Effective Field Theory for Halo Nuclei: Lecture 2

Daniel Phillips Institute of Nuclear \& Particle Physics Ohio University

Collaborators: Bijaya Acharya
Pierre Capel
Hans-Werner Hammer

Chen Ji

RESEARCH SUPPORTED BY THE US DEPARTMENT OF ENERGY

Halo EFT

Halo EFT

Halo EFT

Halo EFT

- Define $R_{\text {halo }}=\left\langle r^{2>1 / 2}\right.$. Seek EFT expansion in $R_{\text {core }} / R_{\text {halo. }}$ Valid for $\lambda \leqslant R_{\text {halo }}$

Halo EFT

- Define $R_{\text {halo }}=\left\langle r^{2>1 / 2}\right.$. Seek EFT expansion in $R_{\text {core }} / R_{\text {halo. }}$ Valid for $\lambda \leqslant R_{\text {halo }}$
- Typically $\mathrm{R} \equiv \mathrm{R}_{\text {core }} \sim 2 \mathrm{fm}$

Halo EFT

- Define $R_{\text {halo }}=\left\langle r^{2>1 / 2}\right.$. Seek EFT expansion in $R_{\text {core }} / R_{\text {halo. }}$.Valid for $\lambda \leqslant R_{\text {halo }}$
- Typically $R \equiv R_{\text {core }} \sim 2 \mathrm{fm}$
- By this definition the deuteron is the lightest halo nucleus, and the pionless EFT for few-nucleon systems is a specific case of halo EFT

Halo EFT

- Define $R_{\text {halo }}=\left\langle r^{2>1 / 2}\right.$. Seek EFT expansion in $R_{\text {core }} / R_{\text {halo. }}$.Valid for $\lambda \leqslant R_{\text {halo }}$
- Typically $R \equiv R_{\text {core }} \sim 2 \mathrm{fm}$
- By this definition the deuteron is the lightest halo nucleus, and the pionless EFT for few-nucleon systems is a specific case of halo EFT
$={ }^{22} \mathrm{C},{ }^{11} \mathrm{Li},{ }^{12} \mathrm{Be},{ }^{62} \mathrm{Ca}$ (hypothesized), and ${ }^{3} \mathrm{H}$: all s -wave 2 n halos

EFT for shallow S-wave states

$$
\begin{aligned}
& \mathscr{L}=c^{\dagger}\left(i D_{t}+\frac{D^{2}}{2 M_{c}}\right) c+n^{\dagger}\left(i D_{t}+\frac{D^{2}}{2 M_{n}}\right) n \\
&+d^{\dagger}\left[\eta\left(i D_{t}+\frac{D^{2}}{2 M_{n c}}\right)+\Delta\right]-g\left(\sigma^{\dagger} n c+n^{\dagger} c^{\dagger} \sigma\right)
\end{aligned}
$$

- c, n:"core","neutron" fields. c: spin-0 boson, n: spin-I/2 fermion.
- d: S-wave "dimer" field

$$
\begin{gathered}
t_{0}^{L O}(E)=\frac{2 \pi a_{0}}{m_{R}} \frac{1}{1+i a_{0} k} \\
t_{0}^{N L O}(E)=-\frac{2 \pi}{m_{R}} \frac{1}{-\frac{1}{a_{0}}+\frac{1}{2} r_{0} k^{2}-i k}
\end{gathered} \quad k^{2}=2 m_{R} E
$$

Questions for discussion

I. Is this t a number or an operator? What is its momentum space representation?
2. Does this t-matrix have poles? How many? What do they represent?
3. You computed Z for the t-matrix. What is Z_{d} for the dimer propagator?
4. How is t related to the Green's function $G(E)=\frac{1}{E-H}$?
5. Can you extract the (momentum-space) wave function from your answer for G ?
6. What co-ordinate space wave function does that correspond to?

