## Heavy-light spectra and decays

S. Collins University of Regensburg



#### Mainz, Sept 10th 2015.

# Outline

- ▶ Heavy-light spectra: *B*, *B<sub>s</sub>*, *D*, *D<sub>s</sub>* 
  - Motivation and general considerations.
  - 1S hyperfine splittings.
  - Higher states: near threshold  $(D_{s0}^*(2317))$  and resonances.
- ► Heavy-light-light, heavy-heavy-light spectra: cqq, ccq, bbq, bqq, bcq.
- Decays:  $D_s$  semi-leptonic decays to flavour singlets.
- Summary

# Heavy-light spectra

Motivation:

- Postdiction of states well established experimentally.
  - Demonstration of lattice techniques.
  - ► (Precision) tests show systematics are under control, supports determinations of other quantities, m<sub>c</sub>, m<sub>b</sub>, f<sub>D</sub>, f<sub>D<sub>s</sub></sub>.
- Postdiction of states less established experimentally.
  - Help with spin and parity assignments.
  - Whether a bound state/resonance exists.
- Prediction of new states (better test of lattice methods).
  - Expected from quark model.
  - Non-standard,  $q\bar{q}q\bar{q}$ , hybrids.
- Investigating internal structure of non-standard candidates.
- Testing theoretical descriptions: HQET.

# Heavy-light spectra

#### Experimentally observed meson spectra:



- ► Additional states:  $D_1(2430)^0$ ,  $D(2550)^0$ , D(2600),  $D^*(2640)^{\pm}$ , D(2750),  $D_{s1}^*(2700)^{\pm}$ ,  $D_{sJ}(2860)$ ,  $D_{sJ}(3040)^{\pm}$ ,  $B_J^*(5732)$ ,  $B_{sJ}(5850)$ .
- Additional thresholds:  $D\pi\pi$ ,  $D_s\pi$ , ....
- ▶ Widths:  $D^* < 2.1$  MeV,  $D_0^* = 267(40)$  MeV,  $D_1 = 27(3)$  MeV,  $D_2^* = 49(1)$ ,  $D_{s0}^* < 3.8$  MeV,  $D_{s1}(2460) < 3.5$  MeV,  $D_{s1}(2536) = 0.92$  MeV,  $D_{s2}^* = 17(4)$  MeV,  $B_2^* = 23^{+5}_{-11}$  MeV,  $B_{s2}^* = 1.6(5)$  MeV.

# Heavy(-light)-light spectra

Experimentally observed baryon spectra:



- ► Additional states:  $\Lambda_c(2625)$ ,  $\Lambda_c(2880)$ ,  $\Lambda_c(2940)$ ,  $\Sigma_c(2800)$ ,  $\Xi_c(2880)$ ,  $\Xi_c(2880)$ ,  $\Xi_c(2880)$ ,  $\Lambda_b(5912)$ ,  $\Lambda_b(5920)$ .
- ► Thresholds:  $\Lambda_c \pi$ ,  $\Lambda_c \pi \pi$ ,  $\Xi_c \pi$ ,  $\Xi_c \pi \pi$ ,  $\Sigma_c \pi$ ,  $\Sigma_c K$ ,  $\Lambda_c K$ , ....
- ► Stable:  $\Lambda_c$ ,  $\Xi_c$ ,  $\Xi'_c$ ,  $\Omega_c$ ,  $\Lambda_b$ ,  $\Xi_b$ ,  $\Omega_b$ .
- ► Widths:  $\Lambda_c \left(\frac{1}{2}^{-}\right) = 2.6(6)$  MeV,  $\Sigma_c \left(\frac{1}{2}^{+}\right) = 2.2(3)$  MeV,  $\Sigma_c^* \left(\frac{3}{2}^{+}\right) = 14.5(1.5)$  MeV,  $\Xi_c^* \left(\frac{3}{2}^{+}\right) < 5.5$  MeV,  $\Xi_c \left(\frac{1}{2}^{-}\right) < 12$  MeV,  $\Xi_c^* \left(\frac{3}{2}^{-}\right) < 6.5$  MeV.

#### Lattice considerations

General:

- ► QCD, QED effects neglected (not for much longer).
- Identification of quantum numbers: construct lattice operations respecting lattice cubic symmetry. Example bosons:
  - $A_1 \to J = 0, 4, \dots, T_1 \to J = 1, 3, 4, \dots$
  - $E \rightarrow J = 2, 4, T_2 \rightarrow J = 2, 3, 4, A_2 \rightarrow J = 3, \ldots$
- Stability under strong decay (lattice simulation).

Simulation:

- Statistics
- ► Systematics: light quark mass, volume, discretisation effects, ....

