TALENT School Mainz

Few-Body Reactions

Summer 2022

August 4, 2022

Problem 1.1: Continuity equation

Consider the charge $\rho(\mathbf{x})$ and current $\mathbf{J}(\mathbf{x})$ operators, which can be expanded in terms of a one-body operator plus a two-body operator, etc. The continuity equation states that charge and current operators are related as

$$
\nabla \cdot \mathbf{J}(\mathbf{x})=-i[\mathrm{H}, \rho(\mathbf{x})]
$$

where H is the Hamiltonian of the system made by the sum of the kinetic energy and the optential energy, $H=T+V$. Let the one-body operators be

$$
\begin{aligned}
& \rho_{(1)}(\mathbf{x})=e \sum_{i}^{A}\left(\frac{1+\tau_{i}^{z}}{2}\right) \delta\left(\mathbf{x}-\mathbf{r}_{i}\right) \\
& \mathbf{J}_{(1)}^{c}(\mathbf{x})=\frac{e}{2 m} \sum_{i}^{A}\left(\frac{1+\tau_{i}^{z}}{2}\right)\left\{\mathbf{p}_{i}, \delta\left(\mathbf{x}-\mathbf{r}_{i}\right)\right\} .
\end{aligned}
$$

Show that

$$
\nabla \cdot \mathbf{J}_{(1)}^{c}(\mathbf{x})=-i\left[\mathrm{~T}, \rho_{(1)}(\mathbf{x})\right],
$$

where

$$
\begin{equation*}
T=\sum_{i}^{A} \frac{p_{i}^{2}}{2 m} . \tag{1}
\end{equation*}
$$

NB.:We do not consider the spin current, because that is purely transverse and has divergence zero.
Hint: Work out the commutator and make use of this useful formula $[\mathbf{p}, f(\mathbf{r})]=-i \nabla f(\mathbf{r})$

Solution: We start from

$$
\begin{align*}
{\left[\mathrm{T}, \rho_{(1)}(\mathbf{x})\right] } & =\sum_{i, j}^{A}\left[\frac{p_{i}^{2}}{2 m}, e\left(\frac{1+\tau_{j}^{z}}{2}\right) \delta\left(\mathbf{x}-\mathbf{r}_{j}\right)\right] \\
& =\sum_{i, j}^{A} \frac{e}{2 m}\left(\frac{1+\tau_{j}^{z}}{2}\right)\left[p_{i}^{2}, \delta\left(\mathbf{x}-\mathbf{r}_{j}\right)\right] \tag{2}\\
& =\sum_{i, j}^{A} \frac{e}{2 m}\left(\frac{1+\tau_{j}^{z}}{2}\right)\left\{\mathbf{p}_{i} \cdot\left[\mathbf{p}_{i}, \delta\left(\mathbf{x}-\mathbf{r}_{j}\right)\right]+\left[\mathbf{p}_{i}, \delta\left(\mathbf{x}-\mathbf{r}_{j}\right)\right] \cdot \mathbf{p}_{i}\right\}
\end{align*}
$$

The commutators are zero for $i \neq j$ since momentum and coordinate operators of different particles commute. We then have

$$
\begin{equation*}
\left[\mathrm{T}, \rho_{(1)}(\mathbf{x})\right]=\sum_{i}^{A} \frac{e}{2 m}\left(\frac{1+\tau_{i}^{z}}{2}\right)\left\{\mathbf{p}_{i} \cdot\left[\mathbf{p}_{i}, \delta\left(\mathbf{x}-\mathbf{r}_{i}\right)\right]+\left[\mathbf{p}_{i}, \delta\left(\mathbf{x}-\mathbf{r}_{i}\right)\right] \cdot \mathbf{p}_{i}\right\} \tag{3}
\end{equation*}
$$

and by using the useful formula $[\mathbf{p}, f(\mathbf{r})]=-i \nabla f(\mathbf{r})$, we get to

$$
\begin{align*}
{\left[\mathrm{T}, \rho_{(1)}(\mathbf{x})\right] } & =-\frac{i e}{2 m} \sum_{i}^{A}\left(\frac{1+\tau_{i}^{z}}{2}\right) \nabla_{r_{i}} \cdot\left\{\mathbf{p}_{i}, \delta\left(\mathbf{x}-\mathbf{r}_{i}\right)\right\} \tag{4}\\
& =\frac{i e}{2 m} \nabla_{x} \cdot \sum_{i}^{A}\left(\frac{1+\tau_{i}^{z}}{2}\right)\left\{\mathbf{p}_{i}, \delta\left(\mathbf{x}-\mathbf{r}_{i}\right)\right\}=i \nabla_{x} \cdot \mathbf{J}_{(1)}^{c}(\mathbf{x}) \tag{5}
\end{align*}
$$

