

Few-body Reactions

Lecture 2

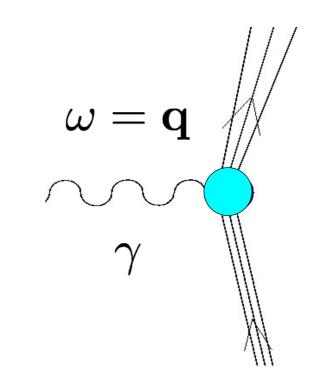
Electromagnetic Operators

Sonia Bacca

- Multipole decomposition of the charge operator
- Multipole decomposition of the current operator
- Siegert Theorem
- Extension to the weak sector

Electromagnetic processes

$$\omega, \mathbf{q}$$



Electron scattering (virtual photon)

Photoabsorption (real photon)

Cross section involves the calculation of

$$\sigma_{em} \sim |\langle \Psi_f | \ \rho \text{ or } \mathbf{J} \ |\Psi_0\rangle|^2$$

Since the intrinsic states of the nucleus can be classified according to the total angular momentum (see lectures by Nir Barnea), it is very useful to perform a multipole decomposition of the charge and of the current operators, where each multipole transfers a definite angular momentum J.

 $\langle \Psi_f | \mathcal{O}^J | \Psi_0 \rangle \rightarrow \text{selection rules}$

The advantage of this approach is also that one can use the Wigner-Eckart theorem, separating the geometrical aspects form the dynamical properties of the system, which remain in the reduced matrix element.

Reduces complexity of each nuclear matrix element

$$\begin{split} \rho\left(\mathbf{x}\right) &= e \sum_{i}^{A} \frac{1 + \tau_{i}^{z}}{2} \ \delta(\mathbf{x} - \mathbf{r}_{i}) & \text{One body operator} \\ \mathbf{FF} \\ \rho(\mathbf{q}) &= \int d^{3}x \ e^{i\mathbf{q}\cdot\mathbf{x}} \ \rho(\mathbf{x}) \\ \rho(\mathbf{q}) &= e \sum_{i}^{A} \frac{1 + \tau_{i}^{z}}{2} \int d^{3}x \ e^{i\mathbf{q}\cdot\mathbf{x}} \ \delta(\mathbf{x} - \mathbf{r}_{i}) \\ &= e \sum_{i}^{A} \frac{1 + \tau_{i}^{z}}{2} \ e^{i\mathbf{q}\cdot\mathbf{r}_{i}} \end{split}$$

Spatial part, single coordinate omitting i-index

$$e^{i\mathbf{q}\cdot\mathbf{r}} \longrightarrow$$
 scalar function, that depends on (r,θ,ϕ)

Any function that depends on angles can be expanded in spherical harmonics, as they are a complete set of basis states

$$f(\theta,\phi) = \sum_{J\mu} a_{J\mu} Y^J_{\mu}(\theta,\phi)$$

with

$$a_{J\mu} = \int d\theta \int d\phi \ f(\theta,\phi) Y^J_{\mu} \ (\theta,\phi)$$

Spatial part, single coordinate omitting i-index

$$e^{i\mathbf{q}\cdot\mathbf{r}} \longrightarrow$$
 scalar function, that depends on (r,θ,ϕ)

Any function that depends on angles can be expanded in spherical harmonics, as they are a complete set of basis states

$$f(r,\theta,\phi) = \sum_{J\mu} a_{J\mu}(r) Y^J_{\mu}(\theta,\phi)$$

with

$$a_{J\mu}(r) = \int d\theta \int d\phi \ f(r,\theta,\phi) Y^J_{\mu} \ (\theta,\phi)$$

Spatial part, single coordinate omitting i-index

$$e^{i\mathbf{q}\cdot\mathbf{r}} \longrightarrow$$
 scalar function, that depends on (r,θ,ϕ)

Any function that depends on angles can be expanded in spherical harmonics, as they are a complete set of basis states

Plane wave expansion in spherical harmonics

Spatial part, single coordinate omitting i-index

$$e^{i\mathbf{q}\cdot\mathbf{r}} \longrightarrow$$
 scalar function, that depends on (r,θ,ϕ)

Any function that depends on angles can be expanded in spherical harmonics, as they are a complete set of basis states

Plane wave expansion in spherical harmonics

Inclusive cross section ⁴He(e,e')X, after Rosenbluth separation (L/T)

To compare the experimental longitudinal response function with a calculation, we have to compute

$$\begin{split} R_{L}(\omega,\mathbf{q}) &= \oint_{f} |\langle \Psi_{f} | \rho(\mathbf{q}) | \Psi_{0} \rangle|^{2} \, \delta \left(E_{f} - E_{0} - \omega + \frac{\mathbf{q}^{2}}{2M} \right) \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & &$$

- For a given Hamiltonian, if you have a solver for $|\Psi_{0/f}
 angle$ (see lecture by Nir Barnea)
- Fix q on a certain grid and expand the charge operator into multipoles for every q
- Compute the individual multipoles (separating isoscalar and isovector)

$$\frac{1}{2}$$
 $\frac{\tau_{2}}{2}$

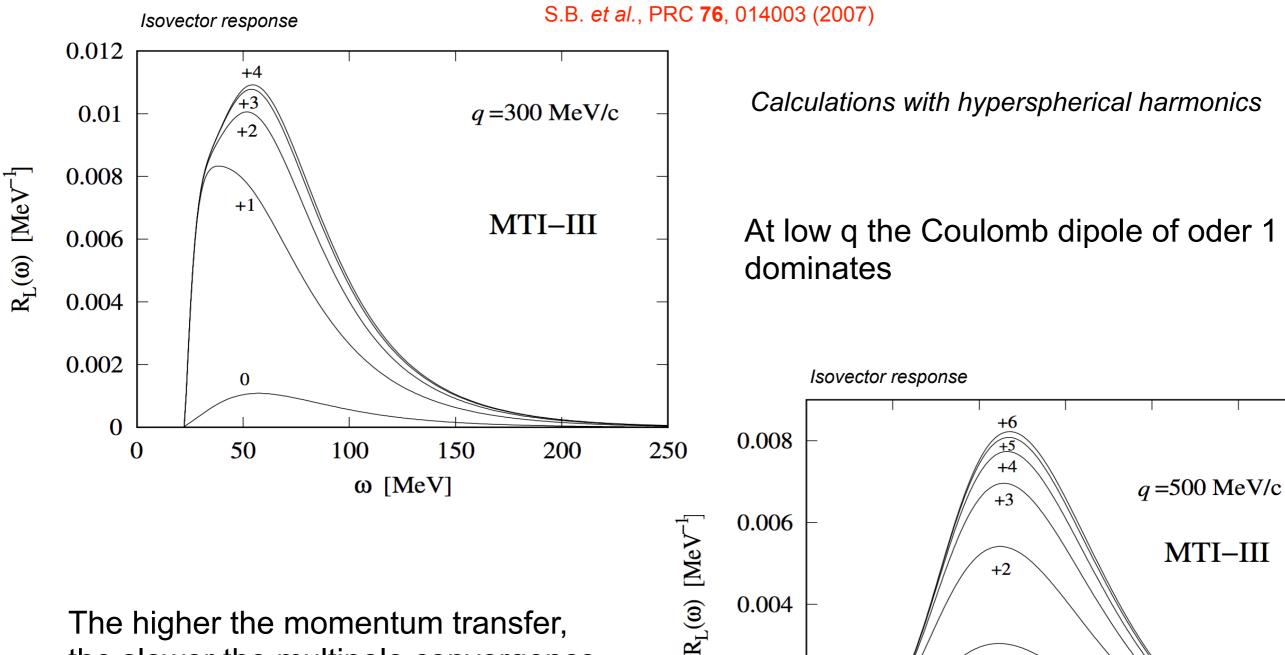
• Sum them up and compare to data

4 H e

IG

Illustrative Example

Recursive sum of Coulomb multipoles



The higher the momentum transfer, the slower the multipole convergence

0.002

0

0

50

+1

0

150

ω [MeV]

200

250

100

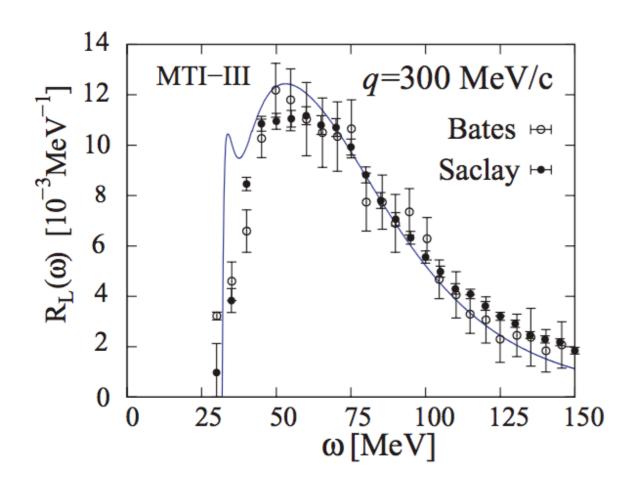
300

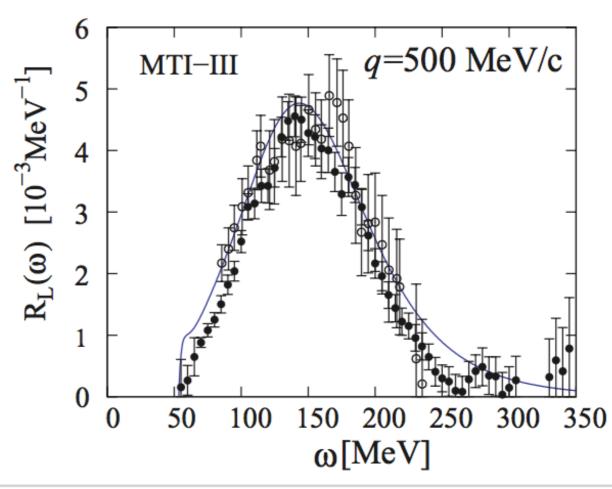
4He

JGU

Illustrative Example

Comparison to experimental data S.B. et al., PRC 76, 014003 (2007)





Agreement with experimental data is quite good!

