hadronic corrections to electroweak observables

Gregorio Herdoíza

IFT, UAM/CSIC

Fundamental Parameters from Lattice QCD, MITP, Mainz, Sept. 8, 2015

hadronic corrections to electroweak observables

 observables that enter in the consistency tests of the Standard Model in the electroweak sector

• QED coupling : $\alpha(M_Z)$

observables that can be probed in low-energy experiments

- $\sin^2 \theta_W(Q^2)$
- $(g-2)_{\mu}$ [talk by Taku Izubuchi]

running of QED coupling

$\Delta \alpha_{\text{QED}}$

$$\alpha(Q^2) = \frac{\alpha}{1 - \Delta \alpha_{\rm QED}(Q^2)}$$

- ► vacuum polarisation: charge screening ~→ running of QED coupling
- Standard Model (SM) precision tests and sensitivity to new physics requires precise knowledge of ΔαgeD(Q²): input parameter of SM

experimental evidence of the running of $\alpha(Q^2)$: LEP differential cross-section of Bhabha scattering

$\Delta \alpha_{\text{QED}}$

$$\alpha(Q^2) = \frac{\alpha}{1 - \Delta \alpha_{\rm QED}(Q^2)}$$

• $\Delta \alpha_{\text{QED}}(Q^2)$ receives contributions from leptons and quarks :

$$\Delta \alpha_{\rm QED} = \Delta \alpha_{\rm lep} + \Delta \alpha_{\rm had}^{(5)} + \Delta \alpha_{\rm top}$$

$$\Delta \alpha_{lep}(M_Z) = 0.03150$$

$$\Delta \alpha_{had}^{(5)}(M_Z) = 0.02771(11)$$

$$\Delta \alpha_{top}(M_Z) = -0.00007(1)$$

[PDG, 2014]

OPAL : Bhabha scattering

[OPAL, Eur. Phys. J. C 45 (2006) 1.]

$$\alpha(Q^2) = \frac{\alpha}{1 - \Delta \alpha_{\text{QED}}(Q^2)}$$

•
$$\alpha = 1/137.035999074(44)$$
 [0.3 ppb] [PDG, 2013]
• $\alpha(M_Z^2) = 1/128.952(14)$ [10⁻⁴] $\rightarrow 10^5$ less accurate...

[M. Davier et al., 1010.4180]

hadronic effects: α(Q²) depends strongly on Q² at low energies hadronic uncertainties propagate ...

$$\sim^{\gamma}$$
 had \sim^{γ}

• uncertainty in $\Delta \alpha_{\text{QED}}^{\text{had}}(M_Z^2)$ is comparable to that of $\sin^2 \theta_W(M_Z^2)$

$\Delta \alpha_{\rm QED}^{\rm had}$

$$lpha(Q^2) = rac{lpha}{1 - \Delta lpha_{ ext{QED}}(Q^2)}$$

leading order (LO) contribution

$$\int d^4 x \, e^{i\Theta x} \langle J_{\mu}(x) J_{\nu}(0) \rangle = (\Theta_{\mu} \Theta_{\nu} - \Theta^2 \, \delta_{\mu\nu}) \, \Pi(\Theta^2)$$
$$J_{\mu}(x) = \sum_{f=1}^{N_f} \, \Theta_f \, \overline{\psi}_f(x) \gamma_{\mu} \psi_f(x)$$
$$\Theta_f \in \{-1/3, 2/3\}$$

• $\Pi(Q^2)$: photon vacuum polarisation function (VPF)

$\Delta \alpha_{\rm QED}^{\rm had}$

$$lpha(Q^2) = rac{lpha}{1 - \Delta lpha_{ ext{QED}}(Q^2)}$$

leading order (LO) contribution

$$\int d^4 x \, e^{i\Theta x} \langle J_{\mu}(x) J_{\nu}(0) \rangle = (\Theta_{\mu} \Theta_{\nu} - \Theta^2 \, \delta_{\mu\nu}) \Pi(\Theta^2)$$
$$J_{\mu}(x) = \sum_{f=1}^{N_f} \Theta_f \, \overline{\psi}_f(x) \gamma_{\mu} \psi_f(x)$$
$$\Theta_f \in \{-1/3, 2/3\}$$

