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Introduction

Two-body Schrödinger equation

EΨ(rrr) =

[
− ~2

2µ
∆ + V (rrr)

]
Ψ(rrr)

where µ = m1m2/(m1 + m2) is the reduce mass, rrr = rrr 1 − rrr 2, and ∆ =∇∇∇2

→ Assuming central potential V (rrr) = V (|rrr |) = V (r) and introducing radial coordinates

EΨ(r , θ, ϕ) =

[
− ~2

2µ

∂2

∂r 2
r 2 +

LLL2

2µr 2
+ V (r)

]
Ψ(r , θ, ϕ)

→ Separating the wave function Ψ(r , θ, ϕ) =
ul(r)

r
Ylm(θ, ϕ) (radial and angular part)

and taking into account LLL2Ylm(θ, ϕ) = l(l + 1)~Ylm(θ, ϕ)

yields RADIAL EQUATION

d2

dr 2
ul(r) = −2µ

~2

[
E − V (r)− ~2l(l + 1)

2µr 2

]
ul(r)
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Numerov Method

Numerov method

→ we want to solve the RADIAL EQUATION numerically

d2

dr 2
ul(r) + k(r)ul(r) = 0, k(r) =

2µ

~2

[
E − V (r)− ~2l(l + 1)

2µr 2

]
→ TAYLOR EXPANSION of ul(r) ≡ u(r)

un+1(r) = u(r + h) = un(r) + hu(1)
n (r) +

h2

2
u(2)
n (r) +

h3

6
u(3)
n (r) +

h4

24
u(4)
n (r) +O(h5)

un−1(r) = u(r − h) = un(r)− hu(1)
n (r) +

h2

2
u(2)
n (r)− h3

6
u(3)
n (r) +

h4

24
u(4)
n (r)−O(h5)

where h << 1 is the step size
→ summing Taylor expansions for un+1(r) and un−1(r)

un+1(r) + un−1(r) = 2un(r) + h2u(2)
n (r) +

h4

12
u(4)
n (r) +O(h6)
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Numerov Method

Numerov method

→ slightly rewriting the last expression on the previous slide

u(2)
n (r) =

1

h2

[
un+1(r) + un−1(r)− 2un(r)− h4

12
u(4)
n (r)−O(h6)

]
=

1

h2
[un+1(r) + un−1(r)− 2un(r)]− h2

12
u(4)
n (r)−O(h4)

we deal with the second derivative u(2)
n (r) and the fourth derivative − h2

12
u(4)
n (r) terms

→ using Schrödinger equation

u(2)
n (r) = −kn(r)un(r)

− h2

12
u(4)
n (r) = − h2

12

d2

dr 2

[
u(2)
n (r)

]
=

h2

12

d2

dr 2
[kn(r)un(r)]

and elementary difference formula

d2

dr 2
[kn(r)un(r)] =

1

h2
[kn+1(r)un+1(r) + kn−1(r)un−1(r)− 2kn(r)un(r)]

4



Numerov Method

Numerov method

−kn(r)un(r) =
1

h2
[un+1(r) + un−1(r)− 2un(r)]

+
1

12
[kn+1(r)un+1(r) + kn−1(r)un−1(r)− 2kn(r)un(r)]−O(h4)

multiplying by h2

−h2kn(r)un(r) =un+1(r) + un−1(r)− 2un(r)

+
h2

12
[kn+1(r)un+1(r) + kn−1(r)un−1(r)− 2kn(r)un(r)]−O(h6)

we obtain recursive relation for un+1(r) (Numerov)

un+1(r) =
2
[
1− 5

12
h2kn(r)

]
un(r)−

[
1 + 1

12
h2kn−1(r)

]
un−1(r)

1 + h2

12
kn+1(r)

+O(h6)

→ erron in one step is O(h6); errors can add up (global uncertanties) O(h5)
[Numerov is 5th order method]
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Boundary Conditions

Behavior of ul(r) close to the origin

d2

dr 2
ul(r) = −2µ

~2

[
E − V (r)− ~2l(l + 1)

2µr 2

]
ul(r)

→ if V (r) approches zero slower than 1/r 2 the centrifugal barrier dominates

d2

dr 2
ul(r) ≈ l(l + 1)

r 2
ul(r)

→ using ansatz ul(r) ∼ rα we find u(r) ≈ Ar l+1 + Br−l

→ Ψ(rrr) should be normalizable, this means that ul(r)/r should be square integrable
close to r = 0 ∫ b

a

(
rα

r

)2

r 2dr =

∫ b

a

r 2αdr =
1

2α

[
b2α+1 − a2α+1

]
→ for α < −1/2 diverges as a→ 0, consequently, we reject r−l solution

ul(r → 0) ≈ r l+1

→ for Numerov we can set u0 = 0 and u1 = hl+1
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Numerov for bound state

Bound state calculations via Numerov method

→ Numerov method needs initial conditions u0, u1, and the energy E

→ for bound states the energy E is usually the observable we aim to calculate ...

How do we proceed ?

For rrr > rmax we obtain Schrödinger equation in a form :

d2

dr 2
ul(r) ' κ2ul(r), κ2 = −2µ

~2
E

with solution ul(r) = Ae−κr + Beκr

→ for bound states E < 0, κ > 0 and due to the normalization condition

ul(r > rmax) ' Ae−
√

2µ|E |/~2r

Algorithm :

We choose an energy interval 〈Emin;Emax〉; inside this interval we search for such E for
which Numerov solution at r > rmax yields ul(r) = 0.
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Numerov for scattering

Phase shift calculation via Numerov method

INTERANL region (r < rmax) :

d2

dr 2
u
(int)
l (r) = −2µ

~2

[
E − V (r)− ~2l(l + 1)

2µr 2

]
u
(int)
l (r), E =

k2

(2µ)

→ Numerov method for E > 0

EXTERNAL region (r > rmax) :

u
(ext)
l (r) = A [cos(δ) kr jl(kr)− sin(δ) kr nl(kr)]

Using Numerov solution at r1, r2 > rmax :

u
(int)
l (r1)

u
(int)
l (r2)

=
u
(ext)
l (r1)

u
(ext)
l (r2)

−→ tan(δ) =
βjl(kr1)− jl(kr2)

βnl(kr1)− nl(kr2)
, β =

r1u
(int)
l (r2)

r2u
(int)
l (r1)
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Numerov for scattering

Phase shift calculation via Numerov method

Using Logarithmic derivative at r1 > rmax :

(
u
(int)
l (r1)

)′
u
(int)
l (r1)

=

(
u
(ext)
l (r1)

)′
u
(ext)
l (r1)

−→ tan(δ) =
βjl(kr1)− jl(kr2)

βnl(kr1)− nl(kr2)
, β =

r1u
(int)
l (r2)

r2u
(int)
l (r1)
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