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Introduction and Motivation



CP-violation in the kaon sector

e CPV is present in the Standard Model in the form of a complex phase in
the CKM matrix, 6,,=1.2 rad.

e In the kaon sector this manifests as:

Indirect CPV in K° « K'mixing, parametrized by £=2.233(15)x10°%.

First observed by Cronin and Fitch at BNL, for which they received the
Nobel prize in 1980.

Direct CPVin K° — 7w decays, parametrized by Re(e'/e)=1.67(23)x10%.

First observed in 1993 at NA31 expt (CERN), later confirmed by NA48
and KTeV (FNAL) in 1999.

« Many BSM models predict new sources of CPV and the small SM value
makes it an ideal probe to search for new physics.



The role of the lattice

« Underlying dynamics governed by higher-order Weak interactions, e.g.
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However hadronic-scale QCD interactions typically play important role.

Example: 450x enhancement of isospin I=0 channel K—7mt decay over
the I=2 channel (AI=1/2 rule).

Therefore vital to accurately determine hadronic contributions.
SU(3) ChPT provides a useful tool, but difficult to assess model errors.

On the other hand, lattice QCD provides a systematically improvable
technique that has been wildly successful.



A sketch of a lattice calculation

« Atenergy scales p«M,, weak interactions accurately described by weak
effective theory:

N

Perturbative Wilson Matrix elements of Weak
coefficients describing effective 4-quark operators
high-energy behavior (Measure on lattice)

« Both operators and Wilson coeffs are renormalization scheme dependent:
must renormalize in a consistent scheme!

» In Euclidean space states evolve as exp(-Ht), so in the large-time limit only
the lightest state persists.

 Place operator within temporal region far away from source/sink to
obtain ground-state matrix elements.
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Indirect CP violation



Why is this interesting?

Kaon indirect CP-violating parameter €, enters in CKM unitarity tests
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The bag parameter

« Neutral kaon mixing occurs via the AS=2 Weak Hamiltonian:

~1, long-distance effects and
effect on |e| of ¢ _#45 deg. (est.

using ChPT and lattice)
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« Match to scheme used for Wilson coeffs, typically MSbar, (mostly) non-
perturbatively, e.g. using RI/SMOM scheme to run to high energy at which
perturbative matching reliable.



B..a “golden” quantity
(or “gold-plated” if you prefer)

 Lattice measurement is comparatively simple and can be made very precise
using modern techniques (RI/SMOM, AMA, physical-point ensembles, etc)
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Ny =241+1 Bg = 0.717(24)
Ny=2+1  Bg = 0.7627(97)
Ny=2 Bx = 0.727(25)



[Bailey et al arXiv:1503.06613]

TABLE IX. Fractional error budget for e obtained using
the AOF method, the exclusive V,;, and the FLAG Byg.

source error (%) memo
Vep 40.7 FNAL/MILC
7 21.0 AOF
Tet 17.2 c —t Box angle-only fit
Tee 7.3 ¢ — ¢ Box
p LD correction 4.7 AOF
T 2.9
£ . 2.2 RBC/UKQCD
» By 1.6 FLAG
Me 1.0

Dominant source of error on g, is V_, determination.
Errors on B, completely subdominant!

It appears that we should now devote our efforts to computing V_ , e.g. via
B — D*ly form factor (FNAL/MILC method)

Return later to K, ...



Direct CP violation



Direct CPV in K-nit Decays
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) = 16.6(2.3) x 10~ (experiment)

» In terms of isospin states: AI=3/2 decay to I=2 final state, amplitude A,

AI=1/2 decay to I=0 final state, amplitude A

- =

w = ReAs/ReAy

/ iwei@? —d0) ImAQ ImAO
V2 ReAd; ReA

(8, are strong scattering phase shifts.)



Why is this interesting?

« ¢'i1s highly sensitive to BSM sources of CPV.

e New horizontal band constraint on CKM matrix:
[Lehner et al

new constraint from lattice! arXiv:1508.01801]
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AS=1 Weak Effective Hamiltonian

H‘%/S g \/— wa Vs Z z; () + 7y (1)) Q;

‘\V\

. Wilson coeffs.
YisV1d () 6014606 + 0.00060408i
VJS Vud

Imaginary part solely responsible for CPV
(everything else is pure-real)

T = —

« Q, are 10 effective four-quark operators:

—_ (01, Q)2 —> ()3 — s

. dominate q Q, Q, dominate
Re(Ao)’ Re(AZ) (b) QCD penguin Im(AO)

(a) current-current

—> Q7 — Q1o

g Q., Q, dominate
(¢) Electro-Weak penguin Im(Az)




[.attice Determination of K-

* On the lattice compute M; = ((77)7|Q;|K)

« Mixing under renormalization hence Z is a matrix.

