

Few-body Reactions

Lecture 3

Integral Transforms

Sonia Bacca

- Reactions to continuum
- Integral transform
- Lanczos algorithm
- Applications

Reactions to continuum

Perturbative (e.g. electromagnetic)

$$\gamma(*) + b \rightarrow c + d + \dots$$

Non-perturbative (hadronic)

 $a + b \rightarrow c + d + ...$

Where a,b,c,d... are either single nucleons or bound nuclear systems In total: A nucleons involved A-body problem

$$R(\omega) \sim |\langle \Psi_f | J^\mu | \Psi_0 \rangle|^2 \delta(\omega - E_f - E_0)$$

$$H|\psi_f\rangle = E_f|\psi_f\rangle$$

$$\gamma(*) + p \rightarrow c + d + \dots$$

• First order perturbation theory (Fermi-Golden Rule)

$$R(\omega) = \sum_{f} |\langle \Psi_f | J^{\mu} | \Psi_0 \rangle|^2 \delta(\omega - E_f - E_0)$$

 $R(\omega)$ represents the crucial quantity Requires the solution of both the bound and continuum A-body problem

Reactions to continuum

$$R(\omega) = \sum_{f} |\langle \Psi_f | J^{\mu} | \Psi_0 \rangle|^2 \delta(\omega - E_f - E_0)$$

$$|\Psi_f
angle$$
 Exact knowledge limited in energy and mass number

Ab-initio methods

Most representative approaches

	Few-body: A≲12	Many-body: 12≲A≲100 or more
Structure Bound states	 Faddeev Yakubowski (FY) Hyperspherical Harmonics NCSM SVM Quantum Monte Carlo 	 Coupled Cluster (CC) Other Monte Carlo methods IMSRG Self consistent Green's function
Reactions scattering states	 Faddeev Yakubowski (FY) and variations HH Kohn-Variational P. (2 fragments) NCSMC (only at very low energy) Complex scaling 	

Why are there so few methods for reactions? Why are they limited to low-energy?

In configuration space (Schrödinger equation)

Very difficult to match the asymptotic conditions in the solution of the coupled differential equations In momentum space (Lippmann-Schwinger equation)

Very difficult to cope with complicated poles in solving the coupled integral equations

JG U Scattering many-body problem

Even before reaching the asymptotic condition all channels are coupled

Today

- Faddeev: solved for scattering states for A=3 (1+2, 1+1+1)
- Faddeev-Yakubovsky: solved for scattering states for A=4, however, only up to 3-body break up (1+3, 2+2, 1+1+2, not yet 1+1+1+1)
- Also some first results on A=5 (Lazauskas)

Bochum-Cracow school: (Gloeckle, Witala, Golak, Elster, Nogga...) Bonn-Lisabon-school (Sandhas, Fonseca, Sauer, Deltuva....) Config. Space: (Carbonell, Lazauskas...)

 Alternative approach to 2+1, 3+1 scattering based on Kohn variational principle and correct asymptotic conditions

Pisa School: Kievsky, Viviani, Marcucci...

Similar idea for (A-1) + 1 in NCSMC

TRIUMF/LLNL: Navratil, Quaglioni, et al.

Ab-initio methods

Benchmark for hadronic reaction

Phys. Rev. C 95, 034003 (2017)

Ab-initio methods

Most representative approaches

	Few-body: A≲12	Many-body: 12≲A≲100 or more
Structure Bound states	 Faddeev Yakubowski (FY) Hyperspheric< NCSM SVM Guantum Monte Carlo 	 Coupled Cluster (CC) Other Monte Carlo methods IMSRG Seconsistent Green's function
Reactions scattering states	 Faddeev Yakubowski (FY) and variations HH Kohn-Variational P. (2 fragments) NCSMC (only at very low energy) Complex scaling 	

Integral Transforms

GU

$$\phi(\sigma) = \int d\omega \ K(\omega, \sigma) \ R(\omega)$$

One **IS NOT** able to calculate $R(\omega)$ (the quantity of direct physical meaning) but **IS** able to calculate $\phi(\sigma)$