• $\Pi(Q^2)$: photon vacuum polarisation function (VPF)

$$\Delta \alpha_{\text{QED}}(\text{Q}^2) \ = \ 4\pi \alpha \ \left(\Pi(\text{Q}^2) - \Pi(0) \right) \ = \ 4\pi \alpha \ \Pi_{\text{R}}(\text{Q}^2)$$

Adler function
$$D(Q^2)$$
:

$$\frac{D(Q^2)}{Q^2} = 12\pi^2 \frac{d\Pi(q^2)}{dq^2}$$

$$= -\frac{3\pi}{\alpha} \frac{d}{dq^2} \Delta \alpha_{\text{QED}}^{\text{had}}(q^2) \qquad \qquad Q^2 = -q^2$$

$$\alpha(Q^2) = \frac{\alpha}{1 - \Delta \alpha_{\rm QED}(Q^2)}$$

► the VPF $\Pi(Q^2)$ and the Adler function $D(Q^2) \rightsquigarrow \Delta \alpha_{\text{QED}}^{\text{had}}(Q^2)$ and $\sigma_{\mu}^{\text{HLO}}$

phenomenological approach :

dispersion relation + optical theorem + ($e^+e^- \rightarrow$ hadrons) cross section

$$\Delta \alpha^{had}_{QED}(Q^2) = -\frac{\alpha Q^2}{3\pi} \int_{4m_{\pi}^2}^{\infty} ds' \frac{R_{had}(s')}{s'(s'-Q^2)}$$

compared to $a_{\mu}^{\rm HLO}$, low-energy regions contribute less

theoretical prediction that relies on experimental data

Iattice QCD

phenomenological approach :

dispersion relation + optical theorem + ($e^+e^- \rightarrow$ hadrons) cross section

$$\begin{aligned} \boldsymbol{\sigma}_{\mu}^{\mathrm{HLO}} &= \left(\frac{\alpha m_{\mu}}{3\pi}\right)^{2} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{R_{\mathrm{had}}(s') \, \boldsymbol{K}(s)}{s^{2}} \\ \Delta \alpha_{\mathrm{had}}^{(5)}(\boldsymbol{Q}^{2}) &= -\frac{\alpha \, \boldsymbol{Q}^{2}}{3\pi} \int_{4m_{\pi}^{2}}^{\infty} ds' \frac{R_{\mathrm{had}}(s')}{s'(s'-\boldsymbol{Q}^{2})} \end{aligned}$$

$$\begin{aligned} \sigma_{\mu}^{\rm HLO} &= (694.91 \pm 3.72_{\rm exp} \pm 2.10_{\rm rad}) \cdot 10^{-10} \quad [0.6\%] \\ \Delta \alpha_{\rm had}^{\rm (5)}(M_Z^2) &= (276.26 \pm 1.38) \cdot 10^{-4} \quad [0.5\%] \end{aligned}$$

Iow energy:

$$\Delta \alpha_{\text{had}}^{(3)}(\Theta^2 = 3.2 \,\text{GeV}^2) = (55.50 \pm 0.78) \cdot 10^{-4} [1.4\%]$$
(PDG, 2014)

► Use of PT:
$$Q^2 \sim (2.6 \text{ GeV})^2$$
 [Hagiwara et al., 1105.3149]
 $Q^2 \sim (1.8 \text{ GeV})^2$ [M. Davier et al., 1010.4180]

11

Global electroweak fit of the SM

[Gfitter, M. Baak et al., 2011]

 $\Delta \alpha_{\rm had}^{(5)}(M_Z) = (276.8 \pm 2.2) \cdot 10^{-4} \quad \rightsquigarrow \quad (274.9 \pm 1.0) \cdot 10^{-4}$ [Hagiwara et al., 2007; Davier et al., 2010]

$$M_H = 84^{+30}_{-23} \,\mathrm{GeV} \quad \rightsquigarrow \quad 96^{+31}_{-24} \,\mathrm{GeV}$$

