TALENT School@MITP 2022 DMC python exercise

4/8/2022

Open the python script DMC_exercise.py. This script is prepared for an implementation of the DMC method to obtain the ground state energy and wave-function of the Schrödinger equation with a local interaction.

Harmonic oscillator exercise :

We first try to calculate the ground state of the 1D harmonic oscillator Hamiltonian, which in natural units $m = \hbar = 1$ reads

$$H = -\frac{1}{2}\frac{d^2}{dx^2} + \frac{1}{2}x^2.$$
 (1)

In the script you can find the function dmc_step(poten,xold,eold,ntarget,dtau) the parameters of the routine are: Note that in the code $h2m = \hbar^2/m$.

Table 1: DMC step subroutine		
input	xold	old (current) walkers positions
	eold	old (current) energy estimate
	poten	the interaction, e.q V_HO or V_Morse
	ntarget	desired number of walkers
	dtau	time step
output	xnew	new walkers positions
	enew	new energy estimate

- 1. Complete the **step_dmc** function calculating the evolution of the walkers population via the DMC method.
- 2. After completion of step_dmc function use the python script to calculate the one dimensional HO ground state energy and wave function.

- 3. Introduce some smoothing procedure to extract the "best" estimate for the $E, \Delta E$.
- 4. Repeat the calculation changing nwalkers and plot the convergence of the energy as a function of nwalkers.
- 5. Repeat the calculation changing tau and plot the convergence of the energy as a function of τ .
- 6. Repeat the calculation for the Morse potential

$$V(x) = \frac{1}{2}(e^{-2x} - 2e^{-x}) \tag{2}$$

given in the code. What is the ground state energy in this case?