Effective Field Theory for Halo Nuclei: Lecture 4

Daniel Phillips Institute of Nuclear & Particle Physics Ohio University

Collaborators: Bijaya Acharya Matthias Göbel Hans-Werner Hammer Chen Ji

RESEARCH SUPPORTED BY THE US DEPARTMENT OF ENERGY

The three-body scattering problem

Consider the Schrödinger equation for the quantum-mechanical threebody scattering problem. Let's start with just pairwise potentials:

$$-\frac{\nabla_1^2}{2m_1} - \frac{\nabla_2^2}{2m_2} - \frac{\nabla_3^2}{2m_3} + V_{12}(\mathbf{r}_{12}) + V_{23}(\mathbf{r}_{23}) + V_{31}(\mathbf{r}_{31}) \Psi(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3) = E\Psi$$

- Two (related) problems:
 - Disconnected diagrams are present in solution for total wave function Ψ
 - What boundary condition should we impose?

Resources:

I.R. Afnan and A. W. Thomas , Fundamentals of Three-body Scattering Theory, in "Modern Three-Hadron Physics" (Springer, 1977) W. Glöckle, "The Quantum-Mechanical Few-body Problem" (Springer, 1983)

Solving problem |

 $V_3 | \iota$

- Let's define 2B t-matrices that are embedded in the 3B Hilbert space
- Or, equivalently, think about states $|\psi_3^{(+)}\rangle \otimes |\mathbf{q}_3\rangle$, where $|\psi_3^{(+)}\rangle$ is the solution of the Schrödinger equation in which particle 3 is a "spectator", while the (12) wave function has spherical outgoing wave boundary conditions and solves

$$\left[-\frac{\nabla_{12}^2}{2\mu_{12}} + V_{12}(\mathbf{r}_{12})\right] \psi_3(\mathbf{r}_{12}) = \left(E - \frac{\mathbf{q}_3^2}{2\nu_3}\right) \psi_3(\mathbf{r}_{12})$$

where $\mu_{12} = \frac{m_1 m_2}{m_1 + m_2} \nu_3 = \frac{(m_1 + m_2)m_3}{m_1 + m_2 + m_3};$
 $\psi_3^{(+)} \rangle = t_3 \left(E^+ - \frac{q_3^2}{2\nu_3}\right) |\mathbf{p}_{12}\rangle;$ 3B operator $= t_3 \left(E^+ - \frac{q_3^2}{2\nu_3}\right)_{12} \otimes \mathbf{1}_3$

Reminder: Jacobi momenta

$$\mathbf{q}_{i} = \nu_{i} \left(\frac{\mathbf{k}_{i}}{m_{i}} - \frac{\mathbf{k}_{j} + \mathbf{k}_{k}}{M_{jk}} \right)$$

$$\mathbf{p}_{i} = \mu_{jk} \left(\frac{\mathbf{k}_{j}}{m_{j}} - \frac{\mathbf{k}_{k}}{m_{k}} \right)$$

Reminder: Jacobi momenta

Reminder: Jacobi momenta

"Recoupling": achieved by inserting complete sets of eigenstates of two Jacobi momenta, but which two?

- Decompose $|\Psi\rangle = |\Phi\rangle + |\Psi_1\rangle + |\Psi_2\rangle + |\Psi_3\rangle$
- Where $|\Psi_i\rangle = G_0 V_i |\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the *last* interaction before particles go to the detector: that defines three separate outgoing boundary conditions

- Decompose $|\Psi\rangle = |\Phi\rangle + |\Psi_1\rangle + |\Psi_2\rangle + |\Psi_3\rangle$
- Where $|\Psi_i\rangle = G_0 V_i |\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the *last* interaction before particles go to the detector: that defines three separate outgoing boundary conditions
- Show that the resulting $|\Psi\rangle$ solves the 3B Schrödinger equation $(E H_0) |\Psi\rangle = (V_1 + V_2 + V_3) |\Psi\rangle$

- Decompose $|\Psi\rangle = |\Phi\rangle + |\Psi_1\rangle + |\Psi_2\rangle + |\Psi_3\rangle$
- Where $|\Psi_i\rangle = G_0 V_i |\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the *last* interaction before particles go to the detector: that defines three separate outgoing boundary conditions
- Show that the resulting $|\Psi\rangle$ solves the 3B Schrödinger equation $(E H_0) |\Psi\rangle = (V_1 + V_2 + V_3) |\Psi\rangle$
- Manipulate $|\Psi_1\rangle = G_0 V_1 (|\Phi\rangle + |\Psi_1\rangle + |\Psi_2\rangle + |\Psi_3\rangle)$ into a formal equation for $|\Psi_1\rangle$

