Few-body Reactions

Lecture 3

Integral Transforms

Sonia Bacca

TALENT

 School @ MITP
EFFECTIVE FIELD THEORIES IN LIGHT NUCLEI:

from Structure to Reactions
25 July - 12 August 2022
F https://indico.mitp.uni-mainz.de/event/279/

- Reactions to continuum
- Integral transform
- Lanczos algorithm
- Applications

Perturbative (e.g. electromagnetic)

$$
\gamma\left(^{*}\right)+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d}+\ldots
$$

Non-perturbative (hadronic)

$$
a+b \rightarrow c+d+\ldots
$$

Where a,b,c,d... are either single nucleons or bound nuclear systems In total: A nucleons involved A-body problem

Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)

$$
\left.R(\omega) \sim\left|\left\langle\Psi_{f}\right| J^{\mu}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(\omega-E_{f}-E_{0}\right)
$$

$$
H\left|\psi_{f}\right\rangle=E_{f}\left|\psi_{f}\right\rangle
$$

$$
\gamma\left(^{*}\right)+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d}+\ldots
$$

Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)

$$
\left.\left.R(\omega) \sim\left|\left\langle\Psi_{f}\right| J^{\mu}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta \Theta-E_{f}-E_{0}\right)
$$

Energy transferred by the perturbative probe

$$
\gamma\left(^{*}\right)+b \rightarrow c+d+\ldots
$$

Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)

$$
R(\omega) \sim\left|\left\langle\Psi_{f} \mid J^{\mu} \Psi \Psi_{0}\right\rangle\right|^{2} \delta\left(\omega-E_{f}-E_{0}\right)
$$

$$
\gamma\left(^{*}\right)+b \rightarrow c+d+\ldots
$$

Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)

Perturbative Reactions

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)

$$
\left.R(\omega)=\sum_{f}\left|\left\langle\Psi_{f}\right| J^{\mu}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(\omega-E_{f}-E_{0}\right)
$$

Inclusive: summing on all possible final states

$$
\begin{aligned}
& \sum_{f}\left|\Psi_{f}\right\rangle\left\langle\Psi_{f}\right|=1 \\
& H\left|\Psi_{f}\right\rangle=E_{f}\left|\Psi_{f}\right\rangle
\end{aligned}
$$

$$
\gamma\left(^{*}\right)+\mathrm{b} \rightarrow \mathrm{c}+\mathrm{d} \text { or } \mathrm{e}+\mathrm{f} \text { or } \ldots
$$

Electro-weak processes (photons, electrons, neutrinos)

- First order perturbation theory (Fermi-Golden Rule)

$$
\left.R(\omega)=\sum_{f}\left|\left\langle\Psi_{f}\right| J^{\mu}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(\omega-E_{f}-E_{0}\right)
$$

$R(\omega)$ represents the crucial quantity Requires the solution of both the bound and continuum A-body problem

$$
\left.R(\omega)=\sum_{f}\left|\left\langle\Psi_{f}\right| J^{\mu}\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(\omega-E_{f}-E_{0}\right)
$$

$\left|\Psi_{f}\right\rangle \quad$ Exact knowledge limited in energy and mass number

Most representative approaches

Few-body: $\mathrm{A} \$ 12$
Many-body: $12 \leqslant A \leqslant 100$ or more

- Coupled Cluster (CC)
- Hyperspherical Harmonics
- NCSM
- SVM
- Quantum Monte Carlo
- Other Monte Carlo methods
-IMSRG
- Self consistent Green's function
-Faddeev Yakubowski (FY) and variations
- HH Kohn-Variational P. (2 fragments)
- NCSMC (only at very low energy)
- Complex scaling

Why are there so few methods for reactions? Why are they limited to low-energy?

In configuration space (Schrödinger equation)

Very difficult to match the asymptotic conditions in the solution of the coupled differential equations

In momentum space
(Lippmann-Schwinger equation)

Very difficult to cope with complicated poles in solving the coupled integral equations

JG $\mid \mathrm{U}$

Scattering many-body problem

Even before reaching the asymptotic condition all channels are coupled

Channels:

$$
1+1+1+1
$$

- Faddeev: solved for scattering states for $\mathrm{A}=3(1+2,1+1+1)$
- Faddeev-Yakubovsky: solved for scattering states for A=4, however, only up to 3 -body break up (1+3, 2+2, 1+1+2, not yet $1+1+1+1$)
- Also some first results on A=5 (Lazauskas)

Bochum-Cracow school: (Gloeckle, Witala, Golak, Elster, Nogga...) Bonn-Lisabon-school (Sandhas, Fonseca, Sauer, Deltuva....) Config. Space: (Carbonell, Lazauskas...)

