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Outline of Lecture 3

• Reactions to continuum 

• Integral transform 

• Lanczos algorithm  

• Applications
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Reactions to continuum

a + b → c + d +...
Non-perturbative (hadronic)

Perturbative (e.g. electromagnetic)

𝜸(*) + b → c + d +...

Where a,b,c,d... are either single nucleons or bound nuclear systems 
In total: A nucleons involved A-body problem

3
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule)  

Perturbative Reactions

𝜸(*) + b → c + d +...

H| f i = Ef | f i

R(!) ⇠ |h f |Jµ| 0i|2�(! � Ef � E0)
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 
 

Perturbative Reactions

𝜸(*) + b → c + d +...

Energy transferred by 
the perturbative probe

R(!) ⇠ |h f |Jµ| 0i|2�(! � Ef � E0)
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 

Perturbative Reactions

𝜸(*) + b → c + d +...

Ground state of the target 
    A-body bound state!

R(!) ⇠ |h f |Jµ| 0i|2�(! � Ef � E0)
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 

Perturbative Reactions

𝜸(*) + b → c + d +...

     Fragmented target 
A-body continuum state!

R(!) ⇠ |h f |Jµ| 0i|2�(! � Ef � E0)
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 

Perturbative Reactions

𝜸(*) + b → c + d +...

Operator responsible of the interaction of the 
target with the perturbative probe

R(!) ⇠ |h f |Jµ| 0i|2�(! � Ef � E0)

NB: q is in the operator, but we omit it for simplicity
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 

Perturbative Reactions

𝜸(*) + b → c + d or  e+f or  …

X

f

Inclusive: summing on all possible final states 

=R(!) ⇠ |h f |Jµ| 0i|2�(! � Ef � E0)

H| f i = Ef | f i

X

f

| f ih f | = 1
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Electro-weak processes (photons, electrons, neutrinos)

•  First order perturbation theory  
    (Fermi-Golden Rule) 

Perturbative Reactions

X

f
=R(!) ⇠ |h f |Jµ| 0i|2�(! � Ef � E0)

 represents the crucial quantity 
Requires the solution of both 
the bound and continuum A-body problem 

R(!)
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Reactions to continuum

 
Excitation Energy

ground 
state

“

“
bound  

excited state
continuum

2-body break-up 3-body break-up ... A-body break-up

X

f
=R(!) ⇠ |h f |Jµ| 0i|2�(! � Ef � E0)

Exact knowledge limited in energy and mass number| f i
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Few-body: A≲12 Many-body: 12≲A≲100 or more 

• Faddeev Yakubowski (FY) • Coupled Cluster (CC)  

• Other Monte Carlo methods  

• IMSRG 

• Self consistent Green’s function 

• Hyperspherical Harmonics 
• NCSM 
• SVM

Ab-initio methods

Most representative approaches

• Quantum Monte Carlo

• Faddeev Yakubowski (FY) and variations 

• HH Kohn-Variational P. (2 fragments)

• NCSMC (only at very low energy)

• Complex scaling
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Why are there so few methods for reactions?
Why are they limited to low-energy? 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Scattering many-body problem

In configuration space 
(Schrödinger equation)

Very difficult to match  the asymptotic conditions in 
the solution of the coupled differential equations 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Scattering many-body problem

In momentum space 
(Lippmann-Schwinger equation)

Very difficult to cope with complicated poles in 
solving the coupled  integral equations 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Scattering many-body problem

Even before reaching the asymptotic condition all channels are coupled 
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Today

■ Faddeev: solved for scattering states for A=3 (1+2, 1+1+1) 
■ Faddeev-Yakubovsky: solved for scattering states for A=4, 

however, only up to 3-body break up (1+3, 2+2, 1+1+2,  not 
yet 1+1+1+1) 

■ Also some first results on A=5 (Lazauskas)
Bochum-Cracow school: (Gloeckle, Witala, Golak, Elster, Nogga...) 
Bonn-Lisabon-school (Sandhas, Fonseca, Sauer, Deltuva....) 
Config. Space: (Carbonell, Lazauskas...)

■ Alternative approach to 2+1, 3+1 scattering based on 
Kohn variational principle and correct asymptotic conditions

Pisa School: Kievsky, Viviani, Marcucci...

