Chiral Effective Field Theory and Nuclear Forces: concepts of chiral EFT

Kai Hebeler
Mainz, July 29, 2022

TALENT school @MITP:
Effective field theories in light nuclei

Basic ideas of effective theories: Multipole expansion

Consider electrostatic potential $\Phi(\mathbf{r})$ generated by a localized charge distribution $\rho(\mathbf{r})$:

Basic ideas of effective theories: Multipole expansion

Consider electrostatic potential $\Phi(\mathbf{r})$ generated by a localized charge distribution $\rho(\mathbf{r})$:

$$
\Phi_{\text {exact }}(\mathbf{R})=C \int d^{3} \mathbf{r} \frac{\rho(\mathbf{r})}{|\mathbf{R}-\mathbf{r}|} \quad(\text { set } C=1)
$$

Basic ideas of effective theories: Multipole expansion

Consider electrostatic potential $\Phi(\mathbf{r})$ generated by a localized charge distribution $\rho(\mathbf{r})$:

$$
\Phi_{\text {exact }}(\mathbf{R})=C \int d^{3} \mathbf{r} \frac{\rho(\mathbf{r})}{|\mathbf{R}-\mathbf{r}|} \quad(\text { set } C=1)
$$

Let's assume we don't know the exact form of $\rho(\mathbf{r})$. How can we approximately determine $\Phi(\mathbf{R})$ for $|\mathbf{R}| \gg a$?

Basic ideas of effective theories: Multipole expansion

Consider electrostatic potential $\Phi(\mathbf{r})$ generated by a localized charge distribution $\rho(\mathbf{r})$:

$$
\Phi_{\text {exact }}(\mathbf{R})=C \int d^{3} \mathbf{r} \frac{\rho(\mathbf{r})}{|\mathbf{R}-\mathbf{r}|} \quad(\text { set } C=1)
$$

Let's assume we don't know the exact form of $\rho(\mathbf{r})$.
How can we approximately determine $\Phi(\mathbf{R})$ for $|\mathbf{R}| \gg a$?
Expand $\frac{1}{|\mathbf{R}-\mathbf{r}|}$:

$$
\Phi(\mathbf{R})=\frac{q}{R}+\frac{1}{R^{3}} \sum_{i} R_{i} P_{i}+\frac{1}{6 R^{5}} \sum_{i, j}\left(3 R_{i} R_{j}-\delta_{i j} R^{2}\right) Q_{i j}+\ldots
$$

with:

$$
\underbrace{q=\int d^{3} \mathbf{r} \rho(\mathbf{r}),}_{\text {Monopole }} \underbrace{P_{i}=\int d^{3} \mathbf{r} \rho(\mathbf{r}) r_{i},}_{\text {Dipole }}, \underbrace{Q_{i j}=\int d^{3} \mathbf{r} \rho(\mathbf{r})\left(3 r_{i} r_{j}-\delta_{i j} r^{2}\right)}_{\text {Quadrupole }}
$$

Basic ideas of effective theories: Multipole expansion

Basic ideas of effective theories: Multipole expansion

$$
\begin{aligned}
& \Phi(\mathbf{R})=\frac{q}{R}+\frac{1}{R^{3}} \sum_{i} R_{i} P_{i}+\frac{1}{6 R^{5}} \sum_{i, j}\left(3 R_{i} R_{j}-\delta_{i j} R^{2}\right) Q_{i j}+\ldots \\
& q=\int d^{3} \mathbf{r} \rho(\mathbf{r}), \quad P_{i}=\int d^{3} \mathbf{r} \rho(\mathbf{r}) r_{i}, \quad Q_{i j}=\int d^{3} \mathbf{r} \rho(\mathbf{r})\left(3 r_{i} r_{j}-\delta_{i j} r^{2}\right)
\end{aligned}
$$

Multipole expansion calculable if $\rho(\mathbf{r})$ is known, but also allows to make predictions if $\rho(\mathbf{r})$ is unknown!

Basic ideas of effective theories: Multipole expansion

$$
\begin{array}{r}
\rho(\mathbf{r}) \\
\quad \rho(\mathbf{r})
\end{array}
$$

Strategy (assuming that we don't even know Poisson's law!):
I.Symmetries: write down most general expression in terms of vectors \mathbf{R} and \mathbf{r} that is consistent with symmetries (which symmetry here?)