- Alternative approach to 2+1, 3+1 scattering based on Kohn variational principle and correct asymptotic conditions

Pisa School: Kievsky, Viviani, Marcucci...

- Similar idea for (A-1) + 1 in NCSMC

TRIUMF/LLNL: Navratil, Quaglioni, et al.

Ab-initio methods

Benchmark for hadronic reaction

Phys. Rev. C 95, 034003 (2017)

Most representative approaches

Few-body: A ≤ 12
Many-body: $12 \leqslant A \leqslant 100$ or more

- Faddeev Yakubowski (FY)
- Coupled Cluster (CC)
- Hyperspheric
- NCSM
- SVM

- Quantum Monte Carlo
- Faddeev Yakubowski (FY) and variat
- HH Kohn-Variational P. (2 fragments)
- NCSMC (only at very low energy)
- Complex scaling

Integral Transforms

$$
\phi(\sigma)=\int d \omega K(\omega, \sigma) R(\omega)
$$

One IS NOT able to calculate $R(\omega)$
(the quantity of direct physical meaning) but IS able to calculate $\phi(\sigma)$

In order to obtain $R(\omega)$ one needs to invert the transform Problem:
Sometimes the "inversion" of $\phi(\sigma)$ may be problematic

Integral Transforms

$$
\begin{aligned}
&\left.R(\omega)=\sum_{f}\left|\left\langle\psi_{f}\right| J^{\mu}\right| \psi_{0}\right\rangle\left.\right|^{2} \delta\left(\omega-E_{f}-E_{0}\right) \\
& \Phi(\sigma)=\int R(\omega) K(\omega, \sigma) d \omega
\end{aligned}
$$

1) integrate in d ω using delta function

$$
\begin{aligned}
& =\sum_{f} K\left(E_{f}-E_{0}, \sigma\right)\left\langle\psi_{0}\right| J^{\mu \dagger}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right| J^{\mu}\left|\psi_{0}\right\rangle \\
& =\sum_{f}\left\langle\psi_{0}\right| J^{\mu^{\dagger}} K\left(H-E_{0}, \sigma\right)\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right| J^{\mu}\left|\psi_{0}\right\rangle
\end{aligned}
$$

$$
\text { 2) Use } \sum_{f}\left|\psi_{f}\right\rangle\left\langle\psi_{f}\right|=1
$$

$$
\phi(\sigma)=\left\langle\psi_{0}\right| J^{\mu \dagger} K\left(H-E_{0}, \sigma\right) J^{\mu}\left|\psi_{0}\right\rangle
$$

Example: sum rules

$$
\phi_{n}=\int d \omega \omega^{n} R(\omega)
$$

Sum rules are a kind of "Moment transform" $K(\omega, \sigma)=\omega^{n}$ with n integer

To obtain $R(\omega)$ the inversion of the transform is equivalent to the reconstruction of $R(\omega)$ by its moments (theory of moments)

However, ϕ_{n} may be infinite for some n

Example: Laplace Transform

$$
\phi(\sigma)=\int e^{-\omega \sigma} R(\omega) d \omega=\left\langle\psi_{0}\right| J^{\mu \dagger} e^{-\left(H-E_{0}\right) \sigma} J^{\mu}\left|\psi_{0}\right\rangle
$$

In condensed matter physics, QCD and nuclear physics

Example: Laplace Transform

$$
\phi(\sigma)=\int e^{-\omega \sigma} R(\omega) d \omega=\left\langle\psi_{0}\right| J^{\mu \dagger} e^{-\left(H-E_{0}\right) \sigma} J^{\mu}\left|\psi_{0}\right\rangle
$$

In condensed matter physics, QCD and nuclear physics

$$
\sigma=\tau=\text { imaginary time! }
$$

$\boldsymbol{\Phi}(\tau)$ is calculated with Monte Carlo Methods
and then inverted with Maximum likelyhood methods

Integral Transform

$$
\Phi(\sigma)=\int R(\omega) K(\omega, \sigma) d \omega=\left\langle\psi_{0}\right| J^{\mu \dagger} K\left(H-E_{0}, \sigma\right) J^{\mu}\left|\psi_{0}\right\rangle
$$

Matrix element on the ground state

The calculation of ANY transform seems to require, in principle, only the knowledge of the ground state! However,
$K\left(H-E_{0}, \sigma\right)$ can be quite a complicated operator.