Global electroweak fit of the SM

Parameter	Input value	Free in fit	Fit Result	w/o exp. input in line
M _H [GeV]	125.14 ± 0.24	yes	125.14 ± 0.24	93 ⁺²⁵ -21
M _W [GeV]	80.385 ± 0.015	-	80.364 ± 0.007	80.358 ± 0.008
M _Z [GeV]	91.1875 ± 0.0021	yes	91.1880 ± 0.0021	91.200 ± 0.011
$\sin^2 \theta_{\rm eff}^{\ell}$	0.2324 ± 0.0012	-	0.23150 ± 0.00006	0.23149 ± 0.00007
$A_{\rm FB}^{0,b}$	0.0992 ± 0.0016	-	0.1032 ± 0.0004	0.1034 ± 0.0004
m _c [GeV]	$1.27^{+0.07}_{-0.11}$	yes	1.27 +0.07	-
m _b [GeV]	$4.20^{+0.17}_{-0.07}$	yes	$4.20^{+0.17}_{-0.07}$	-
m _t [GeV]	173.34 ± 0.76	yes	173.81 ± 0.85	$177.0^{+2.3}_{-2.4}$
$\Delta \alpha_{ m had}^{(5)}(M_Z^2) [10^{-5}]$	2757 ± 10 [0.4%]	yes	2756 ± 10	2723 ± 44 [1.6%]
$\alpha_s(M_Z)$	-	yes	$0.1196 \pm 0.0030 \ [2.5\%]$	0.1196 ± 0.0030

[Gfitter, 1407.3792]

[FLAG, 1310.8555]: $\alpha_s(M_Z) = 0.1184(12)$ [1%]

Global electroweak fit of the SM

- agreement between direct & indirect determinations : p-value = 21%
- no individual value > 3 σ

 $\begin{array}{l} A_{FB}^{0,b} \text{ with } 2.5\,\sigma \\ \text{unpolarized Z-pole forward-backward} \\ \text{asymmetry: } \bar{g}_V^b \text{ and } \bar{g}_A^b \end{array}$

► indirect determination :

 $\sin^2 \theta_{\rm eff}^{\ell} = 0.231488(70) \ [0.03\%]$

where $\Delta \alpha_{had}^{(5)}(M_Z^2)$ contributes to 50% of the uncertainty

Global electroweak fit of the SM : prospects

	Exp. input [$\pm 1\sigma_{ m exp}$]		Indirect [$\pm 1\sigma_{ m exp}, \pm 1\sigma_{ m theo}$]	
Parameter	Present	ILC/GigaZ	Present	ILC/GigaZ
M _H [GeV]	0.4	< 0.1	$^{+31}_{-26}$, $^{+10}_{-8}$	$^{+6.9}_{-6.6}$, $^{+2.5}_{-2.3}$
M _W [MeV]	15	5	6.0, 5.0	1.9, 1.3
Mz [MeV]	2.1	2.1	11, 4	2.6, 1.0
mt [GeV]	0.8	0.1	2.4, 0.6	0.7, 0.2
$\sin^2 \theta_{\mathrm{eff}}^{\ell}$ [10 ⁻⁵]	16	1.3	4.5, 4.9	2.0, 1.0
$\Delta \alpha_{\rm had}^{(5)}(M_Z^2) [10^{-5}]$	10	4.7	42, 13	5.6, 3.0
$\alpha_{S}(M_{Z})$ [10 ⁻⁴]	-	-	40, 10	6.4, 6.9

prospects for ILC/GigaZ : uncertainty on $\Delta \alpha_{had}^{(5)}(M_Z^2)$ and M_Z

 \rightsquigarrow largest contribution to uncertainty in M_H

[Gfitter, 1407.3792]

improved precision on the theoretical determination of $\Delta \alpha_{\rm had}^{(5)}(M_7^2)$ will be needed

Mainz: electroweak couplings

A. Francis, V. Gülpers, G. H., G. von Hippel, H. Horch, B. Jäger, H. Meyer, H. Wittig

[Mainz, 1112.2894]

