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Pade fit results	


n  solid: correlated fit (q2 <=0.6 GeV2) , 
 dash : uncorrelated fit (q2 <= 1 GeV2) 
 
 
 
 
 
 
 
 

n  Pade approximation converges, results stable. 
	


FIG. 1: [1, 1] fits of Tables 1 (correlated, solid curve) and 2 (uncorrelated, dashed curve) compared
with data. Solid points have been included in the correlated fit while both solid and open points have

been included in the uncorrelated fit.

VMD fit a fitting interval 0 < Q2 ≤ 0.35 GeV2 leads to the lowest χ2 per degree of freedom.
With χ2/dof ≈ 2, the VMD fit is not very good. It is already much better for the [0, 1] PA,
in which the constraint on b1 is relaxed, and it decreases further, to an acceptable value, for
the [1, 1] PA.

Table 2 shows similar fits, but here all fits are uncorrelated. All errors have been esti-
mated using a linear fluctuation analysis starting from the uncorrelated χ2, starting from
the full data covariance matrix [15]. These errors agree with errors computed under a single-
elimination jackknife. In these PA fits we have relaxed the constraint b1 ≥ 4m2

π = 0.906 GeV2

(on this data set), but one notes that the values of b1 are consistent with this bound within
errors. Both correlated and uncorrelated [1, 1] PA fits are shown in Fig. 1.

The uncorrelated VMD fit reproduces “fit A” of Ref. [3], including the error.8 One notes
that the uncorrelated PA fits lead to results consistent with those of Table 1, but with much
larger errors. The uncorrelated VMD fit is not consistent with what we would expect to be
the best fit,

aHLO,Q2≤1
µ = 350(8)× 10−10 , (4.1)

from the [1, 1] PA of Table 1.
We may also compare the values in the tables with values obtained from a fit with a

fourth order polynomial in Q2, which are

aHLO,Q2≤1
µ = 410(91)× 10−10 , (uncorrelated) , (4.2)

aHLO,Q2≤1
µ = 346(8)× 10−10 , (correlated) .

8 The parameters Π(0) and a1 are not the same as the parameters A and fV of Ref. [3].
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χ2/dof 1010aHLO,Q2≤1
µ Π(0) ai bi a0

VMD 38.6/18 646(8) 0.1222(6) 0.0595(8) 0.64 (fixed) –

[0, 1] 14.3/17 550(20) 0.1203(7) 0.0646(16) 0.83(5) –

[1, 1] 13.9/16 572(41) 0.1206(8) 0.052(16) 0.68(20) 0.005(7)

[1, 2] 13.9/15 572(37) 0.1206(8) 0.052(14) 0.68(19) –

1(6) 0.3(1.0) × 103

[2, 2] 13.9/14 572(38) 0.1206(8) 0.052(14) 0.68(18) 0.003(27)

1(31) 0.4(6.0) × 103

TABLE 3: PA fits to the a = 0.06 fm, amlight = 0.0018 data for Π(Q2) with Q2 ≤ 0.53 GeV2.

Correlated fits; χ2 errors.

χ2/dof 1010aHLO,Q2≤1
µ Π(0) ai bi a0

VMD 37.2/51 685.2(7.8) 0.1236(6) 0.0631(7) 0.64 (fixed) –

[0, 1] 13.9/50 555(22) 0.1208(8) 0.0666(7) 0.85(4) –

[1, 1] 12.0/49 645(66) 0.1221(13) 0.047(5) 0.54(11) 0.0071(21)

[1, 2] 11.4/48 788(482) 0.123(4) 0.015(20) 0.2(4) –

0.063(14) 1.4(9)

[2, 2] 11.3/47 837(627) 0.124(5) 0.018(5) 0.2(5) 0.022(9)

0.22(6) 3.9(6)

TABLE 4: PA fits to the a = 0.06 fm, amlight = 0.0018 data for Π(Q2) with Q2 ≤ 1 GeV2.

