Few-body Reactions
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Outline of Lecture 3

* Reactions to continuum
* Integral transform
* Lanczos algorithm

* Applications
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JG|u Reactions to continuum

Perturbative (e.g. electromagnetic)

= e —— f e = ‘:*‘?
Y +b—oc+d+. |

Non-perturbative (hadronic)

at+b—-c+d-+...

Where a,b,c,d... are either single nucleons or bound nuclear systems
In total: A nucleons involved A-body problem
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Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

e First order perturbation theory
(Fermi-Golden Rule)

1"‘ - I — ) e e ——— e — ?_":of]

. Rw) ~ (W T W) [*6(w — By — Ep) |

Y»+p -»>c+d+...
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Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

e First order perturbation theory
(Fermi-Golden Rule)

1"‘ - I — ) e e ——— e — ?_":of]

 Rw) ~ [(Wy|J*|Wo)[*6(w)- Ef — Eo) |

Energy transferred by
the perturbative probe

@+b—>c+d+...
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Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

e First order perturbation theory
(Fermi-Golden Rule)

| | o f
CRw) ~ (UM@Y) 20w — By — Eo) |

Ground state of the target
A-body bound state!

Y(*) c+d+...
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Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

e First order perturbation theory
(Fermi-Golden Rule)

1"‘ - I — ) e e ——— e — ?_":of]

- R@) ~ (@1 %) Fo(w — By — Eo) |

Fragmented target
A-body continuum state!

YO + b >@C + ...
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Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

e First order perturbation theory
(Fermi-Golden Rule)

Operator responsible of the interaction of the
target with the perturbative probe

NB: q is in the operator, but we omit it for simplicity
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Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

e First order perturbation theory
(Fermi-Golden Rule)

R z \<\Iffw|\vo>\2 <w - Ef . Eo> i

_— == = === —=—

Inclusive: summing on all possible final states

D U (| =1
f

H|W;) = E¢|Vy)

Cc+dor etfor ...
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JG|U

Electro-weak processes (photons, electrons, neutrinos)

e First order perturbation theory
(Fermi-Golden Rule)

R(w) represents the crucial quantity

Requires the solution of both
the bound and continuum A-body problem
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;\(‘I’f\J“Wo

ground
state

bound T
excited state

Excitation Energy

2-body break-up  3-body break-up -  A-body break-up

continuum

W)

Exact knowledge limited in energy and mass number
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Structure
Bound states
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Ab-initio methods

Most representative approaches

Few-body: A<12

Many-body: 12<A<100 or more
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Why are there so few methods for reactions?
Why are they limited to low-energy?



Scattering many-body problem

In configuration space
(Schrodinger equation)

Very difficult to match the asymptotic conditions in
the solution of the coupled differential equations



Scattering many-body problem

In momentum space
(Lippmann-Schwinger equation)

Very difficult to cope with complicated poles in
solving the coupled integral equations



JG|U

Even before reaching the asymptotic condition all channels are coupled

Channels:
341 (T

e

-

1+1+1+1

1\
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= Faddeev: solved for scattering states for A=3 (1+2, 1+1+1)

= Faddeev-Yakubovsky: solved for scattering states for A=4,

nowever, only up to 3-body break up (1+3, 2+2, 1+1+2, not
yet 1+1+1+1)

= Also some first results on A=5 (Lazauskas)

Bochum-Cracow school: (Gloeckle, Witala, Golak, Elster, Nogga...)
Bonn-Lisabon-school (Sandhas, Fonseca, Sauer, Deltuva....)

Config. Space: (Carbonell, Lazauskas...)

= Alternative approach to 2+1, 3+1 scattering based on
Kohn variational principle and correct asymptotic conditions

Pisa School: Kievsky, Viviani, Marcucci...