Basic ideas of effective theories: Multipole expansion

$$
\begin{aligned}
& \Phi(\mathbf{R})=\frac{q}{R}+\frac{1}{R^{3}} \sum_{i} R_{i} P_{i}+\frac{1}{6 R^{5}} \sum_{i, j}\left(3 R_{i} R_{j}-\delta_{i j} R^{2}\right) Q_{i j}+\ldots \\
& q=\int d^{3} \mathbf{r} \rho(\mathbf{r}), \quad P_{i}=\int d^{3} \mathbf{r} \rho(\mathbf{r}) r_{i}, \quad Q_{i j}=\int d^{3} \mathbf{r} \rho(\mathbf{r})\left(3 r_{i} r_{j}-\delta_{i j} r^{2}\right)
\end{aligned}
$$

Multipole expansion calculable if $\rho(\mathbf{r})$ is known, but also allows to make predictions if $\rho(\mathbf{r})$ is unknown!

Strategy (assuming that we don't even know Poisson's law!): I.Symmetries: write down most general expression in terms of vectors \mathbf{R} and \mathbf{r} that is consistent with symmetries (which symmetry here?)

Basic ideas of effective theories: Multipole expansion

$$
\begin{array}{r}
\rho(\mathbf{r}) \\
\rho(\mathbf{r})
\end{array}
$$

Strategy (assuming that we don't even know Poisson's law!): I.Symmetries: write down most general expression in terms of vectors \mathbf{R} and \mathbf{r} that is consistent with symmetries (here: rotational symmetry)

Basic ideas of effective theories: Multipole expansion

$$
\begin{aligned}
& \Phi(\mathbf{R})=\frac{q}{R}+\frac{1}{R^{3}} \sum_{i} R_{i} P_{i}+\frac{1}{6 R^{5}} \sum_{i, j}\left(3 R_{i} R_{j}-\delta_{i j} R^{2}\right) Q_{i j}+\ldots \\
& q=\int d^{3} \mathbf{r} \rho(\mathbf{r}), \quad P_{i}=\int d^{3} \mathbf{r} \rho(\mathbf{r}) r_{i}, \quad Q_{i j}=\int d^{3} \mathbf{r} \rho(\mathbf{r})\left(3 r_{i} r_{j}-\delta_{i j} r^{2}\right)
\end{aligned}
$$

Multipole expansion calculable if $\rho(\mathbf{r})$ is known, but also allows to make predictions if $\rho(\mathbf{r})$ is unknown!

Strategy (assuming that we don't even know Poisson's law!): I.Symmetries: write down most general expression in terms of vectors \mathbf{R} and \mathbf{r} that is consistent with symmetries (here: rotational symmetry)

Basic ideas of effective theories: Multipole expansion

$$
\begin{array}{r}
\rho(\mathbf{r}) \\
\quad \rho(\mathbf{r})
\end{array}
$$

Strategy (assuming that we don't even know Poisson's law!): I.Symmetries: write down most general expression in terms of vectors \mathbf{R} and \mathbf{r} that is consistent with symmetries (here: rotational symmetry)
2.Naturalness: unknown multipole moments expected to be of natural size: $q \sim a^{\square}, P_{i} \sim a^{\square}, Q_{i j} \sim a^{\square}$

Basic ideas of effective theories: Multipole expansion

$$
\begin{aligned}
& \Phi(\mathbf{R})=\frac{q}{R}+\frac{1}{R^{3}} \sum_{i} R_{i} P_{i}+\frac{1}{6 R^{5}} \sum_{i, j}\left(3 R_{i} R_{j}-\delta_{i j} R^{2}\right) Q_{i j}+\ldots \\
& q=\int d^{3} \mathbf{r} \rho(\mathbf{r}), \quad P_{i}=\int d^{3} \mathbf{r} \rho(\mathbf{r}) r_{i}, \quad Q_{i j}=\int d^{3} \mathbf{r} \rho(\mathbf{r})\left(3 r_{i} r_{j}-\delta_{i j} r^{2}\right)
\end{aligned}
$$

Multipole expansion calculable if $\rho(\mathbf{r})$ is known,

but also allows to make predictions if $\rho(\mathbf{r})$ is unknown!
Strategy (assuming that we don't even know Poisson's law!): I.Symmetries: write down most general expression in terms of vectors \mathbf{R} and \mathbf{r} that is consistent with symmetries (here: rotational symmetry)
2.Naturalness: unknown multipole moments expected to be of natural size: $q \sim a^{\square}, P_{i} \sim a^{\square}, Q_{i j} \sim a^{\square}$