#### Landscape of lattice simulations

 $m_u, m_s$ 



Figure taken from C Hoelbling, arXiv:1410.3403

# Landscape of lattice simulations

Volume.



Figure taken from C Hoelbling, arXiv:1410.3403

# Landscape of lattice simulations

Lattice spacing.



Figure taken from C Hoelbling, arXiv:1410.3403

Heavy quark approaches on the lattice

$$a=0.05$$
 fm,  $a^{-1}pprox$  4 GeV,  $am_c\sim 1/3$ ,  $am_b>1$ .

Effective field theories:

- HQET
- NRQCD
- Relativistic heavy quark actions

Relativistic actions:

- staggered (HISQ)
- Wilson (Clover)
- Twisted mass

▶ ...

Lattice action: systematically improveable.

# Hyperfine splittings: $D_s$

Sensitive to many systematics: discretisation effects, quark mass tuning, ....



NB: ETMC  $D_s^* = 2.1107(52)$  GeV,  $D_s = 1.9648(36)$  GeV  $\rightarrow \Delta M = 145.9(5.2)$  MeV. Also SFB-TRR 55, T. Rae (Wuppertal),  $N_f = 2 + 1 + 1$ , BMW-c, 3-HEX clover, a = 0.064 - 0.102 fm.

Fermilab: MILC  $N_f = 2 + 1$ , a = 0.09 - 0.15 fm, update a = 0.045 - 0.15 fm. DeTar and Lee: MILC  $N_f = 2 + 1 + 1$ , a = 0.15 fm, Fermilab charm. ETMC:  $N_f = 2 + 1 + 1$ , a = 0.062 - 0.089 fm, twisted mass. Lang at al: PACS-CS  $N_f = 2 + 1$ , a = 0.091 fm, Fermilab charm. Mohler and Woloshyn: PACS-CS  $N_f = 2 + 1$ , a = 0.091 fm, Fermilab charm.

# Hyperfine splittings: B, $B_s$



Wurtz et al: PACS-CS  $N_f = 2 + 1$ , a = 0.091 fm, NRQCD bottom. ALPHA:  $N_f = 2$ , a = 0.048 - 0.075 fm, HQET bottom. Lang et al: PACS-CS  $N_f = 2 + 1$ , a = 0.091 fm, Fermilab bottom. HPQCD: MILC  $N_f = 2 + 1 + 1$ , a = 0.09 - 0.15 fm, NRQCD bottom. Fermilab: MILC  $N_f = 2 + 1$ , a = 0.09 - 0.15 fm, update a = 0.045 - 0.15 fm.

# Higher states with $q\bar{q}$

First step



 $D/D_s$ : Mohler and Woloshyn [1103.5506], De Tar and Lee [1411.4676], ETMC (Lattice 2015), Hadron Spectrum Collaboration [1301.7670],...  $B/B_s$ : ALPHA [1505.03360], ...

#### Higher states with $q\bar{q}$

Hadron Spectrum Collaboration [1301.7670]:  $N_f = 2 + 1$ , anisotropic lattices,  $a_t^{-1} = 0.035$  fm,  $a_s = 0.12$  fm, tree-level clover quark action, L = 1.9 fm and 2.9 fm (shown).



#### Near threshold states and resonances



 $D_{s0}^*$ (2317),  $J^P = 0^+$ ,  $D_{s1}$ (2460),  $J^P = 1^+$ , narrow states just below (S-wave) DK and  $D^*K$  thresholds.

 $B_s$  analogues not yet discovered.

What are the natures of the states?

# $D_{s0}^{*}(2317), J^{P} = 0^{+}$

Lattice calculation of "bound" states close to threshold

- Physical DK threshold: close to physical light quark mass, study the volume dependence.
- *DK* in S-wave, consider D(0)K(0) (D(p)K(-p) omitted).

Diagonalise



### Lattice details

#### RQCD+QCDSF: $N_f = 2$ non-perturbatively improved clover.



Operators:  $c\bar{s}$ ,  $c\gamma_4\bar{s}$ , 3 smearings,  $c\gamma_5\bar{\ell}(0)\ell\gamma_5\bar{s}(0)$ , 1 smearing.

Use stochastic estimation: one-end trick + sequential propagators following CP-PACS [0708.3705] ( $\rho \rightarrow \pi\pi$ ). Statistics: 800-2000 configurations.

Eigenvalues,  $M_{\pi} = 290$  MeV, L = 40



# Comparison with $c\bar{s}$



## Volume dependence

#### A. Cox (Regensburg)



# Splitting with threshold

A. Cox (Regensburg): (VERY) PRELIMINARY



Comparison with Lang et al. [1403.8103]. Preliminary fit function  $a + be^{-Lm_{\pi}}$ .

