Numerov method (exercise)

Martin Schäfer

Racah Institute of Physics, The Hebrew University, Jerusalem, Israel

TALENT SCHOOL@MITP "Effective Field Theories in Light Nuclei : From Structure to Reaction

July 25th to August 12th 2022, Mainz, Germany

Two-body Schrödinger equation

$$
E \Psi(\boldsymbol{r})=\left[-\frac{\hbar^{2}}{2 \mu} \Delta+V(\boldsymbol{r})\right] \Psi(\boldsymbol{r})
$$

where $\mu=m_{1} m_{2} /\left(m_{1}+m_{2}\right)$ is the reduce mass, $\boldsymbol{r}=\boldsymbol{r}_{1}-\boldsymbol{r}_{2}$, and $\Delta=\nabla^{2}$
\rightarrow Assuming central potential $V(\boldsymbol{r})=V(|\boldsymbol{r}|)=V(r)$ and introducing radial coordinates

$$
E \Psi(r, \theta, \varphi)=\left[-\frac{\hbar^{2}}{2 \mu} \frac{\partial^{2}}{\partial r^{2}} r^{2}+\frac{L^{2}}{2 \mu r^{2}}+V(r)\right] \Psi(r, \theta, \varphi)
$$

\rightarrow Separating the wave function $\Psi(r, \theta, \varphi)=\frac{u_{l}(r)}{r} Y_{l m}(\theta, \varphi)$ (radial and angular part) and taking into account $\mathbf{L}^{2} Y_{l m}(\theta, \varphi)=I(I+1) \hbar Y_{l m}(\theta, \varphi)$
yields RADIAL EQUATION

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}} u_{l}(r)=-\frac{2 \mu}{\hbar^{2}}\left[E-V(r)-\frac{\hbar^{2} I(I+1)}{2 \mu r^{2}}\right] u_{l}(r)
$$

Numerov method

\rightarrow we want to solve the RADIAL EQUATION numerically

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}} u_{l}(r)+k(r) u_{l}(r)=0, \quad k(r)=\frac{2 \mu}{\hbar^{2}}\left[E-V(r)-\frac{\hbar^{2} l(l+1)}{2 \mu r^{2}}\right]
$$

\rightarrow TAYLOR EXPANSION of $u_{l}(r) \equiv u(r)$

$$
\begin{aligned}
& u_{n+1}(r)=u(r+h)=u_{n}(r)+h u_{n}^{(1)}(r)+\frac{h^{2}}{2} u_{n}^{(2)}(r)+\frac{h^{3}}{6} u_{n}^{(3)}(r)+\frac{h^{4}}{24} u_{n}^{(4)}(r)+\mathcal{O}\left(h^{5}\right) \\
& u_{n-1}(r)=u(r-h)=u_{n}(r)-h u_{n}^{(1)}(r)+\frac{h^{2}}{2} u_{n}^{(2)}(r)-\frac{h^{3}}{6} u_{n}^{(3)}(r)+\frac{h^{4}}{24} u_{n}^{(4)}(r)-\mathcal{O}\left(h^{5}\right)
\end{aligned}
$$

where $h \ll 1$ is the step size
\rightarrow summing Taylor expansions for $u_{n+1}(r)$ and $u_{n-1}(r)$

$$
u_{n+1}(r)+u_{n-1}(r)=2 u_{n}(r)+h^{2} u_{n}^{(2)}(r)+\frac{h^{4}}{12} u_{n}^{(4)}(r)+\mathcal{O}\left(h^{6}\right)
$$

