Effective Field Theory for Halo Nuclei: Lecture 3

Daniel Phillips Institute of Nuclear \& Particle Physics Ohio University

Collaborators: Bijaya Acharya
Pierre Capel
Hans-Werner Hammer

Chen Ji

RESEARCH SUPPORTED BY THE US DEPARTMENT OF ENERGY

The story so far

- Halo EFT seeks to describe halo nuclei for $\mathrm{k} \sim I / R_{\text {halo }}$ < I/R $\mathrm{c}_{\text {core }}$, i.e., kro < I.
- We are interested in shallow bound states (or virtual bound states), states for which $\mathrm{r}_{0} \ll\left|\Leftrightarrow \mathrm{r}_{0} / \mathrm{a}_{0} \ll\right|$
$t_{0}^{N L O}(E)=-\frac{2 \pi}{m_{R}} \frac{1}{-\frac{1}{a_{0}}+\frac{1}{2} r_{0} k^{2}-i k}$
- Predicts a shallow bound state with co-ordinate space wave function $\psi(\mathbf{r})=\frac{A}{\sqrt{4 \pi}} \frac{e^{-\gamma r}}{r}$
- $A^{2}=\frac{2 \gamma}{1-\gamma r}$

Electric form factor

Electric form factor

$$
-i|e| Z_{c} G_{c}^{N L O}(|\mathbf{q}|)=
$$

Electric form factor

$$
-i|e| Z_{c} G_{c}^{N L O}(|\mathbf{q}|)==-\mathbf{q} / 2
$$

Electric form factor

$$
\begin{aligned}
& -i|e| Z_{c} G_{c}^{N L O}(|\mathbf{q}|)= \\
& f=\frac{m_{R}}{M_{c}}=\frac{1}{A_{c}+1} \quad G_{c}(|\mathbf{q}|)=\frac{A_{0}^{2}}{f|\mathbf{q}|} \arctan \left(\frac{f|\mathbf{q}|}{2 \gamma}\right)
\end{aligned}
$$

I. Expand in powers of |q| to get:

Electric form factor

$$
\begin{aligned}
& -i|e| Z_{c} G_{c}^{N L O}(|\mathbf{q}|)= \\
& f=\frac{m_{R}}{M_{c}}=\frac{1}{A_{c}+1}
\end{aligned}
$$

I. Expand in powers of $|\mathbf{q}|$ to get: $\left\langle r_{E}^{2}\right\rangle_{\text {halo }}=\frac{f^{2} A_{0}^{2}}{4 \gamma^{3}}$

Electric form factor

$$
\begin{aligned}
& -i|e| Z_{c} G_{c}^{N L O}(|\mathbf{q}|)= \\
& f=\frac{m_{R}}{M_{c}}=\frac{1}{A_{c}+1}
\end{aligned}
$$

1. Expand in powers of $|\mathbf{q}|$ to get: $\left\langle r_{E}^{2}\right\rangle_{\text {halo }}=\frac{f^{2} A_{0}^{2}}{4 \gamma^{3}}$
2. How do we correct for finite size of core and neutron?

Electric form factor

$$
-i|e| Z_{c} G_{c}^{N L O}(|\mathbf{q}|)=
$$

1. Expand in powers of $|\mathbf{q}|$ to get: $\left\langle r_{E}^{2}\right\rangle_{\text {halo }}=\frac{f^{2} A_{0}^{2}}{4 \gamma^{3}}$
2. How do we correct for finite size of core and neutron?

$$
\left\langle r_{E}^{2}\right\rangle_{\text {nucleus }}=\frac{f^{2} A_{0}^{2}}{4 \gamma^{3}}+\left\langle r_{E}^{2}\right\rangle_{c}+\frac{1}{Z_{c}}\left\langle r_{n}^{2}\right\rangle
$$

