CP-violation in the kaon sector on the lattice

Christopher Kelly (RBC & UKQCD Collaboration)

Talk, MITP "Fundamental parameters from Lattice QCD" workshop, Mainz, Germany September 7^{th} 2015

RIKEN BNL Research Center

Introduction and Motivation

<u>CP-violation in the kaon sector</u>

- CPV is present in the Standard Model in the form of a complex phase in the CKM matrix, δ_{13} =1.2 rad.
- In the kaon sector this manifests as:

Indirect CPV in $K^0 \leftrightarrow \overline{K}^0$ mixing, parametrized by $\varepsilon = 2.233(15) \times 10^{-3}$. First observed by Cronin and Fitch at BNL, for which they received the Nobel prize in 1980.

Direct CPV in $K^0 \rightarrow \pi\pi$ decays, parametrized by Re(ϵ'/ϵ)=1.67(23)x10⁻³. First observed in 1993 at NA31 expt (CERN), later confirmed by NA48 and KTeV (FNAL) in 1999.

• Many BSM models predict new sources of CPV and the small SM value makes it an ideal probe to search for new physics.

<u>The role of the lattice</u>

• Underlying dynamics governed by higher-order Weak interactions, e.g.

- However hadronic-scale QCD interactions typically play important role.
- Example: 450x enhancement of isospin I=0 channel $K \rightarrow \pi\pi$ decay over the I=2 channel (Δ I=1/2 rule).
- Therefore vital to accurately determine hadronic contributions.
- SU(3) ChPT provides a useful tool, but difficult to assess model errors.
- On the other hand, lattice QCD provides a **systematically improvable** technique that has been wildly successful.

A sketch of a lattice calculation

At energy scales $\mu \ll M_w$ weak interactions accurately described by weak • effective theory:

$$\mathcal{A} \propto (G_F)^n \sum_i S_i(\mu) \langle f | Q_i(\mu) | i \rangle$$
Perturbative Wilson
coefficients describing
ight an any hology ight an any hology ight areas in the provide the second sec

F high-energy behavior

elements of Weak e 4-quark operators (Measure on lattice)

- Both operators and Wilson coeffs are renormalization scheme dependent: must renormalize in a consistent scheme!
- In Euclidean space states evolve as exp(-Ht), so in the large-time limit only the lightest state persists.
- Place operator within temporal region far away from source/sink to obtain ground-state matrix elements.

Indirect CP violation

Why is this interesting?

- Kaon indirect CP-violating parameter $\epsilon_{_{\!K}}$ enters in CKM unitarity tests

The bag parameter

• Neutral kaon mixing occurs via the Δ S=2 Weak Hamiltonian:

~1, long-distance effects and effect on $|\varepsilon|$ of $\phi_{\varepsilon} \neq 45$ deg. (est. using ChPT and lattice)

Wilson coeffs and CKM matrix elems

$$\begin{split} \varepsilon &= e^{i\phi_{\varepsilon}} \frac{G_F^2 m_W^2 f_K^2 m_K}{12\sqrt{2}\pi^2 \Delta m_K^{\exp}} B_K \kappa_{\varepsilon} \operatorname{Im} \left[\begin{array}{c} \eta_1 S_0(x_c) \left(V_{cs} V_{cd}^*\right)^2 + \eta_2 S_0(x_t) \left(V_{ts} V_{td}^*\right)^2 \\ &+ 2\eta_3 S_0(x_c, x_t) V_{cs} V_{cd}^* V_{ts} V_{td}^* \right], \end{split}$$
experimental input Bag parameter (lattice)
$$\phi_{\epsilon} &= 43.52(5)^{\circ} \end{split}$$

$$B_K^{\text{latt}} = \frac{\langle \bar{K}^0 | \mathcal{O}_{VV+AA} | K^0 \rangle}{\frac{8}{3} \langle K^0 | A_0 | 0 \rangle \langle 0 | A_0 | \bar{K}^0 \rangle}$$
$$\mathcal{O}_{VV+AA} = \bar{s} \gamma_\mu (1 - \gamma^5) d \ \bar{s} \gamma^\mu (1 - \gamma^5) d$$

