Effective Field Theory for Halo Nuclei: Lecture 4

Daniel Phillips Institute of Nuclear \& Particle Physics Ohio University

Collaborators: Bijaya Acharya Matthias Göbel Hans-Werner Hammer

Chen Ji

RESEARCH SUPPORTED BY THE US DEPARTMENT OF ENERGY

The three-body scattering problem

- Consider the Schrödinger equation for the quantum-mechanical threebody scattering problem. Let's start with just pairwise potentials:

$$
\left[-\frac{\nabla_{1}^{2}}{2 m_{1}}-\frac{\nabla_{2}^{2}}{2 m_{2}}-\frac{\nabla_{3}^{2}}{2 m_{3}}+V_{12}\left(\mathbf{r}_{12}\right)+V_{23}\left(\mathbf{r}_{23}\right)+V_{31}\left(\mathbf{r}_{31}\right)\right] \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=E \Psi
$$

- Two (related) problems:
- Disconnected diagrams are present in solution for total wave function Ψ
- What boundary condition should we impose?

Resources:

I.R. Afnan and A. W. Thomas, Fundamentals of Three-body Scattering Theory, in "Modern Three-Hadron Physics" (Springer, 1978)
W. Glöckle, "The Quantum-Mechanical Few-body Problem" (Springer, 1983)

Solving problem I

- Let's define 2B t-matrices that are embedded in the 3B Hilbert space
- Or, equivalently, think about states $\left|\psi_{3}^{(+)}\right\rangle \otimes\left|\mathbf{q}_{3}\right\rangle$, where $\left|\psi_{3}^{(+)}\right\rangle$is the solution of the Schrödinger equation in which particle 3 is a "spectator", while the (I2) wave function has spherical outgoing wave boundary conditions and solves

$$
\begin{array}{r}
{\left[-\frac{\nabla_{12}^{2}}{2 \mu_{12}}+V_{12}\left(\mathbf{r}_{12}\right)\right] \psi_{3}\left(\mathbf{r}_{12}\right)=\left(E-\frac{\mathbf{q}_{3}^{2}}{2 \nu_{3}}\right) \psi_{3}\left(\mathbf{r}_{12}\right)} \\
\text { where } \mu_{12}=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \nu_{3}=\frac{\left(m_{1}+m_{2}\right) m_{3}}{m_{1}+m_{2}+m_{3}}
\end{array}
$$

- $V_{3}\left|\psi_{3}^{(+)}\right\rangle=t_{3}\left(E^{+}-\frac{q_{3}^{2}}{2 \nu_{3}}\right)\left|\mathbf{p}_{12}\right\rangle ; 3$ B operator $=t_{3}\left(E^{+}-\frac{q_{3}^{2}}{2 \nu_{3}}\right)_{12} \otimes \mathbf{1}_{3}$

Reminder: Jacobi momenta

Reminder: Jacobi momenta

Reminder: Jacobi momenta

"Recoupling": achieved by inserting complete sets of eigenstates of two Jacobi momenta, but which two?

The Faddeev equations

The Faddeev equations

- Decompose $|\Psi\rangle=|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle$
- Where $\left|\Psi_{i}\right\rangle=G_{0} V_{i}|\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the last interaction before particles go to the detector: that defines three separate outgoing boundary conditions

The Faddeev equations

- Decompose $|\Psi\rangle=|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle$
- Where $\left|\Psi_{i}\right\rangle=G_{0} V_{i}|\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the last interaction before particles go to the detector: that defines three separate outgoing boundary conditions
- Show that the resulting $|\Psi\rangle$ solves the 3B Schrödinger equation $\left(E-H_{0}\right)|\Psi\rangle=\left(V_{1}+V_{2}+V_{3}\right)|\Psi\rangle$