Electric form factor

$$
\begin{aligned}
& -i|e| Z_{c} G_{c}^{N L O}(|\mathbf{q}|)= \\
& f=\frac{m_{R}}{M_{c}}=\frac{1}{A_{c}+1}
\end{aligned}
$$

1. Expand in powers of $|\mathbf{q}|$ to get: $\left\langle r_{E}{ }^{2}\right\rangle_{\text {halo }}=\frac{f^{2} A_{0}^{2}}{4 \gamma^{3}}$
2. How do we correct for finite size of core and neutron?

$$
\left\langle r_{E}^{2}\right\rangle_{\text {nucleus }}=\frac{f^{2} A_{0}^{2}}{4 \gamma^{3}}+\left\langle r_{E}^{2}\right\rangle_{\mathrm{c}}+\frac{1}{Z_{c}}\left\langle r_{n}^{2}\right\rangle
$$

Electric form factor

$$
\begin{aligned}
& -i|e| Z_{c} G_{c}^{N L O}(|\mathbf{q}|)= \\
& f=\frac{m_{R}}{M_{c}}=\frac{1}{A_{c}+1} \quad G_{c}(|\mathbf{q}|)=\frac{A_{0}^{2}}{f|\mathbf{q}|} \arctan \left(\frac{f|\mathbf{q}|}{2 \gamma}\right)+1-\frac{A_{0}^{2}}{2 \gamma} \\
& \text { I. Expand in powers of }|\mathbf{q}| \text { to get: }\left\langle r_{E}{ }^{2}\right\rangle_{\text {halo }}=\frac{f^{2} A_{0}^{2}}{4 \gamma^{3}}
\end{aligned}
$$

2. How do we correct for finite size of core and neutron?

$$
\left\langle r_{E}^{2}\right\rangle_{\text {nucleus }}=\frac{f^{2} A_{0}^{2}}{4 \gamma^{3}}+\left\langle r_{E}^{2}\right\rangle_{c}+\frac{1}{Z_{c}}\left\langle r_{n}^{2}\right\rangle
$$

Electric form factor

$$
\begin{aligned}
& -i|e| Z_{c} G_{c}^{N L O}(|\mathbf{q}|)= \\
& f=\frac{m_{R}}{M_{c}}=\frac{1}{A_{c}+1}
\end{aligned} G_{c}(|\mathbf{q}|)=\frac{A_{0}^{2}}{f|\mathbf{q}|} \arctan \left(\frac{f|\mathbf{q}|}{2 \gamma}\right)+1-\frac{A_{0}^{2}}{2 \gamma}
$$

1. Expand in powers of $|\mathbf{q}|$ to get: $\left\langle r_{E}{ }^{2}\right\rangle_{\text {halo }}=\frac{f^{2} A_{0}^{2}}{4 \gamma^{3}}$

LO:
$A_{0}=\sqrt{2 \gamma}$

El photodissociation

Chen, Savage (1999)

El photodissociation

$$
\mathscr{M}^{L O}=\sqrt{8 \pi \gamma} e Z_{c} \frac{1}{\gamma^{2}+(\mathbf{k}-f \mathbf{q})^{2}}
$$

Chen, Savage (1999)

El photodissociation

$$
\mathscr{M}^{L O}=\sqrt{8 \pi \gamma} e Z_{c} \frac{1}{\gamma^{2}+(\mathbf{k}-f \mathbf{q})^{2}}
$$

Chen, Savage (1999)
I. Choose photon momentum to be aligned with z-axis
2. Pick out term linear in \mathbf{q} and divide by $i q \sqrt{\frac{4 \pi}{3}}$ to obtain $\mathscr{M}_{\mathrm{E} 1}^{(l=1)}$

El photodissociation

$$
\mathscr{M}^{L O}=\sqrt{8 \pi \gamma} e Z_{c} \frac{1}{\gamma^{2}+(\mathbf{k}-f \mathbf{q})^{2}}
$$