Problem 1.2: Two-body currents

Looking at the previous problem, whenever the Hamiltonian has an interaction term V that does not commute with the charge operator $\left[V, \rho_{(1)}(\mathbf{x})\right] \neq 0$, then there has to be a two-body current $\mathbf{J}_{(2)}(\mathbf{x})$, so that

$$
\nabla \cdot \mathbf{J}_{(2)}(\mathbf{x})=-i\left[V, \rho_{(1)}(\mathbf{x})\right] .
$$

If V has an exchange term in the isospin space that goes like $\sum_{i j} \vec{\tau}_{i} \cdot \vec{\tau}_{j}$, where $\vec{\tau}_{i, j}$ are the isospin vectors of particle i and j, respectively, then $\left[V, \rho_{(1)}(\mathbf{x})\right] \neq 0$ and there has to be a two-body current. Show that in this situation, the isospin part of the two-body current will go like $\sum_{i j}\left(\overrightarrow{\tau_{i}} \times \vec{\tau}_{j}\right)^{z}$.
Hint: Work out the commutator and remember that, if the two isospin operators act on the same particle, then $\left[\tau^{k}, \tau^{m}\right]=2 i \epsilon_{k m l} \tau^{l}$ with (k, m, l) indicating the components (x, y, z)

Solution:

We start by working out the commutator:

$$
\begin{array}{r}
\sum_{i, j, k}\left[\vec{\tau}_{i} \cdot \vec{\tau}_{j}, \tau_{k}^{z}\right] \delta\left(\mathbf{x}-\mathbf{r}_{k}\right)=\sum_{i, j, k}\left[\tau_{i}^{x} \tau_{j}^{x}+\tau_{i}^{y} \tau_{y}^{y}+\tau_{i}^{z} \tau_{j}^{z}, \tau_{k}^{z}\right] \delta\left(\mathbf{x}-\mathbf{r}_{k}\right) \\
=\sum_{i, j, k}\left[\tau_{i}^{x} \tau_{j}^{x}+\tau_{i}^{y} \tau_{y}^{y}, \tau_{k}^{z}\right] \delta\left(\mathbf{x}-\mathbf{r}_{k}\right)=\sum_{i, j, k}\left[\tau_{i}^{x} \tau_{j}^{x}, \tau_{k}^{z}\right] \delta\left(\mathbf{x}-\mathbf{r}_{k}\right)+\sum_{i, j, k}\left[\tau_{i}^{y} \tau_{j}^{y}, \tau_{k}^{z}\right] \delta\left(\mathbf{x}-\mathbf{r}_{k}\right) \\
=\sum_{i, j, k}\left(\tau_{i}^{x}\left[\tau_{j}^{x}, \tau_{k}^{z}\right]+\left[\tau_{i}^{x}, \tau_{k}^{z}\right] \tau_{j}^{x}\right) \delta\left(\mathbf{x}-\mathbf{r}_{k}\right)+\sum_{i, j, k}\left(\tau_{i}^{y}\left[\tau_{j}^{y}, \tau_{k}^{z}\right]+\left[\tau_{i}^{y}, \tau_{k}^{z}\right] \tau_{j}^{y}\right) \delta\left(\mathbf{x}-\mathbf{r}_{k}\right) \\
=2 i \sum_{i, j, k}\left(-\tau_{i}^{x} \tau_{j}^{y} \delta_{j k}-\tau_{i}^{y} \tau_{j}^{x} \delta_{i k}+\tau_{i}^{y} \tau_{j}^{x} \delta_{j k}+\tau_{i}^{x} \tau_{j}^{y} \delta_{i k}\right) \delta\left(\mathbf{x}-\mathbf{r}_{k}\right) \\
=2 i \sum_{i, j, k}\left(\tau_{i}^{y} \tau_{j}^{x}-\tau_{i}^{x} \tau_{j}^{y}\right) \delta_{j k} \delta\left(\mathbf{x}-\mathbf{r}_{k}\right)+\left(\tau_{i}^{x} \tau_{j}^{y}-\tau_{i}^{y} \tau_{j}^{x}\right) \delta_{i k} \delta\left(\mathbf{x}-\mathbf{r}_{k}\right) \\
=2 i \sum_{i, j}\left(\tau_{i}^{y} \tau_{j}^{x}-\tau_{i}^{x} \tau_{j}^{y}\right) \delta\left(\mathbf{x}-\mathbf{r}_{j}\right)+\left(\tau_{i}^{x} \tau_{j}^{y}-\tau_{i}^{y} \tau_{j}^{x}\right) \delta\left(\mathbf{x}-\mathbf{r}_{i}\right) \\
=2 i \sum_{i, j}-\left(\tau_{i}^{x} \tau_{j}^{y}-\tau_{i}^{y} \tau_{j}^{x}\right) \delta\left(\mathbf{x}-\mathbf{r}_{j}\right)+\left(\tau_{i}^{x} \tau_{j}^{y}-\tau_{i}^{y} \tau_{j}^{x}\right) \delta\left(\mathbf{x}-\mathbf{r}_{i}\right) \\
=2 i \sum_{i, j}-\left(\vec{\tau}_{i} \times \vec{\tau}_{j}\right)^{z} \delta\left(\mathbf{x}-\mathbf{r}_{j}\right)+\left(\vec{\tau}_{i} \times \vec{\tau}_{j}\right)^{z} \delta\left(\mathbf{x}-\mathbf{r}_{i}\right) \\
=2 i \sum_{i, j}\left(\vec{\tau}_{i} \times \vec{\tau}_{j}\right)\left(\delta\left(\mathbf{x}-\mathbf{r}_{i}\right)-\delta\left(\mathbf{x}-\mathbf{r}_{j}\right)\right)
\end{array}
$$