• Match to scheme used for Wilson coeffs, typically MSbar, (mostly) nonperturbatively, e.g. using RI/SMOM scheme to run to high energy at which perturbative matching reliable. $\underline{B_{\underline{K}}, a "golden" quantity}_{(or "gold-plated" if you prefer)}$

• Lattice measurement is comparatively simple and can be made very precise using modern techniques (RI/SMOM, AMA, physical-point ensembles, etc)

(Courtesy of A.Vladikas)

$$N_f = 2 + 1 + 1 \hat{B}_{\rm K} = 0.717(24)$$
$$N_f = 2 + 1 \qquad \hat{B}_{\rm K} = 0.7627(97)$$
$$N_f = 2 \qquad \hat{B}_{\rm K} = 0.727(25)$$

[Bailey et al arXiv:1503.06613]

TABLE	IX. F	ractional	error	budget	for	$\varepsilon_K^{\mathrm{SM}}$	obtain	ed	using
the AOF	meth	od, the e	exclusiv	ve V_{cb} ,	and	\mathbf{the}	FLAG	\hat{B}_K	

source	error (%)	memo
V_{cb}	40.7	FNAL/MILC
$ar\eta$	21.0	AOF
η_{ct}	17.2	c - t Box angle-only fit
η_{cc}	7.3	$c - c \operatorname{Box}$
$ar{ ho}$	LD correction 4.7	AOF
m_t	2.5	
ξ0	2.2	RBC/UKQCD
\hat{B}_K	1.6	FLAG
m_c	1.0	
:	:	

- Dominant source of error on $\epsilon_{_{\rm K}}$ is $V_{_{\rm cb}}$ determination.
- Errors on B_{κ} completely subdominant!
- It appears that we should now devote our efforts to computing V_{cb}, e.g. via $\bar{B} \rightarrow D^* l \bar{\nu}$ form factor (FNAL/MILC method)
- Return later to κ_{ϵ} ...

Direct CP violation

<u>Direct CPV in K $\rightarrow \pi\pi$ Decays</u>

$$\eta_{00} = \frac{A(K_{\rm L} \to \pi^0 \pi^0)}{A(K_{\rm S} \to \pi^0 \pi^0)}, \qquad \eta_{+-} = \frac{A(K_{\rm L} \to \pi^+ \pi^-)}{A(K_{\rm S} \to \pi^+ \pi^-)}.$$
$$\operatorname{Re}(\epsilon'/\epsilon) \approx \frac{1}{6} \left(1 - \left| \frac{\eta_{00}}{\eta_{\pm}} \right|^2 \right) = 16.6(2.3) \times 10^{-4} \quad \text{(experiment)}$$

• In terms of isospin states: $\Delta I=3/2$ decay to I=2 final state, amplitude A_2 $\Delta I=1/2$ decay to I=0 final state, amplitude A_0

Why is this interesting?

- ε' is highly sensitive to BSM sources of CPV.
- New horizontal band constraint on CKM matrix:

new constraint from lattice!

<u>ΔS=1 Weak Effective Hamiltonian</u>

$$H_W^{\Delta S=1} = \frac{G_F}{\sqrt{2}} V_{ud}^* V_{us} \sum_{j=1}^{10} [z_j(\mu) + \tau y_j(\mu)] Q_j$$

 $\tau = -\frac{V_{ts}^* V_{td}}{V_{us}^* V_{ud}} = 0.0014606 + 0.00060408i$ Imaginary part solely responsible for CPV (everything else is pure-real)

Q_i are 10 effective four-quark operators:

Lattice Determination of $K \rightarrow \pi\pi$

- On the lattice compute $M_j = \langle (\pi \pi)_I | Q_j | K \rangle$
- Mixing under renormalization, hence Z is a matrix.

$$A_{2/0} = F \frac{G_F}{\sqrt{2}} V_{ud} V_{us} \sum_{i=1}^{10} \sum_{j=1}^{7} \left[\left(z_i(\mu) + \tau y_i(\mu) \right) Z_{ij}^{\text{lat} \to \overline{\text{MS}}} M_j^{\frac{3}{2}/\frac{1}{2}, \text{lat}} \right],$$

- F is finite-volume correction calculated using Lellouch-Luscher method.
- Important to calculate with physical (energy-conserving) kinematics. With physical masses:

 $2 \times m_{\pi} \sim 270 \text{ MeV}$ $m_K \sim 500 \text{ MeV}$

we require non-zero relative momentum for the pions.