■ Similar idea for (A-1) + 1 in NCSMC

TRIUMF/LLNL: Navratil, Quaglioni, et al.
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Ab-initio methods
Benchmark for hadronic reaction

Phys. Rev. C 95, 034003 (2017) 

n-3He at 1 MeV

Θ[deg]



Sonia Bacca 19

R
ea

ct
io

ns
 

 s
ca

tte
rin

g 
st

at
es

St
ru

ct
ur

e 
B

ou
nd

 s
ta

te
s

Few-body: A≲12 Many-body: 12≲A≲100 or more 

• Faddeev Yakubowski (FY) • Coupled Cluster (CC)  

• Other Monte Carlo methods  

• IMSRG 

• Self consistent Green’s function 

• Hyperspherical Harmonics 
• NCSM 
• SVM

Ab-initio methods

Most representative approaches

• Quantum Monte Carlo

• Faddeev Yakubowski (FY) and variations 

• HH Kohn-Variational P. (2 fragments)

• NCSMC (only at very low energy)

• Complex scaling

Integral Transforms Methods
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One IS NOT able to calculate     
(the quantity of direct  physical meaning)  

but  IS able to calculate   

Integral Transforms

�(�) =

Z
d! K(!,�) R(!)

�(�)

R(!)

  In order to obtain            one needs to invert the transform  
Problem:
Sometimes the “inversion” of            may be  problematic  �(�)

R(!)
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R(!) =
X

f

|h f |⇥| 0i|2 �(! � Ef � E0)

�(�) =

Z
R(!)K(!,�) d!

Integral Transforms

Jµ

2) Use
X

f

| f ih f | = 1

�(�) = h 0|⇥†K(H � E0,�)⇥| 0iJµJµ†

=
X

f

h 0|⇥†K(H � E0,�)| f ih f |⇥| 0iJµJµ†

1) integrate in dω using delta function 

=
X

f

K(Ef � E0,�)h 0|⇥†| f ih f |⇥| 0iJµJµ†
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Sum rules are a kind of “Moment transform”   

    with n integer  

   

Example: sum rules

To obtain R(ω)  the  inversion of the transform  
is equivalent to the reconstruction of R(ω)  

by its moments (theory of moments)

�n=

Z
d! !n R(!)

K(!,�) = !n

However,       may be infinite for some n�n
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Example: Laplace Transform

In condensed matter physics, QCD and nuclear physics

�(�) =

Z
e�!�R(!)d! = h 0|⇥†e�(H�E0)�⇥| 0iJµJµ†
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Example: Laplace Transform

In condensed matter physics, QCD and nuclear physics

 σ = τ = imaginary time!  
Φ (τ) is calculated with Monte Carlo Methods  

and then inverted with Maximum likelyhood methods  

�(�) =

Z
e�!�R(!)d! = h 0|⇥†e�(H�E0)�⇥| 0iJµJµ†
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Integral Transform

�(�) =

Z
R(!)K(!,�) d! = h 0|⇥†K(H � E0,�)⇥| 0i

Matrix element on the ground state

The calculation of ANY transform seems to require, in principle,  
only the knowledge of the ground state! 

However, 
  can be quite a complicated operator. K(H � E0,�)

So, which kernel is suitable for the calculation?

JµJµ†
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Inversion 

�(�) =

Z
e�!�R(!)d!

It is well known that the numerical inversion of the  
Laplace Transform can be problematic
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R
Laplace transform

Φ

Inversion 

Illustration of the problem:

Numerical errors

???
σ⍵
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Φ ( σ ) = ∫ dω  K(ω,σ)R(ω )

 [R(ω )+A sin (νω)] 

If there is a numerical noise

In fact:

Inversion 

Illustration of the problem:
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Φ ( σ ) + Δ Φ(ν) = ∫ dω  K(ω,σ) [R(ω )+A sin (νω)] 

0

for very large  ν

independently on the  
amplitude A of the error!

Inversion 

Illustration of the problem:

Φ ( σ ) = ∫ dω  K(ω,σ)R(ω )

If there is a numerical noise

In fact:
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Best kernel
A “good” Kernel has to satisfy two requirements 

1) one must be able to calculate the integral transform 

2) one must be able to invert the transform minimizing uncertainties 
   

Which is the best kernel?

The δ-function?

Back to the original problem ….

Φ ( σ ) = ∫ δ( ω − σ ) R(ω) = R(σ) ω
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Best kernel

… but what about a representation of the  
δ-function?
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Lorentzian kernel

�

�

It is a representation of the  δ-function 

L(�,�) =
�

⇡

Z
d!