I. Choose photon momentum to be aligned with z-axis
2. Pick out term linear in \mathbf{q} and divide by $i q \sqrt{\frac{4 \pi}{3}}$ to obtain $\mathscr{M}_{\mathrm{E} 1}^{(l=1)}$

$$
\mathscr{M}_{\mathrm{E} 1}^{(l=1)}=2 \sqrt{6 \gamma} f \sqrt{\alpha_{e m}} Z_{c} \frac{k}{\left(\gamma^{2}+k^{2}\right)^{2}} \hat{k} \cdot \hat{z}
$$

El photodissociation

$$
\mathscr{M}^{L O}=\sqrt{8 \pi \gamma} e Z_{c} \frac{1}{\gamma^{2}+(\mathbf{k}-f \mathbf{q})^{2}}
$$

I. Choose photon momentum to be aligned with z -axis
2. Pick out term linear in \mathbf{q} and divide by $i q \sqrt{\frac{4 \pi}{3}}$ to obtain $\mathscr{M}_{\mathrm{E} 1}^{(l=1)}$

$$
\begin{gathered}
\mathscr{M}_{\mathrm{E} 1}^{(l=1)}=2 \sqrt{6 \gamma} f \sqrt{\alpha_{e m}} Z_{c} \frac{k}{\left(\gamma^{2}+k^{2}\right)^{2}} \hat{k} \cdot \hat{z} \\
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=\sum_{m_{l}}\left|\mathscr{M}_{\mathrm{E} 1}^{\left(l=1, m_{l}\right)}\right|^{2} \frac{d^{3} k}{(2 \pi)^{3}}
\end{gathered}
$$

El photodissociation

$$
\mathscr{M}^{L O}=\sqrt{8 \pi \gamma} e Z_{c} \frac{1}{\gamma^{2}+(\mathbf{k}-f \mathbf{q})^{2}}
$$

I. Choose photon momentum to be aligned with z -axis
2. Pick out term linear in \mathbf{q} and divide by $i q \sqrt{\frac{4 \pi}{3}}$ to obtain $\mathscr{M}_{\mathrm{E} 1}^{(l=1)}$

$$
\begin{aligned}
\mathscr{M}_{\mathrm{E} 1}^{(l=1)} & =2 \sqrt{6 \gamma} f \sqrt{\alpha_{e m}} Z_{c} \frac{k}{\left(\gamma^{2}+k^{2}\right)^{2}} \hat{k} \cdot \hat{z} \\
\frac{d \mathrm{~B}(\mathrm{E} 1)}{d E} & =\frac{6}{\pi^{2}} m_{R} f^{2} Z_{c}^{2} \alpha_{e m} 2 \gamma \frac{k^{3}}{\left(\gamma^{2}+k^{2}\right)^{4}}
\end{aligned}
$$

Universal EI strength formula

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{\alpha_{e m} d E}=\frac{6 m_{R}}{\pi^{2}} \frac{Z_{c}^{2}}{\left(A_{c}+1\right)^{2}} A_{0}^{2} \frac{k^{3}}{\left(\gamma^{2}+k^{2}\right)^{4}}
$$

Universal EI strength formula

- At NLO $2 \gamma \rightarrow \mathrm{~A}_{0}{ }^{2}$

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{\alpha_{e m} d E}=\frac{6 m_{R}}{\pi^{2}} \frac{Z_{c}^{2}}{\left(A_{c}+1\right)^{2}} A_{0}^{2} \frac{k^{3}}{\left(\gamma^{2}+k^{2}\right)^{4}}
$$

Bertulani, Typel, Baur

Universal EI strength formula

- At NLO $2 \gamma \rightarrow A_{0}{ }^{2}$

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{\alpha_{e m} d E}=\frac{6 m_{R}}{\pi^{2}} \frac{Z_{c}^{2}}{\left(A_{c}+1\right)^{2}} A_{0}^{2} \frac{k^{3}}{\left(\gamma^{2}+k^{2}\right)^{4}}
$$

- Can you re-express this in dimensionless units?