## Other studies

Lang et al. [1403.8103] use the effective range approximation below threshold to estimate infinite volume masses:

| Ens $(M_{\pi})$ | $m_K + m_D - m_{D_{s0}^*}$ | $m_{D_{s0}^*} - \frac{1}{4}(m_{D_s} + 3m_{D_s})$ |
|-----------------|----------------------------|--------------------------------------------------|
| 266 MeV         | 79.9(5.4)(0.8)             | 287(5)(3)                                        |
| 156 MeV         | 36.6(16.6)(0.5)            | 266(17)(4)                                       |
| Expt            | 45.1                       | 241.5                                            |

Also

- ▶ For  $M_{\pi} = 156$  MeV ens.  $D_{s1}(2460)$ ,  $D_{s1}(2536)$  and  $D_{s2}^{*}(2573)$  (only  $q\bar{q}$ ) consistent with expt..
- For  $M_{\pi} = 266$  MeV ens.  $D\pi$  scattering study for  $D_0^*(2400)$  and  $D_1(2430)$  resonances, Mohler et al. [1208.4059].
- ▶ For  $M_{\pi} = 156$  MeV ens.  $B_{s1}(5830)$ ,  $B_{s2}^*(5840)$  (both  $q\bar{q}$ ) and find  $B_{s0}^*$  and  $B_{s1}$  are bound states below the  $B^{(*)}K$  thresholds, Lang et al. [1501.01646].
- ► Hadron Spectrum Collaboration:  $D_s/DK$  and  $D/D\pi$  spectra Ryan et al. (Lattice 2014).

## Charmed/bottomed baryons



SU(4) representations :  $4 \otimes 4 \otimes 4 = 20_S \oplus 20_M \oplus 20_M \oplus \overline{4}_A$ 

Ground states:  $20_S$  has  $J = \frac{3}{2}^+$ ,  $20_M$  has  $J = \frac{1}{2}^+$  and  $\overline{4}_A$  has  $J = \frac{1}{2}^-$  (non-rel. limit).

# Spectrum singly charmed baryons



 $N_f = 2 + 1$ : Liu et al. clover/DW [0909.3294], PACS-CS NP-clover/NP-clover [1301.4743], Brown et al. FNAL-clover/Domain Wall [1409.0497].  $N_f = 2 + 1 + 1$ : Briceno et al. clover/HISQ [1207.3536], ILGTI overlap/HISQ [1312.3050], ETMC Twisted Mass/Twisted Mass [1406.4310].

Also HSC [1410.8791], QCDSF [1311.5010], Na et al. [0812.1235]

### Spectrum doubly charmed baryons



Including also  $N_f = 2$ : Dürr et al. Brilloin/NP-clover [1208.6270]

Lattice results are consistent and approx. 80 MeV above SELEX result for  $\Xi_{cc} = 3518.7(1.7)$  [hep-ex/0406033].

Borsanyi et al. [1406.4088] QCD+QED:  $\Xi_{cc}^{++} - \Xi_{cc}^{+} = 2.16(11)(17)$  MeV.

# RQCD results

- ▶ 3 operator (smearings) basis for variational method.
- ► Found for  $J^P = \frac{1}{2}^-$ ,  $\Omega_c$  ground state degenerate with  $\Xi_c + K$  and  $\Xi'_c$  with  $\Lambda_c + K$ . Identify as scattering states.
- ► Use QCDSF  $N_f = 2 + 1$  configurations, simulate along  $\bar{m} = \frac{1}{3}(m_s + 2m_{u/d}) = \text{const.} \propto (X_{\pi}^{phys})^2 = \frac{1}{3}(2M_K^2 + M_{\pi}^2).$
- In practice, X<sub>π</sub> is 60 MeV heavier due to change in a ~ 0.083 fm from average octet baryon mass QCDSF [1003.1114] to a ~ 0.075 fm.



Results on same configurations from QCDSF-UKQCD, R.Horsley et al. [1311.5010].

