Leptonic decays and mixing of the D and B mesons

Petros Dimopoulos

MITP Programme ''Fundamental Parameters from Lattice QCD''

Mainz, September 1st, 2015

Outline

During the last decade LQCD is giving important contributions to heavy quark CKM me & UT

$$D\text{-mesons} \rightarrow 2\text{nd row: } \delta(1 - |V_{cd}|^2 - |V_{cs}|^2 - |V_{cb}|^2) \sim 4\% (\sim 2\sigma \text{ discrepancy}) [\sigma_{lat} < \sigma_{expt}]$$

$$B\text{-mixing} \rightarrow \Delta m_{d/s}, \Delta m_s / \Delta m_d \Rightarrow |V_{td}|, |V_{ts}|, |V_{ts} / V_{td}| [\sigma_{lat} >> \sigma_{expt}]$$

$$B\text{-decays} \Rightarrow |V_{ub}|, |V_{cb}| [\sigma_{lat} < \sigma_{expt} \text{ for leptonic decay}]$$

$$\epsilon_{K} \sim |V_{cb}|^{(A4)}$$

& Neutral *D* and *B*-meson mixing New Physics scale estimates

Outline

 In Flavour Physics we witness a continuous and 'day-after-day' interplay between Experimental achievements (of high or even very high precision)
 Theoretical ideas & progress in studying processes dominated by Non Perturbative dynamics

There is a huge experimental investment (and upgrades) in flavour physics (BESIII, Bellell, LHCb) with horizon ~ 2020.

• Full capitalisation of the experimental program in the quark flavour sector requires continuous improvement in the precision of theoretical (lattice) calculations

D – leptonic decays

Charmed decay constants

- On the lattice it is straightforward to compute decay constants $\langle 0|\overline{d}(\overline{s})\gamma_{\mu}\gamma_{5}c|D_{(s)}(p)\rangle = f_{D(s)}p_{\mu}$
- Cutoff effects effects driven by $(am_c) \lesssim 0.3$
- Relativistic action computations seem safe for charm-light quantities

Comparison of results from FLAG-2013 (1310.8555)

	$N_{\rm f}=2$	$N_{\rm f}=2+1$
$f_D(MeV)$	208(7)	209.2(3.3)
$f_{Ds}(MeV)$	250(7)	248.6(2.7)
f_{Ds}/f_D	1.20(2)	1.187(12)

FLAG-2103 Averages

Recent computations

$N_f = 2 + 1 + 1$

- FNAL/MILC (HISQ) (1407.3772)
 - 4 $a \in [0.06, 0.15]$ fm $@M_{\pi}$ with $(M_{\pi}L) \in [3.2, 3.9]$
- **ETMC** (tmWilson) (1411.7908)
 - **3** $a \in [0.06, 0.09]$ fm $M_{ps}^{\min} \simeq 210$ MeV with $(M_{ps}^{\min}L) \simeq 3.2$

 $N_f = 2 + 1$

• **XQCD** (DW+OV) (1410.3343)

2 $a = \{0.09, 0.11\}$ fm $M_{ps}^{\min} \simeq 290$ MeV with $(M_{ps}^{\min}L) \simeq 4$

• **RBC/UKQCD** (DW)

Computation @ phys. point, work in progress (1502.0084) & J.T.Tsang at LAT2015

$N_f = 2$

- ALPHA (Wilson) (1312.7693) (LAT13) 2 a $\in [0.05, 0.07]$ fm $M_{ps}^{\min} \simeq 190$ MeV with $(M_{ps}^{\min}L) \simeq 4$
- TWQCD (DW) (1404.3648) 1 a = 0.06 fm $M_{ps}^{\min} \simeq 259 \text{ MeV with } (M_{ps}^{\min}L) \simeq 2$
- **ETMC** (tmWilson) (1507.05068)
 - 1 a = 0.09 fm $@M_{\pi}$ with $(M_{\pi}L) \simeq 3.0$