- Decompose $|\Psi\rangle = |\Phi\rangle + |\Psi_1\rangle + |\Psi_2\rangle + |\Psi_3\rangle$
- Where $|\Psi_i\rangle = G_0 V_i |\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the *last* interaction before particles go to the detector: that defines three separate outgoing boundary conditions
- Show that the resulting $|\Psi\rangle$ solves the 3B Schrödinger equation $(E H_0) |\Psi\rangle = (V_1 + V_2 + V_3) |\Psi\rangle$
- Manipulate $|\Psi_1\rangle = G_0 V_1 (|\Phi\rangle + |\Psi_1\rangle + |\Psi_2\rangle + |\Psi_3\rangle)$ into a formal equation for $|\Psi_1\rangle$

$$|\Psi_i\rangle = G_0 t_i |\Phi\rangle + G_0 t_i \sum_{j \neq i} |\Psi_j\rangle$$

- Decompose $|\Psi\rangle = |\Phi\rangle + |\Psi_1\rangle + |\Psi_2\rangle + |\Psi_3\rangle$
- Where $|\Psi_i\rangle = G_0 V_i |\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the *last* interaction before particles go to the detector: that defines three separate outgoing boundary conditions
- Show that the resulting $|\Psi\rangle$ solves the 3B Schrödinger equation $(E H_0) |\Psi\rangle = (V_1 + V_2 + V_3) |\Psi\rangle$
- Manipulate $|\Psi_1\rangle = G_0 V_1 (|\Phi\rangle + |\Psi_1\rangle + |\Psi_2\rangle + |\Psi_3\rangle)$ into a formal equation for $|\Psi_1\rangle$

$$\begin{split} |\Psi_i\rangle &= G_0 t_i |\Phi\rangle + G_0 t_i \sum_{j \neq i} |\Psi_j\rangle \\ |\Psi_i\rangle &= G_0 V_i |\Psi\rangle \equiv G_0 T_i |\Phi\rangle \Rightarrow T_i = t_i + t_i \sum_{j \neq i} G_0 T_j \end{split}$$

For separable (EFT) interactions: bound-state equations

$$\begin{aligned}
\vec{A}_{0} &= 2 \times \mathbf{A}_{n} = \mathbf$$

$$G_0^c(p, q; B_3) = \left(m_n B_3 + p^2 + \frac{A+2}{4A}q^2\right)^{-1}.$$

$$au_{\sigma}(q; B_3) = rac{(A+1)/A}{-\gamma_{0,\sigma} + \sqrt{rac{A}{A+1} \left(2m_n B_3 + rac{A+2}{A+1} q^2
ight)}}.$$

Canham, Hammer (2008)

Canham, Hammer (2008)

Core-n and n-n contact interactions at leading order: solve 3B problem

Canham, Hammer (2008)

Core-n and n-n contact interactions at leading order: solve 3B problem

Canham, Hammer (2008)

Core-n and n-n contact interactions at leading order: solve 3B problem

Efimov-Thomas effects: $\mathscr{A} \sim p^{is_0-1}$ for $p \rightarrow \infty$

Danilov

Canham, Hammer (2008)

Core-n and n-n contact interactions at leading order: solve 3B problem

• Efimov-Thomas effects: $\mathscr{A} \sim p^{is_0-1}$ for $p \rightarrow \infty$

Danilov

(cn)-n contact interaction to stabilize three-body system

Bedaque, Hammer, van Kolck (1999)

Canham, Hammer (2008)

Core-n and n-n contact interactions at leading order: solve 3B problem

Canham, Hammer (2008)

 Λ [MeV]

Core-n and n-n contact interactions at leading order: solve 3B problem

Canham, Hammer (2008)

Core-n and n-n contact interactions at leading order: solve 3B problem

• Efimov-Thomas effects: $\mathscr{A} \sim p^{is_0-1}$ for $p \rightarrow \infty$

Danilov

(cn)-n contact interaction to stabilize three-body system

Bedaque, Hammer, van Kolck (1999)

- Inputs: $E_{nn} = I/(m a_{nn}^2)$, E_{nc} , S_{2n} (=B)
- Output: everything. Up to R_{core}/R_{halo} corrections.

