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Introduction and Motivation



  

Indirect CPV in                   mixing, parametrized by ε=2.233(15)x10-3.

First observed by Cronin and Fitch at BNL, for which they received the 
Nobel prize in 1980. 

● CPV is present in the Standard Model in the form of a complex phase in 
the CKM matrix, δ13=1.2 rad.

● In the kaon sector this manifests as:  

Direct CPV in                     decays, parametrized by Re(ε'/ε)=1.67(23)x10-3. 

First observed in 1993 at NA31 expt (CERN), later confirmed by NA48 
and KTeV (FNAL) in 1999. 

● Many BSM models predict new sources of CPV and the small SM value 
makes it an ideal probe to search for new physics.

CP-violation in the kaon sector



  

The role of the lattice

● Underlying dynamics governed by higher-order Weak interactions, e.g.

● However hadronic-scale QCD interactions typically play important role.
● Example: 450x enhancement of isospin I=0 channel K→ππ decay over 

the I=2 channel  (ΔI=1/2 rule).
● Therefore vital to accurately determine hadronic contributions.
● SU(3) ChPT provides a useful tool, but difficult to assess model errors.
● On the other hand, lattice QCD provides a systematically improvable 

technique that has been wildly successful.



  

A sketch of a lattice calculation

● Both operators and Wilson coeffs are renormalization scheme dependent: 
must renormalize in a consistent scheme!

● In Euclidean space states evolve as exp(-Ht), so in the large-time limit only 
the lightest state persists.

● Place operator within temporal region far away from source/sink to 
obtain ground-state matrix elements.

● At energy scales μ«MW weak interactions accurately described by weak 
effective theory:

Perturbative Wilson 
coefficients describing 
high-energy behavior

Matrix elements of Weak 
effective 4-quark operators
(Measure on lattice)



  

Indirect CP violation



  

Why is this interesting?

● Kaon indirect CP-violating parameter εK enters in CKM unitarity tests 

PDG2014



  

~1, long-distance effects and 
effect on |ε| of φε ≠45 deg. (est. 
using ChPT and lattice) 

experimental input
Bag parameter (lattice)

Wilson coeffs and CKM matrix elems

The bag parameter

● Match to scheme used for Wilson coeffs, typically MSbar, (mostly) non-
perturbatively, e.g. using RI/SMOM scheme to run to high energy at which 
perturbative matching reliable.

● Neutral kaon mixing occurs via the ΔS=2 Weak Hamiltonian:



  

BK, a “golden” quantity

● Lattice measurement is comparatively simple and can be made very precise 
using modern techniques (RI/SMOM, AMA, physical-point ensembles, etc)

(Courtesy of A.Vladikas)

(or “gold-plated” if you prefer)



  

● Dominant source of error on εK is Vcb determination.

● Errors on BK completely subdominant!

● It appears that we should now devote our efforts to computing Vcb , e.g. via  
                       form factor (FNAL/MILC method)

● Return later to κε ...

[Bailey et al arXiv:1503.06613]

angle-only fit

LD correction



  

Direct CP violation



  

Direct CPV in K ππ Decays→

● In terms of isospin states: ΔI=3/2 decay to I=2 final state, amplitude A2 
ΔI=1/2 decay to I=0 final state, amplitude A0 

     (δI are strong scattering phase shifts.)

(experiment)



  

Why is this interesting?

● ε' is highly sensitive to BSM sources of CPV.
● New horizontal band constraint on CKM matrix:

[Lehner et al 
arXiv:1508.01801]new constraint from lattice!

~2σ tension



  

ΔS=1 Weak Effective Hamiltonian

Wilson coeffs.

● Qj are 10 effective four-quark operators:

Imaginary part solely responsible for CPV 
(everything else is pure-real)

dominate 
Re(A0), Re(A2)

Q4, Q6 dominate 
Im(A0)

Q7, Q8 dominate 
Im(A2)



  

Lattice Determination of K→ππ

● On the lattice compute                             

● Mixing under renormalization, hence Z is a matrix.

● F is finite-volume correction calculated using Lellouch-Luscher 
method.

● Important to calculate with physical (energy-conserving) kinematics. 
With physical masses:

we require non-zero relative momentum for the pions.

● This is excited state of the ππ-system. Possibilities: 

● try to perform multi-state fits to very noisy data (esp. A0 where 
there are disconn. diagrams)  or

● modify boundary conditions to remove the ground-state



  

ΔI=3/2 Calculation
[Phys.Rev. D91 (2015) 7, 074502]

(RBC & UKQCD)
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Calculation Strategy

● A2 can be computed directly from charged kaon decay:

● Remove stationary (charged) pion state using antiperiodic BCs on d-
quark propagator:

 
Moving ground state!

Stationary ground state....