So, which kernel is suitable for the calculation?

$$
\phi(\sigma)=\int e^{-\omega \sigma} R(\omega) d \omega
$$

It is well known that the numerical inversion of the Laplace Transform can be problematic

Illustration of the problem:

Inversion

Illustration of the problem:

In fact:

$$
\Phi(\sigma)=\int d \omega K(\omega, \sigma) R(\omega)
$$

If there is a numerical noise
$[R(\omega)+A \sin (v \omega)]$

Inversion

Illustration of the problem:

$$
\begin{aligned}
& \text { In fact: } \quad \Phi(\sigma)=\int d \omega K(\omega, \sigma) R(\omega) \\
& \text { If there is a numerical noise } \\
& \Phi(\sigma)+\Delta \Phi(v)=\int d \omega R(\omega, \sigma)[R(\omega)+A \sin (v \omega)] \\
& \\
& \text { for very large } v
\end{aligned}
$$

Best kernel

A "good" Kernel has to satisfy two requirements

1) one must be able to calculate the integral transform
2) one must be able to invert the transform minimizing uncertainties

Which is the best kernel?

The $\bar{\delta}$-function?

$$
\Phi(\sigma)=\int \delta(\omega-\sigma) R(\omega)=R(\sigma)
$$

Back to the original problem

Best kernel

... but what about a representation of the δ-function?

Lorentzian kernel

$$
K(\omega, \sigma, \Gamma)=\frac{\Gamma}{\pi} \frac{1}{(\omega-\sigma)^{2}+\Gamma^{2}}
$$

It is a representation of the δ-function

$$
L(\sigma, \Gamma)=\frac{\Gamma}{\pi} \int d \omega \frac{R(\omega)}{(\omega-\sigma)^{2}+\Gamma^{2}}
$$

Lorentz Integral Transform (LIT) Efros, etal., JPG.: Nucl.Par.P.Phys. 34 (2007) R459

Illustration of requirement N.1:
 One can calculate the integral transform

Lorentz Integral Transform

$$
L(\sigma, \Gamma)=\left\langle\psi_{0}\right| J^{\mu \dagger} K\left(H-E_{0}, \sigma, \Gamma\right) J^{\mu}\left|\psi_{0}\right\rangle
$$

$$
\begin{aligned}
K(\omega, \sigma, \Gamma) & =\frac{\Gamma}{\pi} \frac{1}{(\omega-\sigma)^{2}+\Gamma^{2}} \\
K(\omega, \sigma, \Gamma) & =\frac{\Gamma}{\pi} \frac{1}{(\omega-\sigma-i \Gamma)(\omega-\sigma+i \Gamma)}
\end{aligned}
$$

$$
L(\sigma, \Gamma)=\left\langle\psi_{0}\right| J^{\mu \dagger} \frac{1}{H-E_{0}-\sigma-i \Gamma} \frac{1}{H-E_{0}-\sigma+i \Gamma} J^{\mu}\left|\psi_{0}\right\rangle \frac{\Gamma}{\pi}
$$

Lorentz Integral Transform

$$
L(\sigma, \Gamma)=\left\langle\psi_{0}\right| J^{\mu \dagger} K\left(H-E_{0}, \sigma, \Gamma\right) J^{\mu}\left|\psi_{0}\right\rangle
$$

$$
\begin{aligned}
K(\omega, \sigma, \Gamma) & =\frac{\Gamma}{\pi} \frac{1}{(\omega-\sigma)^{2}+\Gamma^{2}} \\
K(\omega, \sigma, \Gamma) & =\frac{\Gamma}{\pi} \frac{1}{(\omega-\sigma-i \Gamma)(\omega-\sigma+i \Gamma)}
\end{aligned}
$$

$$
\begin{aligned}
L(\sigma, \Gamma) & =\left\langle\psi_{0}\right| J^{\mu \dagger} \frac{1}{H-E_{0}-\sigma-i \Gamma} \frac{1}{H-E_{0}-\sigma+i \Gamma} J^{\mu}\left|\psi_{0}\right\rangle \\
& |\tilde{\psi}\rangle
\end{aligned}
$$

Lorentz Integral Transform

main point of the LIT :

Schrödinger-like equation with a source

$$
\left(H-E_{0}-\sigma+i \Gamma\right)|\tilde{\Psi}\rangle=J^{\mu}\left|\Psi_{0}\right\rangle
$$

- Due to imaginary part Γ the solution $|\tilde{\psi}\rangle$ is unique
- Since rhs is finite, $|\tilde{\psi}\rangle$ has bound state asymptotic behaviour

Can solve it with bound state methods

Efros, et al., JPG.: Nucl.Part.Phys. 34 (2007) R459

Illustration of requirement N.2: One can invert the integral transform minimizing uncertainties

How can one easily understand why the inversion is much less problematic?