= Similar idea for (A-1) + 1 in NCSMC

TRIUMF/LLNL: Navratil, Quaglioni, et al.
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JG|U Ab-initio methods

Benchmark for hadronic reaction

Phys. Rev. C 95, 034003 (2017)
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n-3He at 1 MeV

Seagrave (1960)
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-~ HH

O[deq]
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Structure
Bound states
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Ab-initio methods

Most representative approaches

Few-body: A<12 Many-body: 12<A<100 or more
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JG|u Integral Transforms

¢(o) = /dw K(w,o) R(w)
-_. =

One IS NOT able to calculate 2 (w)
(the quantity of direct physical meaning)
but IS able to calculate ¢ (o)

In order to obtain /2(w) one needs to invert the transform

Problem:
Sometimes the “inversion” of ¢ (o) may be problematic
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JG|u Integral Transforms

R(w) =) [(Wsl7#bo)|* d(w — Ef — E)
f

d(o) = /R(w)K(w,J) dw

1) integrate in dw using delta function

=) K(Ey — Eo,0)(Wols[ws) (¥ lr#eo)
f

=" (ol K (H — Eo, o)1 5) (95 ]743b0)
[

2) Use D lus)wysl =1
J )

ol0) K (T Foro

. s e
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o= [ d " R(w)

Sum rules are a kind of “Moment transform”
K(w,0) = w™ with n integer

To obtain R(w) the inversion of the transform

IS equivalent to the reconstruction of R(w)
by its moments (theory of moments)

However, ¢,, may be infinite for some n
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Example: Laplace Transform

() = [ & Rw)dw = (Gol#ie1=F07 i)

In condensed matter physics, QCD and nuclear physics



(o) = [ &7 Rw)dw = (Gol#te™1=E07 i)

In condensed matter physics, QCD and nuclear physics

o =T = Iimaginary time!

® (7) is calculated with Monte Carlo Methods

and then inverted with Maximum likelyhood methods
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0(0) = [ R@)K(w.0) do = (Yol K (H — Eo,0)lio)
Matrix element on the ground state
The calculation of ANY transform seems to require, in principle,

only the knowledge of the ground state!
However,

K(H — Ey,0)can be quite a complicated operator.

So, which kernel is suitable for the calculation?
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JG|u Inversion

It is well known that the numerical inversion of the
Laplace Transform can be problematic
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Inversion

lllustration of the problem:

R 0

Laplace transform

Numerical errors
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JG|u Inversion

lllustration of the problem:

Infactt. @ (0)= j dw K(w,o0)R(w )

If there is a numerical noise

[R(w )+A sin (vo)]



JG|u Inversion

lllustration of the problem:

Infactt. @ (0)= _[ dw K(w,o0)R(w )

If there is a numerical noise

®(0)+ADWV)= f dw K(w,o) [R(w )+A sin (vo)]

for very large v

v

0O independently on the
amplitude A of the error!



JG|u Best kernel

A “good” Kernel has to satisfy two requirements
1) one must be able to calculate the integral transform

2) one must be able to invert the transform minimizing uncertainties

Which is the best kernel?
The 0-function?

®(0)=fdw-0)R(w) =R(o)

Back to the original problem ....
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JG|u Best kernel

... but what about a representation of the
O-function?



Lorentzian kernel

I' 1

Klw,o,T) = T (w—0)2+17

It is a representation of the ©O-function

Lo, 1) = g / Wi —i()c;)+ I

Lorentz Integral Transform (LIT) efos, etal, JPG.: Nucl.PartPhys. 34 (2007) R459
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lllustration of requirement N.1:
One can calculate the integral transform



Lorentz Integral Transform

1 1
I(o. T)= JHd e I'
(1) <¢0| H-_FEy—0—ilH—_FEy—o+dl WO>;
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Lorentz Integral Transform

1 1
) — JHT JH
Lo, 1) <¢0| H—Eo—o—il|H—Ey—o+il WO>

- )
-
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Lorentz Integral Transform

main point of the LIT :

Schrodinger-like equation with a source

~

(H — Ey — o +4iD)|[F) = J#T,)

® Due to imaginary part 1" the solution |¢> IS unique
® Since rhs is finite,

¢> has bound state asymptotic behaviour

\ 4

Can solve it with bound state methods
Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459
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lllustration of requirement N.2:
One can invert the integral transform
minimizing uncertainties



JG|u Inversion

How can one easily understand why the inversion is
much less problematic?