The Faddeev equations

- Decompose $|\Psi\rangle=|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle$
- Where $\left|\Psi_{i}\right\rangle=G_{0} V_{i}|\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the last interaction before particles go to the detector: that defines three separate outgoing boundary conditions
- Show that the resulting $|\Psi\rangle$ solves the 3B Schrödinger equation $\left(E-H_{0}\right)|\Psi\rangle=\left(V_{1}+V_{2}+V_{3}\right)|\Psi\rangle$
- Manipulate $\left|\Psi_{1}\right\rangle=G_{0} V_{1}\left(|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle\right)$ into a formal equation for $\left|\Psi_{1}\right\rangle$

The Faddeev equations

- Decompose $|\Psi\rangle=|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle$
- Where $\left|\Psi_{i}\right\rangle=G_{0} V_{i}|\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the last interaction before particles go to the detector: that defines three separate outgoing boundary conditions
- Show that the resulting $|\Psi\rangle$ solves the 3B Schrödinger equation $\left(E-H_{0}\right)|\Psi\rangle=\left(V_{1}+V_{2}+V_{3}\right)|\Psi\rangle$
- Manipulate $\left|\Psi_{1}\right\rangle=G_{0} V_{1}\left(|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle\right)$ into a formal equation for $\left|\Psi_{1}\right\rangle$

$$
\left.\left|\Psi_{i}\right\rangle=G_{0} t_{i}\left|\Phi>+G_{0} t_{i} \sum_{j \neq i}\right| \Psi_{j}\right\rangle
$$

The Faddeev equations

- Decompose $|\Psi\rangle=|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle$
- Where $\left|\Psi_{i}\right\rangle=G_{0} V_{i}|\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the last interaction before particles go to the detector: that defines three separate outgoing boundary conditions
- Show that the resulting $|\Psi\rangle$ solves the 3B Schrödinger equation $\left(E-H_{0}\right)|\Psi\rangle=\left(V_{1}+V_{2}+V_{3}\right)|\Psi\rangle$
- Manipulate $\left|\Psi_{1}\right\rangle=G_{0} V_{1}\left(|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle\right)$ into a formal equation for $\left|\Psi_{1}\right\rangle$

$$
\begin{gathered}
\left.\left|\Psi_{i}\right\rangle=G_{0} t_{i}\left|\Phi>+G_{0} t_{i} \sum_{j \neq i}\right| \Psi_{j}\right\rangle \\
\left|\Psi_{i}\right\rangle=G_{0} V_{i}|\Psi\rangle \equiv G_{0} T_{i}|\Phi\rangle \Rightarrow T_{i}=t_{i}+t_{i} \sum_{j \neq i} G_{0} T_{j}
\end{gathered}
$$

For separable (EFT) interactions: bound-state equations

$$
\begin{aligned}
\tilde{\mathcal{A}}_{c}(\boldsymbol{q})= & 2 \int \frac{\mathrm{~d}^{3} q}{4 \pi^{2}} G_{0}^{c}\left(\pi_{2}\left(\boldsymbol{q}^{\prime}, \boldsymbol{q}\right), q ; B_{3}\right) \tau_{\sigma}\left(q^{\prime} ; B_{3}\right) \tilde{\mathcal{A}}_{n}\left(\boldsymbol{q}^{\prime}\right) \\
\tilde{\mathcal{A}}_{n}(\boldsymbol{q})= & \int \frac{\mathrm{d}^{3} q^{\prime}}{4 \pi^{2}} G_{0}^{c}\left(\pi_{2}\left(\boldsymbol{q}, \boldsymbol{q}^{\prime}\right), q^{\prime} ; B_{3}\right) \tau_{d}\left(q^{\prime} ; B_{3}\right) \tilde{\mathcal{A}}_{c}\left(\boldsymbol{q}^{\prime}\right) \\
& +\int \frac{\mathrm{d}^{3} q^{\prime}}{4 \pi^{2}}\left[G_{0}^{n}\left(\pi_{3}\left(\boldsymbol{q}^{\prime}, \boldsymbol{q}\right), q ; B_{3}\right)+\frac{H(\Lambda)}{\Lambda^{2}}\right] \tau_{\sigma}\left(q^{\prime} ; B_{3}\right) \tilde{\mathcal{A}}_{n}\left(\boldsymbol{q}^{\prime}\right),
\end{aligned}
$$

