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Warning: preliminary proposal !



Frequentist statistics in a nutshell

From measured (random) data, frequentist statistics answers the following
question:

assuming some hypothesis H is true (the null hypothesis), are the
observed data likely ?

Example: assuming the Standard Model is true, is my best fit value for my
likely ?

mz can be measured in eTe~ collisions in the relevant invariant mass
window. One can use the best fit value M of the resonance peak location
as an estimator of the true value of mz. Estimators are functions of the
data and thus are random variables. The estimator is said to be consistent
if it converges to the true value when data statistics tends to infinity (e.g.
maximum likelihood estimators are consistent). Another useful concept is
the bias, which is defined as the difference between the average of the
estimator among a large number of finite statistics experiments with the
true value. Consistency implies that the bias vanishes asymptotically.
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Assuming one can repeat many times the same experiment, one gets a
collection of m} values. The histogram of this random sample brings
information on the most likely value of mz and the average accuracy of
the experiments.
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However in practice one only performs one (or a few) experiment(s). Thus
one has to find a way to conclude whether the observation is likely from
the information of a single experiment.
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Repeated experiments and p-value

Whether given data are likely or not is usually quantified using a test
statistics t, which is a function of data X such that e.g. low values
supports the null hypothesis H whereas large values go against it.

Then from the distribution of X one may compute the distribution of
t(X), as well as the probability p(Xp) that the value t(X) of a (often
fictitious) repeated experiment is larger than the observed value t(Xp): if
p(Xo) is large (small) it means that t(Xp) is small (large) with respect to

‘typical’ values of t(X), and thus that the observed data are in good (bad)
agreement with the null hypothesis.
Distribution of test statisti
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Confidence intervals and coverage

The hypothesis H is said to be simple if it completely specifies the
distribution of the data X. In this case the p-value constructed from t(X)
is nothing else than the CDF of t, and thus the p-value is uniformly
distributed with the observed value Xjp.

In case of a numeric hypothesis H : Xiue = W, the p-value curve allows the
construction of confidence intervals: the interval of u defined by

p > 1— CL contains Xi,ue at the frequency CL, as follows from the
uniformity of p.
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Theoretical uncertainties

It often happens that an observable parameter is only related to a
fundamental quantity through auxiliary (nuisance) parameters. Typical
example: hadronic transitions depend on both quark fundamental
couplings and hadronic matrix elements.

It would not be a problem if these hadronic matrix elements could be
computed exactly. This is not the case in QCD ! Lattice QCD approach
has the advantage that part of the computation uncertainty is of statistical
(Monte-Carlo) origin; however others sources of uncertainties are not
statistical: continuum extrapolation, finite volume, mass
inter/extrapolations, partial quenching. . .

On the experimental side also there are model-dependent systematic
uncertainties; however they are often controlled by auxiliary measurements,
so that the usual consensus is to treat them on the same footing as the
statistical contributions (usually modelled by Gaussian random variables).
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The problem

How to interpret A(theo) in X = Xp & o(exp) &= A(theo) ?

as a pseudo-random error ? It might be justified in a fictitious world where
one could do the same computation many times with a different technique
such that it gives a different estimate around the true value; one would
then end up with the widely used naive Gaussian approach, unless there is
an argument to choose another pseudo-random distribution.

as a fixed bias 7 One then defines

§ = Xirue — lim Xo
0—0
where & is a (variable) nuisance parameter related to the (fixed) theoretical

uncertainty A. The above equation actually means that X is not a
consistent estimator, as the bias does not vanish asymptotically.
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The nuisance 6-approach

Then from the frequentist point of view one tests the following null
hypothesis:

H: Xirue = 1
through the construction of a p-value from the distribution of a given test
statistic with
Xo R N(H + 5, 0')

In this case H is composite, as one needs to know the value of & in
addition of 1 to compute the distribution of Xp.
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The quadratic statistic

Important point: the choice of the test statistic is free (as long as it
models the null hypothesis one wants to test); it is perfectly legitimate to
take the widely used quadratic form

Xo—p—05\?2 5\ 2

(*==) +(3)
o A

(Xo — )2

02 + A2

Ax? = Ming

In the multidimensional case the quadratic form is the only one that keeps
its form after minimization over some of the parameters
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With Xo ~ NV (1 + 8, o) the distribution of Ax? is a (rescaled) non central
x? distribution, with non centrality parameter (5/0)2.

The p-value is obtained from the cumulative distribution function, which is
a Marcum Q-function, that reduces to the error function in one dimension.