so that we see that in the isospin part we do have a term that goes like

$$
\begin{equation*}
\sum_{i j}\left(\overrightarrow{\tau_{i}} \times \overrightarrow{\tau_{j}}\right)^{z} \tag{7}
\end{equation*}
$$

Problem 1.3: Electron scattering on the Deuteron

Let us consider the inelastic electron scattering of the deuteron, which (see lecture) is given by the longitudinal response function

$$
\left.R_{L}(\omega, \boldsymbol{q})=\sum_{i}^{-} \sum_{f}|\langle f| \rho(\boldsymbol{q})| i\right\rangle\left.\right|^{2} \delta\left(E_{f}+\frac{\boldsymbol{q}^{2}}{2 M}-E_{i}-\omega\right)
$$

where we consider also the recoil term $\frac{\mathrm{q}^{2}}{2 M}$ and the average on the initial state projection of angular momentum $\bar{\sum}_{i}$. At low energy we can approximate the deutron initial wave function with its S-wave component as

$$
|i\rangle \rightarrow \Psi(r)=N \frac{e^{-r / a}}{r}
$$

Assuming that the final state wave functions are plane waves $|f\rangle \rightarrow \frac{1}{\sqrt{(2 \pi)^{3}}} \exp (i \boldsymbol{k} \cdot \boldsymbol{r})$, calculate the longitudinal response function.
Hint 1: Use the one-body charge operator

$$
\begin{equation*}
\rho(\mathbf{x})=\rho_{(1)}(\mathbf{x})=e \sum_{i}^{A}\left(\frac{1+\hat{\tau}_{i}^{z}}{2}\right) \delta\left(\mathbf{x}-\mathbf{r}_{i}\right), \tag{8}
\end{equation*}
$$

and perform the Fourier transform to get $\rho(\boldsymbol{q})$.
Hint 2: When calculating the matrix element, use the fact that the following two functions are connected by a Fourier transform

$$
\begin{equation*}
\frac{e^{-m r}}{r} \rightarrow_{\mathrm{FT}} \rightarrow \frac{4 \pi}{m^{2}+k^{2}} \tag{9}
\end{equation*}
$$

Solution: We first perform the Fourier transform of the charge density operator

$$
\rho(\boldsymbol{q})=\int d \boldsymbol{x} e^{i \boldsymbol{q} \cdot \boldsymbol{x}} \rho(\boldsymbol{x})=e \sum_{i} \frac{1+\tau_{i}^{z}}{2} e^{i \boldsymbol{q} \cdot \mathbf{r}_{i}}
$$

For the duteron we have that $\boldsymbol{R}=\frac{1}{2}\left(\mathbf{r}_{1}+\mathbf{r}_{2}\right), \mathbf{r}=\mathbf{r}_{2}-\mathbf{r}_{1}$, thus $\mathbf{r}_{1}=\boldsymbol{R}-\frac{\mathbf{r}}{2}$ and $\mathbf{r}_{2}=\boldsymbol{R}+\frac{\mathbf{r}}{2}$. The operator becomes then

$$
\rho(\boldsymbol{q})=\frac{1+\tau_{1}^{z}}{2} e^{i \boldsymbol{q} \cdot(\boldsymbol{R}-\mathbf{r} / 2)}+\frac{1+\tau_{2}^{z}}{2} e^{i \boldsymbol{q} \cdot(\boldsymbol{R}+\mathbf{r} / 2)}
$$

If we sit in the center of mass by putting $\boldsymbol{R}=0$, we get

$$
\rho(\boldsymbol{q})=\frac{1+\tau_{1}^{z}}{2} e^{i \boldsymbol{q} \cdot(-\mathbf{r} / 2)}+\frac{1+\tau_{2}^{z}}{2} e^{i \boldsymbol{q} \cdot(\mathbf{r} / 2)} .
$$