Regularization method

(from A.I N.Tikhonov, "Solutions of ill posed problems", Scripta series in mathematics (Winston, 1977).

$$
\begin{aligned}
R(\omega) & =\sum_{i}^{\infty} c_{i} \chi_{i}(\omega, \alpha) \\
R(\omega) & =\sum_{i}^{I_{\max }} c_{i} \chi_{i}(\omega, \alpha)
\end{aligned} \quad \longrightarrow \quad L(\sigma, \Gamma)=\sum_{i}^{\infty} c_{i} \mathcal{L}\left[\chi_{i}(\omega, \alpha)\right]
$$

Least square fit of the coefficients c_{i} to reconstruct the response function
Regularization: find a range of $I_{\max }$ where results are stable
Possible basis functions to invert are:

$$
\begin{aligned}
& \chi_{i}(\omega, \alpha)=\omega^{i+\frac{1}{2}} e^{-\frac{\omega}{\alpha}} \\
& \chi_{i}(\omega, \alpha)=\omega^{n_{0}} e^{-\frac{\omega}{i \alpha}}, \text { with } n_{0} \text { const. }
\end{aligned}
$$

Exercise

Strong test: different values of range of Γ and check stability

Photoabsoprtion of ${ }^{4} \mathrm{He}$

Benchmark of the LIT

The LIT method has been benchmarked with other few-body methods where $\left|\psi_{f}\right\rangle$ is calculated directly using same dynamical ingredients

With Fadeev approach

Nucl.Phys. A707 365 (2002)

Benchmark of the LIT

The LIT method has been benchmarked with other few-body methods where $\left|\psi_{f}\right\rangle$ is calculated directly using same dynamical ingredients

With variational approach (HH)

Other remarks on the LIT

$$
\left.R(\omega)=\sum_{f}\left|\langle f| J^{\mu}\right| 0\right\rangle\left.\right|^{2} \delta\left(\omega-E_{f}-E_{0}\right)
$$

NB: Slightly simplified notation

Sokhotski formula

$$
\frac{1}{x+i \epsilon}=\mathcal{P} \int d x \frac{1}{x}-i \delta(x) \pi \quad \epsilon \rightarrow 0
$$

Taking the imaginary part only

$$
\begin{aligned}
& \operatorname{Im} \frac{1}{x+i \epsilon}=-\delta(x) \pi \quad \Rightarrow \quad \delta(x)=-\frac{1}{\pi} \operatorname{Im} \frac{1}{x+i \epsilon} \\
& R(\omega)=-\left.\frac{1}{\pi} \operatorname{Im}\left[\sum_{f}\left|\langle f| J^{\mu}\right| 0\right\rangle\right|^{2} \frac{1}{\omega-E_{f}-E_{0}+i \epsilon}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\left.R(\omega)=-1 / \pi \operatorname{lm}\left[\Sigma_{f}<0|J| f\right\rangle\langle f| J|0\rangle\right]\left(\omega-E_{f}+E_{0}+i \varepsilon\right)^{-1}\right] \\
& \left.=-1 / \pi \operatorname{lm}\left[\sum_{f}<0\left|J^{+}\left(\omega-E_{f}+E_{0}+\mid \varepsilon\right)^{-1}\right| f\right\rangle\langle f| J|0\rangle\right] \\
& \text { H|l> }>\text { E, } \mid> \\
& \left.=-1 / \pi \operatorname{lm}\left[\Sigma_{f}<0\left|\mathrm{~J}^{+}\left(\omega-\mathrm{H}+\mathrm{E}_{0}+\mathrm{I} \varepsilon\right)^{-1}\right| \mathrm{f}\right\rangle\langle\mathrm{f}| \mathrm{J}|0\rangle\right] \\
& \text { change sign } \\
& =1 / \pi \operatorname{lm}\left[\sum_{f}<0 \mid \mathrm{J}^{+}\left(\mathrm{H}-\omega-\mathrm{E}_{0^{-}} \text {I }\right)^{-1}|\mathrm{f}><\mathrm{f}| \mathrm{J} \mid 0>\right] \\
& \Sigma_{\mathrm{f}}|\mathrm{f}><\mathrm{f}|=1 \text { and change sign } \\
& =-1 / \pi \operatorname{Im}\left[<0\left|\mathrm{~J}^{+}\left(\mathrm{H}-\omega-\mathrm{E}_{0}+1 \varepsilon\right)^{-1} \mathrm{~J}\right| 0>\right] \\
& \text { Like a Green's function with poles on the real axis }
\end{aligned}
$$