In order to obtain $R(\omega)$ one needs to invert the transform Problem: Sometimes the "inversion" of $\phi(\sigma)$ may be problematic

$$R(\omega) = \sum_{f} |\langle \psi_{f} | J^{\mu} | \psi_{0} \rangle|^{2} \, \delta(\omega - E_{f} - E_{0})$$

$$\Phi(\sigma) = \int R(\omega) K(\omega, \sigma) \, d\omega$$
1) integrate in d ω using delta function
$$= \sum_{f} K(E_{f} - E_{0}, \sigma) \langle \psi_{0} | J^{\mu \dagger} | \psi_{f} \rangle \langle \psi_{f} | J^{\mu} | \psi_{0} \rangle$$

$$= \sum_{f} \langle \psi_{0} | J^{\mu \dagger} K(H - E_{0}, \sigma) | \psi_{f} \rangle \langle \psi_{f} | J^{\mu} | \psi_{0} \rangle$$
2) Use $\sum_{f} |\psi_{f} \rangle \langle \psi_{f}| = 1$

$$\phi(\sigma) = \langle \psi_{0} | J^{\mu \dagger} K(H - E_{0}, \sigma) J^{\mu} | \psi_{0} \rangle$$

Example: sum rules

$$\phi_n = \int d\omega \,\,\omega^n \,\, R(\omega)$$

Sum rules are a kind of "Moment transform" $K(\omega, \sigma) = \omega^n$ with n integer

To obtain $R(\omega)$ the inversion of the transform is equivalent to the reconstruction of $R(\omega)$ by its moments (theory of moments)

However, ϕ_n may be infinite for some n

Example: Laplace Transform

$$\phi(\sigma) = \int e^{-\omega\sigma} R(\omega) d\omega = \langle \psi_0 | J^{\mu\dagger} e^{-(H - E_0)\sigma} J^{\mu} | \psi_0 \rangle$$

In condensed matter physics, QCD and nuclear physics

$$\phi(\sigma) = \int e^{-\omega\sigma} R(\omega) d\omega = \langle \psi_0 | J^{\mu\dagger} e^{-(H - E_0)\sigma} J^{\mu} | \psi_0 \rangle$$

In condensed matter physics, QCD and nuclear physics

 $\sigma = \tau = \text{imaginary time!}$ $\Phi(\tau)$ is calculated with Monte Carlo Methods

and then inverted with Maximum likelyhood methods

Integral Transform

$$\Phi(\sigma) = \int R(\omega) K(\omega, \sigma) \, d\omega = \langle \psi_0 | J^{\mu \dagger} K(H - E_0, \sigma) J^{\mu} | \psi_0 \rangle$$

Matrix element on the ground state

The calculation of **ANY** transform seems to require, **in principle**, only the knowledge of the ground state! **However**,

 $K(H - E_0, \sigma)$ can be quite a complicated operator.

So, which kernel is suitable for the calculation?

JGU

It is well known that the numerical inversion of the **Laplace** Transform can be problematic

Illustration of the problem:

Illustration of the problem:

In fact:
$$\Phi(\sigma) = \int d\omega K(\omega,\sigma)R(\omega)$$

If there is a numerical noise

Illustration of the problem:

In fact:
$$\Phi(\sigma) = \int d\omega K(\omega,\sigma)R(\omega)$$

If there is a numerical noise

$$\Phi(\sigma) + \Delta \Phi(v) = \int d\omega \ K(\omega,\sigma) \left[R(\omega) + A \sin(v\omega) \right]$$

for very large v
0 independently on the amplitude A of the error!

Best kernel

A "good" Kernel has to satisfy two requirements

- 1) one must be able to calculate the integral transform
- 2) one must be able to invert the transform minimizing uncertainties

Which is the best kernel?

The δ -function?

$$\Phi(\sigma) = \int \delta(\omega - \sigma) \mathbf{R}(\omega) = \mathbf{R}(\sigma)$$

Back to the original problem

... but what about a representation of the δ -function?