⁴He

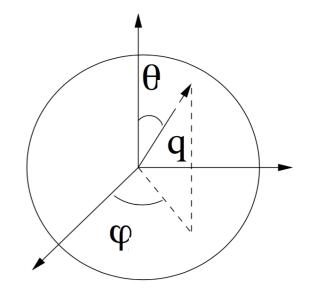
Since the current operator is a vector, the expansion is done in terms of the vector spherical harmonics

$$\mathbf{Y}_{Jl1}^{\mu}(\hat{q}) = \sum_{m\xi} \left\langle l1J | m\xi\mu \right\rangle Y_m^l(\hat{q}) \mathbf{e}_{\xi}$$

Unit vector in the spherical basis

$$\mathbf{e}_1 = -\frac{1}{\sqrt{2}}(\mathbf{e}_x + i\mathbf{e}_y)$$

 $\mathbf{e}_0 = \mathbf{e}_z$ $\mathbf{e}_{-1} = \frac{1}{\sqrt{2}} (\mathbf{e}_x - i\mathbf{e}_y)$



The vector spherical harmonics form a complete set on the unit sphere

$$\int d\hat{q}' \mathbf{Y}_{J'l'1}^{\mu'*}(\hat{q}') \cdot \mathbf{Y}_{Jl1}^{\mu}(\hat{q}') = \delta_{JJ'} \delta_{ll'} \delta_{\mu,\mu'}$$

Multipole expansion of the current operator

$$\begin{aligned} \mathbf{J}\left(\mathbf{q}\right) &= 4\pi \sum_{lJ\mu} J_{Jl}^{\mu}(q) \mathbf{Y}_{Jl1}^{\mu*}(\hat{q}) \\ \text{with } J_{Jl}^{\mu}(q) &= \frac{1}{4\pi} \int d\hat{q}' \mathbf{J}\left(\mathbf{q}'\right) \cdot \mathbf{Y}_{Jl1}^{\mu}(\hat{q}') \end{aligned}$$

According to angular momentum rules $l=J-1, J, J+1 \Rightarrow$ separate according to parity

$$\mathbf{J}\left(\mathbf{q}\right) = \sum_{J\mu} \left(\mathbf{J}_{J\mu}^{el}(\mathbf{q}) + \mathbf{J}_{J\mu}^{mag}(\mathbf{q}) \right)$$

$$\mathbf{J}_{J\mu}^{el}(\mathbf{q}) = 4\pi \left(J_{JJ-1}^{\mu}(q) \mathbf{Y}_{JJ-11}^{\mu*}(\hat{q}) + J_{JJ+1}^{\mu}(q) \mathbf{Y}_{JJ+11}^{\mu*}(\hat{q}) \right) \quad \begin{array}{l} \text{Electric multipoles} \\ \text{parity } (-1)^{J} \end{array}$$

 $\mathbf{J}_{J\mu}^{mag}(\mathbf{q}) = 4\pi J_{JJ}^{\mu}(q) \mathbf{Y}_{JJ1}^{\mu*}(\hat{q}) \quad \text{Magnetic multipoles} \quad \text{parity } (-1)^{J+1}$

The expression for the electric multipole can be rewritten as

$$\begin{aligned} \mathbf{J}_{J\mu}^{el}(\mathbf{q}) &= 4\pi \left(J_{JJ-1}^{\mu}(q) \mathbf{Y}_{JJ-11}^{\mu*}(\hat{q}) + J_{JJ+1}^{\mu}(q) \mathbf{Y}_{JJ+11}^{\mu*}(\hat{q}) \right) \\ & J_{Jl}^{\mu}(q) = \frac{1}{4\pi} \int d\hat{q}' \mathbf{J} \left(\mathbf{q}' \right) \cdot \mathbf{Y}_{Jl1}^{\mu}(\hat{q}') \end{aligned}$$

Using

$$\begin{aligned} \mathbf{Y}_{JJ-11}^{\mu}(\hat{q}) &= \sqrt{\frac{J}{2J+1}} \hat{\mathbf{q}} Y_{\mu}^{J}(\hat{q}) - i\sqrt{\frac{J+1}{2J+1}} \hat{\mathbf{q}} \times \mathbf{Y}_{JJ11}^{\mu}(\hat{q}) \end{aligned} \quad \text{(with } \hat{\mathbf{q}} &= \frac{\mathbf{q}}{|\mathbf{q}|} \text{)} \\ \mathbf{Y}_{JJ+11}^{\mu}(\hat{q}) &= -\sqrt{\frac{J+1}{2J+1}} \hat{\mathbf{q}} Y_{\mu}^{J}(\hat{q}) - i\sqrt{\frac{J}{2J+1}} \hat{\mathbf{q}} \times \mathbf{Y}_{JJ11}^{\mu}(\hat{q}) \end{aligned}$$

we get

Introducing longitudinal and transverse electric multipoles and magnetic multipoles

$$\begin{split} L_{J\mu}^{el}(q) &= \frac{1}{4\pi} \int d\hat{q}' \left(\hat{\mathbf{q}}' \cdot \mathbf{J} \left(\mathbf{q}' \right) \right) Y_{\mu}^{J}(\hat{q}') \\ T_{J\mu}^{el}(q) &= \frac{i}{4\pi} \int d\hat{q}' \left(\hat{\mathbf{q}}' \times \mathbf{Y}_{JJ1}^{\mu}(\hat{q}') \right) \cdot \mathbf{J} \left(\mathbf{q}' \right) \\ T_{J\mu}^{mag}(q) &= \frac{1}{4\pi} \int d\hat{q}' \mathbf{J} \left(\mathbf{q}' \right) \cdot \mathbf{Y}_{JJ1}^{\mu}(\hat{q}') \end{split}$$

The magnetic multipoles are transverse only due to $\hat{\mathbf{q}} \cdot \mathbf{Y}^{\mu}_{JJ1}(\hat{q}) = 0$

NB: for every piece of em current (convection, spin, two-body current) one can calculate these multipoles

Choosing the z-axis as the direction of propagation of the photon momentum

 $\mathbf{q} = q\mathbf{e}_z = q\mathbf{e}_0$ then

$$\mathbf{Y}^{\mu}_{Jl1} = \langle l1J|0\mu\mu\rangle \,\frac{\hat{l}}{\sqrt{4\pi}} \mathbf{e}_{\mu} \qquad \text{with} \quad \hat{l} = \sqrt{2l+1}$$

Substitute all of these in the expression of the current in terms of longitudinal, electric and magnetic multipoles

$$\mathbf{J}(\mathbf{q}) = \sum_{J\mu} \sqrt{4\pi} \hat{J} \left[L_{J\mu}^{el}(q) \mathbf{e}_0 + \mu \left\langle J 1 J | 0\mu\mu \right\rangle T_{J\mu}^{el}(q) \mathbf{e}_{\mu}^* \right] + \sum_{J\mu} \sqrt{4\pi} \hat{J} \left\langle J 1 J | 0\mu\mu \right\rangle T_{J\mu}^{mag}(q) \mathbf{e}_{\mu}^*$$

As in the nuclear matrix elements typically we have $\mathbf{e}_{\lambda} \cdot \mathbf{J}(\mathbf{q})$, then we rewrite as

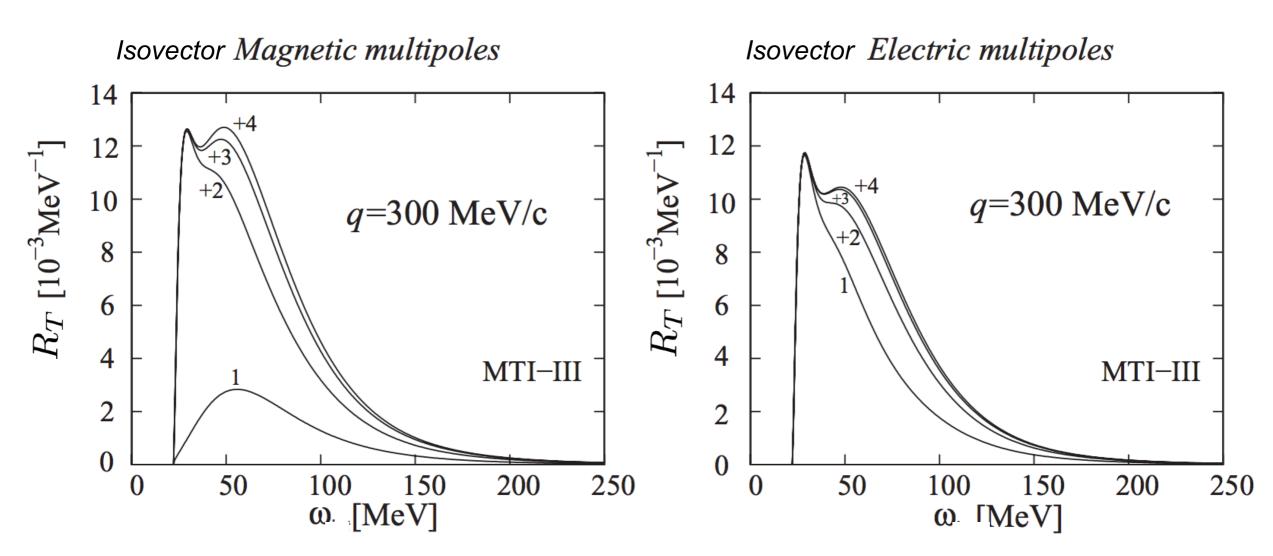
$$\mathbf{e}_{\lambda} \cdot \mathbf{J}(\mathbf{q}) = (-)^{\lambda} \sqrt{2\pi (1 + \delta_{\lambda 0})} \sum_{J} \hat{J} \left[L_{J\lambda}^{el}(q) \delta_{\lambda 0} + \left(T_{J\lambda}^{el}(q) + \lambda T_{J\lambda}^{mag}(q) \right) \delta_{|\lambda| 1} \right]$$