Numerical errors
orentz transform

blurred, but still dlstlngmshable

" ’ also with errors
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Regularization method

(from A.I N.Tikhonov, “Solutions of ill posed problems”,
Scripta series in mathematics (Winston,1977).

o0 Integral transform is a linear operation o0

Rw)=) cixiw,a) = LoTD) =) clluw o)
Imax Inax

R(w) = Z cixi(w, @) — L(o,T) = c;i Lxqi(w, )]

Least square fit of the coefficients ¢i to reconstruct the response function

Regularization: find a range of Imax Where results are stable

Possible basis functions to invert are:

. 1
’L—|—§

—w
e”

Xi (Wa 04) — W € Exercise

Xz'(w, Oé) — w"%e ia, with ng const.
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Regularization method

Strong test: different values of range of 1" and check stability

Photoabsoprtion of 4He
0.5 | ' | ' |
4
He - T'=20 MeV

041 — T'=10 MeV -
%1 -
S 03 —
S
E
§ 0.2 -
v

0.1 _

0 | . | . | . | .
20 40 60 30 100
w [MeV]
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Benchmark of the LIT

The LIT method has been benchmarked with other few-body methods where |¢¢) is
calculated directly using same dynamical ingredients

With Fadeev approach

Nucl.Phys. A707 365 (2002)

—— LIT inversion bounds

15 —
- Faddeev

0 [mb]

0.5
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Benchmark of the LIT

The LIT method has been benchmarked with other few-body methods where |¢¢) is
calculated directly using same dynamical ingredients

With variational approach (HH)

Phys.Rev.C 69 (2004)

0.0006 / -
N
i 0.0004
m_l
0.0002 - - AViB
— AV18+UrbIX
: : Q=487 MeV/c e \lviani ot al,
ki
0 N N N N 1 N 2 M 2L 1 N N N "
5 10 15 20

E, [MeV]
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Other remarks on the LIT
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NB: Slightly simplified
notation

Sokhotski formula

1 —
T+ e

P/da:i — 10 (x)m e = 0

Taking the imaginary part only

—d(x)m =

Im =
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JG|U

R(w)=—1/11 Im [2,<O|J*|f> <f| J|0>] (wW-E+ E+ i€ )]

=-1/m Im [2,<0| J* (w-E+ E + 1€ )T |f> <f]J|0>]
H|f>=E |f>
=-1/m Im [2,<0] J* (w-H+ E,+ 1€ )1 |f> <f|J|0>]
change sign
=1/ Im [2.<0] J*(H — w — Ey- 1€ }1|f> <f|J|0>]
> |f> <f|=1 and change sign

= -1/ Im [<0] J*(H — w— Eg+ig )1J[0>]

Like a Green’s function with poles on the real axis

Sonia Bacca
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JG|u

L (0,T) =T/ ) dwR(W)[(w - )2+ I 2]

!

=T/ [ dwZ ;| <f| JI0>]25 (W-E+E,) [(w - o)2+ I 2]

Integrate delta and use H|f>=E[f>
Completness

=T/ 2 < 0| Jw [(H-E,-0)2+ 2] |f><flJu| 0>
=T /m < 0|Jv* [(H-E,-0)2+ 2] Ju 0>

m[H-E-c+il )=

Im(H-E-o+il )" (H-E~0-i[)'(H-E - 0-iI)]=
=I'[(H - E, - o)2+ T 2] Finite, not infinitesimal

—

=1/mIm[< 0|+ (H=-Ey=o+il )1Jv | 0>]
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<[RS

R(w) =- 1/ Im [<O| J*(H—w-E,+1e )1 \O>]

T

€ infinitesimal

L(o,)=-1/mIm[<O|J+ (H-E;—ox+il )1J|0>]

T

I finite, not infinitesimal

Of course, when e=T'"then R(w)=L (o, TI")
That is indeed the case where the Kernel is the delta function

However, due to the fact that I'' is finite and L (o, I )
s finite, one is allowed to use bound -state techniques to calculate it
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JG|U

Algorithm used to tri-diagonalize matrices H — H,,.

1) Choose first Lanczos vector ‘¢O>

2) Use recursive definition to find the other Lanczos vectors

bri1 |Pnt1) = H |pn) — an |On) — by [Pn—1)

With a,, = (¢n| H |¢n)
bn, = [|bn |¢n) ||

3) Matrix represented on the Lanczos vectors is tridiagonal

ao bl 0 0

by a1 by 0 .. Can diagonalize it using
H,, = 0 by as by .. . Numerical Recipes routine,

0 e.g. TQLI
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For large scale eigenvalue problems, e.g. calculations with hyper-spherical harmonics
See N. Barnea’s lectures

Generally, diagonalizing a matrix is a N3 operation
With the Lanczos algorithm you can reduce it to nN2 with n = max(iter)< N

Minnesota potential

Kmax iS here the

Grandangular momentum

IEO(iter)-EOI

Sonia Bacca
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JG|U

The algorithm can be also used calculate the LIT

L(o.T) = —%]m (01T (H — Eo — o + i)~ 17]0)]

Using the Lanczos algorithm one can represent
as a continuum fraction of the Lanczos coefficients (H — Ey —og + i) ™!