$\mathrm{Jg} \mid \mathrm{U}$

Rewriting the LIT

$$
L(\sigma, \boldsymbol{\Gamma})=\boldsymbol{\Gamma} / \pi \int d \omega R(\omega)\left[(\omega-\sigma)^{2}+\boldsymbol{\Gamma}^{2}\right]^{-1}
$$

$$
=\Gamma / \pi \int d \omega \Sigma_{f}|<f| J \mu|0>|^{2} \delta\left(\omega-E_{f}+E_{0}\right)\left[(\omega-\sigma)^{2}+\Gamma^{2}\right]^{-1}
$$ Integrate delta and use $\mathrm{H}\left|f>=\mathrm{E}_{\mathrm{f}}\right| \mathrm{f}>$

Completness
$\left.=\Gamma / \pi \sum_{f}<0\left|J^{\mu+}\left[\left(H-E_{0}-\sigma\right)^{2}+\Gamma^{2}\right]^{-1}\right| f\right\rangle<f|J \mu| 0>$
$=\Gamma / \pi<0\left|\mathrm{~J}^{\mu+}\left[\left(\mathrm{H}-\mathrm{E}_{0}-\sigma\right)^{2}+\Gamma^{2}\right]^{-1} \mathrm{~J} \mu\right| 0>$
$-\operatorname{lm}\left[\left(H-E_{0}-\sigma+i \Gamma\right)^{-1}\right]=$
$-\operatorname{lm}\left[\left(H-E_{0}-\sigma+i \Gamma\right)^{-1}\left(H-E_{0}-\sigma-i \Gamma\right)^{-1}\left(H-E_{0}-\sigma-i \Gamma\right)\right]=$ $=\boldsymbol{\Gamma}\left[\left(H-E_{0}-\sigma\right)^{2}+\Gamma^{2}\right]^{-1}$
$=-1 / \pi \operatorname{lm}\left[<0\left|\mathrm{~J}^{\mu+}\left(\mathrm{H}-\mathrm{E}_{0}-\sigma+\mathrm{i} \Gamma\right)^{-1} \mathrm{~J}^{\mu}\right| 0>\right]$
Finite, not infinitesimal

$$
R(\omega)=-1 / \pi \operatorname{lm}\left[<0\left|J^{+}\left(H-\omega-E_{0}+\mid \varepsilon\right)^{-1} J\right| 0>\right]
$$

$$
L(\sigma, \Gamma)=-1 / \pi \operatorname{lm}\left[<0\left|J^{+}\left(H-E_{0}-\sigma_{R}+i \Gamma\right)^{-1} J\right| 0>\right]
$$

$$
\uparrow
$$

Γ finite, not infinitesimal
Of course, when $\varepsilon=\Gamma$ then $R(\omega)=L(\sigma, \Gamma)$
That is indeed the case where the Kernel is the delta function

However, due to the fact that Γ is finite and $L(\sigma, \Gamma)$ is finite, one is allowed to use bound -state techniques to calculate it

1) Choose first Lanczos vector $\left|\phi_{0}\right\rangle$
2) Use recursive definition to find the other Lanczos vectors

$$
\begin{aligned}
& b_{n+1}\left|\phi_{n+1}\right\rangle=H\left|\phi_{n}\right\rangle-a_{n}\left|\phi_{n}\right\rangle-b_{n}\left|\phi_{n-1}\right\rangle \\
& \text { With } a_{n}=\left\langle\phi_{n}\right| H\left|\phi_{n}\right\rangle \\
& b_{n}=\| b_{n}\left|\phi_{n}\right\rangle \|
\end{aligned}
$$

