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The story so far

Halo EFT seeks to describe halo nuclei for k~l/Rnaio< | /Rcore,
i.e., kro < |.

We are interested in shallow bound states (or virtual bound
states), states for which yro < | &ro/ao« |
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2. How do we correct for finite size of core and neutron?
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The three-body scattering problem

Consider the Schrodinger equation for the quantum-mechanical three-
body scattering problem. Let’s start with just pairwise potentials:

VZ VZ V2
P LR T, e e WL YT + Vlz(rlz) + V23(l’23) + V31(l‘31) ‘P(l‘l, 1‘2, 1’3) - E\P
2m1 2m2 2m3

Two (related) problems:
Disconnected diagrams are present in solution for total wave function ¥

What boundary condition should we impose!?



Solving problem |

Let’s define 2B t-matrices that are embedded in the 3B Hilbert space

Or, equivalently, think about states |l//3(+)> ® | q3), where |1//3(+)) is the

solution of the Schrodinger equation in which particle 3 is a
“spectator”’,while the (12) wave function has spherical outgoing wave
boundary conditions

———— ——— 4+ V(o) | ws(T13) = Epia(ry))

Questions:
. If |1//3(+)) ® | q3) is a three-body eigenstate of energy E what is the

energy E|2 that appears in this Schrodinger equation
2. Is the (12) system in its center-of-mass!?

3. If not, write the equivalent one-body Schrodinger equation, i.e., the
equation for ys(r,) in the co-ordinate r
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So we’re going to need to specify different pieces of ¥ in order to
specify what kind of reaction we're interested in



The Faddeev equations

Decompose |¥) = |[®) + |¥)) + |Y¥,) + |P;)

Where |¥.) = G,V;|W¥) and | D) is a three-body plane wave; separate
wave function according to the last interaction before particles go to the
detector: that defines three separate outgoing boundary conditions

Show that the resulting |¥) solves the 3B Schrodinger equation
(E-Hy)|¥)=(V+V,+ V5 |¥)

Manipulate |¥,) = G,V,(|®) + |Y¥;) + |¥,) + | ¥;)) into a formal
equation for |¥,)
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