Basic ideas of effective theories: Multipole expansion

$$
\begin{aligned}
& \Phi(\mathbf{R})=\frac{q}{R}+\frac{1}{R^{3}} \sum_{i} R_{i} P_{i}+\frac{1}{6 R^{5}} \sum_{i, j}\left(3 R_{i} R_{j}-\delta_{i j} R^{2}\right) Q_{i j}+\ldots \\
& q=\int d^{3} \mathbf{r} \rho(\mathbf{r}), \quad P_{i}=\int d^{3} \mathbf{r} \rho(\mathbf{r}) r_{i}, \quad Q_{i j}=\int d^{3} \mathbf{r} \rho(\mathbf{r})\left(3 r_{i} r_{j}-\delta_{i j} r^{2}\right)
\end{aligned}
$$

Multipole expansion calculable if $\rho(\mathbf{r})$ is known,

but also allows to make predictions if $\rho(\mathbf{r})$ is unknown!
Strategy (assuming that we don't even know Poisson's law!): I.Symmetries: write down most general expression in terms of vectors \mathbf{R} and \mathbf{r} that is consistent with symmetries (here: rotational symmetry)
2. Naturalness: unknown multipole moments expected to be of natural size: $q \sim a^{0}, P_{i} \sim a^{1}, Q_{i j} \sim a^{2}$,terms in mult. expansion scale like $\left(\frac{a}{R}\right)^{n}$

Basic ideas of effective theories: Multipole expansion

$$
\begin{aligned}
& \Phi(\mathbf{R})=\frac{q}{R}+\frac{1}{R^{3}} \sum_{i} R_{i} P_{i}+\frac{1}{6 R^{5}} \sum_{i, j}\left(3 R_{i} R_{j}-\delta_{i j} R^{2}\right) Q_{i j}+\ldots \\
& q=\int d^{3} \mathbf{r} \rho(\mathbf{r}), \quad P_{i}=\int d^{3} \mathbf{r} \rho(\mathbf{r}) r_{i}, \quad Q_{i j}=\int d^{3} \mathbf{r} \rho(\mathbf{r})\left(3 r_{i} r_{j}-\delta_{i j} r^{2}\right)
\end{aligned}
$$

Multipole expansion calculable if $\rho(\mathbf{r})$ is known,

but also allows to make predictions if $\rho(\mathbf{r})$ is unknown!
Strategy (assuming that we don't even know Poisson's law!): I.Symmetries: write down most general expression in terms of vectors \mathbf{R} and \mathbf{r} that is consistent with symmetries (here: rotational symmetry)
2. Naturalness: unknown multipole moments expected to be of natural size: $q \sim a^{0}, P_{i} \sim a^{1}, Q_{i j} \sim a^{2}$,terms in mult. expansion scale like $\left(\frac{a}{R}\right)^{n}$
3.Fixing constants

Basic ideas of effective theories: Multipole expansion

$$
\begin{aligned}
& \Phi(\mathbf{R})=\frac{q}{R}+\frac{1}{R^{3}} \sum_{i} R_{i} P_{i}+\frac{1}{6 R^{5}} \sum_{i, j}\left(3 R_{i} R_{j}-\delta_{i j} R^{2}\right) Q_{i j}+\ldots \\
& q=\int d^{3} \mathbf{r} \rho(\mathbf{r}), \quad P_{i}=\int d^{3} \mathbf{r} \rho(\mathbf{r}) r_{i}, \quad Q_{i j}=\int d^{3} \mathbf{r} \rho(\mathbf{r})\left(3 r_{i} r_{j}-\delta_{i j} r^{2}\right)
\end{aligned}
$$

Multipole expansion calculable if $\rho(\mathbf{r})$ is known,
but also allows to make predictions if $\rho(\mathbf{r})$ is unknown!
Strategy (assuming that we don't even know Poisson's law!):
I.Symmetries: write down most general expression in terms of vectors \mathbf{R} and \mathbf{r} that is consistent with symmetries (here: rotational symmetry)
2. Naturalness: unknown multipole moments expected to be of natural size: $q \sim a^{0}, P_{i} \sim a^{1}, Q_{i j} \sim a^{2}$,terms in mult. expansion scale like $\left(\frac{a}{R}\right)^{n}$
3. Fixing constants: measure $\Phi(\mathbf{R})$ at several locations $(|\mathbf{R}| \gg a)$, determine $q, P_{i}, Q_{i j}$ and make predictions for other locations

Chiral effective field theory

Fundamental ingredient of effective theories is a separation of scales (e.g.: $|\mathbf{R}| \gg a$). How can this idea be applied to nuclear physics?