Comparison of results for f_{Ds}

- Comparison plot with most recent results obtained at CL from at least two lat. spacings
 - + TWQCD Nf=2 (DW); 1a / 0.06 fm (1404.3648)
 - + ETMC Nf=2 (tmW); 1a / 0.09 fm @ phys. point (1507.05068)

Comparison of results for f_{Ds}

• Comparison plot with most recent results obtained at CL from at least two lat. spacings

- Vertical (green) lines follow the "FNAL/MILC 14" uncertainty
 - + TWQCD Nf=2 (DW); 1a / 0.06 fm (1404.3648)
 - + ETMC Nf=2 (tmW); 1a / 0.09 fm @ phys. point (1507.05068)
- **FNAL/MILC 14** result: remarkable precision 0.6%

Comparison of results for f_{Ds}

- All lattice results are in very good agreement
- Within ~2% no detectable dependence on the number of flavours
- 'Tension' of ~ 2 σ between more recent Lattice (with reduced errors) and PDG -> expt. + unit. assumptions: $|V_{cs}| \simeq |V_{ud}| - |V_{cb}|^2/2$, $|V_{ud}| = 0.97425(22)$, $|V_{cb}| = 0.04$
- Lattice precision in the D_s leptonic decay *better* than experimental one

Comparison of results for f_D and f_{Ds}/f_D

- Comparison plot with most recent results obtained at CL from at least two lat. spacings
 - + TWQCD Nf=2 (DW); 1a / 0.06 fm (1404.3648)
 - + ETMC Nf=2 (tmW); 1a / 0.09 fm @ phys. point (1507.05068)

Vertical (green) lines follow the "FNAL/MILC 14" uncertainty in both plots

• Are discretisation errors under control?

EM effects need to be carefully addressed!

	Lattice($N_f = 2 + 1 + 1$)	HFAG (12/2014)	
<mark>f</mark> ∂(MeV)	212.1(1.2)	203.7(4.9) no significant v	ariations
<i>f_{Ds}</i> (MeV)	248.8(1.4)	257.4(4.6) reported from B BESIII at CHAI	RM15
f_{Ds}/f_D	1.1717(33)	1.264(38) (still relatively stat. errors)	large

	Lattice($N_f = 2 + 1 + 1$)	HFAG (12/2014))
<mark>f</mark> ∂(MeV)	212.1(1.2)	203.7(4.9)	no significant variations
<i>f_{Ds}</i> (MeV)	248.8(1.4)	257.4(4.6)	reported from Belle II & BESIII at CHARM15
f_{Ds}/f_D	1.1717(33)	1.264(38)	(still relatively large

B – leptonic decays

(P.Križan (BELLEII) @ Flavorful ways to NP 10/2014)

$$\begin{split} \Gamma(B \to \ell \nu_\ell) &= \frac{m_B}{8\pi} G_F^2 f_B^2 |V_{ub}|^2 m_\ell^2 \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 \text{(to lowest order)} \\ & \\ \text{lattice} \\ \end{split}$$

current expt precision ~ 20-25% — Expected ~ 5% (Bellell, 2020)

$$B_{(s)} \rightarrow \ell^+ \ell^-$$

$$\Gamma(B_s \to \ell^+ \ell^-) \propto f_{Bs}^2 |V_{tb}^* V_{ts}|^2$$

[CMS + LHCb (joint analysis)] (1411.4413)

- Agreement at 1.2 σ and 2.2 σ with SM estimates for the BR for B_s and $B_{d'}$, respectively.
- Statistics for B_d decay are low (error on BR ~ 38% vs. 24% for B_s).

b- quark on the lattice

- Direct simulations (a \leq 0.03 fm) appropriate for b-quark are NOT YET possible (\rightarrow a two scale problem)
- Simulations at current lattices [$a \ge 0.05$ fm] + effective theories predictions
 - HQET on the lattice -O(1/m_h)- and NP matching to QCD
 - NRQCD (+ pert. matching to QCD)
 - Appropriately (HQET) modified relativistic action (+ CT) for improved scaling behaviour
 - Interpolation between charm region and LO HQET
 - Interpolation of chain of ratios computed up to $\sim m_b/2$ (or even higher) and exactly known static limit
- Different lattice approaches (with pros and cons) are welcome for
 - testing the methodology of lattice computations
 - controlling the systematics