For $E=-B_{3}$
$=-S_{2 n}$
$G_{0}^{n}\left(p, q ; B_{3}\right)=\left(m_{n} B_{3}+\frac{A+1}{2 A} p^{2}+\frac{A+2}{2(A+1)} q^{2}\right)^{-1}$,

$$
G_{0}^{c}\left(p, q ; B_{3}\right)=\left(m_{n} B_{3}+p^{2}+\frac{A+2}{4 A} q^{2}\right)^{-1} .
$$

$$
\begin{aligned}
\tau_{d}\left(q ; B_{3}\right) & =\frac{2}{-\gamma_{0, d}+\sqrt{m_{n} B_{3}+\frac{A+2}{4 A} q^{2}}} \\
\tau_{\sigma}\left(q ; B_{3}\right) & =\frac{(A+1) / A}{-\gamma_{0, \sigma}+\sqrt{\frac{A}{A+1}\left(2 m_{n} B_{3}+\frac{A+2}{A+1} q^{2}\right)}}
\end{aligned}
$$

Bound-state equations for s-wave 2 n halo
 Canham, Hammer (2008)

Bound-state equations for s-wave $2 n$ halo
 Canham, Hammer (2008)

- Core-n and n-n contact interactions at leading order: solve 3B problem

Bound-state equations for s-wave $2 n$ halo
 Canham, Hammer (2008)

- Core-n and n-n contact interactions at leading order: solve 3B problem

Bound-state equations for s -wave 2 n halo

- Core-n and n-n contact interactions at leading order: solve 3B problem

- Efimov-Thomas effects: $\mathscr{A} \sim p^{i s_{0}-1}$ for $p \rightarrow \infty$

Danilov

Bound-state equations for s -wave 2 n halo

- Core-n and n-n contact interactions at leading order: solve 3B problem

- Efimov-Thomas effects: $\mathscr{A} \sim p^{i s_{0}-1}$ for $p \rightarrow \infty$

Danilov

- (cn)-n contact interaction to stabilize three-body system

Bedaque, Hammer, van Kolck (1999)

Bound-state equations for s-wave $2 n$ halo
 Canham, Hammer (2008)

- Core-n and n-n contact interactions at leading order: solve 3B problem

- Efimov-Thomas effects: $\mathscr{A} \sim p^{i s_{0}-1}$ for p.
- (cn)-n contact interaction to stabilize thr

Bound-state equations for s-wave $2 n$ halo
 Canham, Hammer (2008)

- Core-n and n-n contact interactions at leading order: solve 3B problem

- Efimov-Thomas effects: $\mathscr{A} \sim p^{i s_{0}-1}$ for p.
- (cn)-n contact interaction to stabilize thr

Bound-state equations for s-wave $2 n$ halo
 Canham, Hammer (2008)

- Core-n and n-n contact interactions at leading order: solve 3B problem

- Efimov-Thomas effects: $\mathscr{A} \sim p^{i s_{0}-1}$ for $\mathrm{p} \rightarrow \infty$

Danilov

- (cn)-n contact interaction to stabilize three-body system

Bedaque, Hammer, van Kolck (1999)

- Inputs: $\mathrm{E}_{\mathrm{nn}}=\mathrm{I} /\left(\mathrm{m} \mathrm{ann}^{2}\right), \mathrm{E}_{\mathrm{nc}}, \mathrm{S}_{2 \mathrm{n}}(=\mathrm{B})$
- Output: everything. Up to $R_{\text {core }} / R_{\text {halo }}$ corrections.