Uncorrelated fits; errors from linear fluctuation analysis. For the [1, 2] and [2, 2] fits, b1 is at the
limit 4m2

π = 0.1936 GeV2 (for this ensemble), which was enforced in those fits.

The first line is in agreement with Ref. [3], and was fitted with 0 < Q2 ≤ 1 GeV2, as in
Table 2, and the second is from a correlated fit on the interval 0 < Q2 ≤ 0.6 GeV2, as in
Table 1. The latter fit has a χ2/dof of 7.48/6, less good than the [1, 1] fit in Table 1. Both
are in good agreement with Eq. (4.1), given the size of the errors.

B. a = 0.06 fm data at mlight/mstrange = 0.1

For our second example, we consider the vacuum polarization computed on MILC con-
figurations at a = 0.06 fm and amlight = 0.0018, which is about 1/10 times the physical
strange quark mass. Correlated fits are shown in Table 3, where we fitted the data for
0 < Q2 ≤ 0.53 GeV2 (which corresponds to the 20 data points with the lowest values of
Q2). The χ2 values per degree of freedom of the fits in Table 3 are slightly smaller than
one, except for the VMD fit, for which χ2/dof is about two.9 We find that the value of
χ2/dof increases if we fit over a larger range of Q2 values, and we will therefore take the

9 We thank Doug Toussaint for providing us with an unpublished rough estimate of the ρ mass for this data

set.
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AMA + twisting	


n  AsqTad  plot from Golterman (preliminary) 

n  Assumptions behind the Fit & discretization error ?	


Hadronic Vacuum Polarization
Hadronic Light-by-Light

Summary/Outlook

Working Group Discussion (fitting systematics)
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Plots from Maarten Golterman. Huge improvement from AMA and
twisting, but still an extrapolation!

Tom Blum (UConn / RIKEN BNL Research Center) Lattice QCD: Summary and Perspective



Subtraction Strategy: 
Derivative of Twisting Angle 

[Divitiis et al.  PLB 718(2012) 589]	


n  pi =( 2π n  + θi)/ L 
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In the previous expressions one of the quark lines has been drawn
with a different color (green in the web version) in order to rep-
resent a quark of different mass with respect to the others (in
particular in the numerical analysis we have set kgreen = 0.13620
to be compared with ksea = 0.13590). By relying on the hermiticity
of the vector current we also get

∂

∂ pk
Ck

F I (t, 0⃗, p⃗)

∣∣∣∣
p⃗=0

= i

= [ f+ + f−]
(
q2

M
) G I G F

4MI M F
e−MI (T /2−t)−M F t,

∂

∂ pk
Ck

F I (t, p⃗, 0⃗)

∣∣∣∣
p⃗=0

= i

= [ f+ − f−]
(
q2

M
) G I G F

4MI M F
e−MI (T /2−t)−M F t .

(41)

By using these relations, together with the corresponding ones in
the case of coinciding initial and final external states we get

NII(t) =
√

− = G2
I

4M2
I

e−MI T /2,

NFF(t) =
√

− = G2
F

4M2
F

e−M F T /2,

R+(t) =

√√√√√−
NII(t)NFF(t)

= [ f+ + f−]
(
q2

M
)
,

R−(t) =

√√√√−
NII(t)NFF(t)

= [ f+ − f−]
(
q2

M
)
. (42)

The effective form factors are then obtained from

f+
(
q2

M
)
= R+(t) + R−(t)

2
,

f−
(
q2

M
)
= R+(t) − R−(t)

2
. (43)

The combinations of correlators given in the previous relations
is particularly effective in minimizing statistical fluctuations that
cancel between the different factors. In particular, when the ini-
tial and final meson masses are equal, the normalization condi-
tions f+(0) = 1 and f−(0) = 0 are identically verified for each
gauge configuration of the given ensemble. To give an idea of the
plateaux that can be obtained by using this method we show in
Fig. 3 the effective form factors extracted from our data.

