
TALENT School@MITP 2022
Stochastic Variational Method exercise

3/8/2022 and 4/8/2022

Analytical calculation of correlated Gaussian matrix elements :

1. Calculate overlap correlated Gaussian matrix element and matrix elements of
the Gaussian potential V (r) = V0e

− 1
2
ar2 , and Coulomb potential Vc = 1.4401

r
.

Details on correlated Gaussian basis and the corresponding matrix element cal-
culation are given in the Talent notes of prof. Nir Barnea, Section 7.4.

2. Implement calculated matrix elements into the python script. More specif-
ically, it is required to complete overlap elem(detB15) function (overlap),
gauss pot elem(vpot,apot,p,detB15) function (Gaussian potential), and
coulomb elem(p,detB15) function (Coulomb potential). Here

B = A′ + A, detB15 =

(
1

det(B)

)3/2

(1)

and p is defined in the Talent notes Eq. (7.40). Notice that
gauss pot elem(vpot,apot,p,detB15) function takes as an input two param-
eters of the Gaussian potential V0(vpot) and a(apot). All matrix elements
contain (2π)3(N−1)/2 factor, where N stands for number of particles. This factor
is effectively neglected since it does not contribute to the solution of generalized
eigenvalue problem.

Numerical calculation of 2H, 3H, and 3He bound state energies using the
SVM python script :

3. Run the python SVM script and use it to obtain 2H, 3H, and 3He bound state
energies for the Minnesota NN potential. For 3He system include Coulomb po-
tential setting logical Coulomb pp value to True. Use results for Volkov potential
given in Tab. 1 as a benchmark.
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Advice : For start set SVM optimization loop parameters to mm0=2 and kk0=10. In
this specific case very accurate bound state energies can be obtained for a maximum
number of basis states mnb=20 (2H) or mnb=100 (3H, 3He). Note that SVM solution
for two-body bound state energies can be benchmarked using Numerov python script.

Potential Eb(
2H) Eb(

3H) Eb(
3He)

Volkov + Coulomb -0.5459 -8.4648 -7.7593

Table 1: Bound state energies in MeV.

Numerical calculation of elastic NN(3S1) and nd(4S3/2) low-energy scat-
tering via Busch formula :

Setting HO trap = True introduces Harmonic oscillator (HO) trapping potential

VHO(r) =
m

2A
ω2
∑
i<j

(ri − rj)
2 , (2)

into the SVM calculation. Here A stands for number of particles and ω is the oscillator
frequency.

Consider now the s-wave elastic scattering of two bound subclusters B and C, here
BC ∈ {NN, nd}, inside the HO trap. Using the trap with length bHO =

√
2/(mω)

much larger than both range of the nuclear interaction and the subclusters size, the
subclusters can be considered as point-like particles. As a result one can match the
asymptotic B − C part of the trapped A-body wave function to the free solution of
an effective two-body BC system. The BC phase shifts δBC at relative momentum
k then can be extracted using Bush formula

−
√

4µω
Γ (3/4− εnω/2ω)

Γ (1/4− εnω/2ω)
= k cot δBC , (3)

where µ = mBmC/(mB +mC) is the BC reduced mass, Γ(x) is the Gamma function,
k =
√

2µεnω, and εnω = En
ω(A)−Eω(B)−Eω(C) is the energy of the A-body n-th excited

state in a trap with respect to the B+C threshold. Here, bound-state energies Eω(B),
Eω(C), and En

ω(A) should be calculated using the SVM.

4. Calculate NN(3S1) phaseshifts using Minnesota potential. In practice turn
on the HO trap setting HO trap = True and use the SVM to calculate bound
state energy of the first excited state of NN(S = 1, I = 0) system. Try to
use multiple HO trap lengths bHO ∈ [10; 30] fm. To set the size of the trap
in fm use HO trap length = bHO variable. From trapped SVM bound state
energies calculate scattering phaseshifts using Eq. (3). Use calculated scattering
phasehifts, in terms of kcot [δ(k)], to fit effective range expansion parameters
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- scattering length a and effective range reff . What are their values ? (fitted
values of effective range parameters can be compared to results of the Numerov
python script) Note that the ground state of the NN(S = 1, I = 0) system
inside the trap corresponds to the trapped deuteron bound state. Consequently,
we use an energy of the first excited state which corresponds to the trapped NN
scattering scattering state. SVM optimization with respect to the first excited
state is selected setting opt ener level = 1.

5. Repeat the same procedure for the nd(S = 3/2, I = 0) s-wave elastic scattering.
Note that due to the Pauli repuslion this system does not support any bound
state outside the trap. As a result we can use directly ground state trapped
energies. For SVM optimization with respect to the ground state energy set
opt ener level = 0. Remember that εnω energies in Eq. 3 are defined with
respec to the n+d scattering threshold, consequently, εnω = En

ω(nd)−Eω(d) and
you need to calculate as well deuteron bound state energies inside the HO trap
using the same bHO.

Advice : Use results for Volkov potential given in Tab. and Tab. 2 as a benchmark.

Volkov potential
NN(3S1)

bHO [fm] Eb(
2H) [MeV] Eb(1st exct.) [MeV] k2 [fm−1] k cot(δ) [fm−1]

10 -0.38889933 1.97454712 0.04761387 -0.04179817
15 -0.50817880 0.80558075 0.01942563 -0.07598665
20 -0.53313960 0.42559782 0.01026279 -0.08696486
25 -0.54055077 0.25980082 0.00626479 -0.0917346
30 -0.54330376 0.17399644 0.00419572 -0.09419832

nd(4S3/2)
bHO [fm] Eb(g.s.) [MeV] k2 [fm−1] k cot(δ) [fm−1]

10 1.73461113 0.06827459 0.02504229
15 0.35924390 0.02788916 -0.03962709
20 -0.07618957 0.01469175 -0.06157149
25 -0.26275963 0.00893147 -0.07109322
30 -0.35750889 0.00597363 -0.07448689
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Scattering a reff
NN(3S1) 10.067(5) 2.415(5)
nd(4S3/2) 11.779(6) 3.22(2)

Table 2: Calculated effective range expansion parameters scattering length a and
effective range reff given in fm.
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