Lorentzian kernel

It is a representation of the δ -function

$$L(\boldsymbol{\sigma}, \boldsymbol{\Gamma}) = \frac{\Gamma}{\pi} \int d\omega \frac{R(\omega)}{(\omega - \boldsymbol{\sigma})^2 + \Gamma^2}$$

Lorentz Integral Transform (LIT) Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

Illustration of requirement N.1: One can calculate the integral transform

Lorentz Integral Transform

JGU

$$L(\sigma, \Gamma) = \langle \psi_0 | J^{\mu \dagger} K(H - E_0, \sigma, \Gamma) J^{\mu} | \psi_0 \rangle$$

$$K(\omega, \sigma, \Gamma) = \frac{\Gamma}{\pi} \frac{1}{(\omega - \sigma)^2 + \Gamma^2}$$
$$K(\omega, \sigma, \Gamma) = \frac{\Gamma}{\pi} \frac{1}{(\omega - \sigma - i\Gamma)(\omega - \sigma + i\Gamma)}$$

$$L(\sigma,\Gamma) = \left\langle \psi_0 | J^{\mu} \frac{\dagger}{H - E_0 - \sigma} - i\Gamma \frac{1}{H - E_0 - \sigma + i\Gamma} J^{\mu} | \psi_0 \right\rangle \frac{\Gamma}{\pi}$$

Lorentz Integral Transform

JGU

$$L(\sigma, \Gamma) = \langle \psi_0 | J^{\mu \dagger} K(H - E_0, \sigma, \Gamma) J^{\mu} | \psi_0 \rangle$$

$$K(\omega, \sigma, \Gamma) = \frac{\Gamma}{\pi} \frac{1}{(\omega - \sigma)^2 + \Gamma^2}$$
$$K(\omega, \sigma, \Gamma) = \frac{\Gamma}{\pi} \frac{1}{(\omega - \sigma - i\Gamma)(\omega - \sigma + i\Gamma)}$$

$$\begin{split} L(\sigma,\Gamma) &= \left\langle \psi_0 | J^{\mu} \frac{\dagger}{H - E_0} - \frac{1}{\sigma - i\Gamma} \frac{1}{H - E_0 - \sigma + i\Gamma} J^{\mu} | \psi_0 \right\rangle \frac{\Gamma}{\pi} \\ &= \left\langle \tilde{\psi} | \tilde{\psi} \right\rangle \frac{\Gamma}{\pi} \end{split}$$

main point of the LIT :

Schrödinger-like equation with a source

$$(H - E_0 - \sigma + i\Gamma)|\tilde{\Psi}\rangle = J^{\mu}|\Psi_0\rangle$$

- Due to imaginary part Γ the solution $| \widetilde{\psi}
 angle$ is unique
- Since rhs is finite, $| \tilde{\psi}
 angle$ has bound state asymptotic behaviour

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

Illustration of requirement N.2: One can invert the integral transform minimizing uncertainties

How can one easily understand why the inversion is **much less** problematic?

Regularization method

(from A.I N.Tikhonov, "Solutions of ill posed problems", Scripta series in mathematics (Winston, 1977).

Least square fit of the coefficients c_i to reconstruct the response function

Regularization: find a range of I_{max} where results are stable

Possible basis functions to invert are:

$$\chi_i(\omega, \alpha) = \omega^{i + \frac{1}{2}} e^{-\frac{\omega}{\alpha}}$$
 Exercise
 $\chi_i(\omega, \alpha) = \omega^{n_0} e^{-\frac{\omega}{i\alpha}}$, with n_0 const.

Regularization method

Strong test: different values of range of Γ and check stability

Benchmark of the LIT

The LIT method has been benchmarked with other few-body methods where $|\psi_f\rangle$ is calculated directly using same dynamical ingredients

With Fadeev approach

Nucl.Phys. A707 365 (2002)

Benchmark of the LIT

The LIT method has been benchmarked with other few-body methods where $|\psi_f\rangle$ is calculated directly using same dynamical ingredients

With variational approach (HH)

Other remarks on the LIT

Rewriting the response function

$$R(\omega) = \sum_{f} |\langle f|J^{\mu}|0\rangle|^2 \,\delta(\omega - E_f - E_0)$$

NB: Slightly simplified notation

Sokhotski formula

$$\frac{1}{x+i\epsilon} = \mathcal{P} \int dx \frac{1}{x} - i\delta(x)\pi \qquad \quad \epsilon \to 0$$