¹¹Li as a 2n halo

- ann=-18.7 fm, Enc=0.026 MeV
- S_{2n}=369 keV
- Calculations done with a cutoff of 470 MeV, but results checked for a cutoff of 700 MeV
- Here results with a spin-0 core, but we also examined case of spin-3/2 core
- Results identical if spin-1 and spin-2 nc interactions have equal strength

¹¹Li momentum distribution

Matter radii of 2n s-wave halos

One-body form factors:

$$\mathcal{F}_{x}(k^{2}) = \int_{0}^{\infty} dp \ p^{2} \int_{0}^{\infty} dq \ q^{2} \int_{-1}^{1} d\left(\hat{q} \cdot \hat{k}\right) \Psi_{x}(p,q) \ \Psi_{x}(p,|\vec{q}-\vec{k}|)$$

Radii: $\mathcal{F}_{x}(k^{2}) = 1 - \frac{1}{6} \langle r_{x}^{2} \rangle k^{2} + O(k^{4})$
Matter radius: $\langle r_{m}^{2} \rangle = \frac{2(A+1)^{2}}{(A+2)^{3}} \langle r_{n}^{2} \rangle + \frac{4A}{(A+2)^{3}} \langle r_{c}^{2} \rangle$

Matter radii of 2n s-wave halos

One-body form factors:

$$\mathcal{F}_{x}(k^{2}) = \int_{0}^{\infty} dp \ p^{2} \int_{0}^{\infty} dq \ q^{2} \int_{-1}^{1} d\left(\hat{q} \cdot \hat{k}\right) \Psi_{x}(p,q) \ \Psi_{x}(p,|\vec{q} - \vec{k}|).$$
Radii: $\mathcal{F}_{x}(k^{2}) = 1 - \frac{1}{6} \langle r_{x}^{2} \rangle k^{2} + O(k^{4})$
Input: E_{cn} and S_{2n}
Matter radius: $\langle r_{m}^{2} \rangle = \frac{2(A+1)^{2}}{(A+2)^{3}} \langle r_{n}^{2} \rangle + \frac{4A}{(A+2)^{3}} \langle r_{c}^{2} \rangle$

Matter radii of 2n halos

Achrya, Ji, Phillips (2013)

• Define:
$$f\left(\frac{E_{nn}}{S_{2n}}, \frac{E_{cn}}{S_{2n}}; A\right) \equiv 2m_R S_{2n} \langle r_m^2 \rangle$$

"Unitary limit", Enn=Enc=0: f becomes a number depending solely on A

Unification via universality

Matter radii of 2n halos

Achrya, Ji, Phillips (2013)

• Define:
$$f\left(\frac{E_{nn}}{S_{2n}}, \frac{E_{cn}}{S_{2n}}; A\right) \equiv 2m_R S_{2n} \langle r_m^2 \rangle$$

"Unitary limit", Enn=Enc=0: f becomes a number depending solely on A

c. f. Yamashita et al. (2004): 15% lower at A=20

Unification via universality

Matter radii of 2n halos

Achrya, Ji, Phillips (2013)

• Define:
$$f\left(\frac{E_{nn}}{S_{2n}}, \frac{E_{cn}}{S_{2n}}; A\right) \equiv 2m_R S_{2n} \langle r_m^2 \rangle$$

"Unitary limit", Enn=Enc=0: f becomes a number depending solely on A

Fix A=20, plot f as a function of Enn and Enc

Unification via universality

c. f. Yamashita et al. (2004): 15% lower at A=20

Specific Leading-order results

Canham, Hammer (2011); Hagen, Platter, Hammer (2014); Acharya, Ji, Phillips (2013) Vanasse (2016) Diagnosing using universality

	Enc (MeV)	S _{2n} (MeV)	R _{core} /R _{halo}	<r<sub>m²> (fm²) LO</r<sub>	<r<sub>m²> (fm²) Expt</r<sub>
¹¹ Li	-0.026(13)	0.3693(6)	0.37	5.76 ± 2.13	5.34 ± 0.15
¹⁴ Be	-0.510	1.27(13)	0.78	1.23 ± 0.96	4.24 ± 2.42 2.90 ± 2.25
22 C	-0.01(47)	0.11(6)	0.26	3.99-∞	21.1 ± 9.7 3.77 ± 0.61

- Input in some two-body subsystems needed
- Errors tend to be dominated by EFT uncertainty though

