Quark masses, strong CP, and all that

Michael Creutz

Brookhaven Lab

Three controversial points

1. $m_u = 0$ unrelated to the strong CP problem

2. Topological susceptibility not a physical observable

3. Staggered fermions do not root properly

How did I reach these conclusions?

• Concentrate on m_u

Susceptibility is a corollary

Rooting: practitioners don't care and won't listen.

Motivation

- Standard model requires chiral gauge coupling
- lattice formulation unknown
- Lattice is the fully non-perturbative regulator

Is the standard model well defined?

Study chiral symmetry from all angles

MC (1995):

- naive variable change $\psi \longrightarrow e^{i\gamma_5\theta}\psi$
- $\overline{\psi}\psi \longrightarrow \cos(\theta)\overline{\psi}\psi + i\sin(\theta)\overline{\psi}\gamma_5\psi$

Study QCD dependence on m_1 and m_5

•
$$m\overline{\psi}\psi \to m_1\overline{\psi}\psi + im_5\overline{\psi}\gamma_5\psi$$

Does physics depend only on $\sqrt{m_1^2 + m_5^2}$?

Tool: effective chiral Lagrangean

Consider 2 flavors with effective potential

•
$$V = (\sigma^2 + \vec{\pi}^2 - v^2)^2$$

• mass term $m_1\overline{\psi}\psi \longrightarrow m_1\sigma$ tilts the sombrero

• pion becomes massive $M_\pi^2 \propto m_1$

What does m_5 do?

- $im_5\overline{\psi}\gamma_5\psi \longrightarrow m_5\eta$
 - not in above effective potential
- m_5 will give η an expectation value
 - $\langle \eta \rangle \propto m_5/M_\eta^2$

Add an effective coupling $(\vec{\pi} \cdot \vec{a}_0 + \sigma \eta)^2 \rightarrow \langle \eta \rangle^2 \sigma^2$

$$V \to V - \alpha m_5^2 \sigma^2$$

(sign related to pi eta mixing)

 m_5 also gives pions a mass

•
$$M_\pi^2 \propto m_5^2$$
 not linear in m_5

Michael Creutz

BNL

Transition at $m_1 = 0$ becomes first order

Transition occurs at conventional $\Theta = \pi$

•
$$\frac{m_5}{m_1} = \tan(\Theta/2)$$

- physics not only dependent on $\sqrt{m_1^2+m_5^2}$
- variable change is anomalous

Physics depends non-trivially on ⊖

Introduce an up-down mass difference

•
$$m\overline{\psi}\psi \to m_1\overline{\psi}\psi + m_2\overline{\psi}\tau_3\psi$$

- $\overline{\psi} \vec{\tau} \psi \sim \vec{a_0}$ isovector scalar
- also not in starting effective potential
- m_2 will give a_{03} an expectation value
 - $\langle a_{03} \rangle \propto m_2/M_{a_0}^2$

Effective coupling $(\vec{\pi} \cdot \vec{a}_0 + \sigma \eta)^2$ (form dictated by chiral symmetry)

$$V \to V - \beta m_2^2 \pi_3^2$$

Without tilt from m_1 ,

- π_3 gains an expectation value!
- the "Dashen phase"

Michael Creutz

Conventional QCD parameters α_s m_u m_d Θ

• α_s tied to overall scale: m_p

• m_q determines meson spectrum: m_π m_k ...

• Θ determines neutron electric dipole moment

In chiral Lagrangean language:

 $\alpha_s \ m_u \ m_d \ \Theta$ map onto effective potential

- overall scale
- tilt
- warp
- angle between tilt and warp

Full 2 flavor phase diagram

M.C (2011)

Concentrate on $m_5 = 0$ plane

Second order transition at $m_u m_d < 0$; i.e. $\Theta = \pi$

- order parameter $\langle \pi_0 \rangle$
- massless neutral pion along transition line

M.C. (2004), S. Aoki, Sharpe, Horkel

Symmetries

 $m_u \leftrightarrow m_d$

- if $m_u = m_d$ isospin is exact
- $m_2 = 0$ protected from additive renormalization

Symmetries

$$m_u \leftrightarrow -m_d$$

- $m_u = -m_d$ isospin symmetry at $\Theta = \pi$
- $m_1 = 0$ also protected: $m_u + m_d$