Numerov method

\rightarrow slightly rewriting the last expression on the previous slide

$$
\begin{aligned}
u_{n}^{(2)}(r) & =\frac{1}{h^{2}}\left[u_{n+1}(r)+u_{n-1}(r)-2 u_{n}(r)-\frac{h^{4}}{12} u_{n}^{(4)}(r)-\mathcal{O}\left(h^{6}\right)\right] \\
& =\frac{1}{h^{2}}\left[u_{n+1}(r)+u_{n-1}(r)-2 u_{n}(r)\right]-\frac{h^{2}}{12} u_{n}^{(4)}(r)-\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

we deal with the second derivative $u_{n}^{(2)}(r)$ and the fourth derivative $-\frac{h^{2}}{12} u_{n}^{(4)}(r)$ terms \rightarrow using Schrödinger equation

$$
\begin{aligned}
u_{n}^{(2)}(r) & =-k_{n}(r) u_{n}(r) \\
-\frac{h^{2}}{12} u_{n}^{(4)}(r) & =-\frac{h^{2}}{12} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}\left[u_{n}^{(2)}(r)\right]=\frac{h^{2}}{12} \frac{\mathrm{~d}^{2}}{\mathrm{~d} r^{2}}\left[k_{n}(r) u_{n}(r)\right]
\end{aligned}
$$

and elementary difference formula

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}}\left[k_{n}(r) u_{n}(r)\right]=\frac{1}{h^{2}}\left[k_{n+1}(r) u_{n+1}(r)+k_{n-1}(r) u_{n-1}(r)-2 k_{n}(r) u_{n}(r)\right]
$$

Numerov method

$$
\begin{aligned}
-k_{n}(r) u_{n}(r)= & \frac{1}{h^{2}}\left[u_{n+1}(r)+u_{n-1}(r)-2 u_{n}(r)\right] \\
& +\frac{1}{12}\left[k_{n+1}(r) u_{n+1}(r)+k_{n-1}(r) u_{n-1}(r)-2 k_{n}(r) u_{n}(r)\right]-\mathcal{O}\left(h^{4}\right)
\end{aligned}
$$

multiplying by h^{2}

$$
\begin{aligned}
-h^{2} k_{n}(r) u_{n}(r)= & u_{n+1}(r)+u_{n-1}(r)-2 u_{n}(r) \\
& +\frac{h^{2}}{12}\left[k_{n+1}(r) u_{n+1}(r)+k_{n-1}(r) u_{n-1}(r)-2 k_{n}(r) u_{n}(r)\right]-\mathcal{O}\left(h^{6}\right)
\end{aligned}
$$

we obtain recursive relation for $u_{n+1}(r)$ (Numerov)

$$
u_{n+1}(r)=\frac{2\left[1-\frac{5}{12} h^{2} k_{n}(r)\right] u_{n}(r)-\left[1+\frac{1}{12} h^{2} k_{n-1}(r)\right] u_{n-1}(r)}{1+\frac{h^{2}}{12} k_{n+1}(r)}+\mathcal{O}\left(h^{6}\right)
$$

\rightarrow erron in one step is $\mathcal{O}\left(h^{6}\right)$; errors can add up (global uncertanties) $\mathcal{O}\left(h^{5}\right)$
[Numerov is 5th order method]

Behavior of $u_{l}(r)$ close to the origin

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}} u_{l}(r)=-\frac{2 \mu}{\hbar^{2}}\left[E-V(r)-\frac{\hbar^{2} I(I+1)}{2 \mu r^{2}}\right] u_{l}(r)
$$

\rightarrow if $V(r)$ approches zero slower than $1 / r^{2}$ the centrifugal barrier dominates

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}} u_{l}(r) \approx \frac{I(I+1)}{r^{2}} u_{l}(r)
$$

\rightarrow using ansatz $u_{l}(r) \sim r^{\alpha}$ we find $u(r) \approx A r^{\prime+1}+B r^{-1}$
$\rightarrow \Psi(r)$ should be normalizable, this means that $u_{l}(r) / r$ should be square integrable close to $r=0$

$$
\int_{a}^{b}\left(\frac{r^{\alpha}}{r}\right)^{2} r^{2} \mathrm{~d} r=\int_{a}^{b} r^{2 \alpha} \mathrm{~d} r=\frac{1}{2 \alpha}\left[b^{2 \alpha+1}-a^{2 \alpha+1}\right]
$$

\rightarrow for $\alpha<-1 / 2$ diverges as $a \rightarrow 0$, consequently, we reject r^{-1} solution

$$
u_{l}(r \rightarrow 0) \approx r^{\prime+1}
$$

\rightarrow for Numerov we can set $u_{0}=0$ and $u_{1}=h^{1+1}$

Bound state calculations via Numerov method

\rightarrow Numerov method needs initial conditions u_{0}, u_{1}, and the energy E
\rightarrow for bound states the energy E is usually the observable we aim to calculate ...