● Use Wigner-Eckart theorem to remove neutral pion from problem

● APBCs on d-quark break isospin symmetry allowing mixing between 
isospin states: however π+π+ is the only charge-2 state with these Q-
numbers hence it cannot mix.



  

● Results:

● Systematic error completely dominated by perturbative error on NPR and 
Wilson coefficients.

10%, 12% total errors on Re, Im!

● Calculation performed on RBC & UKQCD 483x96 and 643x128 Mobius DWF 
ensembles with (5 fm)3 volumes  and  a=0.114 fm, a=0.084 fm. Continuum 
limit computed.

● Make full use of eigCG and AMA to translate over all timeslices. Obtain 0.7-
0.9% stat errors on all bare matrix elements!

Results



  

ΔI=1/2 rule

● In experiment kaons approx 450x (!) more likely to decay into I=0 pi-pi 
states than I=2.   

● Perturbative running to charm scale accounts for about a factor of 2. Is 
the remaining 10x non-perturbative or New Physics?

● The answer is low-energy QCD!  RBC/UKQCD [arXiv:1212.1474, arXiv:1502.00263] 

(the ΔI=1/2 rule) 

Strong cancellation between the two dominant contractions  

heavily suppressing Re(A2).

483 643



  

ΔI=1/2 Calculation

arXiv:1505.07863 [hep-lat]

(RBC & UKQCD)



  

A much more difficult calculation

● ~50 distinct contraction topologies → 4 classes:

● Type 4 disconn. diagrams dominate noise. Use Trinity-style all-to-all 
(A2A) propagators:

 

● Allows all translations of source/sink and operator location to be 
computed.

● O(1000) exact low-eigenmodes computed using Lanczos algorithm
● Stochastic high-modes with full dilution

● A0 obtained via neutral kaon decays                         and  



  

Physical Kinematics

● A2 calculation used APBC on d-quarks, removes stationary charged pion 
state BUT breaks isospin and doesn't work for π0.

● Solution: Use G-parity BCs:

                   
● As a boundary condition: (i=+, -, 0)

● At quark level: 

● Gauge invariance → gauge field must obey charge conjugation BCs; new 
ensembles needed.

● For stationary kaon we must introduce fictional degenerate partner to 
the strange quark: s'

● Coupling of unphysical kaon partner to physical operators 
exponentially suppressed and can be neglected.

is G-parity even (p=0)

where C = γ2γ4 in our 
conventions

(moving ground state)



  

Difficulties of simulating with G-parity BCs

● Additional strange flavor must be rooted out. As Dirac operator intrinsically 
2-flavor this is not quite kosher. 

● Situation much more benign than staggered quarks - only boundary effect 
and quarks are degenerate. Using 'replica trick' and EFT can argue effects 
are exponentially suppressed.

● Intrinsically 2-flavor Dirac operator requires RHMC (kosher) rooting of 
light-quark                 (and fourth-rooting of strange                 ). Increased 
computational cost due to floating point overhead of multishift CG.   

● GPBC also breaks the cubic rotational symmetry of allowed quark momenta 
to subgroup of rotations around the 'G-parity vector' (1,1,1)  [GPBC in 3 dirs]

...



  

● Makes it difficult to form a rotationally symmetric (A1 rep) pipi state needed for 
Luscher condition.

● Pions just obey regular APBC; even on small volumes have not seen any 
breaking of degeneracy, but have observed different correlator amplitudes for 
different directions at ~20% level on our 163 test ensembles.

● Quark-level symmetry breaking can be suppressed by averaging over 
combinations of allowed quark momenta.

● Aside from norms, can check that there is no mixing between H4 reps in the 
pipi state

● Observed orthogonality to sub-percent scale.
● No evidence for remaining cubic symmetry violation.

(323 ensemble used for K->pipi)



  

Ensemble
● 323x64 Mobius DWF ensemble with IDSDR gauge action at β=1.75. Coarse 

lattice spacing (a-1=1.378(7) GeV) but large,  (4.6 fm)3 box.

● Using Mobius params (b+c)=32/12 and Ls=12 obtain same explicit χSB as 
the Ls=32 Shamir DWF + IDSDR ens. used for ΔI=3/2 but at reduced cost.

● Utilized USQCD 512-node BG/Q machine at BNL, the DOE “Mira” BG/Q 
machines at ANL and the STFC BG/Q “DiRAC” machines at Edinburgh, UK.

● Performed 216 independent measurements (4 MDTU sep.).

● Cost is ~1 BG/Q rack-day per complete measurement                                      
(4 configs generated + 1 set of contractions).

● G-parity BCs in 3 spatial directions results in close matching of kaon and 
ππ energies:

mK=490.6(2.4) MeV

Eππ(I=0) = 498(11) MeV

Eππ(I=2) = 573.0(2.9) MeV

Eπ=274.6(1.4) MeV    (mπ = 143.1(2.0) MeV)



  

I=0 ππ energy

● Signal/noise deteriorates quickly 
due to vacuum contrib.

