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1 Numerov method

Starting with Schrödinger equation[
− h̄

2

2µ
∇2 + V (r)

]
ψ(r) = Eψ(r) (1)

and defining

ψ(r) =
1

r
Ylm(r̂)ul(r) (2)

one obtains the radial equation

d2

dr2
ul(r) =

2µ

h̄2

[
−E + V (r) +

h̄2

2µ

l(l + 1)

r2

]
ul(r) (3)

The radial equation is subject to the boundary condition ul(0) = 0 Furthermore for
r → 0 the radial wave function behaves as ul(r) = Ar(l+1).

In order to apply the Numerov method it is convinient to write the radial equation
in the form

u′′l (r) + k(r)ul(r) = 0 (4)

with

k(r) = 2µ

[
E − V (r)− 1

2µ

l(l + 1)

r2

]
, (5)

where from now on we assume h̄ = c = 1.
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The Eq. 4 can be solved using the Numerov method:

1

2
[u(r + h) + u(r − h)] = u+

h2

2
u′′ +

h4

4!
u(4) +

h6

6!
u(6) + . . . (6)

differentiating twice we get

1

2
[u′′(r + h) + u′′(r − h)] = u′′ +

h2

2
u(4) +

h4

4!
u(6) + . . . (7)

Multiplying Eq. (7) by 1
12
h2 and subtracting the result from Eq. (6) eliminates the h4

term, yielding the result

ui+1 + ui−1 = 2ui +
h2

12
(u′′i+1 + 10u′′i + u′′i−1) +O(h6) (8)

substituting into the Numerov expansion we get

ui+1 =
[2− 5h2

6
ki]ui − [1 + h2

12
ki−1]ui−1

1 + h2

12
ki+1

. (9)

Bound state solution :

The Numerov method requires the initial conditions u0 , u1 and the energy E.
However, for a bound state problem the energy is the observable one wants to
calculate. Remember that for a bound state with the negative energy it follows that
the physical solution has to vanish as r →∞. Clearly, it is not possible to calculate
all steps up to infinity, but since the wave function has an exponential decrease it is
sufficient to set the rmax such that u(rmax) ≈ 0. Thus one has to solve Eq. (9) for
all energies in a given energy interval 〈Emin, Emax〉 with spacing dE and pick out the
energy satisfying the u(rmax) ≈ 0.

Scattering solution :

Scattering solution u(r) for a given positive energy E > 0 is obtained quite easily using
Eq. 9. Scattering phase shifts are then determined using the matching condition which
can be done either via the logarithmic derivative or using the value of the numerical
solution u(r) at two different points r1 and r2 at large distances beyond the range of
the potential. We will use the latter method in order to avoid calculating derivatives.
In this case the phase shift δ(k) at the momentum k =

√
2µE is given by

tan [δ(k)] =
βjl(kr1)− jl(kr2)

βnl(kr1)− nl(kr2)
, (10)

where

β =
r1u(r2)

r2u(r1)
(11)

and jl, nl are spherical Bessel functions.
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2 Python exercise

Open the python script central nomerov.py. This script is prepared for an im-
plementation of the Numerov method employed to solve single-channel two-body
Schrödinger equation with a local short-range interaction.

Two-body bound state exercise :

In the script you can find function numerov wf(E,potential) which takes as an in-
put two-body energy E, potential function and returns normalized u(r) wave function
(ui(ri) grid array).

1. Complete the numerov wf(E,potential) function calculating the wave func-
tion u(r) via Numerov method.

2. After completion of numerov wf(E,potential) function use the python script
to calculate the deuteron bound state energy and wave function u(r) using
Volkov and Minnesota NN potential. Use the result for Volkov potential given
in Tab. 1 as a benchmark.

Potential Volkov Minnesota
Eb(

2H) -0.5458

Table 1: Bound state energies in MeV.

Two-body scattering exercise :

The function calc phaseshifts(u,k) takes as an input ui(ri) grid array for some
positive energy E = k2/(2µ) and the corresponding two-body relative momen-
tum k. Matching calculated u(r) wave function to the free scattering solution the
calc phaseshifts(u,k) function calculates phase shifts δ(k) which are subsequently
returned in a form of kcot[δ(k)].

1. Complete the calc phaseshifts(u,k) function writting a short code which
calculates the phase shifts using the matching condition.

2. Use the python script to calculate NN(3S1) scattering phaseshift using Volkov
or Minnesota NN interaction.

Calculated phaseshifts can be parametrize using effective range expansion (ERE)

kcot[δ(k)] = −1

a
+

1

2
reffk

2 + Pr3
effk

4 + . . .
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Corresponding scattering parameters - scattering length a, effective range reff , and
shape parameter P are then extracted fitting the phaseshifts with ERE. This fit
is expected to be performed in the ere param(phsf) function which takes as an
input a grid of calculated phashifts in the kcot[δ(k)] form and returns the scattering
perameters a, reff , P with the correspong error induced by the fit.

3. Complete the ere param(phsf) function and extract the NN(3S1) scattering
parameters for Volkov or Minnesota potential. Use the result for Volkov poten-
tial given in Tab. 2 as a benchmark.

Potential a reff P
Volkov 10.0832 2.3739 0.0322

Minnesota

Table 2: Scattering parameters in fm.

Extra :

1. Use the two-body bound state wave function u(r) to calculate the corresponding
rms radius

√
< r2 >, < r2 >=

∫∞
0
|u(r)|2r2dr. Note that rms radius should be

calculated in a function rms radius(u).

2. Solving Schrödinger equation for a potential V (r) = −8e−0.16r2 + 4e−0.04r2 and
particle masses m1 = m2 = 2(h̄c)2 yields one s-wave (l = 0) bound state and
one p-wave (l = 1) bound state which are followed by a series of resonances.
Implement the potential into your Numerov python script. As a benchmark
calculate bound state energies and compare them to results given in Tab. 3. In
the last step calculate corresponding s-wave and p-wave phaseshifts up to 2.1
MeV. How many resonances do you see and at which energies ? Try to plot
ul(r) at the resonance energy. How it differes from a bound state wave function
or a scattering wave function at energies far from the resonance position ?

Channel E
s-wave (l = 0) -1.928
p-wave (l = 1) -0.675

Table 3: Bound state energies in MeV.
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