0[0)
v/(0[©76]0)

1) Choose first Lanczos vector  |¢0) =

2) After applying the recursive definition you obtain

1
L(o) = —— (0 JTJ 0) I'm —
7T (z — ag) ( | Y

2
(z—ag)—b3....

with 2= Fy+ o+l Exercise
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Detailed derivation

LIV with, LANC20S orrebod

Lo = L dnd ot ﬂm}

o

'DQ 21V ¥e1! — [ .
w % 5 o= Co*‘]—.‘l‘(,r,/ we S-QQ_,’BN:k LCGIP:) h—& '“"Q_ qﬁflﬂk’(ﬂ) | J
€ wonk _L 5,30 we QhomSQ %\'@“ K-2
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Detailed derivation

Qz—Hﬂj@"Hﬂ/)—':
=P im mn\(mvn%s Z (2- Hh,)nmmcg Her)

—p tou the ,
T e §C8- M)y (2- n{n)mo = Sno | %)

NOL&T W Dlﬁ-@nfg Qg_ l—l:{_ JIJ.\: v

= Ko = (2- H+z, —(,)o :<§ol
Ldt% \leL“(Q, (*) Pﬂqua mui-wx,-

| -b 0
2-Q, ""lo\ O Ko , @ % ‘Q-'Q] _bz
botea, b, |5 0] = X = z—q—h—bz-oﬁ }
9 -b, 2-q, X( 0 U&rggl dﬁ(—b]o'}-qz _bz)
O xuo_

O -b =,

7 /wr\l& 1S whmf we.
2~ \'t+x, Qe




G\WDOL?JS Jrn NxN e

S S R
By 8 20, b, 0.
X@ _ &ﬁt(ﬁo) oot | ‘.'bz 2-0{—‘:3-..
@(2%&) (; q' 1, )
(Z—Lh%): —bqo&—!q‘\ —LZQ_
=7 ok (2-Hn )= (2 -0 )b D, LD, \ A
(bl dotaimed |, — T R
Avveing (gt mymd (bl dotamog by
Gnst {\ 2L ’Wmfdh'rg 61&'!‘ o dows Om#
o (2~ Jdl.) Gt 45 L |
dok Bo = dok, un (- )
=9 Xo= W = (

o 2 T e L
(&-U0)dedDy —lyebD), 2-q — b %%
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—7 i?_*j)z - ngi_bb = l

S (ke D, LD, (29 - plekp,

: ‘o i b&
?&L\:;ﬂg’f\nﬂr*omxowegai -
o = S %NLEJ Q”lbdr(m\l
bn _ (che:rms OQ
(b T o

=v AQQ'FOXQHIQ/L b dotaiay ek

LCW’\Y‘B'—‘»— ’(OIJ_,l 3[07 '{&m{ 20 - b2
(-9 - bz‘_

) -
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LIT with Lanczos Algorithm

Advantages
The Lanczos algorithm involves just a matrix-vector multiplication (N2)
Continues fractions converge fast

Again, with the Lanczos algorithm the computational load is
becoming nN2 with n = max(iter)< N

30F “He n -
E ....... 20 E
20 40 . See that as
- — 60 P N '
% 10E 3 dan exercise
£ f —~t *-“\N*\/é
10F :
-20 - ! ! l I | I | I l I l | |:
o|MeV
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LIT with Lanczos Algorithm

Strength building up from Lanczos vectors (LIT with small I')

Movie from M.Miorelli

20.0
0
17.5 -
& 15.0 -
o
Q.
2 125-
5
N 10.0 -
©
@ 75 -
()]
5.0 -
25 -
0.0
0 20 40 60 80 100

Energy [MeV]
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Some more applications



<[

Do these nuclei respond differently to em probes?