Comparison of results from FLAG-2013 (1310.8555)

	$N_{\rm f}=2$	$N_{ m f}=2+1$	$N_{\rm f}=2+1+1$
$f_B(MeV)$	189(8)	190.5(4.2)	186(4)
$f_{Bs}(MeV)$	228(8)	227.7(4.5)	224(5)
f_{Bs}/f_B	1.206(24)	1.202(22)	1.205(7)

FLAG-2103 Averages

Recent computations

$N_f = 2 + 1 + 1$

- **ETMC** (tmWilson + **ratio method**) (to appear)
 - 3 a $\in [0.06, 0.09]$ fm $M_{ps}^{\min} \simeq 210$ MeV with $(M_{ps}^{\min}L) \simeq 3.2$

 $N_f = 2 + 1$

• **RBC/UKQCD** (DW + **RHQ**) (1404.4670)

2 $a = \{0.09, 0.11\}$ fm $M_{ps}^{\min} \simeq 290$ MeV with $(M_{ps}^{\min}L) \simeq 4$

- **RBC/UKQCD** (DW + **static b**) (1406.6192)
 - 2 a = {0.09, 0.11} fm $M_{ps}^{\min} \simeq 290$ MeV with $(M_{ps}^{\min}L) \simeq 4$

 $N_f = 2$

- **ALPHA** (Wilson + **NPHQET**) (1404.3590)
 - 3 a $\in [0.05, 0.08]$ fm $M_{ps}^{\min} \simeq 190$ MeV with $(M_{ps}^{\min}L) \simeq 4.0$

Comparison of results for f_B

- Comparison plot with most recent results obtained at *CL* from at least two lat. spacings
 - + <u>C. DeTar for FNAL-MILC</u> (LAT2015) Nf=2+1+1 (HISQ); over 5 a ≥ 0.045 fm; much reduced total uncertainty *(work in progress)*
 - + <u>T. Kawanai for RBC-UKQCD (LAT2015)</u> Nf=2+1(DW) @ phys. point, 1a (*work in progress*)
 - + FNAL-MILC (LAT2014) Nf=2+1 over 5 a (1501.01991 and work in progress)
 - + <u>RBC/UKQCD</u> Nf=2+1 (static b) over 2 a (1406.6192) [not included due to relatively large syst. uncertainty]

Comparison of results for f_B

• Comparison plot with most recent results obtained at *CL* from at least two lat. spacings

Vertical (green) lines show -1σ : 1σ of the average over the two 2+1+1 results

current uncertainty ~ 2%; all results compatible – no visible Nf dependence

Comparison of results for f_{Bs}

• Comparison plot with most recent results obtained at *CL* from at least two lat. spacings

Vertical (green) lines show -1σ : 1σ of the average over the two 2+1+1 results

current uncertainty ~ 2%; all results compatible – no visible Nf dependence

Comparison of results for f_{Bs}/f_B

Most of systematics cancel out:

- cutoff effects

- b-quark tuning

+ <u>FNAL-MILC</u> (LAT2014) – Nf=2+1 over 5 a's - projected error ~ 0.9% (1501.01991 and *work in progress*)

Vertical (green) lines follow the "HPQCD 13" uncertainty

Cutoff effects & chiral extrapolations

HPQCD (1302.2644)

N.B. Belle and Babar discrepancy $BR(B \rightarrow \tau v)$

D & B - mixing

 $|D_{1,2}
angle=p|D^0
angle\pm q|\overline{D}^0
angle$ Oscillation (FCNC process) of up-type quarks!