#### $SU(3)_F$ , Gell-Mann Okubo formulae, charm spectator



Sextet  

$$m_{\Sigma_c^{(*)}} = m_0 - \frac{2}{3}A\delta m_\ell + O(\delta m_\ell^2)$$

$$m_{\Xi_c^{'(*)}} = m_0 + \frac{1}{3}A\delta m_\ell + O(\delta m_\ell^2)$$

$$m_{\Omega_c^{(*)}} = m_0 + \frac{4}{3}A\delta m_\ell + O(\delta m_\ell^2)$$

Anti-triplet  $m_{\Lambda_c} = m_0 - \frac{2}{3}B\delta m_{\ell} + O(\delta m_{\ell}^2)$   $m_{\Xi_c} = m_0 + \frac{1}{3}B\delta m_{\ell} + O(\delta m_{\ell}^2)$ 

$$\begin{aligned} & \text{Triplet} \\ m_{\Xi_{cc}^{(*)}} &= m_0 - \frac{1}{3}C\delta m_\ell + \mathcal{O}(\delta m_\ell^2) \\ m_{\Omega_{rc}^{(*)}} &= m_0 + \frac{2}{3}C\delta m_\ell + \mathcal{O}(\delta m_\ell^2) \end{aligned}$$

 $\delta m_\ell = m_s - m_{u/d} \propto 1 - M_\pi^2/X_\pi^2 + O((\delta m_\ell)^2)$ 

 $\begin{array}{l} \mbox{Flavour singlet combinations} \\ (c\ell\ell) & \frac{1}{6}(3m_{\Sigma_c}+2m_{\Xi_c'}+m_{\Omega_c}) \\ & \frac{1}{3}(2m_{\Xi_c}+m_{\Lambda_c}) \\ (cc\ell) & \frac{1}{3}(m_{\Omega_{cc}}+2m_{\Xi_{cc}}) \end{array} \end{array}$ 

# $SU(3)_F$ flavour breaking, P.Perez-Rubio Positive parity:



Negative parity



#### Bottomed baryons

Brown et al. [1409.0497], RBC/UKQCD  $N_f = 2 + 1$  domain wall sea + valence. Relativistic heavy quark action for charm, NRQCD for bottom.



Also: Burch [1502.00675].

# D<sub>s</sub> semi-leptonic decays

20% of decays involving leptons.

- ▶ Leptonic decays,  $D_s \rightarrow \ell^+ \nu$ ,  $\langle 0|A_\mu|D_s \rangle = p_\mu f_{D_s}$ . Well measured in expt. and on the lattice. FLAG report [1310.8555]  $f_{D_s} = 248.6 \pm 2.7$  MeV for  $N_f = 2+1$ , used to determine  $V_{cs}$ . Expt:  $f_{D_s} = 257.5(4.6)$  MeV PDG (2013) (using  $V_{cs}$ ).
- ▶ Semi-leptonic decay  $D_s \rightarrow \phi \ell^+ \nu$ . Helicity functions measured in expt. On the lattice only HPQCD [1311.6669].
- ► Semi-leptonic decay  $D_s \rightarrow \eta^{(\prime)} \ell^+ \nu$ . Only branching fractions measured by CLEO [0903.0601].



Rosner and Wohl (2010) PDG review.

#### $D_s \to \phi \ell \nu$

HPQCD: [1311.6669], MILC  $N_f = 2 + 1$ , a = 0.09, 0.12 fm. HISQ charm+strange.  $\langle \phi(p', \varepsilon) | V^{\mu} - A^{\mu} | D_s(p) \rangle$ , five form factors V,  $A_0$ ,  $A_1$ ,  $A_2$ ,  $A_3$ .

Differential decay rate:  $m_\ell \rightarrow 0$ , V,  $A_1$  and  $A_2$  contribute ( $A_3$  is not independent). CKM:  $V_{cs}$ 

Computed



Ignored

 $\phi$  treated as stable.





Compare to differential decay rate from BaBar [0807.1599] using  $V_{cs}$  from unitarity or use to determine  $V_{cs}$ .



# $D_s \to \eta \ell^+ \nu$ , $D_s \to \eta' \ell^+ \nu$



$$\langle \eta^{(\prime)} | V_{\mu} | D_{s} \rangle = f_{+}(q^{2}) \left( p_{D_{s}\mu} + p_{\eta^{(\prime)}\mu} - \frac{m_{D_{s}}^{2} - m_{\eta^{(\prime)}}^{2}}{q^{2}} q_{\mu} \right) + f_{0}(q^{2}) \frac{m_{D_{s}}^{2} - m_{\eta^{(\prime)}}^{2}}{q^{2}} q_{\mu}$$

Kinematical constraint at  $q^2 = 0$ :  $f_+(0) = f_0(0)$ 

$$\frac{d\Gamma}{dq^2} = \frac{G_F^2 |V_{cs}|^2}{24\pi^3} \frac{(q^2 - m_\ell^2)^2 \sqrt{E_{\eta^{(\prime)}}^2 - m_{\eta^{\prime}}^2}}{q^4 m_{D_s}^2} \\ \left[ \left( 1 + \frac{m_\ell^2}{2q^2} \right) m_{D_s}^2 (E_{\eta^{(\prime)}}^2 - m_{\eta^{\prime}}^2) |f_+(q^2)|^2 + \frac{3m_\ell^2}{8q^2} (m_{D_s}^2 - m_{\eta^{\prime}}^2)^2 |f_0(q^2)|^2 \right]$$

If set  $m_l = 0$ , only  $f_+(q^2)$  contributes.