- This is excited state of the $\pi\pi$ -system. Possibilities:
 - try to perform multi-state fits to very noisy data (esp. A₀ where there are disconn. diagrams) or
 - modify boundary conditions to remove the ground-state

$\Delta I=3/2$ Calculation

[Phys.Rev. D91 (2015) 7, 074502]

(RBC & UKQCD)

The RBC & UKQCD collaborations

BNL and RBRC

Tomomi Ishikawa Taku Izubuchi Chulwoo Jung Christoph Lehner Meifeng Lin Taichi Kawanai Christopher Kelly Shigemi Ohta (KEK) Amarjit Soni Sergey Syritsyn

<u>CERN</u>

Marina Marinkovic

<u>Columbia University</u>

Ziyuan Bai Norman Christ Xu Feng Luchang Jin Bob Mawhinney Greg McGlynn David Murphy Daiqian Zhang

<u>University of Connecticut</u>

Tom Blum

Edinburgh University

Peter Boyle Luigi Del Debbio Julien Frison Richard Kenway Ava Khamseh Brian Pendleton Oliver Witzel Azusa Yamaguchi <u>Plymouth University</u>

Nicolas Garron

University of Southampton

Jonathan Flynn Tadeusz Janowski Andreas Juettner Andrew Lawson Edwin Lizarazo Antonin Portelli Chris Sachrajda Francesco Sanfilippo Matthew Spraggs Tobias Tsang

<u>York University (Toronto)</u>

Renwick Hudspith

Calculation Strategy

• A₂ can be computed directly from charged kaon decay:

$$\langle (\pi\pi)_{I_3=1}^{I=2} | H_W | K^+ \rangle = \sqrt{2} A_2 e^{i\delta_2}$$

• Remove stationary (charged) pion state using antiperiodic BCs on dquark propagator: $d(x+L) = -d(x) \longrightarrow |p| \in (\pi/L, 3\pi/L, 5\pi/L...)$

$$\pi^{+}(x+L) = [\bar{u}d](x+L) = -\pi^{+}(x) \text{ Moving ground state!}$$

$$\pi^{0}(x+L) = [\bar{u}u - \bar{d}d](x+L) = +\pi^{0}(x) \text{ Stationary ground state....}$$

• Use Wigner-Eckart theorem to remove neutral pion from problem

$$\langle (\pi^+\pi^0)_{I=2} | Q^{\Delta I_z=1/2} | K^+ \rangle = \frac{\sqrt{3}}{2} \langle (\pi^+\pi^+)_{I=2} | Q^{\Delta I_z=3/2} | K^+ \rangle$$

• APBCs on d-quark break isospin symmetry allowing mixing between isospin states: however $\pi^{+}\pi^{+}$ is the only charge-2 state with these Q-numbers hence it cannot mix.

<u>Results</u>

- Calculation performed on RBC & UKQCD 48³x96 and 64³x128 Mobius DWF ensembles with (5 fm)³ volumes and a=0.114 fm, a=0.084 fm. Continuum limit computed.
- Make full use of eigCG and AMA to translate over all timeslices. Obtain 0.7-0.9% stat errors on all bare matrix elements!
- Results:

$$Re(A_2) = 1.50(4)_{stat}(14)_{sys} \times 10^{-8} \text{ GeV}$$
$$Im(A_2) = -6.99(20)_{stat}(84)_{sys} \times 10^{-13} \text{ GeV}$$

10%, 12% total errors on Re, Im!

• Systematic error completely dominated by perturbative error on NPR and Wilson coefficients.