 $N_{\rm f} = 2 \ \mathcal{O}(a)$ improved Wilson fermions [CLS]strange and charm are quenched : $s_{\rm Q}$, $c_{\rm Q}$ quark connected + disc. contributionsscale from f_K [ALPHA, 1205.5380]

lattice VPF

Local current

$$J^{(1, f)}_{\mu}(x) = Z_{\rm V} \,\overline{\psi}_f(x) \,\gamma_{\mu} \,\psi_f(x)$$

conserved-local correlator

$$a^{6} \left\langle \sum_{f=1}^{N_{\mathbf{f}}} \left(\mathcal{Q}_{f} J_{\mu}^{(\mathbf{ps}, f)}(x) \right) \sum_{f'=1}^{N_{\mathbf{f}}} \left(\mathcal{Q}_{f'} J_{\nu}^{(\mathbf{l}, f')}(0) \right) \right\rangle$$

$$\Pi_{\mu\nu}(\hat{Q}) = \mathcal{Q}^4 \sum_{\chi} \mathcal{Q}^{iQ(\chi + \alpha\hat{\mu}/2)} \langle J^{(\mathrm{ps})}_{\mu}(\chi) J^{(\mathrm{l})}_{\nu}(0) \rangle \qquad \rightsquigarrow \qquad \Pi(\hat{Q}^2)$$

$$\hat{Q}_{\mu} = \frac{2}{a} \sin\left(\frac{aQ_{\mu}}{2}\right)$$

Adler function

the Adler function $D(Q^2)$ is related to the vacuum polarization by

$$D(Q^2) = 12 \pi^2 Q^2 \frac{d\Pi(Q^2)}{dQ^2}$$

compute the Adler function :

analytic derivative:

fit a function to $\Pi(Q^2)$ and compute its derivative Padé ansatz :

$$\Pi_{fit}(Q^2) = \Pi(0) + Q^2 \left(\frac{p_1}{p_2 + Q^2} + \frac{p_3}{p_4 + Q^2}\right)$$

$$Q^{2} \frac{d}{dQ^{2}} \Pi_{ff}(Q^{2}) = Q^{2} \left(\frac{p_{1}p_{2}}{\left(p_{2} + Q^{2}\right)^{2}} + \frac{p_{3}p_{4}}{\left(p_{4} + Q^{2}\right)^{2}} \right)$$

numerical derivative:

apply linear or quadratic fits of varying ranges to determine the derivative of $\Pi(Q^2)$

Adler function : numerical derivative

Adler function : combined fit

Adler function:

$$D(Q^2) = 12 \pi^2 Q^2 \frac{d\Pi(Q^2)}{dQ^2}$$

► fit form :

 $D(Q^2) = \operatorname{Pad\acute{e}}(Q^2) [1 + \operatorname{discr.} + \operatorname{mass}]$

$$D(Q^{2}) = Q^{2} \left(\frac{p_{1}}{(p_{2} + Q^{2})^{2}} + \frac{p_{3}}{(p_{4} + Q^{2})^{2}} \right) \times \left[1 + (d_{1} a + d_{2} | aQ |) + \left(\frac{c_{1}}{Q^{2}} \right) \left(M_{PS}^{2} - M_{\pi}^{2} \right) + \left(\frac{c_{2}}{Q^{4}} \right) \left(M_{PS}^{2} - M_{\pi}^{2} \right)^{2} \right]$$

• consider 11 ensembles with different a, M_{PS}

consider also variations over these fit forms

$$\blacktriangleright$$
 (u, d), s_q and c_q

Adler function : combined fit $Q^2 \in [0.5, 4.5] \, GeV^2$

u, d

Adler function: $M_{\rm PS}$ dependence

$$D(Q^{2}) = \frac{3\pi}{\alpha} \frac{d}{d \log(Q^{2})} \Delta \alpha_{\text{QED}}^{\text{had}}(Q^{2})$$

Padé [1,2] with O(a) lattice artefacts and quadratic form in M_{PS}^2 $\chi^2/d.o.f = 0.93$