Only branching fraction  $Br = \Gamma(D_s \to \eta^{(\prime)}))/\Gamma$  is measured so far in expt.

 $\begin{array}{l} \mbox{CLEO collaboration [0903.0601]} \\ Br(D_s^+ \to \eta e^+ \nu_e) = (2.48 \pm 0.29 \pm 0.13)\% \\ Br(D_s^+ \to \eta' e^+ \nu_e) = (0.91 \pm 0.33 \pm 0.05)\% \end{array}$ 

To compare, lattice results for  $f_+(q^2)$  are needed.

However, we make use of PCVC relation to avoid renormalisation of  $V_{\mu}$  operator (HPQCD [1008.4562])

$$q^{\mu}\langle V_{\mu}
angle = (m_c - m_s)\langle S
angle + O(a^2)$$

which leads to

$$f_0(q^2) = rac{m_c - m_s}{M_{D_s}^2 - M_{\eta^{(\prime)}}^2} \langle \eta^{(\prime)} | S | D_s 
angle + O(a^2)$$

Only predict  $f_0(0) = f_+(0)$ .

Will make use of a parameterisation for  $f_+(q^2)$  to predict Br.

#### Flavour singlets

SU(3) flavour symmetry (u,d,s): for mesons,  $\bar{q}q$ , we have  $3\otimes \bar{3}=8\oplus 1$ 

octet : 
$$\pi^0, \pi^{\pm}, K^{\pm}, K^0, \overline{K}^0, \eta,$$
 singlet :  $\eta'$   
 $\eta = \eta_8 = \frac{1}{\sqrt{6}} (u\overline{u} + d\overline{d} - 2s\overline{s}), \quad \eta' = \eta_1 = \frac{1}{\sqrt{3}} (u\overline{u} + d\overline{d} + s\overline{s})$ 

Chiral symmetry ( $m_q = 0$ ): SU<sub>A</sub>(3) symmetry spontaneously broken  $\pi^0, \pi^{\pm}, K^{\pm}, K^0, \overline{K}^0, \eta$  Goldstone bosons.

 $U_A(1)$  symmetry anomalously broken

$$\partial_{\mu}J_{\mu5} = 2N_{f}\rho(x), \qquad \rho(x) = \frac{1}{32\pi^{2}}\epsilon^{\alpha\beta\mu\nu}\operatorname{Tr}(F_{\alpha\beta}F_{\mu\nu})$$
$$Q = \sum_{x}\rho(x) \in \mathbb{Z}$$

 $\eta^\prime$  heavier than octet mesons.

Physical  $\eta$  and  $\eta'$  mixtures of  $\eta_8$  and  $\eta_1$ .

# Technically challenging



Disconnected diagrams which may give a large contribution due to the anomaly also due to sum over *l* = *u*, *d*, *s*.



Sensitivity to the topology of the gauge field configurations.

First step, determine the physical basis for  $\eta/\eta'$ .

#### Ensembles, lattice details

- ▶ N<sub>f</sub> = 2 + 1, QCDSF configurations, Stout Link Non-perturbatively improved Clover (SLiNC) fermions, O(a<sup>2</sup>) discretisation errors in f<sub>0</sub>(q<sup>2</sup>).
- Simulate along  $\bar{m} = \frac{1}{3}(m_s + 2m_{u/d}) = \text{const.} \propto (X_{\pi}^{phys})^2 = \frac{1}{3}(2M_K^2 + M_{\pi}^2)$
- In practice, X<sub>π</sub> is 60 MeV heavier due to change in a ~ 0.083 fm from average octet baryon mass QCDSF [1003.1114] to a ~ 0.075 fm.
- Two ensembles with  $V = 24^3 \times 48$ 
  - Symmetric  $(m_s = m_l)$ :  $M_{\pi} = M_K = 471$  MeV, 939 configs.,  $LM_{\pi} = 4.3$
  - Asymmetric  $(m_s > m_l)$ :  $M_{\pi} = 370$  MeV,  $M_{K} = 509$  MeV, 239 configs.,  $LM_{\pi} = 3.3$



## Extracting $\eta$ and $\eta'$ physical states

Start from the SU(3) basis

$$\eta_1 = rac{1}{\sqrt{3}}(uar{u} + dar{d} + sar{s}), \qquad \eta_8 = rac{1}{\sqrt{6}}(uar{u} + dar{d} - 2sar{s})$$