Universal EI strength formula

- At NLO $2 \gamma \rightarrow \mathrm{~A}_{0}{ }^{2}$

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{\alpha_{e m} d E}=\frac{6 m_{R}}{\pi^{2}} \frac{Z_{c}^{2}}{\left(A_{c}+1\right)^{2}} A_{0}^{2} \frac{k^{3}}{\left(\gamma^{2}+k^{2}\right)^{4}}
$$

- Can you re-express this in dimensionless units?

Bertulani, Typel, Baur

$$
m_{R} S_{1 n}^{2} \frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=\frac{A_{0}^{2}}{2 \gamma} \frac{3 \alpha_{e m} Q_{e f f}^{2}}{\pi^{2}} \frac{x^{3 / 2}}{\left(1+x^{2}\right)^{2}} ; \quad Q_{e f f}=f Z_{c}=\frac{Z_{c}}{A+1} ; \quad x=E / S_{1 n}
$$

- Universal EI strength formula for S-wave halos

Universal EI strength formula

- At NLO $2 \gamma \rightarrow \mathrm{~A}_{0}{ }^{2}$

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{\alpha_{e m} d E}=\frac{6 m_{R}}{\pi^{2}} \frac{Z_{c}^{2}}{\left(A_{c}+1\right)^{2}} A_{0}^{2} \frac{k^{3}}{\left(\gamma^{2}+k^{2}\right)^{4}}
$$

- Can you re-express this in dimensionless units?

Bertulani, Typel, Baur

$$
m_{R} S_{1 n}^{2} \frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=\frac{A_{0}^{2}}{2 \gamma} \frac{3 \alpha_{e m} Q_{e f f}^{2}}{\pi^{2}} \frac{x^{3 / 2}}{\left(1+x^{2}\right)^{2}} ; \quad Q_{e f f}=f Z_{c}=\frac{Z_{c}}{A+1} ; \quad x=E / S_{1 n}
$$

- Universal EI strength formula for S-wave halos
- Final-state interactions suppressed by $\left(R_{\text {core }} / R_{\text {halo }}\right)^{3}$

Universal EI strength formula

- At NLO $2 \gamma \rightarrow \mathrm{~A}_{0}{ }^{2}$

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{\alpha_{e m} d E}=\frac{6 m_{R}}{\pi^{2}} \frac{Z_{c}^{2}}{\left(A_{c}+1\right)^{2}} A_{0}^{2} \frac{k^{3}}{\left(\gamma^{2}+k^{2}\right)^{4}}
$$

- Can you re-express this in dimensionless units?

Bertulani, Typel, Baur

$$
m_{R} S_{1 n}^{2} \frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=\frac{A_{0}^{2}}{2 \gamma} \frac{3 \alpha_{e m} Q_{e f f}^{2}}{\pi^{2}} \frac{x^{3 / 2}}{\left(1+x^{2}\right)^{2}} ; \quad Q_{e f f}=f Z_{c}=\frac{Z_{c}}{A+1} ; \quad x=E / S_{1 n}
$$

- Universal EI strength formula for S-wave halos
- Final-state interactions suppressed by $\left(R_{\text {core }} / R_{\text {halo }}\right)^{3}$
- Short-distance piece of EI m.e.: $L_{E 1}\left[d^{\dagger} \mathbf{E} \cdot(n \overleftrightarrow{\nabla} c)+\right.$ h.c. $] \sim\left(\frac{R_{\text {core }}}{R_{\text {halo }}}\right)^{4}$

Universal EI strength formula

- At NLO $2 \gamma \rightarrow \mathrm{~A}_{0}{ }^{2}$

$$
\frac{d \mathrm{~B}(\mathrm{E} 1)}{\alpha_{e m} d E}=\frac{6 m_{R}}{\pi^{2}} \frac{Z_{c}^{2}}{\left(A_{c}+1\right)^{2}} A_{0}^{2} \frac{k^{3}}{\left(\gamma^{2}+k^{2}\right)^{4}}
$$

- Can you re-express this in dimensionless units?