$\Delta I = 1/2$ rule

- In experiment kaons approx 450x (!) more likely to decay into I=0 pi-pi states than I=2. $\frac{\text{Re}A_0}{\text{Re}A_2} \simeq 22.5 \quad \text{(the }\Delta\text{I}=1/2 \text{ rule)}$
- Perturbative running to charm scale accounts for about a factor of 2. Is the remaining 10x non-perturbative or New Physics?
- The answer is **low-energy** *QCD*! RBC/UKQCD [arXiv:1212.1474, arXiv:1502.00263] Strong cancellation between the two dominant contractions

$\Delta I = 1/2$ Calculation

arXiv:1505.07863 [hep-lat] (RBC & UKQCD)

<u>A much more difficult calculation</u>

- A₀ obtained via neutral kaon decays $K^0 \to \pi^+\pi^-$ and $K^0 \to \pi^0\pi^0$
- ~50 distinct contraction topologies \rightarrow 4 classes:

- Type 4 disconn. diagrams dominate noise. Use Trinity-style all-to-all (A2A) propagators:
 - O(1000) exact low-eigenmodes computed using Lanczos algorithm
 - Stochastic high-modes with full dilution
- Allows all translations of source/sink and operator location to be computed.

<u>Physical Kinematics</u>

- A_2 calculation used APBC on d-quarks, removes stationary charged pion state BUT breaks isospin and doesn't work for π^0 .
- Solution: Use G-parity BCs:

$$\hat{\hat{G}} = \hat{C}e^{i\pi\hat{I}_y} : \hat{G}|\pi^{\pm}\rangle = -|\pi^{\pm}\rangle \quad \hat{G}|\pi^0\rangle = -|\pi^0\rangle$$

• As a boundary condition: (i=+, -, 0)

$$\pi^{i}(x+L) = \hat{G}\pi^{i}(x) = -\pi^{i}(x) \longrightarrow |p| \in (\pi/L, 3\pi/L, 5\pi/L...)$$
(moving ground state)

- At quark level: $\hat{G}\begin{pmatrix} u\\ d \end{pmatrix} = \begin{pmatrix} -C\bar{d}^T\\ C\bar{u}^T \end{pmatrix}$ where $C = \gamma^2\gamma^4$ in our conventions
- Gauge invariance \rightarrow gauge field must obey charge conjugation BCs; new ensembles needed.
- For stationary kaon we must introduce fictional degenerate partner to the strange quark: s'

 $|\tilde{K}^{0}
angle = (|\bar{s}d
angle + |\bar{u}s'
angle)/\sqrt{2}$ is G-parity even (p=0)

• Coupling of unphysical kaon partner to physical operators exponentially suppressed and can be neglected.

<u>Difficulties of simulating with G-parity BCs</u>

- Additional strange flavor must be rooted out. As Dirac operator intrinsically 2-flavor this is not quite kosher.
- Situation much more benign than staggered quarks only boundary effect and quarks are degenerate. Using 'replica trick' and EFT can argue effects are exponentially suppressed.
- Intrinsically 2-flavor Dirac operator requires RHMC (kosher) rooting of light-quark $\mathcal{M}^{\dagger}\mathcal{M}$ (and fourth-rooting of strange $\mathcal{M}^{\dagger}\mathcal{M}$). Increased computational cost due to floating point overhead of multishift CG.
- GPBC also breaks the cubic rotational symmetry of allowed quark momenta to subgroup of rotations around the 'G-parity vector' (1,1,1) [GPBC in 3 dirs]

- Makes it difficult to form a rotationally symmetric (A1 rep) pipi state needed for Luscher condition.
- Pions just obey regular APBC; even on small volumes have not seen any breaking of degeneracy, but have observed different correlator amplitudes for different directions at ~20% level on our 16³ test ensembles.
- Quark-level symmetry breaking can be suppressed by averaging over combinations of allowed quark momenta.

• Aside from norms, can check that there is no mixing between H4 reps in the pipi state

$$\pi \pi_{A1} = \frac{1}{2} \{ (+++) \oplus (-++) \oplus (+-+) \oplus (++-) \}$$

$$\pi \pi_{T2_0} = \frac{1}{\sqrt{12}} \{ 3(+++) \oplus (-++) \oplus (+-+) \oplus (++-) \},$$

- Observed orthogonality to sub-percent scale.
- No evidence for remaining cubic symmetry violation.