Taking the imaginary part only

$$\operatorname{Im} \frac{1}{x + i\epsilon} = -\delta(x)\pi \quad \Rightarrow \quad \delta(x) = -\frac{1}{\pi} \operatorname{Im} \frac{1}{x + i\epsilon}$$
$$R(\omega) = -\frac{1}{\pi} \operatorname{Im} \left[\sum_{f} |\langle f|J^{\mu}|0\rangle|^{2} \frac{1}{\omega - E_{f} - E_{0} + i\epsilon} \right]$$

$$\begin{aligned} \mathsf{R}(\omega) &= -1/\pi \ \text{Im} \left[\sum_{f} < 0 | \mathsf{J}^{+} | \mathsf{f} > <\mathsf{f} | \mathsf{J} | 0 > \right] (\omega - \mathsf{E}_{\mathsf{f}} + \mathsf{E}_{0} + \imath \varepsilon)^{-1} \\ &= -1/\pi \ \text{Im} \left[\sum_{f} < 0 | \mathsf{J}^{+} (\omega - \mathsf{E}_{\mathsf{f}} + \mathsf{E}_{0} + \imath \varepsilon)^{-1} | \mathsf{f} > <\mathsf{f} | \mathsf{J} | 0 > \right] \\ &= -1/\pi \ \text{Im} \left[\sum_{f} < 0 | \mathsf{J}^{+} (\omega - \mathsf{H} + \mathsf{E}_{0} + \imath \varepsilon)^{-1} | \mathsf{f} > <\mathsf{f} | \mathsf{J} | 0 > \right] \\ &= 1/\pi \ \text{Im} \left[\sum_{f} < 0 | \mathsf{J}^{+} (\mathsf{H} - \omega - \mathsf{E}_{0} - \imath \varepsilon)^{-1} | \mathsf{f} > <\mathsf{f} | \mathsf{J} | 0 > \right] \\ &= -1/\pi \ \text{Im} \left[\sum_{f} < 0 | \mathsf{J}^{+} (\mathsf{H} - \omega - \mathsf{E}_{0} - \imath \varepsilon)^{-1} | \mathsf{f} > <\mathsf{f} | \mathsf{J} | 0 > \right] \\ &= -1/\pi \ \text{Im} \left[< 0 | \mathsf{J}^{+} (\mathsf{H} - \omega - \mathsf{E}_{0} + \imath \varepsilon)^{-1} \mathsf{J} | 0 > \right] \\ &= Like \ a \ Green's \ function \ with \ poles \ on \ the \ real \ axis \end{aligned}$$

=-1/ π Im [< 0 | J^{µ+} (H – E₀– σ + i Γ)⁻¹ J^µ | 0>]

-Im [(H – $E_0 - \sigma + i \Gamma)^{-1}$] = $-\text{Im}[(H - E_0^{-} \sigma + i \Gamma)^{-1} (H - E_0^{-} \sigma - i \Gamma)^{-1} (H - E_0^{-} \sigma - i \Gamma)] =$ Finite, not infinitesimal = $\Gamma [(H - E_0 - \sigma)^2 + \Gamma^2]^{-1}$

Completness

$$= \Gamma / \pi < 0 | J^{\mu +} [(H - E_0 - \sigma)^2 + \Gamma^2]^{-1} J^{\mu} | 0 > 0$$

$$= \Gamma/\pi \sum_{f} < 0 \mid J^{\mu+} [(H - E_0 - \sigma)^2 + \Gamma^2]^{-1} \mid f > < f \mid J^{\mu} \mid 0 >$$

Integrate delta and use $H|f>=E_{f}|f>$

$$= \Gamma/\pi \int d\omega \sum_{f} ||^{2} \delta (\omega-E_{f}+E_{0}) [(\omega - \sigma)^{2}+ \Gamma^{2}]^{-1}$$

L (σ , Γ) = $\Gamma/\pi \int d\omega R(\omega)[(\omega - \sigma)^2 + \Gamma^2]^{-1}$

Summarizing

$$R(\omega) = -1/\pi \operatorname{Im} \left[<0 \right| J^{+}(H - \omega - E_{0}^{+} \iota \epsilon)^{-1} J \left| 0 > \right]$$

$$\uparrow$$

$$\epsilon \text{ infinitesimal}$$

L (
$$\sigma$$
, Γ) =-1/ π Im [< 0 | J⁺ (H – E₀– σ_R + i Γ)⁻¹ J | 0>]

 Γ finite, not infinitesimal

Of course, when $\varepsilon = \Gamma$ then R(ω)= L (σ , Γ)