Then we plug operator into the the longitudinal response

$$
\left.R_{L}(\omega, \boldsymbol{q})=\sum_{i}^{-} \sum_{f}|\langle f| \rho(\boldsymbol{q})| i\right\rangle\left.\right|^{2} \delta\left(E_{f}+\frac{\boldsymbol{q}^{2}}{2 M}-E_{i}-\omega\right),
$$

so that we have to calculate the matrix element $\langle f| \rho(\boldsymbol{q})|i\rangle$.
This matrix element will also have an isospin part, which we consider first. The deuteron ground state has isospin $T=0$ and isospin projection $T_{z}=0$. The operator $\rho(\boldsymbol{q})$ does not change the isospin projection, hence the final state must have $T_{z}=0$ but can have both $T=1,0$. The isospin matrix elements give

$$
\begin{align*}
\left\langle T=0 T_{z}=0\right| \frac{1+\tau_{1}^{z}}{2}\left|T=0 T_{z}=0\right\rangle & =\frac{1}{2} \tag{10}\\
\left\langle T=1 T_{z}=0\right| \frac{1+\tau_{1}^{z}}{2}\left|T=0 T_{z}=0\right\rangle & =\frac{1}{2} \\
\left\langle T=0 T_{z}=0\right| \frac{1+\tau_{2}^{z}}{2}\left|T=0 T_{z}=0\right\rangle & =\frac{1}{2} \\
\left\langle T=1 T_{z}=0\right| \frac{1+\tau_{2}^{z}}{2}\left|T=0 T_{z}=0\right\rangle & =-\frac{1}{2}
\end{align*}
$$

so that we get

$$
\begin{aligned}
\langle\boldsymbol{k} T| \rho(\boldsymbol{q})|i\rangle & =\int d \mathbf{r} \frac{1}{\sqrt{(2 \pi)^{3}}} e^{-i \boldsymbol{k} \cdot \mathbf{r}}\langle T|\left[\frac{1+\tau_{1}^{z}}{2} e^{-i \boldsymbol{q} \cdot \mathbf{r} / 2}+\frac{1+\tau_{2}^{z}}{2} e^{i \boldsymbol{q} \cdot \mathbf{r} / 2}\right]|T=0\rangle N \frac{e^{-r / a}}{r} \\
& =\frac{N}{2} \int d \mathbf{r} \frac{1}{\sqrt{(2 \pi)^{3}}} e^{-i \boldsymbol{k} \cdot \mathbf{r}}\left[e^{-i \boldsymbol{q} \cdot \mathbf{r} / 2}+(-)^{T} e^{i \boldsymbol{q} \cdot \mathbf{r} / 2}\right] \frac{e^{-r / a}}{r}
\end{aligned}
$$

Defining $\kappa=1 / a$ and using the second hint we get

$$
\begin{aligned}
\langle\boldsymbol{k} T| \rho(\boldsymbol{q})|i\rangle & =\frac{N}{2} \int d \mathbf{r} \frac{1}{\sqrt{(2 \pi)^{3}}} e^{-i \boldsymbol{k} \cdot \mathbf{r}}\left[e^{-i \boldsymbol{q} \cdot \mathbf{r} / 2}+(-)^{T} e^{i \boldsymbol{q} \cdot \mathbf{r} / 2}\right] \frac{e^{-\kappa r}}{r} \\
& =\frac{N}{2} \frac{1}{\sqrt{(2 \pi)^{3}}}\left[\frac{4 \pi}{(\boldsymbol{k}+\boldsymbol{q} / 2)^{2}+\kappa^{2}}+(-)^{T} \frac{4 \pi}{(\boldsymbol{k}-\boldsymbol{q} / 2)^{2}+\kappa^{2}}\right] .
\end{aligned}
$$

Plugging this into the response function we get

$$
\begin{align*}
R_{L}(\omega, \boldsymbol{q})= & \int d \boldsymbol{k} \sum_{T=0,1} \frac{N^{2}}{2 \pi}\left[\frac{1}{(\boldsymbol{k}+\boldsymbol{q} / 2)^{2}+\kappa^{2}}+(-)^{T} \frac{1}{(\boldsymbol{k}-\boldsymbol{q} / 2)^{2}+\kappa^{2}}\right]^{2} \\
& \delta\left(k^{2} / M+\frac{\boldsymbol{q}^{2}}{4 M}-E_{i}-\omega\right)= \\
= & \int d \boldsymbol{k} \frac{2 N^{2}}{\pi}\left(\frac{1}{(\boldsymbol{k}+\boldsymbol{q} / 2)^{2}+\kappa^{2}}\right)^{2} \delta\left(k^{2} / M+\frac{\boldsymbol{q}^{2}}{4 M}-E_{i}-\omega\right) . \tag{11}
\end{align*}
$$