<u>Ensemble</u>

- $32^{3}x64$ Mobius DWF ensemble with IDSDR gauge action at β =1.75. Coarse lattice spacing (a⁻¹=1.378(7) GeV) but large, (4.6 fm)³ box.
- Using Mobius params (b+c)=32/12 and L_s =12 obtain same explicit χ SB as the L_s =32 Shamir DWF + IDSDR ens. used for Δ I=3/2 but at reduced cost.
- Utilized USQCD 512-node BG/Q machine at BNL, the DOE "Mira" BG/Q machines at ANL and the STFC BG/Q "DiRAC" machines at Edinburgh, UK.
- Performed 216 independent measurements (4 MDTU sep.).
- Cost is ~1 BG/Q rack-day per complete measurement (4 configs generated + 1 set of contractions).
- G-parity BCs in 3 spatial directions results in close matching of kaon and $\pi\pi$ energies:

 m_{K} =490.6(2.4) MeV $E_{\pi\pi}$ (I=0) = 498(11) MeV $E_{\pi\pi}$ (I=2) = 573.0(2.9) MeV E_{π} =274.6(1.4) MeV (m_{π} = 143.1(2.0) MeV)

<u>I=0 ππ energy</u>

- Our phase shift $\delta_0 = 23.8(4.9)(1.2)^\circ$ lower than most pheno estimates, which prefer $\delta_0 \sim 35^\circ$. More statistics needed to resolve.
- Using $35^\circ \rightarrow \sim 3\%$ change in A_0 ; much smaller than other errs. For consistency we choose to use our lattice value.

Matrix element fits

- Use $t_{min}(\pi \rightarrow Q) = 4$ here rather than 6 as signal quickly decays into noise (40% increase in stat. error with $t_{min}=5$!).
- However comparison to t_{min} =3 shows no statistically resolvable difference, suggesting excited state contamination small.
- Estimate 5% excited state systematic by comparing single-exp fit result for $\pi\pi$ (I=0) amplitude with t_{min}=4 to double-exp fit with t_{min}=3.

Systematic errors

• Errors for each separate operator matrix element:

Description	Error	Description	Error
Finite lattice spacing	8%	Finite volume	7%
Wilson coefficients	12%	Excited states	$\leq 5\%$
Parametric errors	5%	Operator renormalization	15%
Unphysical kinematics	$\leq 3\%$	Lellouch-Lüscher factor	11%
Total (added in quadra	ature)		26%

- Treat as uncorrelated when combining to form A₀.
- 15% renormalization error dominant due to low, 1.53 GeV renormalization scale. Estimate by comparing two different RI/SMOM intermediate schemes and use the largest observed differences.
- 12% Wilson coefficient error large for same reason. Conservatively estimate as largest observed fractional change between using LO and NLO.

<u>Results for A₀</u>

 $Re(A_0) = 4.66(1.00)_{stat}(1.21)_{sys} \times 10^{-7} \text{ GeV}$ (This work) $Re(A_0) = 3.3201(18) \times 10^{-7} \text{ GeV}$ (Experiment)

- Good agreement between lattice and experiment for Re(A₀) serves as test for method.
- Re(A₀) from expt far more precise, and is dominated by tree-level Q₁ and Q₂ hence unlikely to receive large BSM contributions. Use for computing ε'.

$$Im(A_0) = -1.90(1.23)_{stat}(1.04)_{sys} \times 10^{-11} GeV$$
 (This work)

 ~85% total error on the predicted Im(A₀) due to strong cancellation between dominant Q₄ and Q₆ contributions:

$$\Delta[\operatorname{Im}(A_0), Q_4] = 1.82(0.62)(0.32) \times 10^{-11}$$

$$\Delta[\operatorname{Im}(A_0), Q_6] = -3.57(0.91)(0.24) \times 10^{-11}$$

despite only 40% and 25% respective errors for the matrix elements.