${ }^{11} \mathrm{Li}$ as a $2 n$ halo

- $a_{n n}=-18.7 \mathrm{fm}, E_{n c}=0.026 \mathrm{MeV}$

11Li momentum distribution

- $S_{2 n}=369 \mathrm{keV}$
- Calculations done with a cutoff of 470 MeV , but results checked for a cutoff of 700 MeV
- Here results with a spin-0 core, but we also examined case of spin- $3 / 2$ core
- Results identical if spin-I and spin-2 nc interactions have equal strength
without spin

Matter radii of 2 n s-wave halos

Canham, Hammer (2008)

- One-body form factors:

$$
\mathcal{F}_{x}\left(k^{2}\right)=\int_{0}^{\infty} \mathrm{d} p p^{2} \int_{0}^{\infty} \mathrm{d} q q^{2} \int_{-1}^{1} \mathrm{~d}(\hat{q} \cdot \hat{k}) \Psi_{x}(p, q) \Psi_{x}(p,|\vec{q}-\vec{k}|) .
$$

- Radii: $\quad \mathcal{F}_{x}\left(k^{2}\right)=1-\frac{1}{6}\left\langle r_{x}^{2}\right\rangle k^{2}+O\left(k^{4}\right)$
- Matter radius: $\left\langle r_{m}^{2}\right\rangle=\frac{2(A+1)^{2}}{(A+2)^{3}}\left\langle r_{n}^{2}\right\rangle+\frac{4 A}{(A+2)^{3}}\left\langle r_{c}^{2}\right\rangle$

Matter radii of 2 n s-wave halos

Canham, Hammer (2008)

- One-body form factors:

$$
\mathcal{F}_{x}\left(k^{2}\right)=\int_{0}^{\infty} \mathrm{d} p p^{2} \int_{0}^{\infty} \mathrm{d} q q^{2} \int_{-1}^{1} \mathrm{~d}(\hat{q} \cdot \hat{k}) \Psi_{x}(p, q) \Psi_{x}(p,|\vec{q}-\vec{k}|) .
$$

- Radii: $\quad \mathcal{F}_{x}\left(k^{2}\right)=1-\frac{1}{6}\left\langle r_{x}^{2}\right\rangle k^{2}+O\left(k^{4}\right)$

Input: E_{cn} and $\mathrm{S}_{2 \mathrm{n}}$

- Matter radius: $\left\langle r_{m}^{2}\right\rangle=\frac{2(A+1)^{2}}{(A+2)^{3}}\left\langle r_{n}^{2}\right\rangle+\frac{4 A}{(A+2)^{3}}\left\langle r_{c}^{2}\right\rangle$

Output: all radii

Matter radii of $2 n$ halos

- Define: $f\left(\frac{E_{n n}}{S_{2 n}}, \frac{E_{c n}}{S_{2 n}} ; A\right) \equiv 2 m_{R} S_{2 n}\left\langle r_{m}^{2}\right\rangle$
- "Unitary limit", $\mathrm{E}_{\mathrm{nn}}=\mathrm{E}_{\mathrm{nc}}=0$: f becomes a number depending solely on A

Unification via universality

Matter radii of 2 n halos

Achrya, Ji, Phillips (2013)

- Define: $f\left(\frac{E_{n n}}{S_{2 n}}, \frac{E_{c n}}{S_{2 n}} ; A\right) \equiv 2 m_{R} S_{2 n}\left\langle r_{m}^{2}\right\rangle$
- "Unitary limit", $\mathrm{E}_{\mathrm{nn}}=\mathrm{E}_{\mathrm{nc}}=0: \mathrm{f}$ becomes a number depending solely on A

c. f. Yamashita et al. (2004): 15% lower at $\mathrm{A}=20$

Unification via universality

Matter radii of 2 n halos

Achrya, Ji, Phillips (2013)