3) Matrix represented on the Lanczos vectors is tridiagonal

$$
H_{t r}=\left(\begin{array}{ccccc}
a_{0} & b_{1} & 0 & 0 & \ldots \\
b_{1} & a_{1} & b_{2} & 0 & \ldots \\
0 & b_{2} & a_{2} & b_{3} & \ldots \\
0 & \ldots & \cdots & \cdots & \ldots \\
\cdots & \ldots & \ldots & \cdots & \cdots
\end{array}\right) . \quad \begin{aligned}
& \text { Can diagonalize it using } \\
& \text { Numerical Recipes routine } \\
& \text { e.g. TQLI }
\end{aligned}
$$

Lanczos Algorithm

For large scale eigenvalue problems, e.g. calculations with hyper-spherical harmonics
See N. Barnea's lectures
Generally, diagonalizing a matrix is a N^{3} operation With the Lanczos algorithm you can reduce it to nN^{2} with $\mathrm{n}=\max ($ iter $)<\mathrm{N}$

Minnesota potential

$\mathrm{K}_{\text {max }}$ is here the
Grandangular momentum

The algorithm can be also used calculate the LIT

$$
L(\sigma, \Gamma)=-\frac{1}{\pi} \operatorname{Im}\left[\langle 0| J^{\dagger}\left(H-E_{0}-\sigma_{R}+i \Gamma\right)^{-1} J|0\rangle\right]
$$

Using the Lanczos algorithm one can represent as a continuum fraction of the Lanczos coefficients $\left(H-E_{0}-\sigma_{R}+i \Gamma\right)^{-1}$

1) Choose first Lanczos vector $\quad\left|\phi_{0}\right\rangle=\frac{\Theta|0\rangle}{\sqrt{\langle 0| \Theta^{\dagger} \Theta|0\rangle}}$
2) After applying the recursive definition you obtain

$$
L(\sigma)=-\frac{1}{\pi}\langle 0| J^{\dagger} J|0\rangle \operatorname{Im}\left\{\frac{1}{\left(z-a_{0}\right)-\frac{b_{1}^{2}}{\left(z-a_{1}\right)-\frac{b_{2}^{2}}{\left(z-a_{2}\right)-b_{3}^{2} \cdots}}}\right\}
$$

$$
\text { with } \quad z=E_{0}+\sigma+i \Gamma
$$

Exercise

LIT with LANCZDS method

$$
L(\sigma, \Gamma)=\frac{1}{\pi} y_{m}\left\{\langle 0| J^{\mu t} \frac{1}{H-E_{0}-\sigma-i \Gamma} J^{\mu}|0\rangle\right\}
$$

Defining $z=E_{0}+\sigma+i \Gamma$, we see that $\langle\sigma, \Gamma)$ has the operator $\frac{1}{H-z}$; We want $\frac{1}{z-H}$, so we change sign.

$$
L\left(\nabla_{1} r\right)=-\frac{1}{\pi} y_{m}\left\{\langle 0| J^{\mu+} \frac{1}{z-H} J^{\mu}|0\rangle\right\}
$$

Now we apply the Lanczos abooithm wring the starting Lanczos vector

$$
\begin{array}{r}
\left|\Phi_{0}\right\rangle=\frac{J^{\mu}|0\rangle}{\sqrt{\langle 0| J^{\mu+} J^{\mu}|0\rangle}} ; \text { then } H \rightarrow H_{\text {the }} \text { (tri-diggond matrix in terms of } \\
\text { the Lanczos coefficients) }
\end{array}
$$ the Lanczos coefficients)

$$
=0 \text { we see that } L(\sigma, r) \longrightarrow\left\langle\Phi_{0}\right| \frac{1}{z-H_{+r}}\left|\Phi_{0}\right\rangle
$$

$$
\left(z-H_{+2}\right)\left(z-H_{+2}\right)^{-1}=\mathbb{1}
$$

\Rightarrow in components $\sum_{m}\left(z-H_{t r}\right)_{m m}\left(z-H_{t r}\right)_{m p}^{-1}=\delta_{m p}$
$=0$ for the case of $\rho=0: \sum_{n}\left(z-H_{t r}\right)_{m m}\left(z-H_{t r}\right)_{m 0}^{-1}=\delta_{m 0}$
Now we define $\left(z-H_{t r r r^{m_{0}}}\right)_{m}^{-1}=X_{m}$

$$
=\quad X_{0}=\left(z-H_{+2}\right)_{00}^{-1}=\left\langle\Phi_{0}\right| \frac{1}{z-H_{+r}}\left|\Phi_{0}\right\rangle
$$