$\Delta \alpha_{\text{QED}}^{\text{had}}(Q^2)$: systematic effects

$$D(Q^{2}) = \frac{3\pi}{\alpha} \frac{d}{d \log(Q^{2})} \Delta \alpha_{\text{QED}}^{\text{had}}(Q^{2})$$

Padé [1,2] with O(a) lattice artefacts and quadratic form in M_{PS}^2

$\Delta \alpha_{\text{QED}}^{\text{had}}(Q^2)$: systematic effects

$$D(Q^{2}) = \frac{3\pi}{\alpha} \frac{d}{d \log(Q^{2})} \Delta \alpha_{\text{QED}}^{\text{had}}(Q^{2})$$

O(a) lattice artefacts with quadratic form in M_{PS}^2

Adler function : strange quark $Q^2 \in [0.5, 4.5] \, GeV^2$

Padé [1,2] with O(a) lattice artefacts and linear form in M_{PS}^2

 $\chi^2/d.o.f = 0.87$

SQ

Adler function: strange quark

$$D(Q^{2}) = \frac{3\pi}{\alpha} \frac{d}{d \log(Q^{2})} \Delta \alpha_{\text{QED}}^{\text{had}}(Q^{2})$$

Padé [1,2] with O(a) lattice artefacts and linear form in $M_{\rm PS}^2$ $\chi^2/{\rm d.o.f}=0.87$

Adler function : charm quark $Q^2 \in [0.5, 4.5] \, GeV^2$

Padé [1, 1] with O(a) lattice artefacts and linear form in $M_{\rm PS}^2$ $\chi^2/{\rm d.o.f}=$ 1.42 $M_{\rm PS}<$ 390 MeV

Cg

Adler function: charm quark

$$D(Q^{2}) = \frac{3\pi}{\alpha} \frac{d}{d\log(Q^{2})} \Delta \alpha_{\text{QED}}^{\text{had}}(Q^{2})$$

Padé [1, 1] with O(a) lattice artefacts and linear form in $M_{\rm PS}^2$ $\chi^2/{\rm d.o.f}=$ 1.42 $M_{\rm PS}<$ 390 MeV

Adler function : flavour contributions

[PRELIMINARY]

Adler function : flavour contributions

[PRELIMINARY]

pheno. u, d: [Bernecker & Meyer, 1107.4388] pheno. u, d, s, c, b: [alphaQED package, F. Jegerlehner]

ETMC ensembles

- fermionic lattice action: Wilson twisted-mass
- N_f = 2: u,d
- N_f = 2 + 1 + 1: u, d, s, c

- quark connected contribution to $\Delta lpha_{ ext{ged}}^{ ext{had}}$
- conserved current at source and sink

• physical input : M_{π} , M_K , f_{π}

ETMC analysis

$$\Pi^{\text{tot}}(\boldsymbol{Q}^2) = \frac{5}{9}\Pi^{\text{ud}}(\boldsymbol{Q}^2) + \frac{1}{9}\Pi^{\text{s}}(\boldsymbol{Q}^2) + \frac{4}{9}\Pi^{\text{c}}(\boldsymbol{Q}^2)$$

with

$$\Pi^{f}(\boldsymbol{Q}^{2}) = (1 - \Theta(\boldsymbol{Q}^{2} - \boldsymbol{Q}^{2}_{\text{match}})) \Pi^{f}_{\text{low}}(\boldsymbol{Q}^{2}) + \Theta(\boldsymbol{Q}^{2} - \boldsymbol{Q}^{2}_{\text{match}}) \Pi^{f}_{\text{high}}(\boldsymbol{Q}^{2})$$

where

$$\Pi_{\text{low}}^{\text{f}}(Q^2) = \sum_{i=1}^{M} \frac{g_i^2 m_i^2}{m_i^2 + Q^2} + \sum_{j=0}^{N-1} a_j (Q^2)^j$$
$$\Pi_{\text{high}}^{\text{f}}(Q^2) = \log(Q^2) \sum_{k=0}^{B-1} b_k (Q^2)^k + \sum_{l=0}^{C-1} c_l (Q^2)^l .$$

with $\ensuremath{\mathcal{Q}_{\mathrm{match}}}^2 = 2\,\ensuremath{\mathrm{GeV}}^2$ & $\ensuremath{\mathcal{Q}_{\mathrm{max}}}^2 = 100\,\ensuremath{\mathrm{GeV}}^2$

continuum limit and chiral extr. :