Multipole decomposition of the current operator

$$\mathbf{e}_{\lambda} \cdot \mathbf{J}(\mathbf{q}) = (-)^{\lambda} \sqrt{2\pi (1 + \delta_{\lambda 0})} \sum_{J} \hat{J} \left[L_{J\lambda}^{el}(q) \delta_{\lambda 0} + \left(T_{J\lambda}^{el}(q) + \lambda T_{J\lambda}^{mag}(q) \right) \delta_{|\lambda| 1} \right]$$

Recursive sum of transverse multipoles of spin and convection currents

S.B. et al., PRC 76, 014003 (2007)

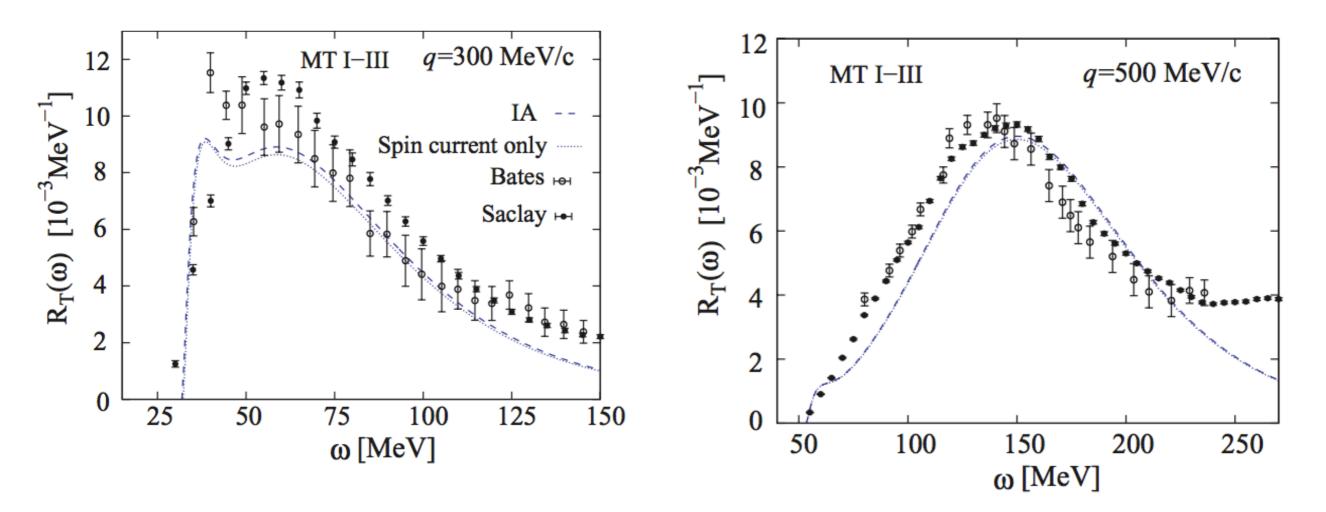


⁴He

JG U

Comparison with experiment

S.B. et al., PRC 76, 014003 (2007)

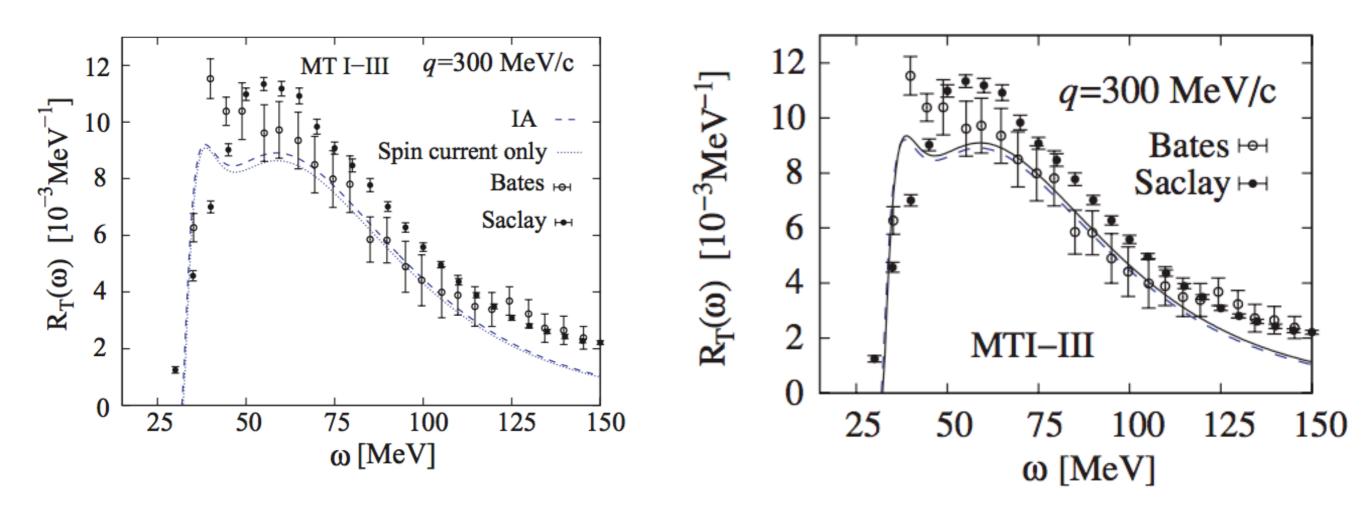


The agreement with experimental data is not good. Missing strength, due to missing two-body currents. JG U

⁴He

Comparison with experiment

S.B. et al., PRC 76, 014003 (2007)

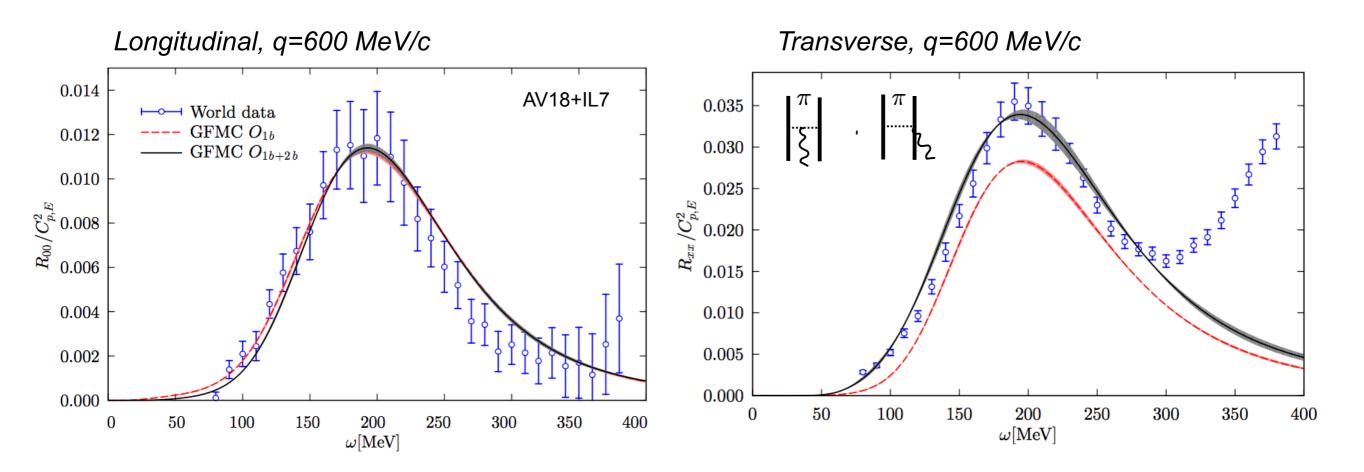


In this semi-realistic case, consistent two-body currents (due to the exchange of a scalar meson) do not explain the data.

With traditional potentials and two-body currents

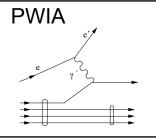
Lovato *et al.*, PRC **91**, 062501 (2015)

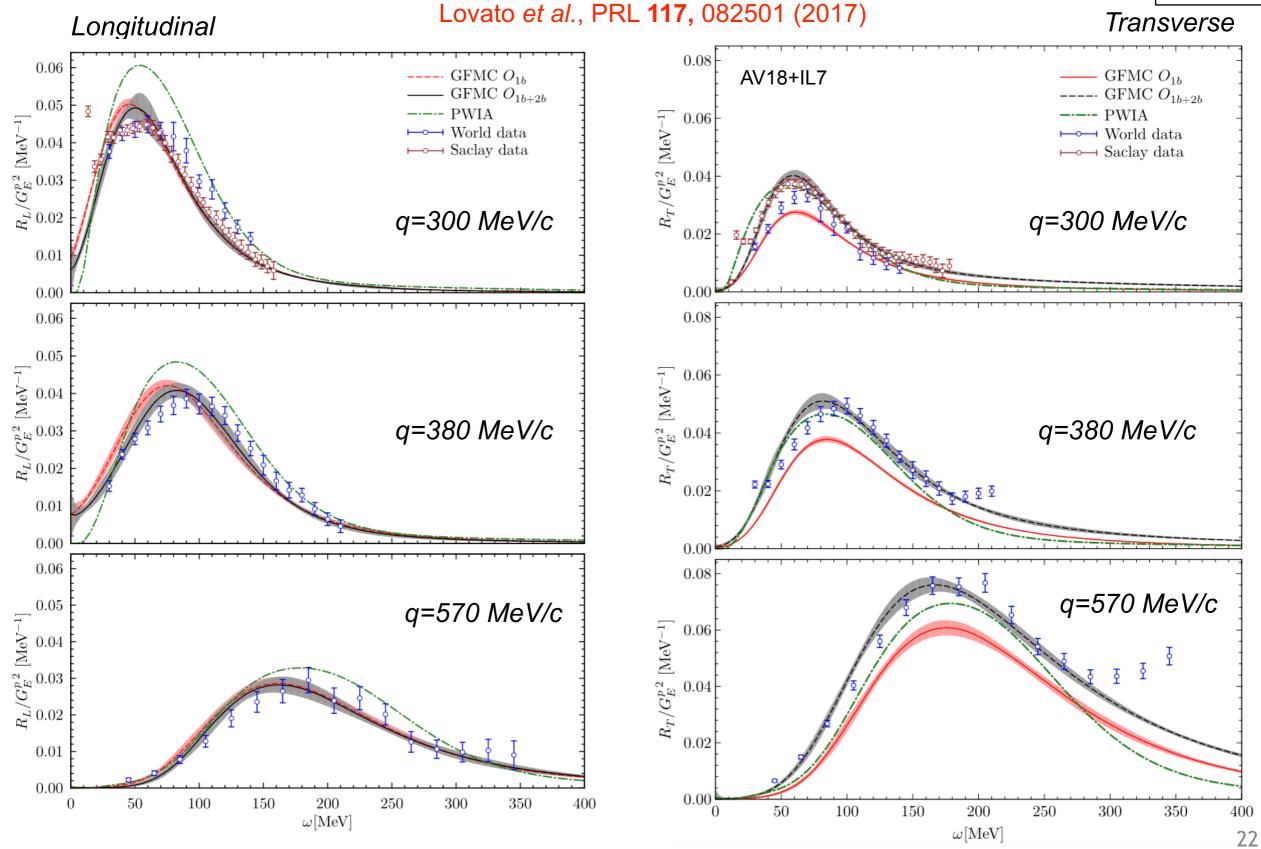
Calculations with Green's Function Monte Carlo