Bertulani, Typel, Baur

$$
m_{R} S_{1 n}^{2} \frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=\frac{A_{0}^{2}}{2 \gamma} \frac{3 \alpha_{e m} Q_{e f f}^{2}}{\pi^{2}} \frac{x^{3 / 2}}{\left(1+x^{2}\right)^{2}} ; \quad Q_{e f f}=f Z_{c}=\frac{Z_{c}}{A+1} ; \quad x=E / S_{1 n}
$$

- Universal EI strength formula for S-wave halos
- Final-state interactions suppressed by $\left(R_{\text {core }} / R_{\text {halo }}\right)^{3}$
- Short-distance piece of EI m.e.: $L_{E 1}\left[d^{\dagger} \mathbf{E} \cdot(n \overleftrightarrow{\nabla} c)+\right.$ h.c. $] \sim\left(\frac{R_{\text {core }}}{R_{\text {halo }}}\right)^{4}$
- Tells you how universal formula "breaks"

Results

Deuteron

Data: Tornow et al. (2003)
Analysis: Chen, Savage (1999); Hammer, Ji, DP (2017)

$$
m_{R} S_{1 n}^{2} \frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=\frac{A_{0}^{2}}{2 \gamma} \frac{3 \alpha_{e m} Q_{e f f}^{2}}{\pi^{2}} \frac{x^{3 / 2}}{\left(1+x^{2}\right)^{2}}
$$

Results

$$
m_{R} S_{1 n}^{2} \frac{d \mathrm{~B}(\mathrm{E} 1)}{d E}=\frac{A_{0}^{2}}{2 \gamma} \frac{3 \alpha_{e m} Q_{e f f}^{2}}{\pi^{2}} \frac{x^{3 / 2}}{\left(1+x^{2}\right)^{2}}
$$

Results

Results

Results

Results

Determine S -wave ${ }^{18} \mathrm{C}-\mathrm{n}$ scattering parameters $\Leftrightarrow{ }^{19} \mathrm{C}$ ANC from dissociation data.

Results

Results

Results

The three-body scattering problem

- Consider the Schrödinger equation for the quantum-mechanical threebody scattering problem. Let's start with just pairwise potentials:
$\left[-\frac{\nabla_{1}^{2}}{2 m_{1}}-\frac{\nabla_{2}^{2}}{2 m_{2}}-\frac{\nabla_{3}^{2}}{2 m_{3}}+V_{12}\left(\mathbf{r}_{12}\right)+V_{23}\left(\mathbf{r}_{23}\right)+V_{31}\left(\mathbf{r}_{31}\right)\right] \Psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}\right)=E \Psi$
- Two (related) problems:
- Disconnected diagrams are present in solution for total wave function Ψ
- What boundary condition should we impose?

Solving problem I

- Let's define 2B t-matrices that are embedded in the 3B Hilbert space
- Or, equivalently, think about states $\left|\psi_{3}^{(+)}\right\rangle \otimes\left|\mathbf{q}_{3}\right\rangle$, where $\left|\psi_{3}^{(+)}\right\rangle$is the solution of the Schrödinger equation in which particle 3 is a "spectator", while the (I2) wave function has spherical outgoing wave boundary conditions

$$
\left[-\frac{\nabla_{1}^{2}}{2 m_{1}}-\frac{\nabla_{2}^{2}}{2 m_{2}}+V_{12}\left(\mathbf{r}_{12}\right)\right] \psi_{3}\left(\mathbf{r}_{12}\right)=E_{12} \psi_{3}\left(\mathbf{r}_{12}\right)
$$