Chiral effective field theory

Fundamental ingredient of effective theories is a separation of scales (e.g.: $|\mathbf{R}| \gg a$). How can this idea be applied to nuclear physics?

Energy scales in nuclear physics:

Chiral effective field theory

Fundamental ingredient of effective theories is a separation of scales (e.g.: $|\mathbf{R}| \gg a$). How can this idea be applied to nuclear physics?

Energy scales in nuclear physics:

Chiral effective field theory

Fundamental ingredient of effective theories is a separation of scales (e.g.: $|\mathbf{R}| \gg a$). How can this idea be applied to nuclear physics?

Energy scales in nuclear physics:

Chiral effective field theory

Fundamental ingredient of effective theories is a separation of scales (e.g.: $|\mathbf{R}| \gg a$). How can this idea be applied to nuclear physics?

Energy scales in nuclear physics:

Chiral effective field theory

Basic idea: utilize separation of energy scales!

(compare multipole expansion in $\frac{a}{R}$)

Strategy:

I.Symmetries: write down most general Lagrangian which respects symmetries of QCD in terms of low-energy degrees of freedom (pions and nucleons)

Chiral effective field theory

Basic idea: utilize separation of energy scales!

(compare multipole expansion in $\frac{a}{R}$)

Strategy:

I.Symmetries: write down most general Lagrangian which respects symmetries of QCD in terms of low-energy degrees of freedom (pions and nucleons)
2.Power counting: identify contributions (i.e. Feynman diagrams) that give contributions at a given order in $\frac{Q}{\Lambda}$

Chiral effective field theory

Basic idea: utilize separation of energy scales!

(compare multipole expansion in $\frac{a}{R}$)

Strategy:

I.Symmetries: write down most general Lagrangian which respects symmetries of QCD in terms of low-energy degrees of freedom (pions and nucleons)
2.Power counting: identify contributions (i.e. Feynman diagrams) that give contributions at a given order in $\frac{Q}{\Lambda}$
3.Fixing of low-energy constants: perform calculations at a given order in expansion, determine constants by matching to experimental data (e.g. NN scattering observables) and make predictions for other observables, in principle constants can be computed from QCD (cf. multipole expansion)

Symmetries of QCD - chiral symmetry

$$
\begin{aligned}
\mathcal{L}_{Q C D} & =-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\bar{q}_{f}\left(i \gamma^{\mu} \partial_{\mu}-m_{f}\right) q_{f}+g \bar{q} \gamma^{\mu} T_{a} q A_{\mu}^{a} \\
& \equiv-\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu}+\bar{q}_{f}\left(i \gamma^{\mu} D_{\mu}-m_{f}\right) q_{f}
\end{aligned}
$$

- f : flavour index, here we consider only light flavors $(f=u, d)$
- 'covariant derivative' (independent of flavor):

$$
D_{\mu}=\partial_{\mu}-i g \bar{q} \gamma^{\mu} T_{a} q A_{\mu}^{a}
$$

- introduce mass matrix (in flavour space):

$$
\mathcal{M}=\operatorname{diag}\left(m_{u}, m_{d}\right)
$$

Decompose quark fields (for each flavor) into left- and right-handed chiral components via:

$$
q_{L}=P_{L} q, q_{R}=P_{R} q, P_{L / R}=\frac{1}{2}\left(1 \mp \gamma_{5}\right), P_{L}+P_{R}=1
$$

Symmetries of QCD - chiral symmetry

$$
\begin{aligned}
\mathcal{L}_{Q C D}= & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu} \\
& +i \bar{q}_{L, f} i \gamma^{\mu} D_{\mu} q_{L, f}+i \bar{q}_{R, f} \gamma^{\mu} D_{\mu} q_{R, f} \\
& -\bar{q}_{L, f} \mathcal{M} q_{R, f}-\bar{q}_{R, f} \mathcal{M} q_{L, f}
\end{aligned}
$$