Realistic two-body currents are necessary to obtain agreement with data in the transverse response

Extension to ¹²C



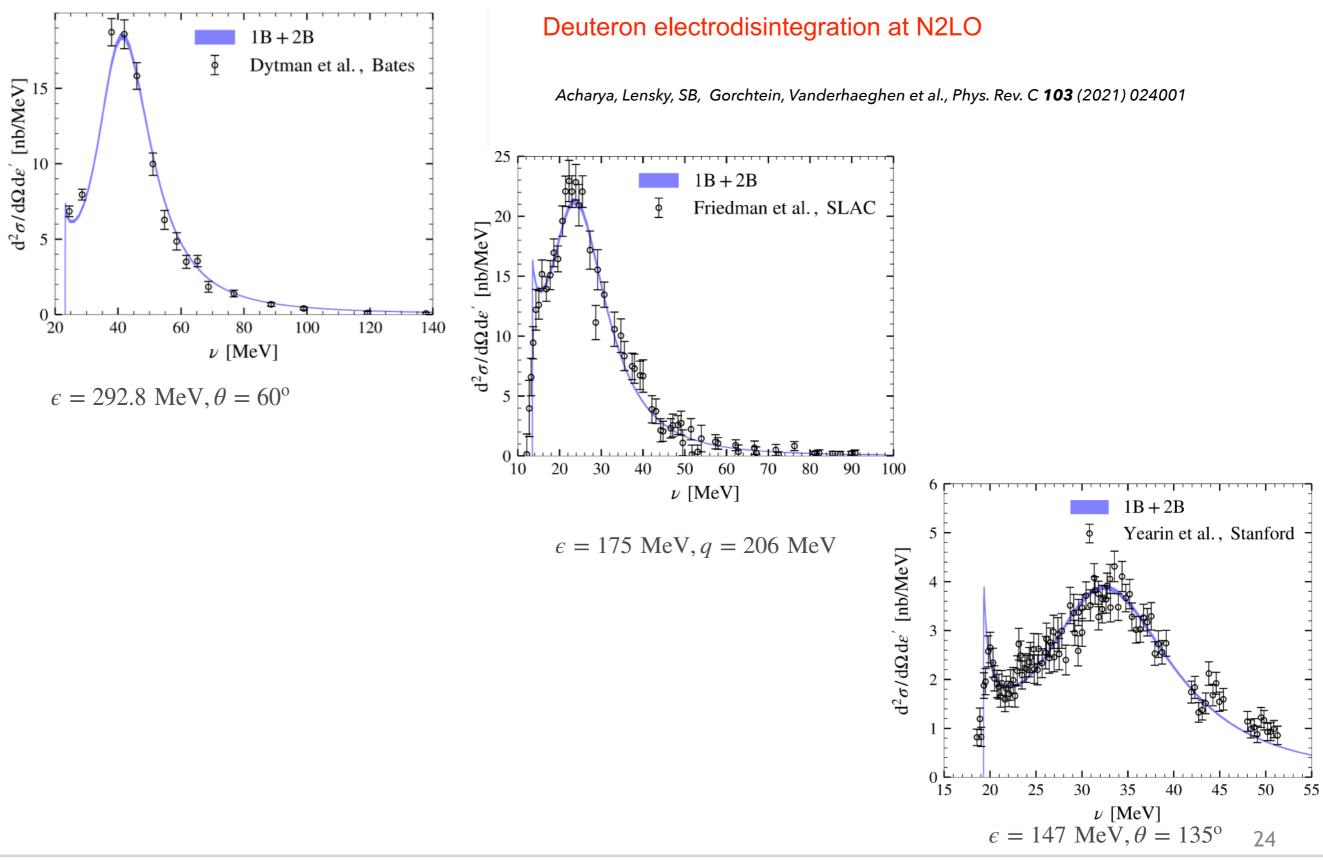


Sonia Bacca

What about calculations with chiral effective field theory dynamical ingredients (potential and currents)?