1 6 — | — Xo 8 + |u — Xol
=3 () (40
It depends explicitly on & (but not A): one can take the supremum value
for 5/A in some ensemble Q, e.g., Q1 = [-1,+1] (ambitious) or
Q3 = [-3,+3] (reasonable).

Indeed this supremum p-value will allow to construct correct confidence
intervals if and only if the (unknown) true value of §/A belongs to the
chosen Q.

Conversely, if the true value of /A is outside the chosen Q, the
confidence intervals will suffer from undercoverage: one will exclude the
null hypothesis ‘too quickly’.
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The external-6 approach

Another possibility is to forget, in a first step, that & is unknown: thus one
naturally tests the null hypothesis

H/:Xtrue: M+6

One gets a collection of p-values ps(1t), and one has to define a procedure
to combine them. An obvious possibility is to take the envelope over some
ensemble Q.

In 1D one recovers the CKMfitter Rfit Ansatz, with a plateau at p =1
(also similar to the scan method).
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Choice of Q

Problem with fixed Q ensemble: the p-value (at large values) gets
crazingly large when §/A is varied in Q3 instead of Q;. Is the Q1 choice
conservative ?

Key question: why bother to ensure good coverage for all /A € Q3 if one
is only interested in a 1o statement (metrology) ?

In contrast, is it safe to, e.g, exclude the Standard Model at 50 is this
statement assumes that all theoretical biases are within their 1A range ?
Possible solution: adapt Q to the computed p-value; the smaller p, the
larger O, and vice-versa.

This ‘feedback’ procedure does not blow out because the p-value is an
increasing function of Q.
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The adaptive Q) interval

The choice of how Q depends on p is again rather free; however it looks
very natural to choose the “would-be” 1 — p confidence interval for 5/A,
i.e. Q(1—0.68) = [—1,+1] etc. In this case Q(p) is independent of i
when there are several 0;.

Hence one has to maximize ps for §/A varying in an interval that itself
depends on pg; since ps is an increasing function of ||, it amounts to solve
the implicit equation

1 & — [u— Xol & + [u— Xol
P =g P () e ()
(8/A)% = 2Bxf (1 p) = no(p)?

It looks like an horrible equation, and indeed it is. However it is easily
solvable numerically.
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Interpretation

The correct interpretation of this p-value is: p is a valid p-value if the true
(unknown) value of 5/A belongs to the “would be” 1 — p confidence
interval around 0.

Alternative interpretation: if the true (unknown) value of §/A belongs to
the “would be” 1 — 3 confidence interval around 0, then p is a valid
p-value as long as it is sufficiently small p < f3.

Thus this approach is agressive at large p-values (metrology), and
conservative at small p-values (New Physics tests).

This is not a standard coverage criterion: one can use adaptive coverage,
and adaptively valid p-value, to name this new concept.

With this approach one can do a robust evidence (resp. discovery)
statement, under the mild assumption that the true value of & belongs to
[—3A, +3A] (resp. [-5A,+5A]) !
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Size of confidence intervals
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Size of confidence intervals
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Comparison with the naive Gaussian approach

In one dimension, the adaptive approach is numerically not very far from
the nG method; maximum difference occurs for A/o =1 (up to 50%
larger error at a given CL).

The important point is that the adaptive approach allows a well-defined
frequentist statement, while the nG does not.
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The g — 2 discrepancy

aM — afP = (288 = 634tat = 49heo) x 107

One finds the following pulls:

naive Gaussian 3.60
Qq-external 3.80
Q1-nuisance 4.00
adaptive QO 2.70

Generally speaking, with A/o =1, to see a evidence (resp. discovery) effet
with adaptive Q) one needs a 4.10 (resp. 7.00) effect with nG.
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The multidimensional linear case

In a linear model the bias on a given parameter W is a linear combination
of all contributing biases &, = ) ; w;dx,.

To compute the theoretical error on p, A, in a frequentist way, all we have
to do is to choose a n-dimensional Q" space in which we maximize oy
The most natural generalization of the 1D interval is the nD hypercube;
another possibility is the nD hyperball.

One can show that:

iy = Z widx, = Ay = Z lwilA;

for nD hypercube, and

du=) widx, = Au= |) |wf?A?
i i
for nD hyperball.
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Hypercube vs. hyperball

Thus the hypercube (resp. hyperball) corresponds to the linear (resp.
quadratic) combination of individual uncertainties.