How do we proceed ?

For $\boldsymbol{r}>r_{\text {max }}$ we obtain Schrödinger equation in a form :

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}} u_{l}(r) \simeq \kappa^{2} u_{l}(r), \quad \kappa^{2}=-\frac{2 \mu}{\hbar^{2}} E
$$

with solution $u_{l}(r)=A e^{-\kappa r}+B e^{\kappa r}$
\rightarrow for bound states $E<0, \kappa>0$ and due to the normalization condition

$$
u_{l}\left(r>r_{\max }\right) \simeq A e^{-\sqrt{2 \mu|E| / \hbar^{2}} r}
$$

Algorithm :

We choose an energy interval $\left\langle E_{\min } ; E_{\max }\right\rangle$; inside this interval we search for such E for which Numerov solution at $r>r_{\text {max }}$ yields $u_{l}(r)=0$.

Phase shift calculation via Numerov method

INTERANL region $\left(r<r_{\text {max }}\right)$:

$$
\frac{\mathrm{d}^{2}}{\mathrm{~d} r^{2}} u_{l}^{(\mathrm{int})}(r)=-\frac{2 \mu}{\hbar^{2}}\left[E-V(r)-\frac{\hbar^{2} l(I+1)}{2 \mu r^{2}}\right] u_{l}^{(\mathrm{int})}(r), \quad E=\frac{k^{2}}{(2 \mu)}
$$

\rightarrow Numerov method for $E>0$

EXTERNAL region $\left(r>r_{\max }\right)$:

$$
u_{l}^{(\mathrm{ext})}(r)=A\left[\cos (\delta) k r j_{l}(k r)-\sin (\delta) k r n_{l}(k r)\right]
$$

Using Numerov solution at $r_{1}, r_{2}>r_{\text {max }}$:

$$
\frac{u_{l}^{(\mathrm{int})}\left(r_{1}\right)}{u_{l}^{\text {(int }}\left(r_{2}\right)}=\frac{u_{l}^{(\mathrm{ext})}\left(r_{1}\right)}{u_{l}^{(\mathrm{ext})}\left(r_{2}\right)} \quad \longrightarrow \quad \tan (\delta)=\frac{\beta j_{l}\left(k r_{1}\right)-j_{l}\left(k r_{2}\right)}{\beta n_{l}\left(k r_{1}\right)-n_{l}\left(k r_{2}\right)}, \quad \beta=\frac{r_{1} u_{l}^{(\mathrm{int})}\left(r_{2}\right)}{r_{2} u_{l}^{\text {(int) }\left(r_{1}\right)}}
$$

Phase shift calculation via Numerov method

Using Logarithmic derivative at $r_{1}>r_{\text {max }}$:

$$
\frac{\left(u_{l}^{\text {(int) }}\left(r_{1}\right)\right)^{\prime}}{u_{l}^{\text {(int) }}\left(r_{1}\right)}=\frac{\left(u_{l}^{\text {(ext) }}\left(r_{1}\right)\right)^{\prime}}{u_{l}^{\text {(ext) }}\left(r_{1}\right)} \quad \rightarrow \quad \tan (\delta)=\frac{\beta j_{l}\left(k r_{1}\right)-j_{l}\left(k r_{2}\right)}{\beta n_{l}\left(k r_{1}\right)-n_{l}\left(k r_{2}\right)}, \quad \beta=\frac{r_{1} u_{l}^{\text {(int) }}\left(r_{2}\right)}{r_{2} u_{l}^{\text {(int) }}\left(r_{1}\right)}
$$