R(!)

(! � �)2 + �2

Efros, et al., JPG.: Nucl.Part.Phys.  34 (2007) R459 Lorentz Integral Transform (LIT) 

K(!,�,�) =
�

⇡

1

(! � �)2 + �2



Illustration of requirement N.1:  
One can calculate the integral transform
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Lorentz Integral Transform

L(�,�) = h 0|⇥†K(H � E0,�,�)⇥| 0i

K(!,�,�) =
�

⇡

1

(! � �)2 + �2

K(!,�,�) =
�

⇡

1

(! � � � i�)(! � � + i�)

Jµ

⌧
 0|Ô

1

H � E0 � � � i�

1

H � E0 � � + i�
Ô| 0

�
=L(�,�) ⇥† JµJµ†

Jµ†
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Lorentz Integral Transform

L(�,�) = h 0|⇥†K(H � E0,�,�)⇥| 0i

K(!,�,�) =
�

⇡

1

(! � �)2 + �2

K(!,�,�) =
�

⇡

1

(! � � � i�)(! � � + i�)

��� ̃
E=

Jµ

⌧
 0|Ô

1

H � E0 � � � i�

1

H � E0 � � + i�
Ô| 0

�
=L(�,�) ⇥† JµJµ†

Jµ†
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Lorentz Integral Transform

main point of the LIT :

(H � E0 � � + i�)|⇥̃⇥ = Ô|⇥0⇥⇥

Schrödinger-like equation with a source

•  Due to imaginary part     the solution        is unique 

•  Since rhs is finite,        has bound state asymptotic behaviour

� |�̃�
|�̃�

Efros, et al., JPG.: Nucl.Part.Phys.  34 (2007) R459 

Can solve it with bound state methods

Jµ



Illustration of requirement N.2:   
One can invert  the integral transform 
minimizing uncertainties
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R
Lorentz transform

Φ

σ

How can one easily understand why the inversion is    
much less problematic?

!!!

⍵ blurred, but still distinguishable 

Numerical errors

also with errors

Inversion 



Sonia Bacca 39

R(!) =
I
maxX

i

ci�i(!,↵) L(�,�) =
I
maxX

i

ciL[�i(!,↵)]

Regularization method

(from A.I N.Tikhonov, “Solutions of ill posed problems”, 
Scripta series in mathematics  (Winston,1977).

11 Integral transform is a linear operation

Least square fit of the coefficients ci  to reconstruct the response function

R(!) =
I
maxX

i

ci�i(!,↵) L(�,�) =
I
maxX

i

ciL[�i(!,↵)]

Regularization: find a range of Imax where results are stable 

�i(!,↵) = !i+ 1
2 e�

!
↵

Possible basis functions to invert are: 

�i(!,↵) = !n0e�
!
i↵ ,with n0 const.

Exercise
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20 40 60 80 100
 ω [MeV]

0

0.1

0.2

0.3

0.4

0.5

S(
ω

) [
m

b/
M

eV
]

Γ=20 MeV
Γ=10 MeV

4He

R

Regularization method

Strong test: different values of range of      and check stability�

Photoabsoprtion of 4He
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0 30 60 90 120 150

Nucl.Phys. A707  365 (2002)     

The LIT method has been benchmarked with other few-body methods where          is 
calculated directly using same dynamical ingredients

| f i

With Fadeev approach 

Benchmark of the LIT
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The LIT method has been benchmarked with other few-body methods where          is 
calculated directly using same dynamical ingredients

| f i

With variational approach (HH)

Phys.Rev.C 69 (2004)     

Benchmark of the LIT
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Other remarks on the LIT
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Taking the imaginary part only 

⇒

Sokhotski formula

Jµ

Jµ

Rewriting the response function

NB: Slightly simplified     
       notation
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R(ω)=−1/π Ιm [Σf＜0|J+|f＞＜f| J |0＞] (ω−Εf+ Ε0+ ιε )-1]

Like a Green’s function with poles on the real axis

       =-1/π Ιm [Σf＜0| J+ (ω−Εf+ Ε0+ ιε )-1 |f＞＜f|J |0＞]