Chiral EFT potentials and currents

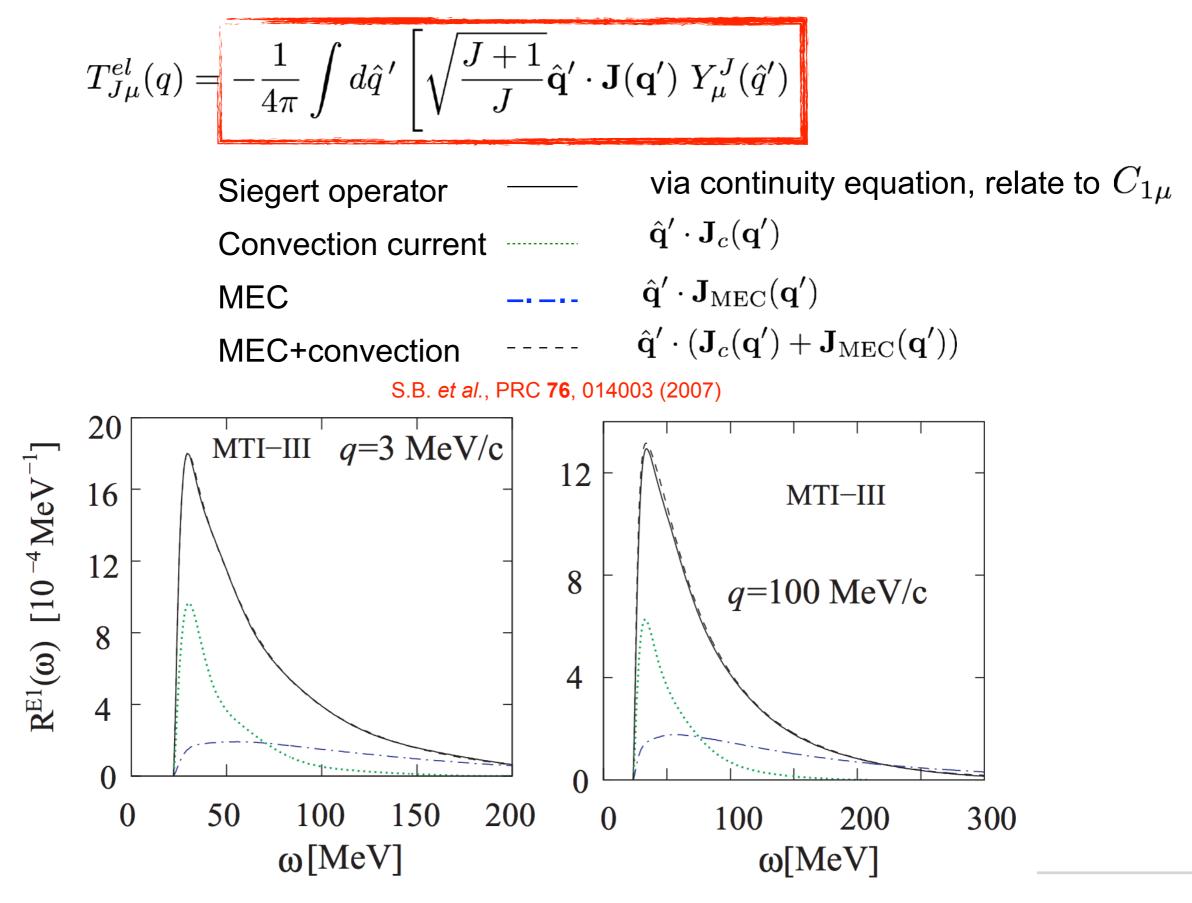
JGU



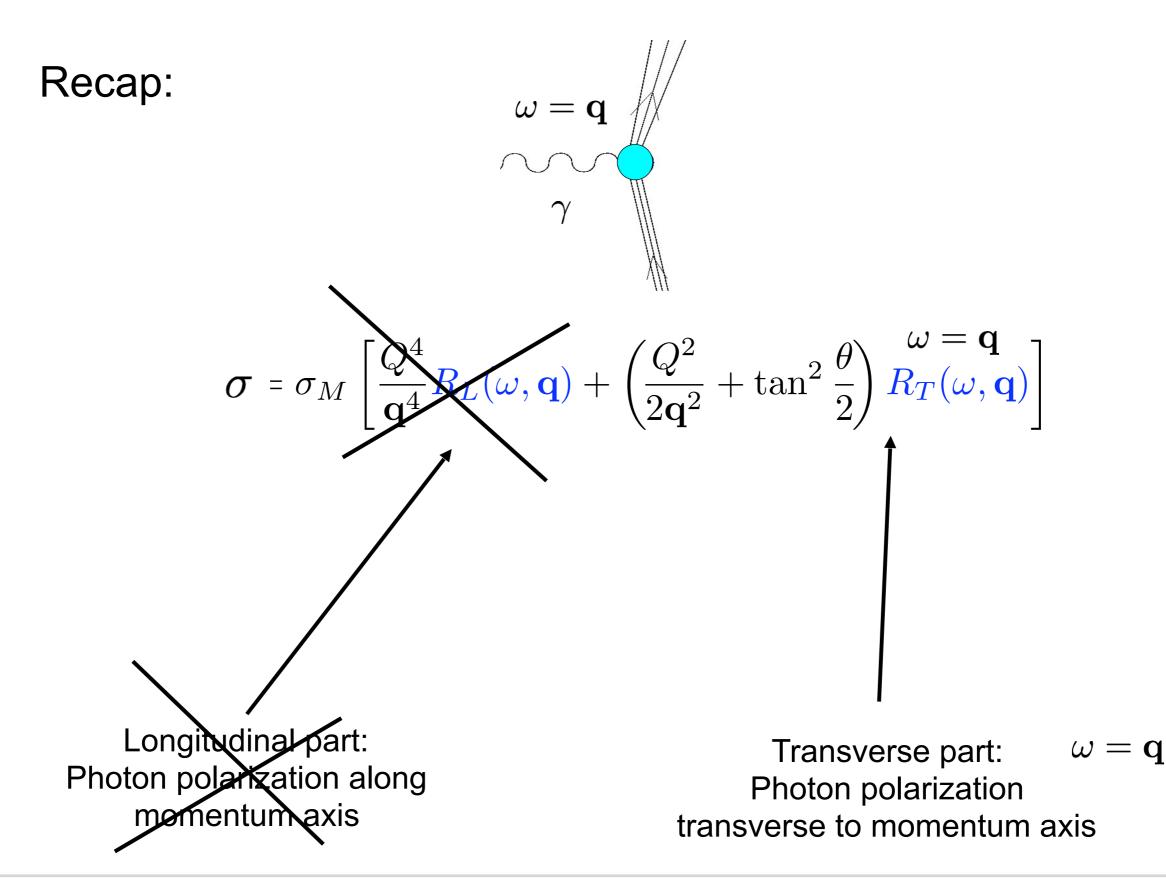
The Siegert theorem

Let us look again at the form of the transverse electric multipoles

Practical Example J=1



Photoabsorption



Photoabsorption

$$R_T(\omega = \mathbf{q}) \to |\langle \Psi_f | J_T(q) | \Psi_0 \rangle|^2 = \sum_{\lambda = \pm 1} |\langle \Psi_f | J_\lambda(q) | \Psi_0 \rangle|^2$$

Now we can use the multipole decomposition of the current that we just derived

General multipole decomposition of the current

$$\mathbf{e}_{\lambda} \cdot \mathbf{J}(\mathbf{q}) = (-)^{\lambda} \sqrt{2\pi (1 + \delta_{\lambda 0})} \sum_{J} \hat{J} \left[L_{J\lambda}^{el}(q) \delta_{\lambda 0} + \left(T_{J\lambda}^{el}(q) + \lambda T_{J\lambda}^{mag}(q) \right) \delta_{|\lambda| 1} \right]$$

Real photons: no longitudinal polarization possible only transverse polarization

$$\lambda = \pm 1$$

$$\begin{split} \mathbf{e}_{\lambda} \cdot \mathbf{J} \left(\mathbf{q} \right) &\longrightarrow (-)^{\lambda} \sqrt{2\pi} \sum_{J} \hat{J} \left[\begin{pmatrix} T_{J\lambda}^{el}(q) + \lambda T_{J\lambda}^{mag}(q) \end{pmatrix} \delta_{|\lambda|1} \right] \\ & \uparrow & \uparrow \\ & \mathsf{See when explicitly calculating} & j_{J}(qr) & j_{J+1}(qr) \\ & \mathsf{multipole of a current operator} & j_{J}(qr) & j_{J+1}(qr) \end{split}$$

Low momentum transfer:

Only lowest multipole prevails J=1 and electric multipole dominates over magnetic

$$J_{\lambda}(q) \longrightarrow T_{J}^{el} \xrightarrow{\text{Siegert}} \to C_{J=1} \xrightarrow{\text{low q and q // z}} \sqrt{\frac{3}{4\pi}} \cos(\theta) \to \omega z$$

Photoabsorption

Thus, photoabsorption at low energy can be calculated simply from a dipole response function

$$\sigma(\omega) = \frac{4\pi^2 \alpha}{2J_0 + 1} \omega R(\omega)$$

$$R(\omega) = \sum_{f} \left| \langle \Psi_{f} | D_{z} | \Psi_{0} \rangle \right|^{2} \delta(E_{f} - E_{0} - \omega)$$

$$D_z = \sum_{i}^{A} z_i \left(\frac{1+\tau_i^z}{2}\right)$$

Comparing calculations in which one uses the dipole operator (Siegert theorem)

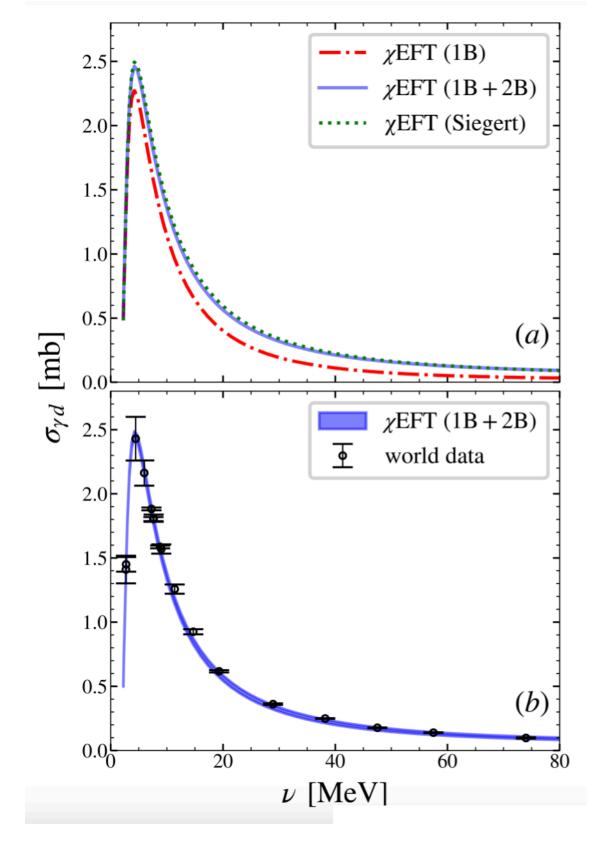
$$|\langle \Psi_f | D_z | \Psi_0 \rangle|^2$$

with calculations where one explicitly insert the transverse current (1-body + 2-body, etc.)

$$\sum_{\lambda=\pm 1} |\langle \Psi_f | J_\lambda(q) | \Psi_0 \rangle|^2$$

JGU

Practical Example: Deuteron



Using the explicit one-body current only it is not enough.

Using the Siegert theorem is equivalent as using explicit one- and two-body currents.

Perfect agreement with experiment for the deuteron.

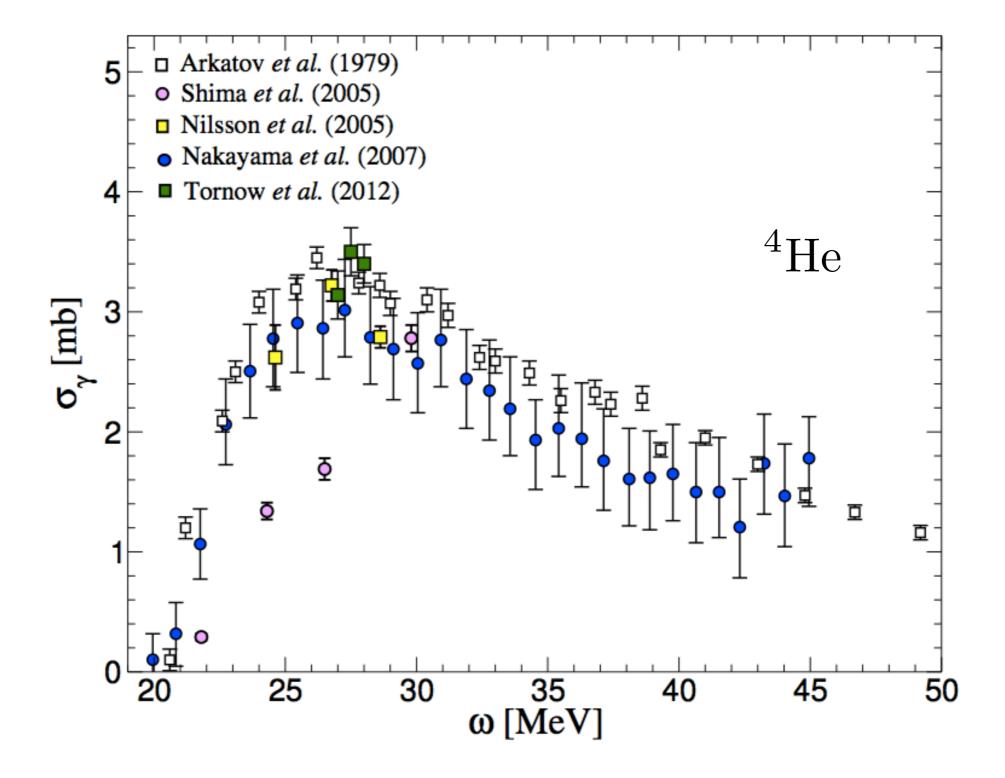
Acharya, Lensky, SB, Gorchtein, Vanderhaeghen et al., Phys. Rev. C 103 (2021) 024001

Thus, photoabsorption at low energy can be calculated simply from a dipole response function

We will see several few- and many-body applications after we have explained how to deal with wave functions in the continuum.