Coulomb dissociation

Bertulani, arXiv:0908.4307

- Coulomb dissociation: collide halo (we hope peripherally) with a high-Z nucleus
- Do for different Z, different nuclear sizes, different energies to test systematics

Coulomb dissociation

Bertulani, arXiv:0908.4307

- Coulomb dissociation: collide halo (we hope peripherally) with a high-Z nucleus
- Do for different Z, different nuclear sizes, different energies to test systematics

• Coulomb excitation dissociation cross section (p.v. $b \gg R_{target}$)

$$\frac{d\sigma_C}{2\pi bdb} = \sum_{\pi L} \int \frac{dE_{\gamma}}{E_{\gamma}} n_{\pi L}(E_{\gamma}, b) \sigma_{\gamma}^{\pi L}(E_{\gamma})$$

• $n_{\pi L}(E_{\gamma}, b)$ virtual photon numbers, dependent only on kinematic factors. Number of equivalent (virtual) photons that strike the halo nucleus

Coulomb dissociation

Bertulani, arXiv:0908.4307

- Coulomb dissociation: collide halo (we hope peripherally) with a high-Z nucleus
- Do for different Z, different nuclear sizes, different energies to test systematics

Coulomb excitation dissociation cross section (p.v. b Rtarget)

$$\frac{d\sigma_C}{2\pi bdb} = \sum_{\pi L} \int \frac{dE_{\gamma}}{E_{\gamma}} n_{\pi L}(E_{\gamma}, b) \sigma_{\gamma}^{\pi L}(E_{\gamma})$$

 n_{πL}(E_γ, b) virtual photon numbers, dependent only on kinematic factors. Number of equivalent (virtual) photons that strike the halo nucleus
 σ^{πL}_γ(E_γ) can then be extracted: it's the (total) cross section for dissociation of the nucleus due to the impact of photons of multipolarity TL

PWIA

PWIA

tnn FSI

PWIA

tnn FSI

tnc FSI

PWIA

$$\frac{dB(E1)}{dE} = \sum_{\mu} \int dp \, p^2 \int dq \, q^2 |_c \langle p, q, \Omega_c^{(1,\mu)} | \mathcal{M}(E1,\mu) | \Psi \rangle |^2 \delta(E_f - E)$$

tnn FSI

tnc FSI

PWIA

$$\frac{dB(E1)}{dE} = \sum_{\mu} \int dp \, p^2 \int dq \, q^2 |_c \langle p, q, \Omega_c^{(1,\mu)} | \mathcal{M}(E1,\mu) | \Psi \rangle |^2 \delta(E_f - E)$$

tnn FSI

tnc FSI

Modifications to matrix element due to final-state interaction/ wave-function distortion encoded in Møller operators ${}_{c}\langle p,q,\Omega_{c}^{(1,\mu)}|(1+t_{nn}(E_{p})G_{0}^{(nn)}(E_{p}))\mathscr{M}(E1,\mu)|\Psi\rangle$ ${}_{n}\langle p,q,\Omega_{n}^{(0,\xi)}|(1+t_{nc}(E_{p})G_{0}^{(nc)}(E_{p}))\mathscr{M}(E1,\mu)|\Psi\rangle$

PWIA

$$\frac{dB(E1)}{dE} = \sum_{\mu} \int dp \, p^2 \int dq \, q^2 |_c \langle p, q, \Omega_c^{(1,\mu)} | \mathcal{M}(E1,\mu) | \Psi \rangle |^2 \delta(E_f - E)$$

tnn FSI

tnc FSI

$$\begin{split} & \text{Modifications to matrix element due to final-state interaction/} \\ & \text{wave-function distortion encoded in Møller operators} \\ & _c \langle p, q, \Omega_c^{(1,\mu)} | (1 + t_{nn}(E_p)G_0^{(nn)}(E_p)) \mathscr{M}(E1,\mu) | \Psi \rangle \\ & _n \langle p, q, \Omega_n^{(0,\xi)} | (1 + t_{nc}(E_p)G_0^{(nc)}(E_p)) \mathscr{M}(E1,\mu) | \Psi \rangle \end{split}$$

then two t's in final-state, three t's in final-state, etc.

Comparison with data

Comparison with data

Folding with experimental resolution reduces peak height

Comparison with data

Folding with experimental resolution reduces peak height Agreement with data is good, given that this is only a leading-order calculation