$$x \equiv (m_1 - m_2)/\Gamma = \Delta m/\Gamma$$
$$y \equiv (\Gamma_1 - \Gamma_2)/2\Gamma = \Delta \Gamma/2\Gamma$$

Mixing observed in 2007 by **Belle & BaBar** Also observed and confirmed by **CDF & LHCb**

%) > 1.2 HFAG-charm CPV allowed CHARM 2015 0.8 0.6 0.4 0.2 ginixi m ON 0 1σ -0.2 2σ 3σ -0.44 σ -0.6-0.4-0.2 0 0.2 0.4 0.6 0.8 1.2 Mixing at 11.50 significance

Doubly Cabibbo & GIM supressed

small contribution from box diagram

- large distance behavior due to *d* and *s* dominates ---- CPV expected negligible (in SM).
- CP violating signals associated to short distance interactions described by 4-quark operators
 CPV in D-neutral meson system will be a clear sign of New Physics
- Neutral D-meson mixing may be useful as a probe for NP scale.

Complete 4-fermion operator basis

 $\mathcal{O}_{1} = \left[\bar{h}^{a}\gamma_{\mu}(1-\gamma_{5})\ell^{a}\right] \left[\bar{h}^{b}\gamma_{\mu}(1-\gamma_{5})\ell^{b}\right]$ $\mathcal{O}_{2} = \left[\bar{h}^{a}(1-\gamma_{5})\ell^{a}\right] \left[\bar{h}^{b}(1-\gamma_{5})\ell^{b}\right], \quad \mathcal{O}_{3} = \left[\bar{h}^{a}(1-\gamma_{5})\ell^{b}\right] \left[\bar{h}^{b}(1-\gamma_{5})\ell^{a}\right]$ $\mathcal{O}_{4} = \left[\bar{h}^{a}(1-\gamma_{5})\ell^{a}\right] \left[\bar{h}^{b}(1+\gamma_{5})\ell^{b}\right], \quad \mathcal{O}_{5} = \left[\bar{h}^{a}(1-\gamma_{5})\ell^{b}\right] \left[\bar{h}^{b}(1+\gamma_{5})\ell^{a}\right]$ $(h,\ell) \equiv (c,u) \text{ for } D\text{-mixing} \qquad (h,\ell) \equiv (b,d/s) \text{ for } B_{d/s}\text{-mixing}$

+ 3 more 4-fermion operators whose whose *P*-even contribution is the same as for $\mathcal{O}_{1,2,3}$ Bag parameters:

$$\begin{split} \langle \overline{P}^{0} | \mathcal{O}_{1}(\mu) | P^{0} \rangle &= \xi_{1} B_{1}(\mu) \, m_{P^{0}}^{2} f_{P^{0}}^{2} \\ \langle \overline{P}^{0} | \mathcal{O}_{i}(\mu) | P^{0} \rangle &= \xi_{i} B_{i}(\mu) \, \frac{m_{P^{0}}^{4} f_{P^{0}}^{2}}{(m_{\ell}(\mu) + m_{h}(\mu))^{2}} \quad \text{for } i = 2, \dots, 5 \\ \xi_{i} &= \{8/3, -5/3, 1/3, 2, 2/3\} \end{split}$$

$$\langle ar{P}^0 | \mathcal{H}^{\Delta F=2} | P^0
angle = \sum_{i=1}^5 C_i \langle ar{P}^0 | \mathcal{O}_i | P^0
angle$$

D-mixing

• ETMC (N_f=2 & N_f=2+1+1)

• FNAL/MILC (N_f =2+1) - 1411.6086(LAT14) + LAT15 (work in progress)

B-mixing (full operator basis)

• ETMC (N_f=2) (1308.1851)

$(\overline{\mathrm{MS}} ext{-}\mathrm{BMU},\ m_b)$				
$B_1^{(d)}$	$B_2^{(d)}$	$B_{3}^{(d)}$	$B_4^{(d)}$	$B_{5}^{(d)}$
0.85(4)	0.72(3)	0.88(13)	0.95(5)	1.47(12)
$B_1^{(s)}$	$B_2^{(s)}$	$B_3^{(s)}$	$B_4^{(s)}$	$B_{5}^{(s)}$
0.86(3)	0.73(3)	0.89(12)	0.93(4)	1.57(11)