- Define: $f\left(\frac{E_{n n}}{S_{2 n}}, \frac{E_{c n}}{S_{2 n}} ; A\right) \equiv 2 m_{R} S_{2 n}\left\langle r_{m}^{2}\right\rangle$
- "Unitary limit", $\mathrm{E}_{\mathrm{nn}}=\mathrm{E}_{\mathrm{nc}}=0$: f becomes a number depending solely on A

c. f. Yamashita et al. (2004): 15% lower at $\mathrm{A}=20$
- Fix $A=20$, plot f as a function of $E_{n n}$ and $E_{n c}$

Unification via universality

Specific Leading-order results

Canham, Hammer (2011); Hagen, Platter, Hammer (2014); Acharya, Ji, Phillips (2013)
Diagnosing using universality

$E_{\text {nc }}(\mathrm{MeV})$	$S_{2 n}(\mathrm{MeV})$	$R_{\text {core }} / R_{\text {halo }}$	$\left\langle r_{\mathrm{m}}{ }^{2}\right\rangle\left(\mathrm{fm}^{2}\right)$	$\left\langle r_{m}{ }^{2}\right\rangle\left(\mathrm{fm}^{2}\right)$ Expt	
11 Li	$-0.026(13)$	$0.3693(6)$	0.37	5.76 ± 2.13	5.34 ± 0.15
14 Be	-0.510	$1.27(13)$	0.78	1.23 ± 0.96	4.24 ± 2.42 2.90 ± 2.25
${ }^{22} \mathrm{C}$	$-0.01(47)$	$0.1 I(6)$	0.26	$3.99-\infty$	21.1 ± 9.7 3.77 ± 0.61

- Input in some two-body subsystems needed
- Errors tend to be dominated by EFT uncertainty though

Coulomb dissociation

- Coulomb dissociation: collide halo (we hope peripherally) with a high-Z nucleus

Do for different Z, different nuclear sizes, different energies to test systematics

Coulomb dissociation

- Coulomb dissociation: collide halo (we hope peripherally) with a high-Z nucleus

Do for different Z, different nuclear sizes, different energies to test systematics

- Coulomb excitation dissociation cross section (p.v. $b \gg R_{\text {target }}$)

$$
\frac{d \sigma_{C}}{2 \pi b d b}=\sum_{\pi L} \int \frac{d E_{\gamma}}{E_{\gamma}} n_{\pi L}\left(E_{\gamma}, b\right) \sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)
$$

- $n_{\pi L}\left(E_{\gamma}, b\right)$ virtual photon numbers, dependent only on kinematic factors.

Number of equivalent (virtual) photons that strike the halo nucleus

Coulomb dissociation

- Coulomb dissociation: collide halo (we hope peripherally) with a high-Z nucleus
- Do for different Z, different nuclear sizes, different energies to test systematics

- Coulomb excitation dissociation cross section (p.v. $b \gg R_{\text {target }}$)

$$
\frac{d \sigma_{C}}{2 \pi b d b}=\sum_{\pi L} \int \frac{d E_{\gamma}}{E_{\gamma}} n_{\pi L}\left(E_{\gamma}, b\right) \sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)
$$

- $n_{\pi L}\left(E_{\gamma}, b\right)$ virtual photon numbers, dependent only on kinematic factors.

Number of equivalent (virtual) photons that strike the halo nucleus

- $\sigma_{\gamma}^{\pi L}\left(E_{\gamma}\right)$ can then be extracted: it's the (total) cross section for dissociation of the nucleus due to the impact of photons of multipolarity $\pi \mathrm{L}$

El photodissociation of a $2 n$ halo

PWIA

El photodissociation of a $2 n$ halo

PWIA

$t_{n n} \mathrm{FSI}$

El photodissociation of a $2 n$ halo

PWIA

$\mathrm{t}_{\mathrm{nn}} \mathrm{FS}$ I

El photodissociation of a $2 n$ halo

PWIA

$$
\begin{gathered}
\frac{d B(E 1)}{d E}=\left.\left.\sum_{\mu} \int d p p^{2} \int d q q^{2}\right|_{c}\left\langle p, q, \Omega_{c}^{(1, \mu)}\right| \mathscr{M}(E 1, \mu)|\Psi\rangle\right|^{2} \delta\left(E_{f}-E\right) \\
\mathbf{t n n}_{\mathrm{nn}} \mathrm{FSI}
\end{gathered}
$$