5.3. The vacuum polarization tensor

In this section we show how the momentum expansion can
profitably be used in order to calculate the hadronic vacuum polar-
ization tensor, a quantity which is needed in order to predict the
leading hadronic contribution to the anomalous magnetic moment
of the muon.

The hadronic vacuum polarization tensor is calculated on the
lattice by considering the integrated two-point correlator of the
electromagnetic currents of the quarks

Cµν(p) = 1
(T L3)2

∑

x,y

eip(y−x+ν̂/2−µ̂/2)
〈
V µ

em(x)V ν
em(y)

〉

=
(
δµν p̂2 − p̂µ p̂ν)

Π
(

p2), (44)

Fig. 3. In the top panel we plot the effective form factor f+(q2
M ) while in the bottom

panel we show the effective form factor f−(q2
M ) for which we get a good plateaux

in the middle of the lattice where the large time separation condition is satisfied.
Data correspond to the D2 gauge ensemble.

where p̂µ = 2 sin(pµ/2). Given our choice of lattice Dirac operator,
we have used the point-split vector currents in order to define the
electromagnetic currents of the quarks,

V µ
em(x) →

[
ψ̄Γ

µ
V ψ

]
(x, 0⃗). (45)

We have chosen the momentum routing in which the external mo-
mentum p flows through one of the two quark propagators. With
this choice the point-split vector currents at the vertices connect
two fermion lines with different momentum and, consequently,
bring the dependence upon p⃗/2.

The leading hadronic contribution to the g − 2 of the muon is
obtained by extracting the scalar form factor Π(p2) from Eq. (44)
and by considering the difference Π(p2) − Π(0). The subtracted
form factor is introduced in order to cancel divergent contribu-
tions (see for example Refs. [14–18] for dedicated works) and, for
this reason, it is very important to have an accurate determination
of Π(0). By using standard techniques, Π(0) can only be obtained
by extrapolating the data obtained at p2 > 0. These extrapolations
unavoidably introduce systematic errors (for a recent discussion of
this point see [10]). In the following we shall show how Π(0) can
be computed on the lattice directly and without the need of any
extrapolation.

As for the other quantities computed in this Letter, the results
for Π(p2) have been obtained with limited statistics, on a single
volume, at fixed quark masses, etc. in order to demonstrate the
effectiveness of the proposed procedure. For this reason we shall
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not use our results to make a prediction for the muon g − 2. This
will be the subject of future work.

After fermion integration and Wick contractions, the correla-
tor Cµν(p) has both fermion-connected and fermion-disconnected
contributions. If, for example, we limit ourself to the N f = 2 case
in the isospin symmetric theory we have

Cµν(p) = (eu + ed)
2 −

(
e2

u + e2
d

)
, (46)

where eu = 2/3 and ed = −1/3. In the following we shall con-
centrate on the connected part. Actually, many of the lattice col-
laborations involved in the computation of the hadronic vacuum
polarization tensor [14–18] have neglected (or just attempted an
estimate of) disconnected contributions. The choice is due to the
big computational effort required for the calculation and not be-
cause these are expected (at least in general) to be negligible. Our
method has to be generalized for disconnected diagrams.

In the following we call Ĉµν the connected contribution cor-
responding to a single quark without multiplying it for the cor-
responding electric charge. In particular, we consider the corre-
lators with different spatial indices (µ = k, ν = h ≠ k) because
these are proportional to the spatial momenta and because they
do not require additional contributions in order to satisfy gauge
Ward identities. Indeed, the lattice photon self-energy with equal
indices includes also the tadpole graph, where two photons cou-
ple to the fermion line in a single vertex (the current coupled to
two photons is the one that we have previously indicated as “tad-
pole current”). We checked anyway, on limited statistics, that the
gauge Ward identities

∑
µ p̂µĈµν = ∑

ν p̂ν Ĉµν(p) = 0 are satis-
fied.