		$(\overline{\mathrm{MS}}, m_b)$) $[MeV]$		
i	1	2	3	4	5
$f_{Bd}\sqrt{B_i^{(d)}}$	174(8)	160(8)	177(17)	185(9)	229(14)
$f_{Bs}\sqrt{B_i^{(s)}}$	211(8)	195(7)	215(17)	220(9)	285(14)

- FNAL/MILC (N_f=2+1) 1412.5097(LAT14) + LAT15 (work in progress)
- HPQCD (N_f=2+1) 1412.5097(LAT14) (work in progress)

General Wilson coefficients parametrisation $C_i(\Lambda) = \frac{F_i L_i}{\Lambda^2}$

general NP flavour coupling loop factor

Assuming generic coupling $F_i \sim L_i \sim 1$ Wilson coeff. are translated into lower Λ bounds

 $\Lambda (\times 10^3 \text{ TeV})$

40 From neutral D-mixing 35 ETMC 1403.7302 30 1505.06639 2520 1510 50 C_1^D C_2^D C_3^D C_4^D C_5^D

yellow bars: UTfit analysis (2007) using quenched result. **brown bars:** new analysis using results from Nf=2 simulations

A recent B-computation from ETMC on N_f =2+1+1

[A. Bussone, N. Carrasco, P.D. R. Frezzotti, V. Lubicz, E. Picca, G.C. Rossi, S. Simula, C. Tarantino]

-Consider a *chain* of ratios for a quantity $Q(m_h)$ formed at sequential heavy quark masses: $m_h^{(n)} = \lambda m_h^{(n-1)}$

-Consider a *chain* of ratios of a quantity **Q**(m_h) formed for a sequence of heavy *q*-masses: $m_h^{(n)} = \lambda m_h^{(n-1)}$

-Consider a *chain* of ratios of a quantity **Q**(m_h) formed for a sequence of heavy *q*-masses: $m_h^{(n)} = \lambda m_h^{(n-1)}$

-Consider a *chain* of ratios of a quantity $Q(m_h)$ formed for a sequence of heavy *q*-masses: $m_h^{(n)} = \lambda m_h^{(n-1)}$

$$\mathbf{Q(m_{b})} \equiv \mathbf{Q(m_{h}^{(N+1)})} = \mathcal{Q(m_{h}^{(1)})} \times \frac{\mathcal{Q(m_{h}^{(2)})}}{\mathcal{Q(m_{h}^{(1)})}} \times \frac{\mathcal{Q(m_{h}^{(3)})}}{\mathcal{Q(m_{h}^{(2)})}} \times \dots \times \frac{\mathcal{Q(m_{h}^{(K)})}}{\mathcal{Q(m_{h}^{(K-1)})}} \times \frac{\mathcal{Q(m_{h}^{(K+1)})}}{\mathcal{Q(m_{h}^{(K)})}} \times \dots \times \frac{\mathcal{Q(m_{h}^{(N+1)})}}{\mathcal{Q(m_{h}^{(K)})}} \times \dots \times \frac{\mathcal{Q(m_{h}^{(N)})}}{\mathcal{Q(m_{h}^{(K)})}} \times \dots \times \frac{\mathcal{Q(m_{h}^{(K)})}}{\mathcal{Q(m_{h}^{(K)})}} \times \dots \times \frac{\mathcal{Q(m_{h}^{(K)})}}{\mathcal{Q(m_{h}^{(K)})}}$$