- Questions:
I. If $\left|\psi_{3}^{(+)}\right\rangle \otimes\left|\mathfrak{q}_{3}\right\rangle$ is a three-body eigenstate of energy E what is the energy E_{12} that appears in this Schrödinger equation

2. Is the (I2) system in its center-of-mass?
3. If not, write the equivalent one-body Schrödinger equation, i.e., the equation for $\psi_{3}\left(\mathbf{r}_{12}\right)$ in the co-ordinate \mathbf{r}_{12}
"The physics is all in the boundary conditions"

"The physics is all in the boundary conditions"

- Suppose I want to do neutron- ${ }^{19} \mathrm{C}$ scattering? What would the incoming wave be?

"The physics is all in the boundary conditions"

- Suppose I want to do neutron- ${ }^{19} \mathrm{C}$ scattering? What would the incoming wave be?

$$
\psi\left(\mathbf{r}_{12}\right) e^{i \mathbf{q}_{3} \cdot \mathbf{r}_{3}}
$$

"The physics is all in the boundary conditions"

- Suppose I want to do neutron- ${ }^{19} \mathrm{C}$ scattering? What would the incoming wave be?

$$
\psi\left(\mathbf{r}_{12}\right) e^{i \mathbf{q}_{3} \cdot \mathbf{r}_{3}}
$$

- And suppose I am interested in elastic neutron- ${ }^{19} \mathrm{C}$ scattering, what would the outgoing wave be?

"The physics is all in the boundary conditions"

- Suppose I want to do neutron- ${ }^{19} \mathrm{C}$ scattering? What would the incoming wave be?

$$
\psi\left(\mathbf{r}_{12}\right) e^{i \mathbf{q}_{3} \cdot \mathbf{r}_{3}}
$$

- And suppose I am interested in elastic neutron- ${ }^{19} \mathrm{C}$ scattering, what would the outgoing wave be?

$$
f\left(q_{3}, \theta_{3}\right) \psi\left(\mathbf{r}_{12}\right) \frac{e^{i q_{3} r_{3}}}{r_{3}}
$$

"The physics is all in the boundary conditions"

- Suppose I want to do neutron- ${ }^{19} \mathrm{C}$ scattering? What would the incoming wave be?

$$
\psi\left(\mathbf{r}_{12}\right) e^{i \mathbf{q}_{3} \cdot \mathbf{r}_{3}}
$$

- And suppose I am interested in elastic neutron- ${ }^{19} \mathrm{C}$ scattering, what would the outgoing wave be?

$$
f\left(q_{3}, \theta_{3}\right) \psi\left(\mathbf{r}_{12}\right) \frac{e^{i q_{3} r_{3}}}{r_{3}}
$$

- But if I were interested in outgoing states with ${ }^{18} \mathrm{C}-(\mathrm{nn})$ states, what would the outgoing wave be?

"The physics is all in the boundary conditions"

- Suppose I want to do neutron- ${ }^{19} \mathrm{C}$ scattering? What would the incoming wave be?

$$
\psi\left(\mathbf{r}_{12}\right) e^{i \mathbf{q}_{3} \cdot \mathbf{r}_{3}}
$$

- And suppose I am interested in elastic neutron- ${ }^{19} \mathrm{C}$ scattering, what would the outgoing wave be?

$$
f\left(q_{3}, \theta_{3}\right) \psi\left(\mathbf{r}_{12}\right) \frac{e^{i q_{3} r_{3}}}{r_{3}}
$$

- But if I were interested in outgoing states with ${ }^{18} \mathrm{C}-(\mathrm{nn})$ states, what would the outgoing wave be?

$$
f_{\text {rearrange }}\left(q_{1}, \theta_{1}\right) \psi\left(\mathbf{r}_{23}\right) \frac{e^{i q_{1} r_{1}}}{r_{1}}
$$

"The physics is all in the boundary conditions"

- Suppose I want to do neutron- ${ }^{19} \mathrm{C}$ scattering? What would the incoming wave be?