This is what we reed.
Let us write, $(*)$ for a 3×3 matrix:

$$
\left(\begin{array}{ccc}
z-a_{0} & -b_{1} & 0 \\
-b_{1} & z-a_{1} & -b_{2} \\
0 & -b_{2} & z-a_{2}
\end{array}\right)\left(\begin{array}{l}
x_{0} \\
x_{1} \\
x_{2}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right) \Rightarrow \underset{\substack{\text { Using 1 } \\
\text { Gamer rule }}}{\left.x_{0}=\frac{\operatorname{det}\left(\begin{array}{ccc}
1 & -b_{1} & 0 \\
0 & z-a_{1} & -b_{2} \\
0 & -b_{2} & z-a_{2}
\end{array}\right)}{\operatorname{det}\left(\begin{array}{ccc}
z-a_{0} & -b_{1} & 0 \\
-b_{1} & z-a_{1} & -b_{2} \\
0 & -b_{2} & z-a_{2}
\end{array}\right)} \text { faux }\right)}
$$

Generalizing to $N \times N$ matrix

$$
B_{0}=\left(\begin{array}{cccc}
1 & -b_{1} & 0 & \ldots \\
0 & z-a_{1} & -b_{2} & 0 \\
0 & -b_{2} & z-a_{2} & -b_{3}
\end{array}\right)
$$

matrix dotained by
removing first row and first olen from $\left(z-H_{t r r}\right)$
matrix dotained by removing first two rows and first two colenons from $\left(z-H_{t r \Omega}\right)$
$\operatorname{det} B_{0}=\operatorname{det} D_{1}$

$$
\dot{\Rightarrow} X_{0}=\frac{\operatorname{dt} D_{1}}{\left(z-a_{0}\right) \operatorname{det} D_{1}-b_{1}^{2} \operatorname{det} D_{2}}=\frac{1}{z-a_{0}-b_{1}^{2} \frac{\operatorname{det} D_{2}}{\operatorname{det} D_{1}}}
$$

$$
\begin{aligned}
& X_{0}=\frac{\operatorname{det}\left(B_{0}\right)}{\operatorname{det}\left(z-H_{t+r}\right)} \\
& \begin{array}{l}
\left(z-H_{+\imath}\right)=\left(\begin{array}{cccc}
z-a_{0} & b_{1} & 0 & \ldots \\
-b_{1} & z-a_{1} & -b_{2} & \cdots \\
0 & -b_{2} & z-a_{2} & \cdots \\
\cdots & \cdots
\end{array}\right) \\
\uparrow D_{2}
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det} D_{1}=\left(z-a_{1}\right) \operatorname{det} D_{2}-b_{2}^{2} \operatorname{det} D_{2} \\
& =\frac{\operatorname{det} D_{2}}{\operatorname{det} D_{1}}=\frac{\operatorname{det} D_{2}}{\left(z-a_{1}\right) \operatorname{det} D_{2}-b_{1}^{2} \operatorname{det} D_{3}}=\frac{1}{\left(z-a_{1}\right)-b_{1}^{2} \frac{\operatorname{det} D_{3}}{\operatorname{det} D_{2}}}
\end{aligned}
$$

Putting this into our X_{0} we get

$$
X_{0}=\left\{\frac{1}{z-a_{0}-\frac{b_{1}^{2}}{\left(z-a_{1}\right)-b_{1}^{2}} \ldots . .}\right\} \begin{aligned}
& \text { continued fraction } \\
& \text { in terms of the lauczos sefficients }
\end{aligned}
$$

$=0$ Aletogether you dotaino that

$$
L(\sigma, \Gamma)=-\frac{1}{\pi}\langle 0| J^{\mu t} J^{\mu}(0\rangle J_{m}\left\{\frac{1}{z-a_{0}-\frac{b_{1}^{2}}{\left(z-a_{1}\right)-\frac{b_{2}^{2}}{\left(z-a_{2}\right)}}}\right\}
$$

Advantages

The Lanczos algorithm involves just a matrix-vector multiplication (N^{2})
Continues fractions converge fast
Again, with the Lanczos algorithm the computational load is becoming nN^{2} with $\mathrm{n}=\max ($ iter $)<\mathrm{N}$

See that as an exercise

LIT with Lanczos Algorithm

Strength building up from Lanczos vectors (LIT with small Γ)
Movie from M.Miorelli

Some more applications

Do these nuclei respond differently to em probes?