Symmetries

$$m_u, m_d \leftrightarrow -m_u, -m_d$$

- $\psi \to e^{i\pi\tau_3\gamma_5}\psi$
- flavored chiral symmetry not anomalous

•
$$\operatorname{Tr}\tau_3 = 0 \Rightarrow \left| e^{i\pi\tau_3\gamma_5} \right| = 1$$

NO symmetry under $m_u \leftrightarrow -m_u$

- $m_u = 0$ not protected by any symmetry
- Ward identities mix in $F\tilde{F}$

Perturbatively $\overline{\psi}\psi \to \overline{\psi} \ e^{i\pi\gamma_5} \ \psi$ flips sign of the mass

- this rotation is anomalous
- topology gives chiral zero modes
 - $\operatorname{Tr}\gamma_5 = \nu$
- -1^{ν} measure factor at negative m

The strong CP question

- the m_5 term violates CP: $\langle \eta \rangle \propto m_5$
- no strong CP violation observed
 - $m_5 << \Lambda_{qcd}$

Claim: $m_u = 0$ eliminates the problem

$$\bullet \quad m_u \equiv \frac{m_1 + m_2}{2} + i m_5$$

Symmetries protect m_1 , m_2 , m_3 separately

- renormalizations not in general equal
- no symmetry to protect $m_1 + m_2$

 m_1 , m_2 , m_3 physically distinct parameters

- independent renormalizations
- $\frac{m_1+m_2}{2}+im_5$ is an artificial construct

Question: Can any experiment tell if $m_u = 0$?

- is $m_u = 0$ well-defined?
- \bullet \overline{MS} is perturbative, cannot answer this

Non-perturbative issues require the lattice

- adjust lattice parameters for hadron spectrum
- read off quark masses and see if $m_u = 0$

Complication: m_d can induce an effective m_u

Mass ratios not renormalization group invariant

$$\frac{m_u}{m_d} \to \frac{m_u + \epsilon m_d}{m_d + \epsilon m_u}$$

Effect is non-perturbative, from topology

Mass renormalization is not flavor blind!

- Mass independent renormalization?
 - allowed but not natural
 - hides non-perturbative mixing from topology
 - physical particle mass ratios not constant

But there are many lattice formulations

how do we define the quark mass

Can we use the operator product expansion

- no symmetry to rule out terms
- lattice currents involve neighboring sites
 - details depend on specific formulation

Can we use topology?

• $m_u = 0$ equivalent to vanishing susceptibility

How to define lattice topology?

Space of lattice fields simply connected

Topology lost at the outset

small instantons can fall through the lattice

Combine loops around a hypercube

- to give $F\tilde{F}$ in continuum limit
- resulting charge not generally an integer

Michael Creutz

Cooling (Wilson flow, ...) to remove UV fluctuations

Action settles to multiple instantons

Many studies over the years: M. Teper (1985); de Forcrand, Garcia-Perez, Stamatescu; Del Debbio, Giusti, Pica; Bruckmann, Gruber, Jansen, Marinkovic, Urbach, Wagner; Ilgenfritz, Martemyanov, Muller-Preussker, Veselov, ...

Michael Creutz

Often stable but ambiguities appear

- Winding can depend on cooling algorithm
- with which action should we cool? How long?

Can we use the index theorem?

- count small eigenvalues of the Wilson operator
 - At finite cutoff not exact zeros
 - How to define "small"?
 - depends on eigenvalues in first Wilson "circle"

Count zero modes of the overlap operator

- operator not unique: "domain wall height"
- reverts to Wilson eigenvalue distribution

Should we care if topology is ambiguous?

- not measured in laboratory experiments
- concentrate on $M_{\eta'}$, which is physical
 - Witten-Veneziano formula a large N_c result
- tied to the $m_u = 0$ issue

Summary

 $m_u = 0$ ambiguous between lattice schemes

- not an appropriate solution to strong CP
- Entangled with ambiguities in defining topology

Intuition from perturbation theory fails

- mass renormalization is not flavor blind
- matching lattice and perturbative quantities tricky

Review: Acta Physica Slovaca 61, 1 (2011), arXiv:1103.3304;