$$
\psi\left(\mathbf{r}_{12}\right) e^{i \mathbf{q}_{3} \cdot \mathbf{r}_{3}}
$$

- And suppose I am interested in elastic neutron- ${ }^{19} \mathrm{C}$ scattering, what would the outgoing wave be?

$$
f\left(q_{3}, \theta_{3}\right) \psi\left(\mathbf{r}_{12}\right) \frac{e^{i q_{3} r_{3}}}{r_{3}}
$$

- But if I were interested in outgoing states with ${ }^{18} \mathrm{C}-(\mathrm{nn})$ states, what would the outgoing wave be?

$$
f_{\text {rearrange }}\left(q_{1}, \theta_{1}\right) \psi\left(\mathbf{r}_{23}\right) \frac{e^{i q_{1} r_{1}}}{r_{1}}
$$

- So we're going to need to specify different pieces of Ψ in order to specify what kind of reaction we're interested in

The Faddeev equations

- Decompose $|\Psi\rangle=|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle$
- Where $\left|\Psi_{i}\right\rangle=G_{0} V_{i}|\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the last interaction before particles go to the detector: that defines three separate outgoing boundary conditions
- Show that the resulting $|\Psi\rangle$ solves the 3B Schrödinger equation $\left(E-H_{0}\right)|\Psi\rangle=\left(V_{1}+V_{2}+V_{3}\right)|\Psi\rangle$
- Manipulate $\left|\Psi_{1}\right\rangle=G_{0} V_{1}\left(|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle\right)$ into a formal equation for $\left|\Psi_{1}\right\rangle$

The Faddeev equations

- Decompose $|\Psi\rangle=|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle$
- Where $\left|\Psi_{i}\right\rangle=G_{0} V_{i}|\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the last interaction before particles go to the detector: that defines three separate outgoing boundary conditions
- Show that the resulting $|\Psi\rangle$ solves the 3B Schrödinger equation $\left(E-H_{0}\right)|\Psi\rangle=\left(V_{1}+V_{2}+V_{3}\right)|\Psi\rangle$
- Manipulate $\left|\Psi_{1}\right\rangle=G_{0} V_{1}\left(|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle\right)$ into a formal equation for $\left|\Psi_{1}\right\rangle$

$$
\left.\left|\Psi_{i}\right\rangle=G_{0} t_{i}\left|\Phi>+G_{0} t_{i} \sum_{j \neq i}\right| \Psi_{j}\right\rangle
$$

The Faddeev equations

- Decompose $|\Psi\rangle=|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle$
- Where $\left|\Psi_{i}\right\rangle=G_{0} V_{i}|\Psi\rangle$ and $|\Phi\rangle$ is a three-body plane wave; separate wave function according to the last interaction before particles go to the detector: that defines three separate outgoing boundary conditions
- Show that the resulting $|\Psi\rangle$ solves the 3B Schrödinger equation $\left(E-H_{0}\right)|\Psi\rangle=\left(V_{1}+V_{2}+V_{3}\right)|\Psi\rangle$
- Manipulate $\left|\Psi_{1}\right\rangle=G_{0} V_{1}\left(|\Phi\rangle+\left|\Psi_{1}\right\rangle+\left|\Psi_{2}\right\rangle+\left|\Psi_{3}\right\rangle\right)$ into a formal equation for $\left|\Psi_{1}\right\rangle$

$$
\begin{gathered}
\left.\left|\Psi_{i}\right\rangle=G_{0} t_{i}\left|\Phi>+G_{0} t_{i} \sum_{j \neq i}\right| \Psi_{j}\right\rangle \\
\left|\Psi_{i}\right\rangle=G_{0} V_{i}|\Phi\rangle \equiv G_{0} T_{i}|\Phi\rangle \Rightarrow T_{i}=t_{i}+t_{i} \sum_{j \neq i} G_{0} T_{j}
\end{gathered}
$$