Lattice results for ϵ'

<u>Results for ε'</u>

 Using Re(A₀) and Re(A₂) from experiment and our lattice values for Im(A₀) and Im(A₂) and the phase shifts,

$$\operatorname{Re}\left(\frac{\varepsilon'}{\varepsilon}\right) = \operatorname{Re}\left\{\frac{i\omega e^{i(\delta_{2}-\delta_{0})}}{\sqrt{2}\varepsilon} \begin{bmatrix}\operatorname{Im}A_{2} \\ \operatorname{Re}A_{2} \end{bmatrix}^{2} \\ = 1.38(5.15)(4.43) \times 10^{-4}, \quad \text{(this work)} \\ 16.6(2.3) \times 10^{-4} & \text{(experiment)} \end{bmatrix}\right\}$$

- Find discrepancy between lattice and experiment at the 2.1σ level.
- Total error on Re(ϵ'/ϵ) is ~3x the experimental error, and we observe a 2.1 σ discrepancy. Strong motivation for continued study!
- Hope to achieve O(10%) errors on Re(ϵ'/ϵ) on a timescale of ~5 years.
- We hope these results with spur new efforts in the experimental community to reduce the current 15% error on the experimental number.

[Lehner et al arXiv:1508.01801]

<u>K->ππ with Wilson fermions</u>

Ishizuka et al [arXiv:1505.05289]

- 2+1f O(a) improved Wilson fermions. Calculation performed at threshold.
- $32^{3}x64$ volume (2.9 fm)³ with $a^{-1} = 0.091$ fm, $m_{\pi} = 280$ MeV, $m_{K} = 580$ MeV.
- Disconnected diagrams using stochastic sources with combine hopping parameter expansion and truncated solver method variance reduction.
- χSB enhances operator mixing, making renormalization difficult.
- Using remaining symmetries C, P, CPS and SU(3)_v, authors argue that podd components transform as in continuum: use these for NPR.

Long-distance contributions to ε_{K}

Long distance effects

- The factor κ_{e} enters the determination of ϵ_{κ} .
- Originates from absorbtive part of Wigner-Weisskopf formula

$$\Gamma_{21} = \Gamma_{12}^* = \sum_f \mathcal{A}(K^0 \to f) \mathcal{A}(\bar{K}^0 \to f)^*$$

- Roughly a 4% correction to $\varepsilon_{\rm K}$
- As dominated by 2π intermediate state, we have

$$\frac{\mathrm{Im}\Gamma_{12}}{\mathrm{Re}\Gamma_{12}} \approx -2\frac{\mathrm{Im}A_0}{\mathrm{Re}A_0} = -2\xi \quad \longrightarrow \quad \epsilon_K = e^{i\phi_\epsilon}\sin\phi_\epsilon \left[\frac{\mathrm{Im}M_{12}}{\Delta m_K} + \xi\right]$$

• But this neglects LD contribs to $Im(M_{12})$. Using SU(3) ChPT we can estimate

• Can use our lattice calculation of Im(A₀) to obtain precise correction:

$$\kappa_{\varepsilon} = 0.963 \pm 0.014$$
 [Lehner et al arXiv:1508.01801]

- Can in principle obtain LD corrections to ϵ_{K} directly from the lattice. [Christ Lat'2011 arXiv:1201.2065]

Conclusions

<u>Conclusions</u>

- We are now able to study both indirect and direct CP-violation on the lattice.
- B_{K} essentially a solved problem; more important to beat down errors on V_{cb} .
- LD contributions can be precisely determined using ChPT with lattice input, and perhaps even directly on the lattice in the future.
- ΔI=3/2 K->pipi amplitude precisely measured, with errors dominated by perturbative systematics in Wilson coeffs and NPR. Step-scaling and higherorder PT necessary.
- First calculation $\Delta I=1/2$ amplitude performed. Both theoretically and computationally difficult calculation due to desire for physical kinematics and presence of disconnected diagrams. Strong need for more statistics.
- Re(ϵ'/ϵ) from lattice has 2.1 σ tension with expt.
- Work demonstrating viability of calculating ε' using Wilson fermions, may allow for more precise determination.

[Christ arXiv:1201.2065]

• Calculation very similar to RBC/UKQCD calculation of Δm_{κ} :