One may argue that the linear choice is too conservative, as it allows
several d;'s to lie is at their boundaries, whereas one may argue that the

quadratic choice is not conservative.

Pure statistical arguments cannot solve this dilemma: this is an arbitrary
(but well-defined) choice that must be made by the physicist.
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Combination of n determinations of the same quantity

Important (but trivial) point: the linear addition scheme (hypercube) is
the only one where the average of different determinations of the same
quantity cannot lead to a weighted theoretical uncertainty that is smaller
than the smallest uncertainty among all determinations.

Let's consider averaging X with X5, with 07 = 0p = A1 = Ay =1, then
the weighted bias is & = (61 + 02)/2, which reaches A =1 only when both
81 = 82 = 1: cutting the (4+1,+41) corner of the square will necessarily
lead to A smaller than 1

Price to pay ! either live with large errors coming from the linear
addition of many uncertainties, or with the possibility that the
averaged uncertainty among different determinations of the same
quantity is more precise than each individual one.
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Correlations

Different (experimental, lattice) determinations of the same quantity can
be correlated. Known correlations between statistical uncertainties can be
treated with the statistical covariance matrix in the usual way.

It often happens on the lattice that there are unknown (or not precisely
known) correlations between theoretical uncertainties. In this case a
conservative choice is the assumption that these correlations are ~ 100%:
in the bias approach it amounts to share a given & bias parameters
between different determinations.
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Separation of statistical and theoretical contributions

In a linear model, where the data X is linearly dependent on the parameter
of interest w, the different nature of statistical and theoretical
uncertainties allow to compute them separately, whatever the
dimensionality of the problem.
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Combination of marginally compatible measurements

When two determinations of the same quantity show marginal agreement,
one may argue that at least one uncertainty is underestimated. For this
reason the PDG traditionally uses a compatibility recipe that amounts to
rescale the errors so that the combined x? is 1. One may design a similar
recipe if one thinks instead that the disagreement is due to theoretical
uncertainties.

However, in any case, this kind of rescaling is ambiguous, especially from
the point of view of global analyses. Indeed in a global fit one cannot
perform such a rescaling without making the fit useless. The problem is
then that there is no general argument that tells that different
determinations of the same input are to be averaged before doing the
global fit (with possibility of rescaling), or inside it (without possibility of
rescaling).

Again pure statistical arguments cannot resolve these ambiguities.
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The example of B%TS(2GeV)

Inputs
Reference Mean Stat Theo
ETMC10 0.532 + 0.019 +0.003 + 0.007 4 0.003 =+ 0.008 + 0.005
LVdW11 0.5572 + 0.0028 +0.0045 + 0.0033 £ 0.0039 + 0.0006 + 0.0134
BMW11 0.5644 =+ 0.0059 +0.0022 £ 0.0008 + 0.0006 = 0.0006 =+ 0.0002 =+ 0.0056
RBC-UKQCD12 0.554 =+ 0.008 40.007 £ 0.003 + 0.012
SWME14 0.5388 =+ 0.0034 +0.0237 4 0.0048 + 0.0005 =+ 0.0108 =+ 0.0022 + 0.0016 + 0.0005
Combination
Method Average 1oCl 20 Cl 30 Cl
nG 0.5577 4+ 0.0063 0.5577 £ 0.0063 0.5577 £ 0.0126 0.5577 £ 0.0189
naive Rfit 0.5562 =+ 0.0120 + 0.0018 0.5562 + 0.0138 0.5562 + 0.0258 0.5562 £ 0.0379
educ Rfit 0.5562 =+ 0.0020 + 0.0100 0.5562 =+ 0.0120 0.5562 £ 0.0139 0.5562 £ 0.0159

1-hypercube
adapt hyperball

0.5577 £ 0.0038 £ 0.0176
0.5577 = 0.0038 =+ 0.0050
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0.5577 £ 0.0193
0.5577 £ 0.0068

0.5577 £ 0.0240
0.5577 £ 0.0165

0.5577 £ 0.0281
0.5577 £ 0.0257
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Conclusion

The bias definition of theoretical uncertainties features very good
frequentist properties.

It leads to a transparent splitting of the uncertainty in terms of the
statistical and the theoretical contributions.

It makes explicit the unavoidable arbitrariness in combining theoretical
uncertainties.

Still it remains well defined, both in 1D and nD.

Linear vs. quadratic combination is a choice to be made by the physicist,
depending on his own prejudice.

The adaptive treatment of the bias ensemble is a new concept that allows
more flexibility in the interpretation of p-values.
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