       =-1/π Ιm [Σf＜0| J+ (ω−H+ Ε0+ ιε )-1 |f＞＜f|J |0＞] 
H|f＞=Εf|f＞

    = 1/π Ιm [Σf＜0| J+(Η – ω − Ε0- ιε )-1|f＞＜f|J |0＞]
change sign

    = -1/π Ιm [＜0| J+(Η – ω− Ε0+ιε )-1 J |0＞] 
Σf|f＞＜f|=1 and change sign

Rewriting the response function
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L (σ, 𝚪 )  = 𝚪/π ∫ dωR(ω)[(ω − σ)2+ 𝚪 2 ]−1  

 = 𝚪/π Σ 
f＜ 0 | Jµ+  [(Η − Ε0 − σ)2+ 𝚪 2 ]−1 |f＞＜f|Jµ | 0＞

= 𝚪/π ∫ dωΣ f |＜f| Jµ|0＞|2 δ (ω−Εf+Ε0)  [(ω − σ)2+ 𝚪 2 ]−1  

= 𝚪 /π ＜ 0 | Jµ+  [(Η − Ε0 − σ)2+ 𝚪 2 ]−1  Jµ| 0＞

Completness

-Im [(Η − Ε
0
- σ + i 𝚪 

  )−1] =  

-Im[(Η − Ε
0
− σ + i 𝚪 

  )−1 (Η − Ε
0
− σ -i 𝚪)−1(Η − Ε

0
− σ-i 𝚪)] = 

=𝚪 [(Η − Ε
0
 − σ)2+ 𝚪 2 ]−1

  =-1/π Im [＜ 0 | Jµ+  (Η − Ε0− σ+ i 𝚪 
  )−1 Jµ  | 0＞]

Finite, not infinitesimal

Integrate delta and use H|f＞=Εf|f＞

Rewriting the LIT
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ε infinitesimal

   R(ω) = - 1/π Ιm [＜0| J+(Η – ω− Ε0+ ιε )-1 J |0＞] 

 L (σ, 𝚪 ) =-1/π Im [＜ 0 | J+  (Η − Ε0− σR+ i 𝚪 
  )−1 J | 0＞]

 𝚪 finite, not infinitesimal

Of course, when ε= 𝚪 then R(ω)= L (σ, 𝚪 ) 
That is indeed the case where the Kernel is the delta function 

However, due to the fact that 𝚪 is finite and L (σ, 𝚪 ) 
is finite, one is allowed to use bound -state techniques to calculate it

Summarizing 
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Algorithm used to tri-diagonalize matrices

1) Choose first Lanczos vector 

2)  Use recursive definition to find the other Lanczos vectors 

With

3)  Matrix represented on the Lanczos vectors is tridiagonal

Can diagonalize it using  
Numerical Recipes routine, 
e.g. TQLI

Lanczos Algorithm
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For large scale eigenvalue problems, e.g. calculations with hyper-spherical harmonics

Generally, diagonalizing a matrix is a N3 operation    
With the Lanczos algorithm you can reduce it to nN2 with n = max(iter)< N

0 500 1000 1500 2000

iter

10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101
102
103
104

|E
0(it

er
)-E

0|

A=4, Kmax=8

A=4, Kmax=10

A=6, Kmax=6

Minnesota potential

N=3090 N=6510

N=7110

Kmax is here the 

Grandangular momentum

See N. Barnea’s lectures

Lanczos Algorithm
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The algorithm can be also used calculate the LIT

1) Choose first Lanczos vector 

LIT with Lanczos Algorithm

L(�,�) = � 1

⇡
Im

⇥
h0|J†(H � E0 � �R + i�)�1J |0i

⇤

Using the Lanczos algorithm one can represent            
as a continuum fraction of the Lanczos coefficients
  

(H � E0 � �R + i�)�1

2)  After applying the recursive definition you obtain

J†J

z = E0 + � + i�with Exercise
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Detailed derivation
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Detailed derivation
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Detailed derivation
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Detailed derivation
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The Lanczos algorithm involves just a matrix-vector multiplication (N2)

Continues fractions converge fast 

Advantages

Again, with the Lanczos algorithm the computational load is 
becoming nN2 with n = max(iter)< N

-20 0 20 40 60 80 100 120
 ω0 [MeV]

-20

-10

0

10

20

30r N
  (

%
)

-20

-10

0

10

20

30
20
40
60

16O

4He

(a)

(b)

N

ra
tio

%

n

�[MeV]

LIT with Lanczos Algorithm

See that as 
an exercise
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Strength building up from Lanczos vectors   (LIT with small Γ)
Movie from M.Miorelli

D
is

cr
et

iz
ed

 re
sp

on
se

Energy [MeV]

LIT with Lanczos Algorithm



Applications

Some more applications
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 Do these nuclei respond differently to em probes?