That is indeed the case where the Kernel is the delta function

However, due to the fact that Γ is finite and L ($\sigma,\,\Gamma$) is finite, one is allowed to use bound -state techniques to calculate it

Lanczos Algorithm

Algorithm used to tri-diagonalize matrices $H \longrightarrow H_{tr}$

1) Choose first Lanczos vector $|\phi_0
angle$

2) Use recursive definition to find the other Lanczos vectors

$$\begin{split} b_{n+1} & |\phi_{n+1}\rangle = H |\phi_n\rangle - a_n |\phi_n\rangle - b_n |\phi_{n-1}\rangle \\ \text{With} \ a_n &= \langle \phi_n | \, H \, |\phi_n\rangle \\ & b_n &= \|b_n \, |\phi_n\rangle \| \end{split}$$

3) Matrix represented on the Lanczos vectors is tridiagonal

$$H_{tr} = \begin{pmatrix} a_0 & b_1 & 0 & 0 & \dots \\ b_1 & a_1 & b_2 & 0 & \dots \\ 0 & b_2 & a_2 & b_3 & \dots \\ 0 & \dots & \dots & \dots & \dots \end{pmatrix}$$

Can diagonalize it using Numerical Recipes routine, e.g. TQLI

Lanczos Algorithm

For large scale eigenvalue problems, e.g. calculations with hyper-spherical harmonics See N. Barnea's lectures

Generally, diagonalizing a matrix is a N³ operation With the Lanczos algorithm you can reduce it to nN^2 with n = max(iter) < N

K_{max} is here the Grandangular momentum

JG U LIT with Lanczos Algorithm

The algorithm can be also used calculate the LIT

$$L(\sigma, \Gamma) = -\frac{1}{\pi} Im \left[\langle 0 | J^{\dagger} (H - E_0 - \sigma_R + i\Gamma)^{-1} J | 0 \rangle \right]$$

Using the Lanczos algorithm one can represent as a continuum fraction of the Lanczos coefficients $(H - E_0 - \sigma_R + i\Gamma)^{-1}$

1) Choose first Lanczos vector
$$|\phi_0\rangle = \frac{\Theta|0\rangle}{\sqrt{\langle 0|\Theta^{\dagger}\Theta|0\rangle}}$$

2) After applying the recursive definition you obtain

$$L(\sigma) = -\frac{1}{\pi} \langle 0 | J^{\dagger}J | 0 \rangle Im \left\{ \frac{1}{(z-a_0) - \frac{b_1^2}{(z-a_1) - \frac{b_2^2}{(z-a_2) - b_3^2 \dots}}} \right\}$$

with $z = E_0 + \sigma + i\Gamma$

Exercise

LIT with LANCEDS method $L(\sigma, \Gamma) = \frac{1}{\pi} \lim_{t \to \infty} \int (01J^{\mu t} \frac{1}{H - E_{0} - F - 2T} J^{\mu} | 0 \rangle)$ Defining $\mathcal{E} = E_0 + \nabla + i\Gamma$, we see that (LG, Γ) has the operator L; H-z We want $\frac{1}{7-H}$, so we change sign. $L(\nabla_{i} \Gamma) = -\frac{1}{\pi} \lim_{t \to 0} \int (O I J^{+} \frac{1}{2-H} - J^{+} I O) \int_{O} \int_{O} \frac{1}{1} \int_{O} \frac{1}$ Now we apply the Lauczos abjorithm wring the starting Lanczos vector $|\overline{\Phi}_{0}\rangle = \frac{J^{4}|0\rangle}{|\langle 0|J^{+}J^{+}|0\rangle}$; then $H \longrightarrow H_{tre}$ (tri-diagonal matrix interms of the Lamczos coefficients) $= 1 \text{ we see that } (CG_{1}\Gamma) \longrightarrow \langle \overline{\Phi}_{0}| \underbrace{1}_{Z-H_{4r}} | \overline{\Phi}_{0} \rangle$

$$(2 - H_{tr_{2}})(2 - H_{tr_{2}})^{-1} = \underline{I}$$

$$= p \text{ in components } \sum_{n} (2 - H_{tr_{2}})_{mm} (2 - H_{tr_{2}})_{mp}^{-1} = S_{mp}$$