First, fixed µ = 1 and ν = 2, we have computed the integrated
correlation at p1 > 0 and p2 > 0 and divided it by the momenta,

Π
(

p2 > 0
)

= − Ĉ12(p)

p̂1 p̂2 = 1
(T L3)2

×
∑

x,y

〈
Tr

{
S[y, x; U ]Γ 1

V (x, p⃗/2)S
[
x, y; U ,λp]

Γ 2
V (y, p⃗/2)

}〉
.

(47)

Then we have applied the rules discussed in the previous sections
to define the second mixed derivative, acting on propagators and
vertices and evaluated at zero momentum, according to

Π(0) = −∂2Ĉ12(p)

∂ p1∂ p2

∣∣∣∣
p2=0

= 1
(T L3)2

×
∑

x,y

〈
Tr

[
SΓ 1

V
∂2 S

∂ p1∂ p2
Γ 2

V

]
− 1

4
Tr

[
SΓ 1

T SΓ 2
T
]

− i
2

Tr
[

SΓ 1
T

∂ S
∂ p2

Γ 2
V

]
− i

2
Tr

[
SΓ 1

V
∂ S
∂ p1

Γ 2
T

]〉
, (48)

where, for the sake of brevity, we have dropped position argu-
ments and we have used the relations

∂Γ k
V (x, p⃗/2)

∂ pk
= − i

2
Γ k

T (x, p⃗/2),

∂Γ k
T (x, p⃗/2)

∂ pk
= − i

2
Γ k

V (x, p⃗/2), (49)

to obtain the derivative of the vertices (see Section 4 above). Note
that in the previous expressions the factor 1/2 appears because
the currents here depend upon p⃗/2 and not upon p⃗.

Fig. 4. The black points correspond to the calculation of Π(p2) performed by using
standard techniques (according to Eq. (47)) on two lattice volumes, 243 × 48 for
the D2 ensemble and 323 × 64 for the E2 ensemble. The red points correspond to
Π(0) calculated directly on the lattice (according to Eq. (48)) for the two volumes.
Data are in lattice units. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

To the lattice definition of Π(0), Eq. (48), it can be given the
following graphical representation (see also Eq. (18))

Π(0) = −∂2Ĉ12(p)

∂ p1∂ p2

∣∣∣∣
p2=0

= −

− 1
2

− 1
2

− 1
4

. (50)

In Fig. 4 we show our results. The black points correspond
to Π(p2) obtained from Eq. (47) and, as expected, tend to be
noisy for small values of p2. The red points correspond to Π(0)
calculated directly on the lattice according to Eq. (48). The data,
obtained with limited statistics (150 gauge configurations for the
D2 ensemble and 138 gauge configurations for the E2 ensemble),
correspond to two different lattice volumes (V D2 = 243 × 48 and
V E2 = 323 × 64) and differ at small momenta for finite volume ef-
fects.

For each data set, the error on Π(0) is comparable to the error
that can be obtained at (ap)2 ∼ 0.05 but, coming from a direct
calculation, it does not need to be corrected for systematic errors
due to extrapolations and, is important to note, it scales with the
statistics. Furthermore, the error on Π(0) scales favorably with the
lattice volume.

6. Conclusions

The method discussed in this Letter allows the direct calcula-
tion on the lattice of the derivatives of correlators with respect to
external momenta. We have described the method and checked its
validity for several correlation functions.

In particular, we have derived expressions to be used in order
to compute both form factors parametrizing semileptonic decays
of pseudoscalar mesons into other pseudoscalar mesons, directly at
zero recoil. These relations, checked numerically in this Letter, may
have many important phenomenological applications, for example
in the calculation of B → Dℓν differential decay rate without ex-
cluding the ℓ = τ case, etc. Similar relations can be easily derived
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not use our results to make a prediction for the muon g − 2. This
will be the subject of future work.