● Difficult to determine plateau start. 
Performed both 1- and 2-state fits.

● Our phase shift                                       lower than most pheno estimates, which 
prefer                    . More statistics needed to resolve. 

● Using 35° → ~3% change in A0; much smaller than other errs. For consistency 
we choose to use our lattice value.

2% stat err!



  

Matrix element fits

[Dominant contribution to Re(A0)] [Dominant contribution to Im(A0)]

Q
2 Q

6

● Use tmin(π→Q) = 4 here rather than 6 as signal quickly decays into noise (40% 
increase in stat. error with tmin=5!). 

● However comparison to tmin=3 shows no statistically resolvable difference, 
suggesting excited state contamination small.

● Estimate 5% excited state systematic by comparing single-exp fit result for 
ππ(I=0) amplitude with tmin=4 to double-exp fit with tmin=3.



  

Systematic errors

● 15% renormalization error dominant due to low, 1.53 GeV 
renormalization scale. Estimate by comparing two different RI/SMOM 
intermediate schemes and use the largest observed differences.

● 12% Wilson coefficient error large for same reason. Conservatively 
estimate as largest observed fractional change between using LO and 
NLO.

● Errors for each separate operator matrix element:

● Treat as uncorrelated when combining to form A0.



  

● ~85% total error on the predicted Im(A0) due to strong cancellation between 
dominant Q4 and Q6 contributions:

(This work)

(Experiment)

Results for A0

● Good agreement between lattice and experiment for Re(A0) serves as test 
for method.

● Re(A0) from expt far more precise, and is dominated by tree-level Q1 and Q2 
hence unlikely to receive large BSM contributions. Use for computing ε'. 

(This work)

despite only 40% and 25% respective errors for the matrix elements.



  

Lattice results for ε'  



  

Results for ε'

● Using Re(A0) and Re(A2) from experiment and our lattice values for 
Im(A0) and Im(A2) and the phase shifts, 

(this work)=
(experiment)

● Find discrepancy between lattice and experiment at the 2.1σ level.
● Total error on Re(ε'/ε) is ~3x the experimental error, and we observe a 

2.1σ discrepancy. Strong motivation for continued study!
● Hope to achieve O(10%) errors on Re(ε'/ε) on a timescale of ~5 years.
● We hope these results with spur new efforts in the experimental 

community to reduce the current 15% error on the experimental 
number.



  

[Lehner et al 
arXiv:1508.01801]



  

Ishizuka et al [arXiv:1505.05289]

● 2+1f O(a) improved Wilson fermions. Calculation performed at threshold.

● 323x64 volume  (2.9 fm)3 with  a-1 = 0.091fm,  mπ=280 MeV, mK=580 MeV.

● Disconnected diagrams using stochastic sources with combine hopping 
parameter expansion and truncated solver method variance reduction.

● χSB enhances operator mixing, making renormalization difficult.

● Using remaining symmetries C, P, CPS and SU(3)V, authors argue that p-
odd components transform as in continuum: use these for NPR.

K->ππ with Wilson fermions

I=2

I=0



  

Long-distance contributions to εK 



  

Long distance effects
● The factor κε enters the determination of εK.
● Originates from absorbtive part of Wigner-Weisskopf formula

● Roughly a 4% correction to εK 
● As dominated by 2π intermediate state, we have

● But this neglects LD contribs to Im(M12). Using SU(3) ChPT we can estimate 
[Buras et al arXiv:1002.3612]

● Can use our lattice calculation of Im(A0) to obtain precise correction:

[Lehner et al 
arXiv:1508.01801]

● Can in principle obtain LD corrections to εK directly from the lattice.
[Christ Lat'2011 arXiv:1201.2065]



  

Conclusions



  

Conclusions

● We are now able to study both indirect and direct CP-violation on the lattice.

● BK essentially a solved problem; more important to beat down errors on Vcb.

● LD contributions can be precisely determined using ChPT with lattice input, 
and perhaps even directly on the lattice in the future.

● ΔI=3/2 K->pipi amplitude precisely measured, with errors dominated by 
perturbative systematics in Wilson coeffs and NPR. Step-scaling and higher-
order PT necessary.

● First calculation ΔI=1/2 amplitude performed. Both theoretically and 
computationally difficult calculation due to desire for physical kinematics 
and presence of disconnected diagrams. Strong need for more statistics.

● Re(ε'/ε) from lattice has 2.1σ tension with expt.

● Work demonstrating viability of calculating ε' using Wilson fermions, may 
allow for more precise determination.



  



  

● Calculation very similar to RBC/UKQCD calculation of ΔmK:

[Christ arXiv:1201.2065]
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