Tune
$$\lambda$$
 in a way to
Tune λ in a way to
Tune λ in a way to
Tune λ in a way to $\begin{pmatrix} \text{set } Q(m_h^{(N+1)}) = Q(m_b)|_{(\text{expt.})} \longrightarrow m_b = \lambda^N m_h^{(1)} \\ then \\ make \text{ predictions for any other h-quark quantity through a similar chain} \\ \text{procedure that ends up to } m_b = m_h^{(N+1)} \end{pmatrix}$

m_b computation

$$Q_m = rac{M_{hs}}{(M_{h\ell})^{\gamma} (M_{cs})^{(1-\gamma)}}$$

[y : free parameter (no need for tuning)
 used for gaining extra control
 of syst. uncertainties]

(extrapolate in CL + phys. q-light)

$$\lim_{m_h^{\rm pole}\to\infty}\left(\frac{Q_m}{(m_h^{\rm pole})^{(1-\gamma)}}\right)={\rm const.}$$

$$\frac{\text{ratio}}{y_{Q}(m_{h}^{(n)},\lambda;m_{\ell},m_{s},a)} = \lambda^{(\gamma-1)} \frac{Q_{m}(m_{h}^{(n)};m_{\ell},m_{s},a)}{Q_{m}(m_{h}^{(n)}/\lambda;m_{\ell},m_{s},a)} \left(\frac{\rho(m_{h}^{(n)},\mu^{*})}{\rho(m_{h}^{(n)}/\lambda,\mu^{*})}\right)^{(\gamma-1)} \frac{m_{h}^{(n)} = \lambda m_{h}^{(n-1)}}{[m_{h}^{\text{pole}} = \rho(m_{h},\mu^{*}) m_{h}(\mu^{*})]}$$

(known to N³LO;
strong cancellations in ratios
$$\rightarrow$$

sub % effect to final results)

m_b computation

$$Q_m = \frac{M_{hs}}{(M_{h\ell})^{\gamma} (M_{cs})^{(1-\gamma)}}$$

[y : free parameter (no need for tuning)
 used for gaining extra control
 of syst. uncertainties]

$$\lim_{m_h^{\rm pole}\to\infty}\left(\frac{Q_m}{(m_h^{\rm pole})^{(1-\gamma)}}\right)={\rm const.}$$

$$\frac{\text{ratio}}{y_{Q}(m_{h}^{(n)}, \lambda; m_{\ell}, m_{s}, a)} = \lambda^{(\gamma-1)} \frac{Q_{m}(m_{h}^{(n)}; m_{\ell}, m_{s}, a)}{Q_{m}(m_{h}^{(n)}/\lambda; m_{\ell}, m_{s}, a)} \left(\frac{\rho(m_{h}^{(n)}, \mu^{*})}{\rho(m_{h}^{(n)}/\lambda, \mu^{*})} \right)^{(\gamma-1)} \frac{m_{h}^{(n)} = \lambda m_{h}^{(n-1)}}{[m_{h}^{\text{pole}} = \rho(m_{h}, \mu^{*}) m_{h}(\mu^{*})]} \\ \frac{1.002}{1.000} \left(\frac{Ratio \text{ interpolation in the b-region}}{1.000} \right)^{(\gamma-1)} \frac{Ratio \text{ interpolation in the b-region}}{\frac{1}{2} + \frac{1}{2} +$$

Ratio method offers a simple way to determine m_b/m_c

$$\mathcal{F}_{hq} = f_{hq}/M_{hq}, \quad q = \ell, s$$
 $\lim_{m_h^{\text{pole}} \to \infty} \mathcal{F}_{hq} \; (m_h^{\text{pole}})^{3/2} = \text{const.} \quad \lim_{m_h^{\text{pole}} \to \infty} \left(\mathcal{F}_{hs}/\mathcal{F}_{h\ell} \right) = \text{const.}$

(HQET asymptotic conditions)

f_{Bs}

Use the chain equation up to $m_b = \lambda^N m_h^{(1)}$ to obtain f_{Bs}/M_{Bs} and finally use $M_{Bs}(expt)$ to determine f_{Bs}

Use the chain equation up to $m_b = \lambda^N m_h^{(1)}$ to obtain f_{Bs}/f_B using as input $(M_{Bs}/M_B)_{expt}$