El photodissociation of a $2 n$ halo

PWIA

$$
\frac{d B(E 1)}{d E}=\left.\left.\sum_{\mu} \int d p p^{2} \int d q q^{2}\right|_{c}\left\langle p, q, \Omega_{c}^{(1, \mu)}\right| \mathscr{M}(E 1, \mu)|\Psi\rangle\right|^{2} \delta\left(E_{f}-E\right)
$$

$t_{n n}$ FSI

$t_{n c} \mathrm{FSI}$

Modifications to matrix element due to final-state interaction/ wave-function distortion encoded in Møller operators

$$
\begin{aligned}
&{ }_{c}\left\langle p, q, \Omega_{c}^{(1, \mu)}\right|\left(1+t_{n n}\left(E_{p}\right) G_{0}^{(n n)}\left(E_{p}\right)\right) \mathscr{M}(E 1, \mu)|\Psi\rangle \\
& \\
&{ }_{n}\left\langle p, q, \Omega_{n}^{(0, \xi)}\right|\left(1+t_{n c}\left(E_{p}\right) G_{0}^{(n c)}\left(E_{p}\right)\right) \mathscr{M}(E 1, \mu)|\Psi\rangle
\end{aligned}
$$

El photodissociation of a $2 n$ halo

PWIA

$$
\frac{d B(E 1)}{d E}=\left.\left.\sum_{\mu} \int d p p^{2} \int d q q^{2}\right|_{c}\left\langle p, q, \Omega_{c}^{(1, \mu)}\right| \mathscr{M}(E 1, \mu)|\Psi\rangle\right|^{2} \delta\left(E_{f}-E\right)
$$

$t_{n n}$ FSI

$t_{n c} \mathrm{FSI}$

Modifications to matrix element due to final-state interaction/ wave-function distortion encoded in Møller operators

$$
\begin{aligned}
&{ }_{c}\left\langle p, q, \Omega_{c}^{(1, \mu)}\right|\left(1+t_{n n}\left(E_{p}\right) G_{0}^{(n n)}\left(E_{p}\right)\right) \mathscr{M}(E 1, \mu)|\Psi\rangle \\
& \\
&{ }_{n}\left\langle p, q, \Omega_{n}^{(0, \xi)}\right|\left(1+t_{n c}\left(E_{p}\right) G_{0}^{(n c)}\left(E_{p}\right)\right) \mathscr{M}(E 1, \mu)|\Psi\rangle
\end{aligned}
$$

then two t's in final-state, three t's in final-state, etc.

Comparison with data

calc. by Hongo \& Son (PRL 128, 212501)
---. $1 n c \mathrm{ch} ., \Omega_{n n}^{+}$
---. $2 n c \mathrm{ch} ., \Omega_{n n}^{+}$
adj. experim. data (PRL 96, 252502)

Two active spin channels is favored scenario

Comparison with data

Folding with experimental resolution reduces peak height

Comparison with data

$$
\begin{aligned}
--- & \Omega_{n n}^{+} \\
--- & \Omega_{n n}^{+} \Omega_{n_{c}^{\prime}}^{+} \Omega_{n c}^{+} \\
-- & \Omega_{n_{c}^{\prime} \Omega_{n c}^{+} \Omega_{n n}^{+}} \\
\cdots & \text { calc. by Hongo \& Son } \\
& \text { (PRL 128, 212501) } \\
& \text { adj. experim. data } \\
& \text { (PRL 96, 252502) }
\end{aligned}
$$

Folding with experimental resolution reduces peak height Agreement with data is good, given that this is only a leading-order calculation