Symmetries of QCD - chiral symmetry

$$
\begin{aligned}
\mathcal{L}_{Q C D}= & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu} \\
& +i \bar{q}_{L, f} i \gamma^{\mu} D_{\mu} q_{L, f}+i \bar{q}_{R, f} \gamma^{\mu} D_{\mu} q_{R, f} \\
& -\bar{q}_{L, f} \mathcal{M} q_{R, f}-\bar{q}_{R, f} \mathcal{M} q_{L, f}
\end{aligned}
$$

- for $\mathcal{M}=0 \mathcal{L}_{Q C D}$ is invariant under independent global rotations in flavour space $\left(S U(2)_{L} \times S U(2)_{R}\right.$ symmetry):

$$
\begin{aligned}
q_{L} & =\binom{q_{L, u}}{q_{L, d}} \rightarrow q_{L}^{\prime}=\exp \left(-i \boldsymbol{\theta}_{L} \cdot \boldsymbol{\tau} / 2\right) q_{L} \\
q_{R} & =\binom{q_{R, u}}{q_{R, d}} \rightarrow q_{R}^{\prime}=\exp \left(-i \boldsymbol{\theta}_{R} \cdot \boldsymbol{\tau} / 2\right) q_{R}
\end{aligned}
$$

Symmetries of QCD - chiral symmetry

$$
\begin{aligned}
\mathcal{L}_{Q C D}= & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu} \\
& +i \bar{q}_{L, f} i \gamma^{\mu} D_{\mu} q_{L, f}+i \bar{q}_{R, f} \gamma^{\mu} D_{\mu} q_{R, f} \\
& -\bar{q}_{L, f} \mathcal{M} q_{R, f}-\bar{q}_{R, f} \mathcal{M} q_{L, f}
\end{aligned}
$$

- for $\mathcal{M}=0 \mathcal{L}_{Q C D}$ is invariant under independent global rotations in flavour space $\left(S U(2)_{L} \times S U(2)_{R}\right.$ symmetry):

$$
\begin{aligned}
q_{L} & =\binom{q_{L, u}}{q_{L, d}} \rightarrow q_{L}^{\prime}=\exp \left(-i \boldsymbol{\theta}_{L} \cdot \boldsymbol{\tau} / 2\right) q_{L} \\
q_{R} & =\binom{q_{R, u}}{q_{R, d}} \rightarrow q_{R}^{\prime}=\exp \left(-i \boldsymbol{\theta}_{R} \cdot \boldsymbol{\tau} / 2\right) q_{R}
\end{aligned}
$$

- the total symmetry group in flavour space is

$$
U(1)_{V} \times U(1)_{A} \times S U(2)_{L} \times S U(2)_{R}
$$

Symmetries of QCD - chiral symmetry

$$
\begin{aligned}
\mathcal{L}_{Q C D}= & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu} \\
& +i \bar{q}_{L, f} i \gamma^{\mu} D_{\mu} q_{L, f}+i \bar{q}_{R, f} \gamma^{\mu} D_{\mu} q_{R, f} \\
& -\bar{q}_{L, f} \mathcal{M} q_{R, f}-\bar{q}_{R, f} \mathcal{M} q_{L, f}
\end{aligned}
$$

- for $\mathcal{M}=0 \mathcal{L}_{Q C D}$ is invariant under independent global rotations in flavour space $\left(S U(2)_{L} \times S U(2)_{R}\right.$ symmetry):

$$
\begin{aligned}
q_{L} & =\binom{q_{L, u}}{q_{L, d}} \rightarrow q_{L}^{\prime}=\exp \left(-i \boldsymbol{\theta}_{L} \cdot \boldsymbol{\tau} / 2\right) q_{L} \\
q_{R} & =\binom{q_{R, u}}{q_{R, d}} \rightarrow q_{R}^{\prime}=\exp \left(-i \boldsymbol{\theta}_{R} \cdot \boldsymbol{\tau} / 2\right) q_{R}
\end{aligned}
$$