6He6Li

We did calculate them with Hyper-spherical Harmonics and the LIT
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0 20 40 60 80 100
ω [MeV]

0

1

2

3

4

σ
γ [

m
b]

6He

Photo-absorption reaction  

AV4’ potential
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0 20 40 60
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100

6Li
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γ
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⇤�(⌅) = 4⇥2�⌅RE1(⌅)
S.Bacca et al, PRL 89 052502 (2002) 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0 20 40 60 80 100
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neutronsprotons

Giant Dipole Resonance
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Photo-absorption reaction  

⇤�(⌅) = 4⇥2�⌅RE1(⌅) AV4’ potential

S.Bacca et al, PRL 89 052502 (2002) 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0 20 40 60 80 100
ω [MeV]
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m
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6He
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3
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σ

80
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100

6Li

AV4’

ω  [MeV]

γ

6Li

Soft-dipole Mode Giant Dipole Mode

neutronsneutron halo protonsα-core

potenti
al Signatures 

of the halo 

Photo-absorption reaction  

⇤�(⌅) = 4⇥2�⌅RE1(⌅) AV4’ potential

S.Bacca et al, PRL 89 052502 (2002) 

neutronsprotons

Giant Dipole Resonance
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• Calculate every multipole on a grid of q 

• Multipole expansion converges with finite number of multipoles 

• Solve LIT equation for every multipole 

• Invert LIT for every multipole and sum equiv to invert sum of LITs          

RL(⇤,q) =
⌅⇤

f

|⇥�f | ⇥(q) |�0⇤|2 �

�
Ef � E0 � ⇤ +

q2

2M

⇥

�(q) =
�

k

eiq·r�
k
1 + ⇥3

k

2
=

�

J

CS
J (q) + CV

J (q)
1A

Inelastic Electron Scattering
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Inelastic Electron Scattering

  Final state interaction

40 60 80 100 120 140 160 180
ω [MeV]

0

5

10

15

20

R L[1
0-3

M
eV

-1
]

FSI
PWIA

60 90 120 150 180 210 240
ω [MeV]

0

2

4

6

8

10

12

q=300 MeV/c

q=300 MeV/c q=400 MeV/c

(a)

(a) (b)

SB et al., PRL 102, 162501 (2009)

PWIA Full FSI:
AV18+UIX

 Strong effect of FSI:  known form Carlson and Schiavilla PRL 68 (1992) and PRC 49 R2880 (1994) 
 but now we can look at the energy dependence of FSI 

e’

He

*

H3
4

e
pγ

4He with Hyper-spherical Harmonics

4He
4He
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Inelastic Electron Scattering

40Ca

  Final state interaction
Sobczyk, Acharya, SB, Hagen, PRL 127, 072501 (2021)

40Ca with coupled-cluster theory
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4He(e,e’)0+     Monopole  Resonance 

|FM(q)|2 =
1

Z2

Z
d!Rres

M(q,!)
0+1 �! 0+2

E⇤
R

�R = 270± 70 keV

    Resonant Transition Form Factor 

First ab-initio calculation: Hiyama et al., PRC 70 031001 (2004)
obtained good description of data with phenomenological central 3NF 
but not with realistic forces

0 1 2 3 4

q
2 

 [fm
-2

]

0

1

2

3

4

5

|F
M

 |2 /4
π

  1
0-4

Koebschall et al. 
Walcher 
Frosch et al. 
Hiyama et al.
AV18+UIX

NN(N
3
LO)+

3NF(N
2
LO)

EFT forces
conventional forces

Central 3N force

SB et al., PRL 110, 042503 (2013)

Pronounced sensitivity to the 
input Hamiltonian 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EFT potentials

|FM(q)|2 =
1

Z2

Z
d!Rres

M(q,!)    Resonant Transition Form Factor 
0+1 �! 0+2

4He(e,e’)0+     Monopole  Resonance 

Kegel et al., arXiv:2112.10582 

Disagreement now is even 
stronger!  
Probably a problem of the 
Hamiltonian 

New electron scattering experiment was performed at MAMI in Mainz 
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Thank you for your attention