 $\Delta \alpha_{\rm QED}^{\rm had}(Q^2)[M_{\rm PS}, \sigma] = A + B M_{\rm PS}^2 + C \sigma^2$

standard fit : M1N2B4C1

[ETMC, 1505.03283]

ETMC : $\Delta \alpha_{\text{QED}}^{\text{had}}(Q^2)$

rescaling in the light sector:

$$\Delta lpha_{
m QED}^{
m had}(arrho^2) = 4\pi lpha \, \Pi_{
m R} \left(Q^2 rac{M_V^2}{M_{V_{
m phys}}^2}
ight)$$

see also: HVP from magnetic susceptibilities [G. Bali & G. Endrodi, 1506.08638]

 $\Delta^{\text{had}} \sin^2 \theta_W(Q^2)$

 $\Delta \sin^2 \theta_W(Q^2)$

non-perturbative effects in the SM curve :

- dispersive approach would require separation of up and down type quarks ...
- $\overline{\text{MS}}$: use threshold quark masses by imposing $\alpha_i^+(\bar{m}_{q_i}) = \alpha_i^+(\bar{m}_{q_i})$
 - \rightsquigarrow pheno. estimates : $\bar{m}_u = \bar{m}_d \sim 180 \, {
 m MeV}$ and $\bar{m}_s \sim 305 \, {
 m MeV}$

no connection to other schemes in PT

assume isospin and absence of singlet contributions

Intrice QCD

$$\Delta^{\text{had}} \sin^2 \theta_W(Q^2)$$

$$\sin^2 \theta_W(Q^2) = \sin^2 \theta_W \left(Q^2 = 0\right) \left(1 - \Delta \sin^2 \theta_W(Q^2)\right)$$

with $\sin^2 \theta_W \left(Q^2 = 0\right) = \alpha/\alpha_2 = 0.23871(9)$
[Kumar et al., 1302,6293]

• LO hadronic contribution to the SU(2)_L coupling α_2

$$\begin{aligned} J_{\mu}^{Z} &= J_{\mu}^{3} - \sin^{2}(\theta_{W}) J_{\mu}^{\gamma} \\ J_{\mu}^{3} &= \frac{1}{4} \sum_{f} \left(\bar{u}_{f} \gamma_{\mu} (1 - \gamma_{5}) u_{f} - \bar{d}_{f} \gamma_{\mu} (1 - \gamma_{5}) d_{f} \right) \end{aligned}$$

 $\blacktriangleright \ \Delta^{\text{had}} \sin^2 \theta_W(Q^2) \ = \ \Delta \alpha^{\text{had}}_{\text{QED}}(Q^2) \ - \ \Delta \alpha^{\text{had}}_2(Q^2)$

• for instance, (u, d) connected contribution at LO :

$$\Delta_{ud}^{\text{had}} \sin^2 \theta_W(Q^2) = \Delta^{ud} \alpha_{\text{QED}}^{\text{had}}(Q^2) \left(1 - \frac{9}{20} \frac{\alpha_2}{\alpha}\right)$$

~

 $\Delta^{\text{had}} \sin^2 \theta_W(Q^2)$

 u, d, s_Q, c_Q

U, d, S, C: [ETMC, 1505.03283]

mixed (time-momentum) representation

[D. Bernecker & H. Meyer, 1107.4388]

$$\begin{aligned} \Pi_{\rm R}^{\gamma Z}(Q^2) &= \int_0^\infty \, dx_0 \, G^{\gamma Z}(x_0) \, \left[x_0^2 - \frac{4}{Q^2} \sin^2 \left(\frac{1}{2} Q \, x_0 \right) \right] \\ G^{\gamma Z}(x_0) &= -\int d^3 \vec{x} \, \langle \, J_k^Z(x) \, J_k^\gamma(0) \, \rangle \end{aligned}$$