[flavour basis commonly used:  $\eta_l = \frac{1}{\sqrt{2}}(\bar{u}u + \bar{d}d)$  and  $\eta_s = \bar{s}s$ ]

Construct correlation matrix

$$\langle C_{2\mathrm{pt}}(t, \boldsymbol{p}) 
angle = egin{pmatrix} \langle \eta_8(t; \boldsymbol{p}) \leftarrow \eta_8(0) 
angle & \langle \eta_8(t; \boldsymbol{p}) \leftarrow \eta_1(0) 
angle \\ \langle \eta_1(t; \boldsymbol{p}) \leftarrow \eta_8(0) 
angle & \langle \eta_1(t; \boldsymbol{p}) \leftarrow \eta_1(0) 
angle \end{pmatrix},$$

Optimised smeared operators. Solve the generalised eigenvalue problem

$$\langle C_{2\mathrm{pt}}(t_0, oldsymbol{p}) 
angle^{-rac{1}{2}} \langle C_{2\mathrm{pt}}(t, oldsymbol{p}) 
angle v_lpha(t, oldsymbol{p}) = \lambda_lpha(t, oldsymbol{p}) \langle C_{2\mathrm{pt}}(t_0, oldsymbol{p}) 
angle^{rac{1}{2}} v_lpha(t, oldsymbol{p})$$

Obtain

$$\Longrightarrow egin{pmatrix} \langle \eta'(t;oldsymbol{p}) \leftarrow \eta_{\prime}(0) 
angle & 0 \ 0 & \langle \eta(t;oldsymbol{p}) \leftarrow \eta(0) 
angle \end{pmatrix} \,.$$

Parameterise the eigenvectors:

$$v_{\eta}(t, \boldsymbol{p}) = (\cos \theta(t, \boldsymbol{p}), -\sin \theta(t, \boldsymbol{p}))^{T}, v_{\eta'}(t, \boldsymbol{p}) = (\sin \theta'(t, \boldsymbol{p}), \cos \theta'(t, \boldsymbol{p}))^{T}.$$

Arrive at the physical basis

 $\mathcal{O}_{\eta} = \cos \theta(\boldsymbol{p}) \mathcal{O}_8 - \sin \theta(\boldsymbol{p}) \mathcal{O}_1, \qquad \mathcal{O}_{\eta'} = \sin \theta'(\boldsymbol{p}) \mathcal{O}_8 + \cos \theta'(\boldsymbol{p}) \mathcal{O}_1.$ 

Correlation functions of the physical states.

$$\langle C_{\rm 2pt}^{\eta^{(\prime)}}(t,\boldsymbol{p})\rangle = \langle \mathcal{O}_{\eta^{(\prime)}}(t;\boldsymbol{p})\mathcal{O}_{\eta^{(\prime)}}^{\dagger}(0)\rangle = A_{\eta^{(\prime)}}(\boldsymbol{p})\left(e^{-tE_{\eta^{(\prime)}}(\boldsymbol{p})} + e^{-(\tau-t)E_{\eta^{(\prime)}}(\boldsymbol{p})}\right)$$

For masses,  $\boldsymbol{p} = \boldsymbol{0}$  sufficient.  $\boldsymbol{p} \neq \boldsymbol{0}$  needed for  $D_s \rightarrow \eta^{(\prime)}$ .

Use: low mode averaging for the connected 2pt function, low modes, stochastic estimation with the hopping parameter expansion, spin and time dilution for the disconnected loops.

### Effective masses of $\eta$ , $\eta'$ and $\pi$ , I.Kanamori



Final masses:

 $\begin{array}{cccc} & M_{\eta} \; [{\rm MeV}] & M_{\eta'} \; [{\rm MeV}] & N_{conf} & N_{bin} \\ {\rm Sym.} & 470.5 \; (1.8) & 1032 \; (27) & 939 & 5 \; (25 \; {\rm traj.}) \\ {\rm Asym} & 542.8 \; (6.2) & 946 \; (65) & 239 & 2 \; (20 \; {\rm traj.}) \end{array}$ 

Expt.  $M_{\eta} = 547.8$  MeV  $M_{\eta'} = 957.8$  MeV. t/a = 10 corresponds to t = 0.75 fm.

#### Comparison with other determinations



ETMC:  $LM_{\pi} = 5.2$ ,  $24^3 \times 48$ ,  $a \sim 0.09 - 0.10$  fm,  $M_{\pi} = 475 - 427$  MeV.  $N_{conf} \approx 2500$  with  $N_{bin} = 10$ .  $t/a = 7 \rightarrow t = 0.67$  fm. Final results obtained by subtracting off excited states using g.s. determined from connected twopt fn.