${ }^{6} \mathrm{He}$

We did calculate them with Hyper-spherical Harmonics and the LIT

$\mathrm{Jg} \mid \mathrm{U}$
 Photo-absorption reaction

S.Bacca et al, PRL 89052502 (2002)

$$
\sigma_{\gamma}(\omega)=4 \pi^{2} \alpha \omega R^{E 1}(\omega) \quad \text { AV4' potential }
$$

$\mathrm{Jg} \mid \mathrm{U}$
 Photo-absorption reaction

S.Bacca et al, PRL 89052502 (2002)

$$
\sigma_{\gamma}(\omega)=4 \pi^{2} \alpha \omega R^{E 1}(\omega) \quad \text { AV4' potential }
$$

Giant Dipole Resonance

protons \longleftrightarrow neutrons

Photo-absorption reaction

S.Bacca et al, PRL 89052502 (2002)

$$
\sigma_{\gamma}(\omega)=4 \pi^{2} \alpha \omega R^{E 1}(\omega) \quad \text { AV4' potential }
$$

Giant Dipole Resonance

protons \longleftrightarrow neutrons

Soft-dipole Mode

neutron halo $\longleftrightarrow \alpha$-core

Giant Dipole Mode

neutrons \longleftrightarrow protons

Inelastic Electron Scattering

$$
\begin{aligned}
R_{L}(\omega, \mathbf{q}) & \left.=\sum_{f}\left|\left\langle\Psi_{f}\right| \rho(\mathbf{q})\right| \Psi_{0}\right\rangle\left.\right|^{2} \delta\left(E_{f}-E_{0}-\omega+\frac{\mathbf{q}^{2}}{2 M}\right) \\
\rho(\mathbf{q}) & =\sum_{k}^{A} e^{i \mathbf{q} \cdot \mathbf{r}_{k}^{\prime}} \frac{1+\tau_{k}^{3}}{2}=\sum_{J}^{\infty} C_{J}^{S}(\mathbf{q})+C_{J}^{V}(\mathbf{q})
\end{aligned}
$$

- Calculate every multipole on a grid of q
- Multipole expansion converges with finite number of multipoles
- Solve LIT equation for every multipole
- Invert LIT for every multipole and sum equiv to invert sum of LITs

Inelastic Electron Scattering

${ }^{4} H e$ with Hyper-spherical Harmonics
Final state interaction

SB et al., PRL 102, 162501 (2009)

.......... PWIA

Full FSI:
AV18+UIX

Strong effect of FSI: known form Carlson and Schiavilla PRL 68 (1992) and PRC 49 R2880 (1994) but now we can look at the energy dependence of FSI
${ }^{40} \mathrm{Ca}$ with coupled-cluster theory
Final state interaction
Sobczyk, Acharya, SB, Hagen, PRL 127, 072501 (2021)

JG|u Monopole Resonance ${ }^{4} \mathrm{He}\left(\mathrm{e}, \mathrm{e}^{\prime}\right) \mathrm{O}^{+}$

Resonant Transition Form Factor

$$
0_{1}^{+} \longrightarrow 0_{2}^{+}
$$

$$
\left|F_{\mathcal{M}}(q)\right|^{2}=\frac{1}{Z^{2}} \int d \omega R_{\mathcal{M}}^{\mathrm{res}}(q, \omega)
$$

First ab-initio calculation: Hiyama et al., PRC 70031001 (2004) obtained good description of data with phenomenological central 3NF but not with realistic forces

$3^{3} \mathrm{H}+\mathrm{p}$

$\Gamma_{R}=270 \pm 70 \mathrm{keV}$

JG|U Monopole Resonance ${ }^{4} \mathrm{He}\left(\mathrm{e}, \mathrm{e}^{\prime}\right) \mathrm{O}^{+}$

Resonant Transition Form Factor

$$
0_{1}^{+} \longrightarrow 0_{2}^{+}
$$

$$
\left|F_{\mathcal{M}}(q)\right|^{2}=\frac{1}{Z^{2}} \int d \omega R_{\mathcal{M}}^{\text {res }}(q, \omega)
$$

New electron scattering experiment was performed at MAMI in Mainz

Disagreement now is even stronger!
Probably a problem of the Hamiltonian

Thank you for your attention

