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The three-body scattering problem 
Consider the Schrödinger equation for the quantum-mechanical three-
body scattering problem. Let’s start with just pairwise potentials:


Two (related) problems:


Disconnected diagrams are present in solution for total wave function 

What boundary condition should we impose?
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Resources: 
I.R. Afnan and A. W. Thomas , Fundamentals of Three-body Scattering Theory, in 

“Modern Three-Hadron Physics” (Springer, 1977)

W. Glöckle, “The Quantum-Mechanical Few-body Problem” (Springer, 1983)



Solving problem 1
Let’s define 2B t-matrices that are embedded in the 3B Hilbert space


Or, equivalently, think about states , where  is the 
solution of the Schrödinger equation in which particle 3 is a 
“spectator”,while the (12) wave function has spherical outgoing wave 
boundary conditions and solves
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“Recoupling”: achieved by inserting complete sets of 

eigenstates of two Jacobi momenta, but which two?
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Where  and  is a three-body plane wave; separate 
wave function according to the last interaction before particles go to the 
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For separable (EFT) interactions: bound-state equations

For E=-B3 

=-S2n



Bound-state equations for s-wave 2n halo
Canham, Hammer (2008)



Bound-state equations for s-wave 2n halo
Core-n and n-n contact interactions at leading order: solve 3B problem

Canham, Hammer (2008)



Bound-state equations for s-wave 2n halo
Core-n and n-n contact interactions at leading order: solve 3B problem

= 2×Ac An

An
+ An

= Ac + An

Canham, Hammer (2008)



Danilov

Bound-state equations for s-wave 2n halo
Core-n and n-n contact interactions at leading order: solve 3B problem

Efimov-Thomas effects:  for p→∞𝒜 ∼ pis0−1

= 2×Ac An

An
+ An

= Ac + An

Canham, Hammer (2008)



Bedaque, Hammer, van Kolck (1999) 

Danilov

Bound-state equations for s-wave 2n halo
Core-n and n-n contact interactions at leading order: solve 3B problem

Efimov-Thomas effects:  for p→∞𝒜 ∼ pis0−1

(cn)-n contact interaction to stabilize three-body system

= 2×Ac An

An
+ An

= Ac + An

Canham, Hammer (2008)



Bedaque, Hammer, van Kolck (1999) 

Danilov

Bound-state equations for s-wave 2n halo
Core-n and n-n contact interactions at leading order: solve 3B problem

Efimov-Thomas effects:  for p→∞𝒜 ∼ pis0−1

(cn)-n contact interaction to stabilize three-body system

= 2×Ac An

An
+ An

= Ac + An

Canham, Hammer (2008)

10
2

10
3

10
4

10
5

10
6

10
7

10
8

 Λ [MeV]

-15

-10

-5

0

5

10

15

H
0
(Λ

)

A = 1
A = 9
A = 20
A = 60



Bedaque, Hammer, van Kolck (1999) 

Danilov

Bound-state equations for s-wave 2n halo
Core-n and n-n contact interactions at leading order: solve 3B problem

Efimov-Thomas effects:  for p→∞𝒜 ∼ pis0−1

(cn)-n contact interaction to stabilize three-body system
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Danilov

Bound-state equations for s-wave 2n halo
Core-n and n-n contact interactions at leading order: solve 3B problem

Efimov-Thomas effects:  for p→∞𝒜 ∼ pis0−1

(cn)-n contact interaction to stabilize three-body system

Inputs: Enn=1/(m ann2), Enc, S2n (=B)

Output: everything.  Up to Rcore/Rhalo corrections.

= 2×Ac An
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= Ac + An

Canham, Hammer (2008)



11Li as a 2n halo

ann=-18.7 fm, Enc=0.026 MeV


S2n=369 keV


Calculations done with a cutoff of 470 
MeV, but results checked for a cutoff of 
700 MeV


Here results with a spin-0 core, but we 
also examined case of spin-3/2 core


Results identical if spin-1 and spin-2 nc 
interactions have equal strength

11Li momentum 

distribution



Matter radii of 2n s-wave halos

One-body form factors:


Radii:


Matter radius:  
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Matter radii of 2n halos
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“Unitary limit”, Enn=Enc=0: f becomes a number depending solely on A

Achrya, Ji, Phillips (2013)
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Matter radii of 2n halos

Define: f ( Enn
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,
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; A) ≡ 2mRS2n⟨r2
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“Unitary limit”, Enn=Enc=0: f becomes a number depending solely on A

Fix A=20, plot f as a function of Enn and Enc
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Specific Leading-order results

Enc (MeV) S2n (MeV) Rcore/Rhalo
<rm2> (fm2) 

LO
<rm2> (fm2) 

Expt

11Li -0.026(13) 0.3693(6) 0.37 5.76 ± 2.13 5.34 ± 0.15

14Be -0.510 1.27(13) 0.78 1.23 ± 0.96 4.24 ± 2.42

2.90 ± 2.25

22C -0.01(47) 0.11(6) 0.26 3.99-∞ 21.1 ± 9.7

3.77 ± 0.61

Canham, Hammer (2011); Hagen, Platter, Hammer (2014); Acharya, Ji, Phillips (2013) 

Vanasse (2016)

Input in some two-body subsystems needed


Errors tend to be dominated by EFT uncertainty though

Diagnosing using universality




Coulomb dissociation	

Coulomb dissociation: collide halo (we 
hope peripherally) with a high-Z nucleus


Do for different Z, different nuclear sizes, 
different energies to test systematics

Bertulani, arXiv:0908.4307
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Coulomb excitation dissociation cross section (p.v. b≫Rtarget)


                can then be extracted: it’s the (total) cross section for dissociation 
of the nucleus due to the impact of photons of multipolarity πL

Coulomb dissociation	

Coulomb dissociation: collide halo (we 
hope peripherally) with a high-Z nucleus


Do for different Z, different nuclear sizes, 
different energies to test systematics
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wave-function distortion encoded in Møller operators



E1 photodissociation of a 2n halo
PWIA

tnn FSI tnc FSI

dB(E1)
dE

= ∑
μ

∫ dp p2 ∫ dq q2 |c ⟨p, q, Ω(1,μ)
c |ℳ(E1,μ) |Ψ⟩ |2 δ(Ef − E)

c⟨p, q, Ω(1,μ)
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n⟨p, q, Ω(0,ξ)
n | (1 + tnc(Ep)G(nc)

0 (Ep))ℳ(E1,μ) |Ψ⟩

then two t’s in final-state, three t’s in final-state, etc. 

Modifications to matrix element due to final-state interaction/
wave-function distortion encoded in Møller operators



Comparison with data

Two active spin 
channels is favored


scenario



Comparison with data

Folding with experimental resolution reduces peak height



Comparison with data

Folding with experimental resolution reduces peak height
Agreement with data is good, given that this is only a 

leading-order calculation