After fermion integration and Wick contractions, the correla-
tor Cµν(p) has both fermion-connected and fermion-disconnected
contributions. If, for example, we limit ourself to the N f = 2 case
in the isospin symmetric theory we have

Cµν(p) = (eu + ed)
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where eu = 2/3 and ed = −1/3. In the following we shall con-
centrate on the connected part. Actually, many of the lattice col-
laborations involved in the computation of the hadronic vacuum
polarization tensor [14–18] have neglected (or just attempted an
estimate of) disconnected contributions. The choice is due to the
big computational effort required for the calculation and not be-
cause these are expected (at least in general) to be negligible. Our
method has to be generalized for disconnected diagrams.

In the following we call Ĉµν the connected contribution cor-
responding to a single quark without multiplying it for the cor-
responding electric charge. In particular, we consider the corre-
lators with different spatial indices (µ = k, ν = h ≠ k) because
these are proportional to the spatial momenta and because they
do not require additional contributions in order to satisfy gauge
Ward identities. Indeed, the lattice photon self-energy with equal
indices includes also the tadpole graph, where two photons cou-
ple to the fermion line in a single vertex (the current coupled to
two photons is the one that we have previously indicated as “tad-
pole current”). We checked anyway, on limited statistics, that the
gauge Ward identities

∑
µ p̂µĈµν = ∑

ν p̂ν Ĉµν(p) = 0 are satis-
fied.

First, fixed µ = 1 and ν = 2, we have computed the integrated
correlation at p1 > 0 and p2 > 0 and divided it by the momenta,
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Then we have applied the rules discussed in the previous sections
to define the second mixed derivative, acting on propagators and
vertices and evaluated at zero momentum, according to

Π(0) = −∂2Ĉ12(p)
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where, for the sake of brevity, we have dropped position argu-
ments and we have used the relations
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to obtain the derivative of the vertices (see Section 4 above). Note
that in the previous expressions the factor 1/2 appears because
the currents here depend upon p⃗/2 and not upon p⃗.

Fig. 4. The black points correspond to the calculation of Π(p2) performed by using
standard techniques (according to Eq. (47)) on two lattice volumes, 243 × 48 for
the D2 ensemble and 323 × 64 for the E2 ensemble. The red points correspond to
Π(0) calculated directly on the lattice (according to Eq. (48)) for the two volumes.
Data are in lattice units. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this Letter.)

To the lattice definition of Π(0), Eq. (48), it can be given the
following graphical representation (see also Eq. (18))

Π(0) = −∂2Ĉ12(p)
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In Fig. 4 we show our results. The black points correspond
to Π(p2) obtained from Eq. (47) and, as expected, tend to be
noisy for small values of p2. The red points correspond to Π(0)
calculated directly on the lattice according to Eq. (48). The data,
obtained with limited statistics (150 gauge configurations for the
D2 ensemble and 138 gauge configurations for the E2 ensemble),
correspond to two different lattice volumes (V D2 = 243 × 48 and
V E2 = 323 × 64) and differ at small momenta for finite volume ef-
fects.

For each data set, the error on Π(0) is comparable to the error
that can be obtained at (ap)2 ∼ 0.05 but, coming from a direct
calculation, it does not need to be corrected for systematic errors
due to extrapolations and, is important to note, it scales with the
statistics. Furthermore, the error on Π(0) scales favorably with the
lattice volume.

6. Conclusions

The method discussed in this Letter allows the direct calcula-
tion on the lattice of the derivatives of correlators with respect to
external momenta. We have described the method and checked its
validity for several correlation functions.

In particular, we have derived expressions to be used in order
to compute both form factors parametrizing semileptonic decays
of pseudoscalar mesons into other pseudoscalar mesons, directly at
zero recoil. These relations, checked numerically in this Letter, may
have many important phenomenological applications, for example
in the calculation of B → Dℓν differential decay rate without ex-
cluding the ℓ = τ case, etc. Similar relations can be easily derived