HSC:  $LM_{\pi} = 5.7$ ,  $24^3 \times 128$ ,  $a_s \sim 0.12$  fm,  $a_t^{-1} \sim 5.6$ GeV,  $M_{\pi} = 391$  MeV.  $N_{conf} = 553$  with  $N_{bin} = 10$ . Distillation method.  $t/a = 10 \rightarrow t = 0.42$  fm.

# Comparison with other mass determinations



Our work: flavour average quark mass fixed. Approach physical point  $m_{\pi} \searrow$ ,  $m_{\kappa} \nearrow$ ,  $\eta \nearrow$ .

Consistency with other lattice determinations.

Chiral extrapolations not shown, e.g. ETMC:  $M_{\eta} = 551(8)(6)$  MeV and  $M_{\eta'} = 1006(54)(31)(61)$  MeV.

# Mixing angle(s)

 $\eta$  and  $\eta'$  are mixtures of the SU(3) basis.

Use pseudoscalar matrix elements (leading order distribution amplitudes)

$$\begin{pmatrix} A_{8\eta} & A_{1\eta} \\ A_{8\eta'} & A_{1\eta'} \end{pmatrix} = \begin{pmatrix} \langle 0|O_8|\eta\rangle & \langle 0|O_1|\eta\rangle \\ \langle 0|O_8|\eta'\rangle & \langle 0|O_1|\eta'\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta_8 & -\sin\theta_1 \\ \sin\theta_8 & \cos\theta_1 \end{pmatrix} \begin{pmatrix} Z_8 & 0 \\ 0 & Z_1 \end{pmatrix}$$

with local (unsmeared) operators [Alternatively use decay constants -  $A_8/A_1$ , diff. angles]

$$\mathcal{O}_1 = \frac{1}{\sqrt{3}}(u\bar{u} + d\bar{d} + s\bar{s}), \qquad \qquad \mathcal{O}_8 = \frac{1}{\sqrt{6}}(u\bar{u} + d\bar{d} - 2s\bar{s})$$

If two states are enough  $\theta_8 = \theta_1$ . Renormalisation cancels in the ratios:

$$\frac{A_{8\eta'}}{A_{8\eta}} = \tan \theta_8 , \qquad \frac{A_{1\eta}}{A_{1\eta'}} = -\tan \theta_1 , \qquad \tan^2 \bar{\theta} = \tan \theta_8 \tan \theta_1 .$$

Extract from fits to twopt correlators

$$\langle 0|\mathcal{O}_{j}^{\mathrm{local}}(t)\mathcal{O}_{\eta^{(\prime)}}^{\dagger}(0)|0\rangle \rightarrow \frac{A_{j\eta^{(\prime)}}Z_{\eta^{(\prime)}}^{S}}{2M_{\eta^{(\prime)}}}\left(\exp[-M_{\eta^{(\prime)}}t] + \exp[-M_{\eta^{(\prime)}}(T-t)]\right) + \mathrm{add. \ terms}$$

Smeared amplitude:  $Z^{S}_{\eta^{(\prime)}}=\langle\eta^{(\prime)}|O^{\dagger}_{\eta^{(\prime)}}|0
angle$ 

Sym. ensemble:  $\theta_8 = \theta_1 = 0$ Asym. ensemble:  $\theta_8 = -10.9(1.5)(0.5), \ \theta_1 = -5.5(1.5)(1.2), \ \bar{\theta} = -7.7(0.9)(0.8)$ 

Two angles are needed to describe  $\eta$  and  $\eta'$ .  $\eta$  mostly octet,  $\eta'$  mostly singlet.  $|\theta_i|$  likely to become larger for physical  $m_s/m_l$ .



\*\* with non-local operators.

ETMC: results consistent with a single angle. Most other lattice studies use flavour basis:  $\bar{\theta} = \alpha - 54.7^{\circ}$ . 
$$\begin{split} D_{s} &\to \eta(\eta') \ell \nu \text{ threept function} \\ \left\langle C_{3\text{pt}}^{D_{s} \to \eta^{(\prime)}}(t, \boldsymbol{p}, \boldsymbol{k}; t_{\text{sep}}) \right\rangle &= \langle \mathcal{O}_{\eta(\prime)}(\boldsymbol{k}, t_{\text{sep}}) S(\boldsymbol{0}, t) \mathcal{O}_{D_{s}}^{\dagger}(\boldsymbol{p}, 0) \rangle \\ \eta, \eta' \underbrace{\bullet}_{s} \overset{V_{\mu}}{\bullet} \overset{c}{\bullet} D_{s} \sum_{\text{l=u,d,s}} \left(\eta, \eta' \overset{l}{\bullet} \overset{V_{\mu}}{\bullet} D_{s}\right) \end{split}$$

Asymmetric ensemble,  $M_{\pi} = 370$  MeV,  $M_{K} = 509$  MeV (left)  $\eta$ , (right)  $\eta'$ .