Vudvﬂs Z 2 [(z + Tyi(p )) Z;?Hmﬂf;rff %Jﬂ |

i=1 j5=1

Agjp = F

« Fis finite-volume correction calculated using Lellouch-Luscher
method.

« Important to calculate with physical (energy-conserving) kinematics.
With physical masses:

2 X my ~ 270 MeV my ~ 500 MeV
we require non-zero relative momentum for the pions.

 This is excited state of the mr-system. Possibilities:

- try to perform multi-state fits to very noisy data (esp. A, where
there are disconn. diagrams) or
« modify boundary conditions to remove the ground-state



AI=3/2 Calculation

[Phys.Rev. D91 (2015) 7, 074502]

(RBC & UKQCD)
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Calculation Strategy

« A, can be computed directly from charged kaon decay:

(rm) 1,21 Hw |[KF) = V2A5e™

« Remove stationary (charged) pion state using antiperiodic BCs on d-
quark propagator: ;.\ 1y _ _g(y) = |p| € (x/L, 37/L, 57/L...)

7t (x+ L) =[ud)(x + L) = —7w"(x) Moving ground state!
m(x + L) = [tu — dd](x + L) = +7°(x) Stationary ground state....

« Use Wigner-Eckart theorem to remove neutral pion from problem

V3

(70 12| QA T12IKT) = = ((nF 1) 12| Q=722 K )

« APBCs on d-quark break isospin symmetry allowing mixing between
1sospin states: however m*rt*is the only charge-2 state with these Q-
numbers hence it cannot mix.



Results

» Calculation performed on RBC & UKQCD 483x96 and 64°x128 Mobius DWF
ensembles with (5 fm)3volumes and a=0.114 fm, a=0.084 fm. Continuum

limit computed.

« Make full use of eigCG and AMA to translate over all timeslices. Obtain 0.7-
0.9% stat errors on all bare matrix elements!

e Results:

Re(Az) = 1.50(4)stat (14)sys X 107° GeV
Im(Az) = —6.99(20)stat(84)sys X 1071 GeV

10%, 12% total errors on Re, Im!

» Systematic error completely dominated by perturbative error on NPR and
Wilson coefficients.



AI=1/2 rule

» In experiment kaons approx 450x (!) more likely to decay into I=0 pi-pi
states than I=2. ReAq

Red, = 22.5 (the AI=1/2 rule)

« Perturbative running to charm scale accounts for about a factor of 2. Is
the remaining 10X non-perturbative or New Physics?

« The answer is low-energy QCD! RBC/UKQCD [arXiv:1212.1474, arXiv:1502.00263]
Strong cancellation between the two dominant contractions
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AI=1/2 Calculation

arXiv:1505.07863 [hep-lat]
(RBC & UKQCD)



A much more difficult calculation

+ 0

. A, obtained via neutral kaon decays K° — nt7~ and K" — 7~

« ~50 distinct contraction topologies — 4 classes:

typel ypez

@/Z@@

typed

« Type 4 disconn. diagrams dominate noise. Use Trinity-style all-to-all
(A2A) propagators:

* 0(1000) exact low-eigenmodes computed using Lanczos algorithm
« Stochastic high-modes with full dilution

« Allows all translations of source/sink and operator location to be
computed.



Physical Kinematics

A, calculation used APBC on d-quarks, removes stationary charged pion
state BUT breaks isospin and doesn't work for m°.
Solution: Use G-parity BCs:

G=Ce™v o Q) = —|7F)  Gr°) = —|7°)
As a boundary condition: (i=+,-, 0)
(x4 L) = Gr'(z) = —7'(z) = |p| € (x/L, 37/L, 57/L ...

_ ~Cad’ where C = y?y*in our
Cul

conventions

Atquarklevel: - < U )
d

Gauge invariance — gauge field must obey charge conjugation BCs; new
ensembles needed.

For stationary kaon we must introduce fictional degenerate partner to
the strange quark: s'

K% = (|5d) + |us’)) /V2 is G-parity even (p=0)

Coupling of unphysical kaon partner to physical operators
exponentially suppressed and can be neglected.



Difficulties of simulating with G-parity BCs

« Additional strange flavor must be rooted out. As Dirac operator intrinsically
2-flavor this is not quite kosher.

o Situation much more benign than staggered quarks - only boundary effect
and quarks are degenerate. Using 'replica trick' and EFT can argue effects
are exponentially suppressed.