$$= p \text{ for the case of } p = 0 : \sum_{n} (2 - H_{tr_{2}})_{mq} (2 - H_{tr_{2}})_{m0}^{-1} = S_{mo}$$

$$= p \text{ for the case of } p = 0 : \sum_{n} (2 - H_{tr_{2}})_{mq}^{-1} = X_{nv}$$

$$= p \quad X_{0} = (2 - H_{tr_{2}})_{m0}^{-1} = X_{nv}$$

$$= p \quad X_{0} = (2 - H_{tr_{2}})_{m0}^{-1} = \langle \Phi_{0}| \frac{1}{2 - H_{tr_{2}}} | \Phi_{0} \rangle$$

$$\text{ This is what we have the the substraints is the second of the secon$$

$$det D_{1} = (2-a_{1})det D_{2} - b_{2}^{2} det D_{2}$$

$$= \overline{det D_{2}} = \frac{det D_{2}}{(2-a_{1})det D_{2} - b_{1}^{2} det D_{3}} = \frac{1}{(2-a_{1}) - b_{1}^{2} det D_{3}}$$

$$Putting this into our K_{0} we get$$

$$X_{0} = \left\{ \frac{1}{2-a_{0}} - \frac{b_{1}^{2}}{(2-a_{1}) - b_{1}^{2}} - \frac{1}{(2-a_{1}) - b_{1}^{2} det D_{3}} - \frac{1}{(2-a_{1}) - b_{1}^{2} det D_{3}} \right\}$$

$$Continued fraction under the law comparison of the law compari$$

=> Appetopether you dotain that

$$L(T,T) = -\frac{1}{\pi} \quad \langle 0|J^{AT}J^{A}|0\rangle \quad Jm \int \frac{1}{2-\varphi - b_{1}^{2}} \int \frac{1}{(2-\varphi)^{2} - b_{2}^{2}} \int \frac{1}{(2-\varphi)^{2}} \int \frac{1$$

1

Advantages

The Lanczos algorithm involves just a matrix-vector multiplication (N²)

Continues fractions converge fast

Again, with the Lanczos algorithm the computational load is becoming nN^2 with n = max(iter) < N

See that as an exercise

Some more applications

Do these nuclei respond differently to em probes?

We did calculate them with Hyper-spherical Harmonics and the LIT

Photo-absorption reaction

JGU

Photo-absorption reaction

JGU

Photo-absorption reaction

IGU

JGIL

$$R_{L}(\omega, \mathbf{q}) = \sum_{f} \left| \langle \Psi_{f} | \rho(\mathbf{q}) | \Psi_{0} \rangle \right|^{2} \delta \left(E_{f} - E_{0} - \omega + \frac{\mathbf{q}^{2}}{2M} \right)$$

$$\boldsymbol{\rho}(\mathbf{q}) = \sum_{k}^{A} e^{i\mathbf{q}\cdot\mathbf{r}_{k}'} \frac{1+\tau_{k}^{3}}{2} = \sum_{J}^{\infty} C_{J}^{S}(\mathbf{q}) + C_{J}^{V}(\mathbf{q})$$

- Calculate every multipole on a grid of q
- Multipole expansion converges with finite number of multipoles
- Solve LIT equation for every multipole
- Invert LIT for every multipole and sum equiv to invert sum of LITs

Inelastic Electron Scattering

JGU

⁴He with Hyper-spherical Harmonics

Final state interaction

SB et al., PRL 102, 162501 (2009)

Strong effect of FSI: known form Carlson and Schiavilla PRL 68 (1992) and PRC 49 R2880 (1994) but now we can look at the energy dependence of FSI

Inelastic Electron Scattering

IGU

⁴⁰Ca with coupled-cluster theory

Final state interaction

Sobczyk, Acharya, SB, Hagen, PRL **127**, 072501 (2021)

JG Monopole Resonance 4He(e,e')0+

JG Monopole Resonance 4He(e,e')0+

Resonant Transition Form Factor
$$|F_{\mathcal{M}}(q)|^2 = \frac{1}{Z^2} \int d\omega R_{\mathcal{M}}^{\text{res}}(q,\omega)$$

New electron scattering experiment was performed at MAMI in Mainz

Thank you for your attention

Sonia Bacca