Disconnected contribution is significant, in particular for  $\eta^\prime.$  Dominates error on total threept fn.

# $D_s ightarrow \eta(\eta') \ell u$ scalar form factor, I. Kanamori



Interpolate to  $q^2 = 0$  using a one-pole ansatz:  $f_0(q^2) = f_0(0)/(1 - bq^2)$ .

|        | $f_{0}^{\eta}(0)$ | $f_0^{\eta'}(0)$ |
|--------|-------------------|------------------|
| Symm.  | 0.564(11)         | 0.437(11)        |
| Asymm. | 0.542(13)         | 0.404(25)        |
| LCSR   | 0.432(33)         | 0.520(80)        |

Comparison with light cone sum rules (LCSR) Offen et al. [1307.2797]:

#### Phenomenological relevance

Consider comparison to experiment for the ratio

$$\frac{\Gamma(D_s^- \to \eta' e^- \bar{\nu}_e)}{\Gamma(D_s^- \to \eta e^- \bar{\nu}_e)} = 0.36(14), \text{ CLEO [0903.0601]}.$$

Calculate

$$\frac{\Gamma(D_s^+ \to \eta' e^+ \nu_e)}{\Gamma(D_s^+ \to \eta e^+ \nu_e)} = \frac{\int_0^{(M_{D_s} - M_{\eta'})^2} \lambda_{D_s,\eta'}^{3/2}(q^2) |f_+^{D_s \to \eta'}(q^2)|^2 dq^2}{\int_0^{(M_{D_s} - M_{\eta})^2} \lambda_{D_s,\eta}^{3/2}(q^2) |f_+^{D_s \to \eta}(q^2)|^2 dq^2},$$

where  $\lambda_{D_s,\eta^{(\prime)}}(q^2) = \frac{1}{4M_{D_s}^2} \left( (M_{D_s}^2 + M_{\eta^{(\prime)}}^2 - q^2)^2 - 4M_{D_s}^2 M_{\eta^{(\prime)}}^2 \right).$ Use Ball-Zwicky parameterisation [hep-ph/0406232] for  $f_+(q^2)$ ,

$$f_{+}^{\rm BZ}(q^2) = f_{+}(0) \left( \frac{1}{1 - q^2/M_{D_s^*}^2} + \frac{rq^2/M_{D_s^*}^2}{(1 - q^2/M_{D_s^*}^2)(1 - \alpha q^2/M_{D_s^*}^2)} \right)$$

Use LCSR calculation, Offen et al. [1307.2797], for r = 0.284(142) and  $\alpha = 0.252(126)$  (with 50% errors).

- Some systematics cancel in the ratio.
- Extrapolate ratio  $f_0^{\eta'}(0)/f_0^{\eta}(0) = 0.705(120)(041)$ , mild dependence on  $M_{\pi}$ .
- ▶ Vary  $r_{\eta}$ ,  $\alpha_{\eta}$ ,  $r_{\eta'}$ ,  $\alpha_{\eta'}$  and  $f_0^{\eta'}(0)/f_0^{\eta}(0)$  independently within errors.



Final result 1.6 $\sigma$  below CLEO measurement:

$$\frac{\Gamma(D_s^- \to \eta' e^- \bar{\nu}_e)}{\Gamma(D_s^- \to \eta e^- \bar{\nu}_e)} = 0.128^{+51}_{-42}$$

c.f LCSR Offen et al. [1307.2797]  $0.37\pm0.09\pm0.04.$ 

# Summary

- Heavy-light spectra, heavy(-light)-light, heavy(-heavy)-light spectra is an active area of research within the lattice community.
- ► Test of systematics: *D<sub>s</sub>*, *B*, *B<sub>s</sub>* hyperfine splittings, from variety of heavy quark approaches.
- Move to calculate wider spectrum, near threshold states and resonances.  $D_{s0}^*(2317)$  consistent with weakly bound state.
- Agreement of lattice results of charmed and bottomed baryons with experimental results, confirming spin/parity assignments.
- Experimental prospects are very good for discovery of further states, LHC, Belle II, BES III.
- Lattice simulations using  $\bar{m} = \frac{1}{3}(m_s + 2m_{u/d})$ : explore  $SU(3)_F$  breaking using Gell-Mann Okubo relations, treating charm as a spectator.
- First lattice calculations of  $D_s \rightarrow \phi$  and  $D_s \rightarrow \eta^{(\prime)}$ .