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The story so far
Halo EFT seeks to describe halo nuclei for k∼1/Rhalo≪1/Rcore, 
i.e., kr0 ≪ 1. 


We are interested in shallow bound states (or virtual bound 
states), states for which ɣr0 ≪ 1⇔r0/a0≪1
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2. How do we correct for finite size of core and neutron?
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Results

Data:  Tornow et al. (2003)

Analysis: Chen, Savage (1999); 

Hammer, Ji, DP (2017)
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Results

Data: Nakamura et al. (1999, 2003);

Fukuda et al. (2004)


Analysis: Acharya, DP (2013);
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Results

Data: Nakamura et al. (1999, 2003);

Fukuda et al. (2004)


Analysis: Acharya, DP (2013);

Hammer, Ji, DP (2017)

Determine S-wave18C-n scattering 
parameters⇔19C ANC from dissociation data.

ɣ0↔︎a0

r0 ↔︎A0 19C
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Results

Data: Nakamura et al. (1999, 2003);

Fukuda et al. (2004)


Analysis: Acharya, DP (2013);

Hammer, Ji, DP (2017)

a = (7.75± 0.35(stat.)± 0.3(EFT)) fm;
r0 = (2.6+0.6

�0.9(stat.)± 0.1(EFT)) fm.
For 19C:

ɣ0↔︎a0

r0 ↔︎A0 19C

Combine Halo EFT with reaction 
theory: Capel, Hammer, Hebborn, 

Moschini, Yang, DP, et al. 

11Be: what’s up?



The three-body scattering problem 
Consider the Schrödinger equation for the quantum-mechanical three-
body scattering problem. Let’s start with just pairwise potentials:


Two (related) problems:


Disconnected diagrams are present in solution for total wave function 

What boundary condition should we impose?
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Solving problem 1
Let’s define 2B t-matrices that are embedded in the 3B Hilbert space


Or, equivalently, think about states , where  is the 
solution of the Schrödinger equation in which particle 3 is a 
“spectator”,while the (12) wave function has spherical outgoing wave 
boundary conditions 


Questions:

1. If  is a three-body eigenstate of energy E what is the 

energy E12  that appears in this Schrödinger equation


2. Is the (12) system in its center-of-mass?


3. If not, write the equivalent one-body Schrödinger equation, i.e., the 
equation for  in the co-ordinate r12
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Suppose I want to do neutron-19C scattering? What would the incoming 
wave be?

And suppose I am interested in elastic neutron-19C scattering, what 
would the outgoing wave be?

But if I were interested in outgoing states with 18C-(nn) states, what 
would the outgoing wave be?

So we’re going to need to specify different pieces of  in order to 
specify what kind of reaction we’re interested in
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The Faddeev equations
Decompose 

Where  and  is a three-body plane wave; separate 
wave function according to the last interaction before particles go to the 
detector: that defines three separate outgoing boundary conditions

Show that the resulting  solves the 3B Schrödinger equation 

Manipulate  into a formal 
equation for  
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