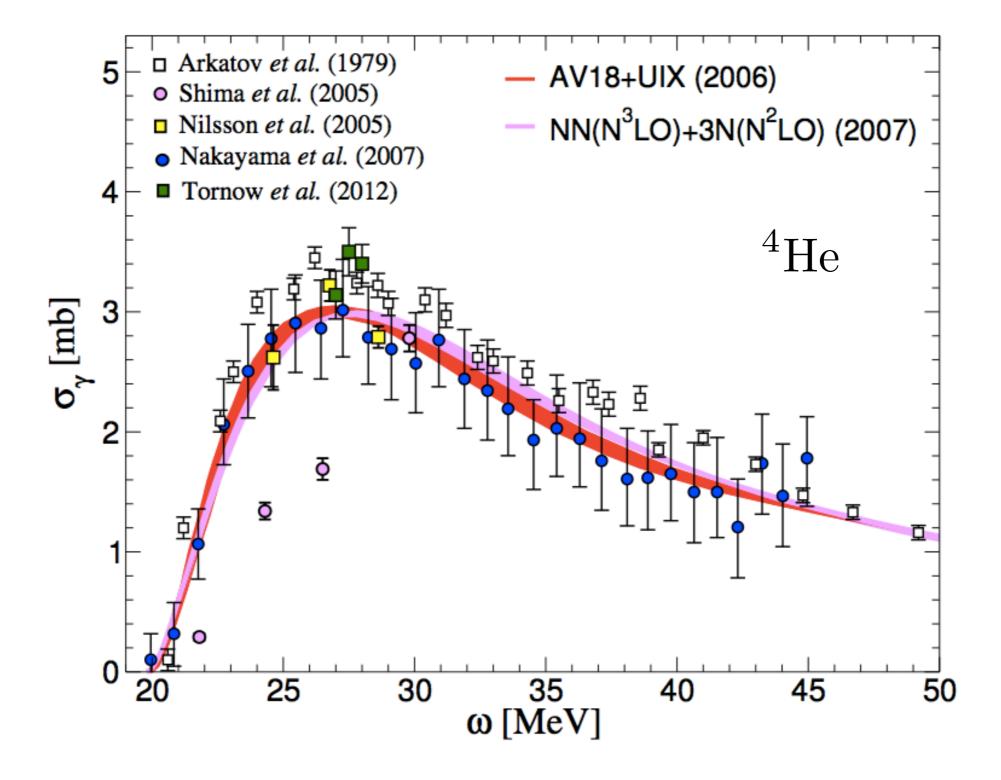
For now, let us just have a look at the ⁴He case.

Photoabsorption



SB and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

Photoabsorption

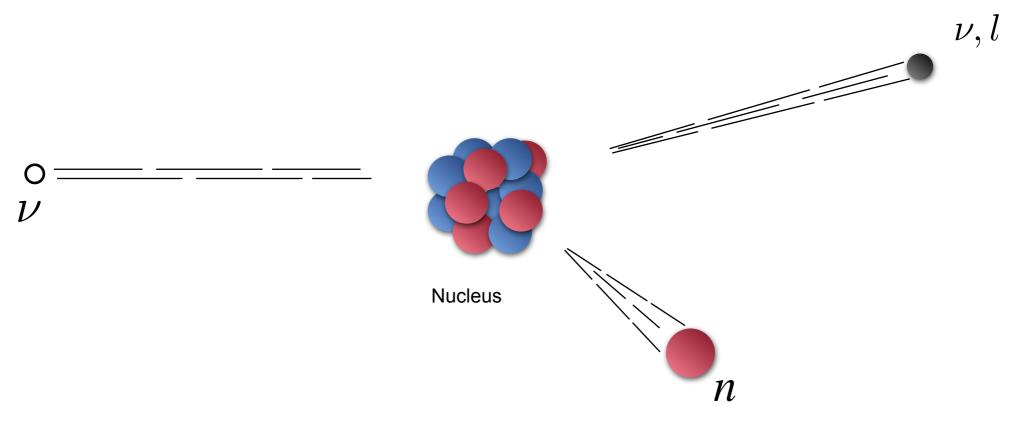


SB and Saori Pastore, Journal of Physics G.: Nucl. Part. Phys. 41, 123002 (2014)

Extension to weak sector

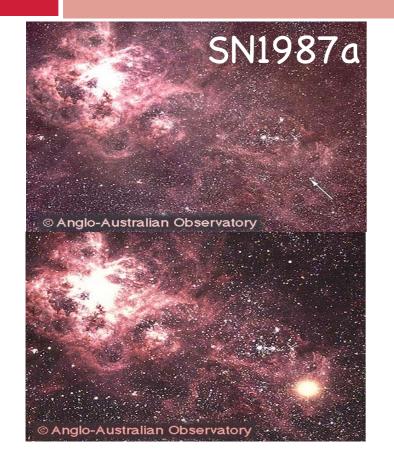
Sonia Bacca

Need it for example if you want to study neutrino scattering



Nucleons can be kicked out

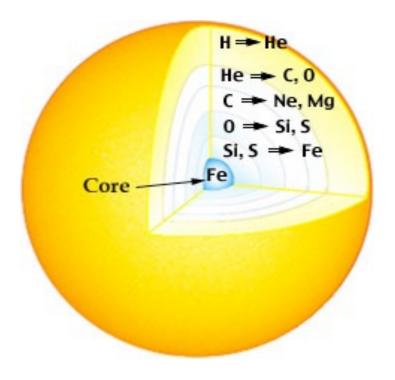
Neutrino scattering in astrophysics



- Core collapse supernovae are gigantic explosions of massive stars
- 99% of the released energy is carried by neutrinos in all flavors

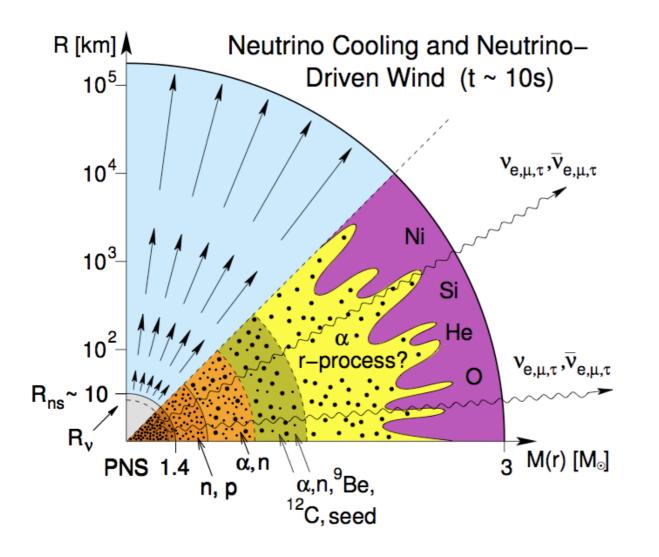
Phenomena inside the SN are sensitive to neutrino interaction with matter

- The progenitor presents an onion skin structure
- Nuclear forces halt the collapse, and drive an outgoing shock, which loses energy due to dissociation, neutrino radiation.
- The shock stalls ... possibly revived by neutrino heating



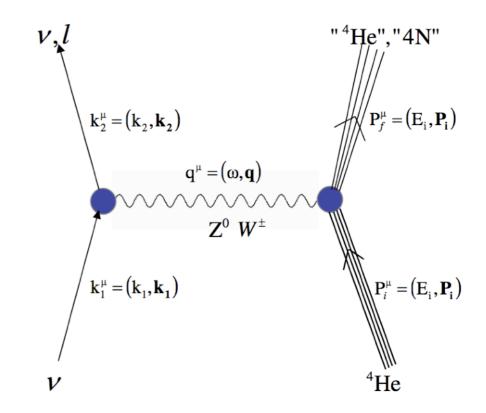
Neutrino scattering in astrophysics

What inelastic neutrino scattering with are relevant in SN?



 $^{4}\mathrm{He}(\nu,\nu')X$

Microscopic calculations can be achieved

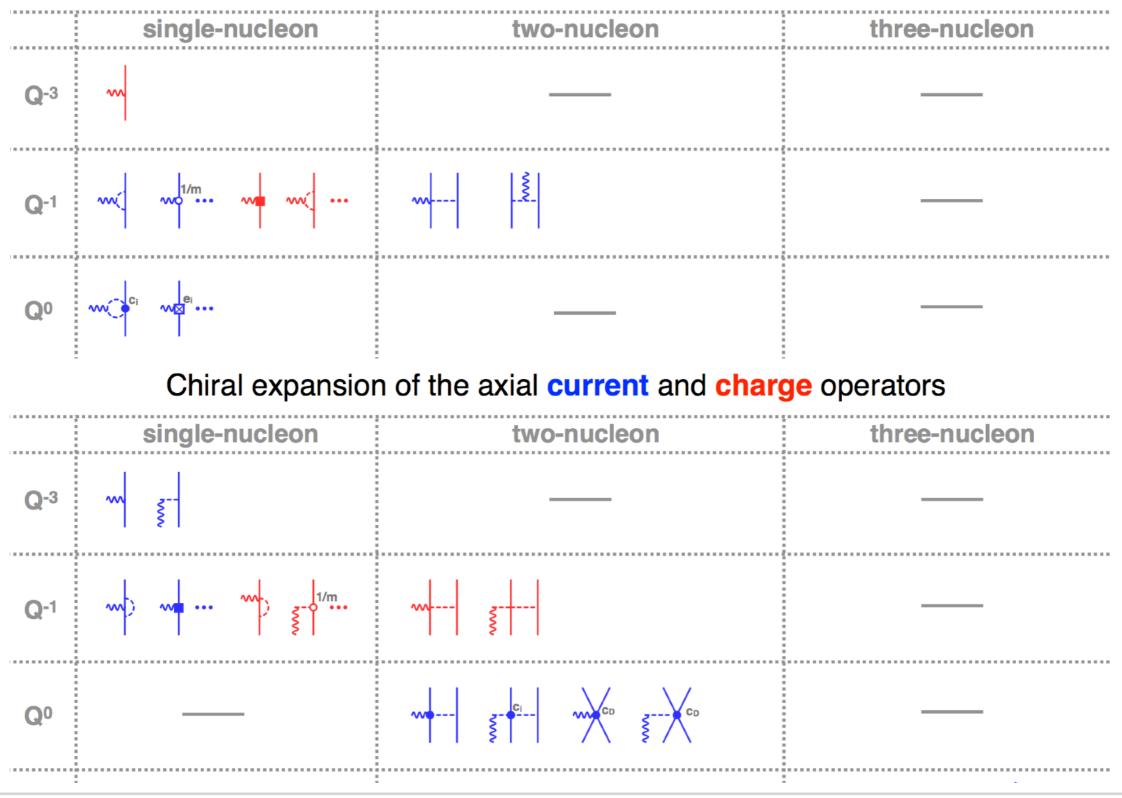


SN neutrinos have energies below 50 Mev.