 Intrinsically 2-flavor Dirac operator requires RHMC (kosher) rooting of
light-quark MM (and fourth-rooting of strange M'M ). Increased
computational cost due to floating point overhead of multishift CG.

« GPBC also breaks the cubic rotational symmetry of allowed quark momenta
to subgroup of rotations around the 'G-parity vector' (1,1,1) [GPBC in 3 dirs]

Py Py Py
.1 - R
® 3 o—ppaj —»v—w*—wa—bpgj ,0' ," ,"—P p:l?

No G-parity twist 1 G-parity twist 2 G-parity twists



« Makes it difficult to form a rotationally symmetric (Al rep) pipi state needed for
Luscher condition.

 Pions just obey regular APBC; even on small volumes have not seen any
breaking of degeneracy, but have observed different correlator amplitudes for
different directions at ~20% level on our 163 test ensembles.

* Quark-level symmetry breaking can be suppressed by averaging over
combinations of allowed quark momenta.

—(2.,2,2) p=(-2,2.2) p=(2,-2,2) p=(2,2,-2)
E.  0.19852(85) 0.19823(82) 0.19839(72) 0.19866(88)
Z. 6.167(69)e+06 6.081(63)e+06 6.183(50)e+06 6.170(61)e+06
(323 ensemble used for K->pipi)

« Aside from norms, can check that there is no mixing between H4 reps in the
pipi state

A — %{(+++)e;—\(—++)e%(+—+)ee(++—)}

(++He(=+HoeH-+He(++-)h

T, = \/_ {3
» Observed orthogonality to sub-percent scale.
« No evidence for remaining cubic symmetry violation.



Ensemble

323x64 Mobius DWF ensemble with IDSDR gauge action at f=1.75. Coarse
lattice spacing (a'=1.378(7) GeV) but large, (4.6 fm)3box.

Using Mobius params (b+c)=32/12 and L =12 obtain same explicit xSB as
the L =32 Shamir DWF + IDSDR ens. used for AI=3/2 but at reduced cost.

Utilized USQCD 512-node BG/Q machine at BNL, the DOE “Mira” BG/Q
machines at ANL and the STFC BG/Q “DiRAC” machines at Edinburgh, UK.

Performed 216 independent measurements (4 MDTU sep.).

Cost is ~1 BG/Q rack-day per complete measurement
(4 configs generated + 1 set of contractions).

G-parity BCs in 3 spatial directions results in close matching of kaon and
TUT energies:

m,=490.6(2.4) MeV
E_(I=0) = 498(11) MeV
E_(I=2) = 573.0(2.9) MeV
E =274.6(1.4) MeV (m_= 143.1(2.0) MeV)



[=0 it energy

- Signal/noise deteriorates quickly 0.41-[ o s O)I
due to vacuum contrib. p
« Difficult to determine plateau start. i
Performed both 1- and 2-state fits. 0391 5 ]
0=
tmin E7r7r Eexc XQ/dOf Lﬁ) 0.37L [ (% (% ® ? ®
2 | 0.363(9) 1.04(17) 1.7(7) | . i o
3 | 0.367(11) 1.27(73) 1.8(8) A,
4 10.364(12) 0.86(39) 1.9(8) 0.35}
tmin E7T7T XQ/dOf 50 ~ 350
5 | 0.375(6) 2.2(9) 033

6 | 0.361(7) 1.6(7) <afmm 204 stat err!
7 1 0.380(11)  0.9(7)

2

« Our phase shift 5, = 23.8(4.9)(1.2)° lower than most pheno estimates, which
prefer 6o ~ 35° . More statistics needed to resolve.

. Using 35° — ~3% change in A ; much smaller than other errs. For consistency

we choose to use our lattice value.




Matrix element fits

[Dominant contribution to Re(A )] [Dominant contribution to Im(A )]
0.02
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- Uset . (m—Q) =4 here rather than 6 as signal quickly decays into noise (40%
increase in stat. error with t . =5!).

- However comparison to t . =3 shows no statistically resolvable difference,
suggesting excited state contamination small.

« Estimate 5% excited state systematic by comparing single-exp fit result for
nr(I=0) amplitude with t . =4 to double-exp fit with t . =3.



Systematic errors

« Errors for each separate operator matrix element:

Description Error | Description Error
Finite lattice spacing 8% | Finite volume 7%
Wilson coefficients 12% | Excited states < 5%
Parametric errors 5% |Operator renormalization 15%
Unphysical kinematics < 3% | Lellouch-Liischer factor 11%
Total (added in quadrature) 26%

- Treat as uncorrelated when combining to form A

* 15% renormalization error dominant due to low, 1.53 GeV
renormalization scale. Estimate by comparing two different RI/SMOM
intermediate schemes and use the largest observed differences.