6
SLi He

We did calculate them with Hyper-spherical Harmonics and the LIT
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o, [mb]

Photo-absorption reaction

S.Bacca et al, PRL 89 052502 (2002)

0. (w) = 4 awR® (W)  AV4 potential

40 60

o [MeV]

80 100

Sonia Bacca
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S.Bacca et al, PRL 89 052502 (2002)

oy (w) = Ar?awR"! (w)  AV4 potential

o, [mb]
(\O)

0 20 40 60 80 100 O 20 40 60 80 100
®w [MeV] W [MGV]

Giant Dipole Resonance

protons «—— neutrons
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JG|U Photo-absorption reaction

S.Bacca et al, PRL 89 052502 (2002)

oy (w) = Ar?awR"! (w)  AV4 potential

3.5 4
3+ - Signatures 6
25| 3l of the halo He
e 2 )
=~ s £
@ '1 ol
1_
05} }
0 | | | | 0 . . .
0 20 40 60 80 100 0 20 40 80 100
w [MeV] W [MGV]
Giant Dipole Resonance Soft-dipole Mode Giant Dipole Mode
' neutron halo «—— q-core neutrons <«— protons

protons «—— neutrons
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Inelastic Electron Scattering

Rr(w,q) = Zf: (U] p(q) [o)|* 6 (Ef —fo—wH %>

A
:Zeerk1+Tk ZCJ —|-CJ )
k

Calculate every multipole on a grid of g

Multipole expansion converges with finite number of multipoles

Solve LIT equation for every multipole

Invert LIT for every multipole and sum equiv to invert sum of LITs
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20

R, [10"MeV]
S

— 12—
(@) |  (b)
q=300 MeV/c | 10k q=400 MeV/c |
— FSI | il % ' ]
.- PWIA i i
n i 6l i
' 4r ‘He -
5 g 4He N v N .
. 2 [ .: L] ﬂ' - -]
_%‘.'. 1~ 90wy 'd o
N T B R T A 2 0 f T N N %%%$$ o
40 60 80 100 120 140 160 180 60 90 120 150 180 210 240
» [MeV] w [MeV]
.......... PWIA %< p Full FSI: ——
“He N AV18+UIX

Strong effect of FSI: known form Carlson and Schiavilla PRL 68 (1992) and PRC 49 R2880 (1994)

[
()

4“He with Hyper-spherical Harmonics

Final state interaction
SB et al., PRL 102, 162501 (2009)

but now we can look at the energy dependence of FSI
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Inelastic Electron Scattering

40Ca with coupled-cluster theory

Final state interaction

Sobczyk, Acharya, SB, Hagen, PRL 127, 072501 (2021)

20 —mm8m 7+ — :

...... PWIA ]

0-175T 40Ca 1 NNLO. ]

o150l Z 71 ANNLOGo(450)
< 0.125F
> i
@ i
= 0.100f
3 :
= 0.075}

0.050 |

0.025}

0.000°
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1

iti 2 res
Resonant 'I:rransmog Form Factor Fa(Q)]? = — dwRYS (q,w)
. T . ) 21.84 270
First ab-initio calculation: Hiyama et al., PRC 70 031001 (2004) . [2101 050 20,578
obtained good description of data with phenomenological central 3NF Ep 2021 Q0 3He+n
but not with realistic forces ho.81m
SB et al., PRL 110, 042503 (2013) SH+p ,' );
5 [ [ [ [ | [ [ [ [ | I [ [ [ | [ [ [ [
O Koebschall et al. )[ oto
- x  Walcher 7 4H
A Frosch et al. €
41 —- Hiyamaeral. — ['p =270 £ 70 keV
— AVI8+UIX
| _ =  NNNN'LO)+ |
— 3L | 3NE(N'LO) _
& |
o
=2
3 .
= | < conventional forces
<+— EFT forces
1= <«---- Central 3N force
. | | | | | | | | | | | | | L | L L L L 1$iy 21
05 i > 3 4 » Eronounce_d se_n3|t|V|ty to the
2 2 iInput Hamiltonian
g [tm ]
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Monopole Resonance 4He(e,e’)0*

Resonant Transition Form Factor \FM(Q)|2

07 — 05

1
N

dw Ry (q,w)

New electron scattering experiment was performed at MAMI in Mainz

- Kegel et al., arXiv:2112.10582

® This experiment
Model confid. band
L Frosch et al.

I D ¥ Koebschall et al.

x  Walcher
B-spline fit

Sonia Bacca

Disagreement now is even
stronger!

Probably a problem of the
Hamiltonian

66



Thank you for your attention
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