• $\ell = (u, d)$ and s disconnected contributions :

$$G_{\rm disc}^{\gamma Z}(x_0) = \frac{\alpha}{\alpha_2} \frac{1}{9} G_{\rm disc}^{(\ell+As),(\ell-s)}(x_0)$$

where

$$G_{\text{disc}}^{(\ell+As),(\ell-s)}(x_0 - y_0) = \frac{Z_V^2}{L^3} \left\langle \left(\sum_{\vec{x}} \text{Tr} \left[\gamma_k D_\ell^{-1}(x,x) + A \gamma_k D_s^{-1}(x,x) \right] \right) \times \left(\sum_{\vec{y}} \text{Tr} \left[\gamma_k D_\ell^{-1}(y,y) - \gamma_k D_s^{-1}(y,y) \right] \right) \right\rangle$$

with

$$A = \frac{3}{4} \frac{\alpha_2}{\alpha} - 1$$

[V. Gülpers et al., lattice 2015]

mixed representation: disconnected contribution

• $a = 0.063 \text{ fm}; M_{\pi} = 455 \text{ MeV}; L/a = 32; T = 2L$

▶ 3 stochastic sources and generalized hopping parameter expansion

[G. Bali et al., 0910.3970; V. Gülpers et al., 1309.2104]

[V. Gülpers et al., lattice 2015]

See also recent studies : [G. Bali & G. Endrodi, 1506.08638] [lattice 2015: BMW, HPQCD]

mixed representation: disconnected contribution

• split $J^{Z}_{\mu}(x)$ and J^{γ}_{μ} into isoscalar and isovector pieces :

 $\rightsquigarrow \quad G^{\gamma Z}(x_0) = G^{I=0}(x_0) + G^{I=1}(x_0)$

where

$$G^{I=0} = -\frac{\alpha}{\alpha_2} \frac{1}{18} G^{\ell} + \left(\frac{1}{12} - \frac{\alpha}{\alpha_2} \frac{1}{9}\right) G^s + \left(\frac{1}{6} - \frac{\alpha}{\alpha_2} \frac{4}{9}\right) G^c + \frac{\alpha}{\alpha_2} \frac{1}{9} G^{(\ell+As),(\ell-s)}_{disc}$$

spectral representation

$$G^{\gamma Z}(\mathbf{x}_0) = \int_0^\infty d\omega \, \omega^2 \, \rho^{\gamma Z}(\omega) \, e^{-\omega |\mathbf{x}_0|}$$

•
$$\omega < 3M_{\pi}$$
: $\rho^{I=0}(\omega) = 0$

• asymptotic behaviour : $x_0 \to \infty$

$$\frac{G_{\rm disc}^{(\ell+As),(\ell-s)}(x_0)}{G^{\rho\rho}(x_0)} \longrightarrow 1$$

[V. Gülpers et al., lattice 2015]

mixed representation: disconnected contribution

▶ $x_0 \to \infty$

$$\frac{G_{\rm disc}^{(\ell+As),(\ell-s)}(x_0)}{G^{\rho\rho}(x_0)} \longrightarrow 1$$

4% : conservative estimate for systematic error from neglecting disconnected contribution at $Q^2 \sim 4\,GeV^2$

[V. Gülpers et al., lattice 2015]

conclusions

► lattice determination of the LO hadronic contribution to the running of the QED coupling and of $\sin^2 \theta_W$

• Adler function $\rightsquigarrow \Delta \alpha_{\text{QED}}^{\text{had}}(Q^2)$, $\Delta^{\text{had}} \sin^2 \theta_W(Q^2)$, α_s , $\alpha_{\mu}^{\text{HLO}}$

- $\Delta^{\text{had}} \sin^2 \theta_W(Q^2)$: quark-disconnected diagrams
- $\alpha_{\text{QED}}^{\text{had}}(Q^2)$: further improvements are needed to reach the accuracy of pheno. results
- $\Delta^{\text{had}} \sin^2 \theta_W(Q^2)$: needed to confront SM with ongoing experiments
- oblique parameter : S