Results & Error Budget

$$\begin{array}{l} m_b(\overline{\mathrm{MS}},m_b) = 4.26(9) \ \mathrm{GeV} \\ m_b/m_c = 4.42(8) \\ f_{Bs} = 229(5) \ \mathrm{MeV} \\ f_{Bs}/f_B = 1.179(26) \\ f_B = f_{Bs}/(f_{Bs}/f_B) = 194(6) \ \mathrm{MeV} \end{array}$$

 $\begin{array}{c} \mathsf{ETMC} \\ $N_f = 2 + 1 + 1$ \\ $3 \ a \in [0.06, 0.09] $ \mathrm{fm}$ \\ $m_\pi \in [210, 440] $ \mathrm{MeV}$ \\ $m_\pi \ L \in [3.1, 5.4]$ \\ $L \in [2, 3] $ \mathrm{fm}$ \end{array}$

uncertainty (in %)	m _b	m_b/m_c	uncertainty (in %)	f _{Bs}	f_{Bs}/f_B	f _B
stat+fit	1.0	1.4	stat+fit	1.7	1.5	2.5
syst. from discr. effects	1.8	0.9	syst. from discr. effects	1.3	0.6	0.7
syst. from ratios	0.9	0.8	syst. from ratios	0.5	0.3	0.6
syst. from chiral extrap.	0.4	0.3	syst. from chiral extrap.	0.3	0.2	0.4
input from experiment	< 0.01	< 0.01	syst. from fit at the trig. point	-	1.4	1.4
Total	2.3	1.9	input from experiment	< 0.01	< 0.01	< 0.01
L	1		Total	2.2	2.2	3.0

2004 —► today

► Thanks to Experimental achievements and development (mainly B-factories) & Theoretical progress and improvements (→ important role of LQCD)

from LQCD	2004		2015	
f _D (MeV)	225(25)	(11%)	212.1(1.2)	(0.6%)
$f_{Ds}(MeV)$	263(25)	(10%)	248.8(1.4)	(0.6%)
$f_B(MeV)$	189(27)	(14%)	188.5(3.3)	(1.8%)
$f_{Bs}(MeV)$	230(30)	(13%)	226.5(3.3)	(1.5%)
f_{Bs}/f_B	1.22(6)	(5%)	1.203(7)	(0.6%)
$f_{Bd}\hat{B}_{d}^{1/2}({\sf MeV})$	214(38)	(18%)	216(10)	(4.6%)
$f_{Bs}\hat{B}_{s}^{1/2}({\sf MeV})$	262(35)	(13%)	262(10)	(3.8%)

2004: Hashimoto ICHEP 2004 (*B*-results) FNAL : hep-lat/0410030 (*D*-results) 2015: averages over N_f=2+1+1 results & FLAG2013

 Impressive improvement for phenomenologically useful observables (past lattice forecasts have been proved to be conservative)

FLAG	itpwiki.unibe.ch/flag
HFAG	http://www.slac.stanford.edu/xorg/hfag/
UT <i>fit</i>	www.utfit.org/UTfit
CKM fitter	ckmfitter.in2p3.fr/
LATTICE 2015	www.aics.riken.jp/sympo/lattice2015/

- There is still increasing interest for lattice determinations of hadronic weak ME.
- Precise LQCD computations are being carried out by various collaborations.
 Systematic and statistical errors are being progressively reduced.
- For some interesting processes (*e.g. D* and *B* leptonic decays) in the phenomenology of SM theoretical (Lattice) precision is *competitive* with (or *better* than) the experimental one.
- Experimental precision ambitions in the quark flavour sector are high.
 A vast program on loop/Cabibbo suppressed processes with horizon of 2020 (BESIII, BelleII, LHCb) aim at providing footprints of NP effects.
- The goal of '1% precision' in hadronic matrix elements' determination is being achieved for many interesting cases. Depending on the relative (process by process) experimental precision, EM effects should be included.