Chiral currents (em/weak)

From E.Epelbaum, Mainz Workshop, October 2018

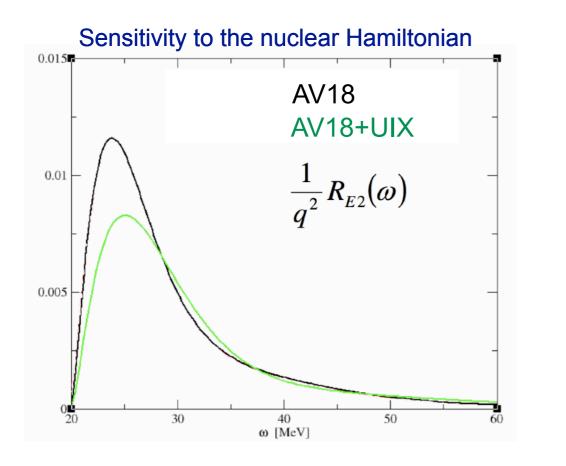
Chiral expansion of the electromagnetic current and charge operators



40

Neutrino scattering in astrophysics

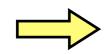
Gazit, Barnea, PRL 98 (2007) 192501



Multipole decomposition and low-q expansion of the currents

Temperature averaged $\langle \sigma
angle_T$ neutral cross section

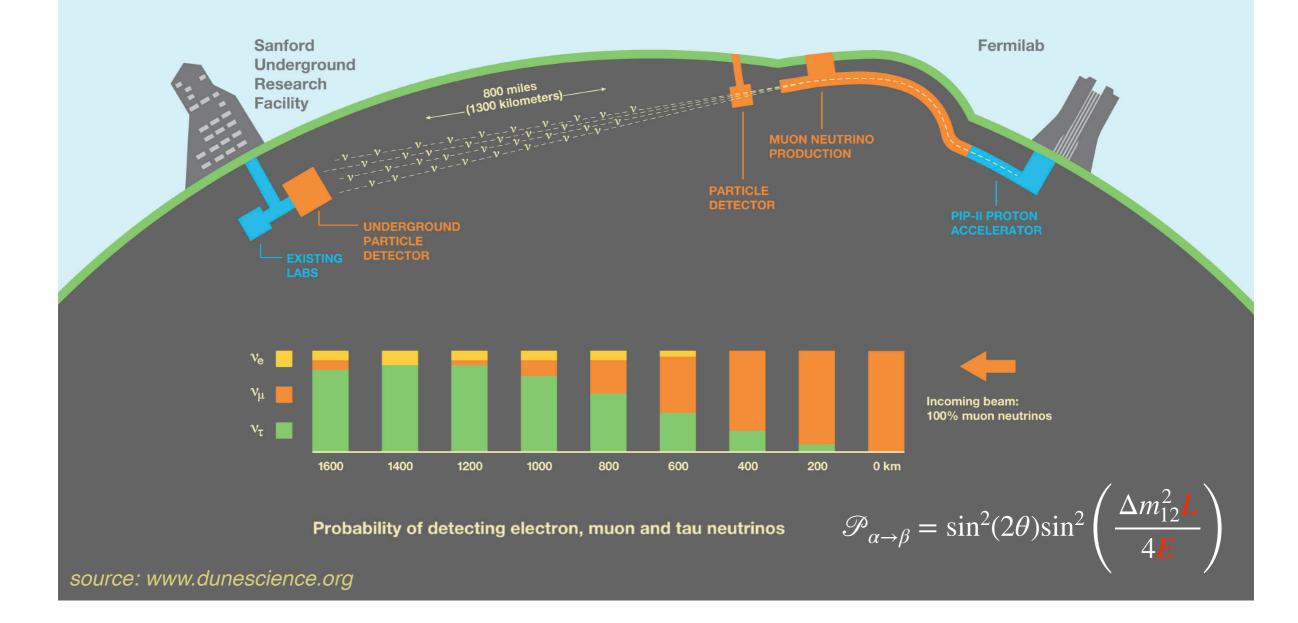
	AV18	AV18 + UIX	AV18 + UIX + MEC	(from EFT)
4 2	2.31×10^{-3}	1.63×10^{-3}	1.66×10^{-3}	
6 4	$4.30 imes 10^{-2}$	3.17×10^{-2}	3.20×10^{-2}	
8 2	2.52×10^{-1}	1.91×10^{-1}	1.92×10^{-1}	
10 8	3.81×10^{-1}	6.77×10^{-1}	6.82×10^{-1}	
12	2.29	1.79	1.80	
14	4.53	3.91	3.93	



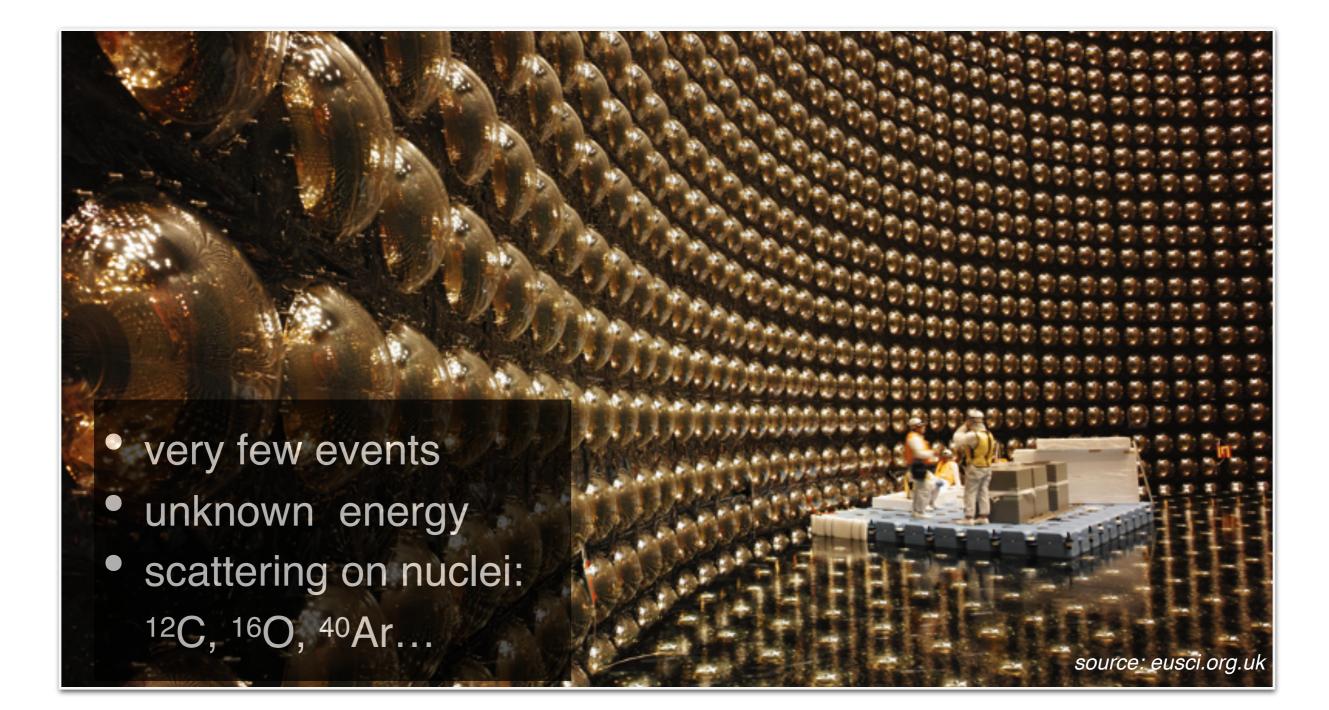
Large 3NF effect and small contribution of two-body currents