» 12% Wilson coefficient error large for same reason. Conservatively
estimate as largest observed fractional change between using LLO and

NLO.



Results for AQ

Re(Ag) = 4.66(1.00)gat(1.21)sys X 1077 GeV  (This work)
Re(A4p) = 3.3201(18) x 10~" GeV  (Experiment)

. Good agreement between lattice and experiment for Re(A ) serves as test
for method.

« Re(A)) from expt far more precise, and is dominated by tree-level Q. and Q,
hence unlikely to receive large BSM contributions. Use for computing €'.

Im(Ap) = —1.90(1.23)stat(1.04)sys x 1071 GeV  (This work)

. ~85% total error on the predicted Im(A ) due to strong cancellation between
dominant Q, and Q. contributions:

Allm(Ap), Q4] = 1.82(0.62)(0.32) x 10~
AlIm(Ap), Qs] = —3.57(0.91)(0.24) x 1011

despite only 40% and 25% respective errors for the matrix elements.



[.attice results for €'



Results for €'

Using Re(A,) and Re(A,) from experiment and our lattice values for
Im(A,) and Im(A,) and the phase shifts,

o iwet%279%) TTmA,  ImA
Re| — | = Re —
£ \V2¢e ReA>, ReAy

= 1.38(5.15)(4.43) x 10~*, (this work)
16.6(2.3) x 1074 (experiment)

Find discrepancy between lattice and experiment at the 2.10 level.

Total error on Re(g'/e) is ~3x the experimental error, and we observe a
2.1co discrepancy. Strong motivation for continued study!

Hope to achieve O(10%) errors on Re(g'/e) on a timescale of ~5 years.

We hope these results with spur new efforts in the experimental
community to reduce the current 15% error on the experimental
number.



[Lehner et al
arXiv:1508.01801]




K->t with Wilson fermions
Ishizuka et al [arXiv:1505.05289]

« 2+1f O(a) improved Wilson fermions. Calculation performed at threshold.
e 32°x64 volume (2.9 fm)* with a'=0.091fm, m_=280 MeV, m =580 MeV.

« Disconnected diagrams using stochastic sources with combine hopping
parameter expansion and truncated solver method variance reduction.

« XSB enhances operator mixing, making renormalization difficult.

. Using remaining symmetries C, P, CPS and SU(3),, authors argue that p-
odd components transform as in continuum: use these for NPR.
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ReAp = 60(36) x 1078 GeV ImAy = —67(56) x 10712 GeV



Long-distance contributions to €,



Long distance effects
- The factor x_enters the determination of €,.

 Originates from absorbtive part of Wigner-Weisskopf formula
Ly =T =Y AK® = HAK® — f)*
f

 Roughly a 4% correction to g,
« As dominated by 27 intermediate state, we have

Iml'yp ImA,
Rel 19 - RGAO

ImAM5 )
+ &
Am K

- But this neglects LD contribs to Im(M,,). Using SU(3) ChPT we can estimate
. :| [Buras et al arXiv:1002.3612]

ei¢e [ TmM Y _ : ( £o )
7 { 12 ke =/ (2)sin(¢e) | 1+ ,0\/5|€’

p=06+0.3
- Can use our lattice calculation of Im(A,) to obtain precise correction:

. , [Lehner et al
ke = 0.963 £ 0.014 ;40150801801

EK = Re
A”m[{

. Can in principle obtain LD corrections to ¢, directly from the lattice.
[Christ Lat'2011 arXiv:1201.2065]



Conclusions



Conclusions

We are now able to study both indirect and direct CP-violation on the lattice.

B, essentially a solved problem; more important to beat down errorsonV .

LD contributions can be precisely determined using ChPT with lattice input,
and perhaps even directly on the lattice in the future.

AI=3/2 K->pipi amplitude precisely measured, with errors dominated by
perturbative systematics in Wilson coeffs and NPR. Step-scaling and higher-
order PT necessary.

First calculation AI=1/2 amplitude performed. Both theoretically and
computationally difficult calculation due to desire for physical kinematics
and presence of disconnected diagrams. Strong need for more statistics.

Re(e'/e) from lattice has 2.1c tension with expt.

Work demonstrating viability of calculating €' using Wilson fermions, may
allow for more precise determination.






[Christ arXiv:1201.2065]

. Calculation very similar to RBC/UKQCD calculation of Am_:

ta tn
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