Neutrino Oscillations

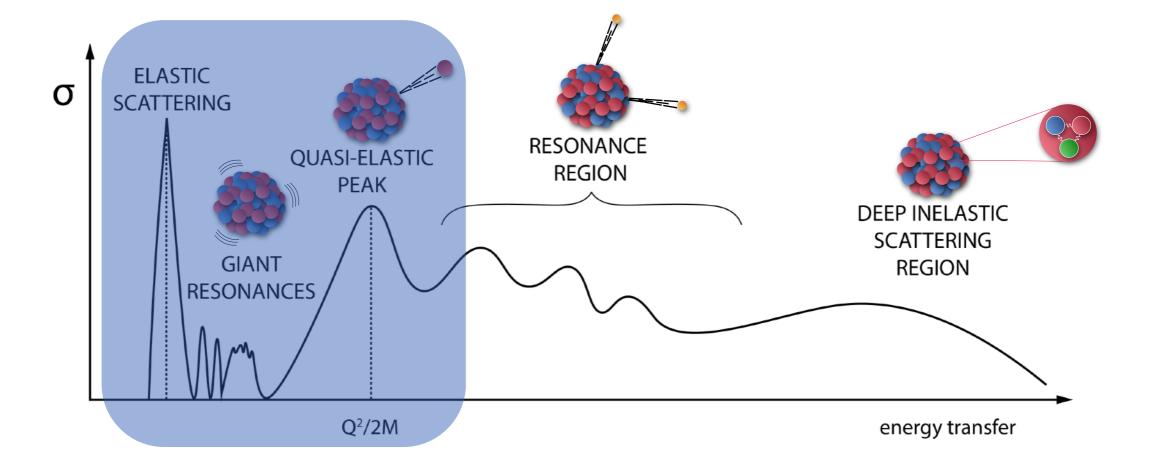
Deep Underground Neutrino Experiment



Neutrino Oscillations

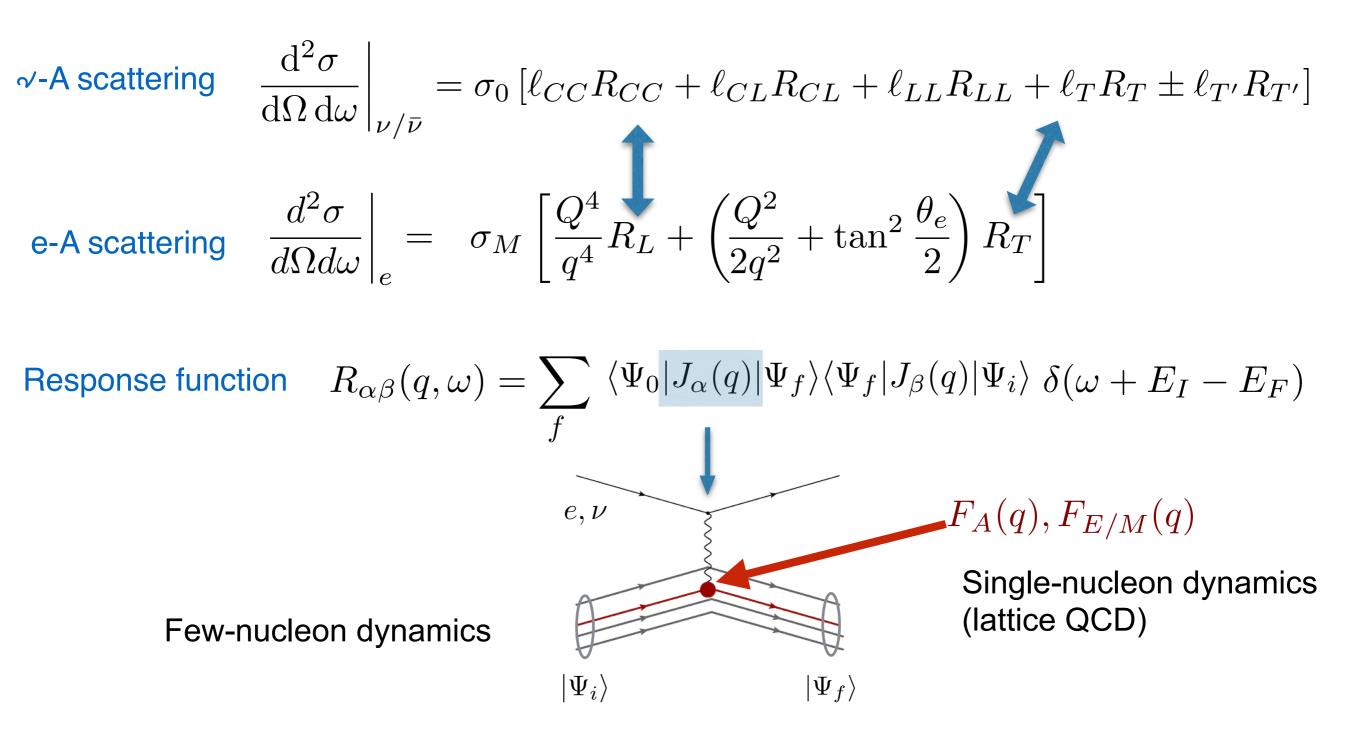


Nuclear Physics Input



Energy range one can study with ab-initio methods

JGU

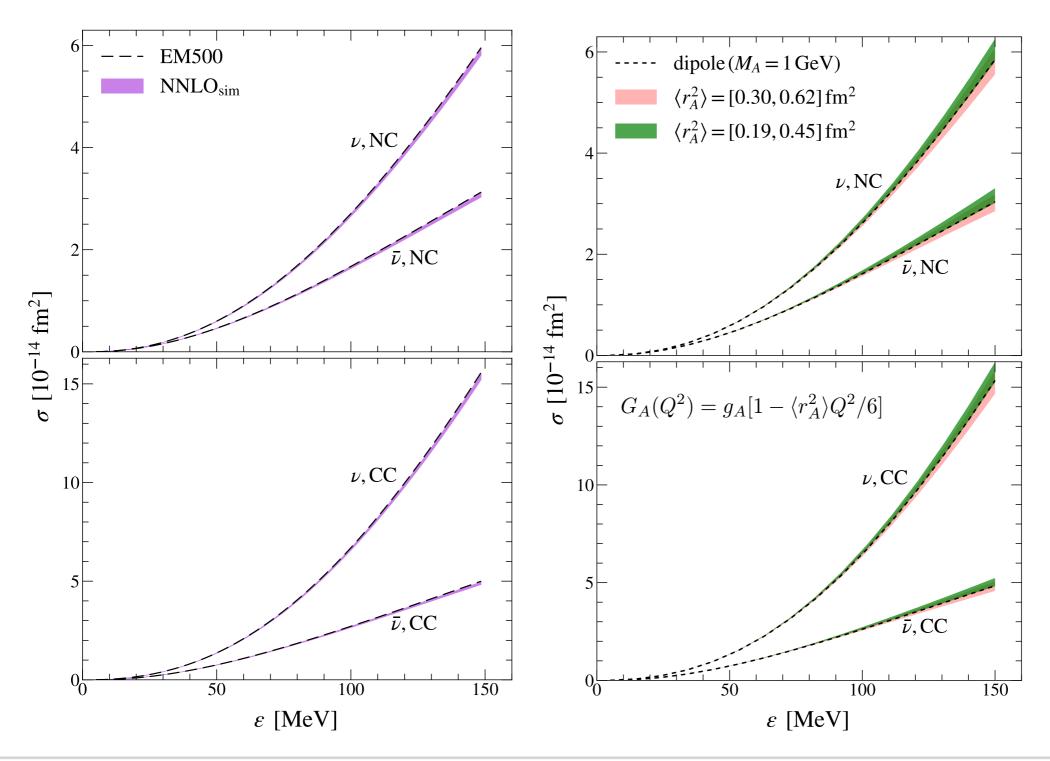


(Anti)neutrino-deuteron scattering

JGU

B. Acharya and SB, PRC 101, 015505 (2020)

Chiral effective field theory calculations at N2LO

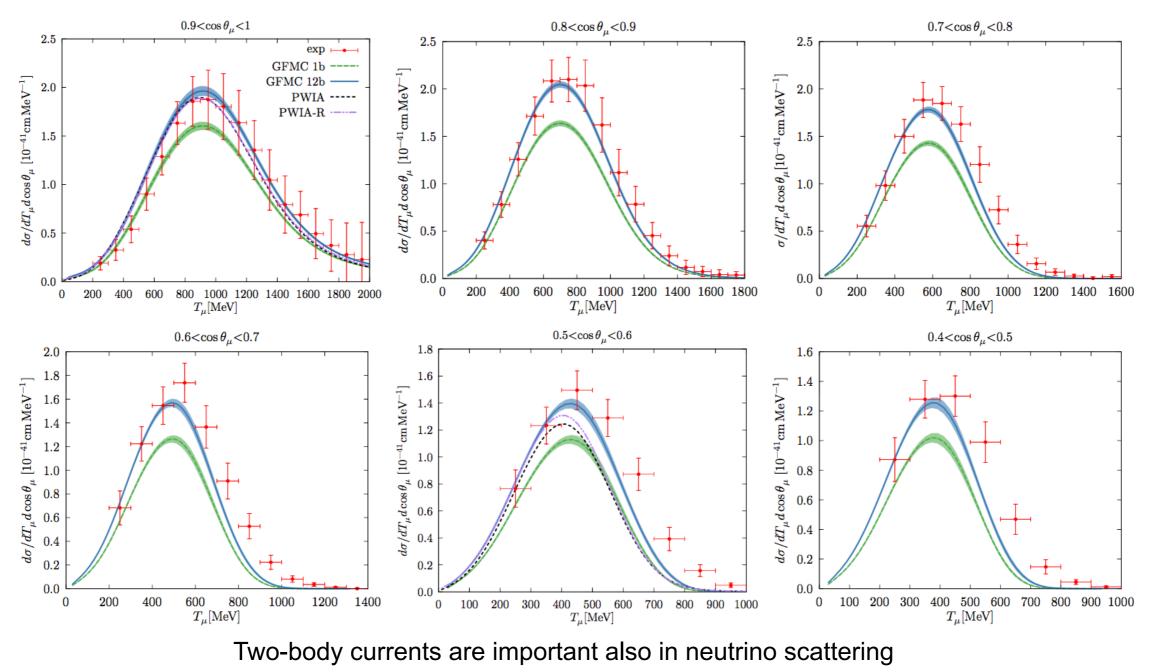


Neutrino-¹²C scattering

Lovato et al., PRX 10 (2020) 3, 031068

Calculations with traditional potentials

$\nu_{\mu} \, \mathrm{CCQE},$ comparison to MiniBoone



Sonia Bacca

Study ¹⁶O and ⁴⁰Ar nuclei

Stay tuned!