- the total symmetry group in flavour space is

$$
U(1)_{V} \times U(1)_{A} \times S U(2)_{L} \times S U(2)_{R}
$$

quark number
conservation

Symmetries of QCD - chiral symmetry

$$
\begin{aligned}
\mathcal{L}_{Q C D}= & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu} \\
& +i \bar{q}_{L, f} i \gamma^{\mu} D_{\mu} q_{L, f}+i \bar{q}_{R, f} \gamma^{\mu} D_{\mu} q_{R, f} \\
& -\bar{q}_{L, f} \mathcal{M} q_{R, f}-\bar{q}_{R, f} \mathcal{M} q_{L, f}
\end{aligned}
$$

- for $\mathcal{M}=0 \mathcal{L}_{Q C D}$ is invariant under independent global rotations in flavour space $\left(S U(2)_{L} \times S U(2)_{R}\right.$ symmetry):

$$
\begin{aligned}
q_{L} & =\binom{q_{L, u}}{q_{L, d}} \rightarrow q_{L}^{\prime}=\exp \left(-i \boldsymbol{\theta}_{L} \cdot \boldsymbol{\tau} / 2\right) q_{L} \\
q_{R} & =\binom{q_{R, u}}{q_{R, d}} \rightarrow q_{R}^{\prime}=\exp \left(-i \boldsymbol{\theta}_{R} \cdot \boldsymbol{\tau} / 2\right) q_{R}
\end{aligned}
$$

- the total symmetry group in flavour space is

$$
U(1)_{V} \times U(1)_{A} \times S U(2)_{L} \times S U(2)_{R}
$$

quark number broken by
conservation anomaly

Symmetries of QCD - chiral symmetry

$$
\begin{aligned}
\mathcal{L}_{Q C D}= & -\frac{1}{4} F_{\mu \nu}^{a} F^{a \mu \nu} \\
& +i \bar{q}_{L, f} i \gamma^{\mu} D_{\mu} q_{L, f}+i \bar{q}_{R, f} \gamma^{\mu} D_{\mu} q_{R, f} \\
& -\bar{q}_{L, f} \mathcal{M} q_{R, f}-\bar{q}_{R, f} \mathcal{M} q_{L, f}
\end{aligned}
$$

- for $\mathcal{M}=0 \mathcal{L}_{Q C D}$ is invariant under independent global rotations in flavour space $\left(S U(2)_{L} \times S U(2)_{R}\right.$ symmetry):

$$
\begin{aligned}
q_{L} & =\binom{q_{L, u}}{q_{L, d}} \rightarrow q_{L}^{\prime}=\exp \left(-i \boldsymbol{\theta}_{L} \cdot \boldsymbol{\tau} / 2\right) q_{L} \\
q_{R} & =\binom{q_{R, u}}{q_{R, d}} \rightarrow q_{R}^{\prime}=\exp \left(-i \boldsymbol{\theta}_{R} \cdot \boldsymbol{\tau} / 2\right) q_{R}
\end{aligned}
$$

- the total symmetry group in flavour space is

$$
U(1)_{V} \times U(1)_{A} \times S U(2)_{L} \times S U(2)_{R}
$$

quark number broken by spontaneously broken down to subgroup $S U(2)_{V}$ conservation anomaly explicitly broken by finite \mathcal{M}
Regularization schemes for nuclear interactions (here: NN)
Separation of long- and short-range physics

$$
\begin{aligned}
\mathbf{p} & =\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) / 2 \\
\mathbf{p}^{\prime} & =\left(\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}^{\prime}\right) / 2 \\
\mathbf{q} & =\left(\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right)
\end{aligned}
$$

Regularization schemes for nuclear interactions (here: NN)

Separation of long- and short-range physics

$$
\begin{aligned}
\mathbf{p} & =\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) / 2 \\
\mathbf{p}^{\prime} & =\left(\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}^{\prime}\right) / 2 \\
\mathbf{q} & =\left(\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right)
\end{aligned}
$$

nonlocal

$$
V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \rightarrow \exp \left[-\left(\left(p^{2}+p^{2}\right) / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)
$$

Regularization schemes for nuclear interactions (here: NN)

 $$
\begin{aligned} \mathbf{p} & =\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) / 2 \\ \mathbf{p}^{\prime} & =\left(\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}^{\prime}\right) / 2 \\ \mathbf{q} & =\left(\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right) \end{aligned}
$$
 Separation of long- and short-range physics

nonlocal

$$
V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \rightarrow \exp \left[-\left(\left(p^{2}+p^{2}\right) / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)
$$

Epelbaum, Glöckle, Meissner, NPA 747, 362 (2005) Entem, Machleidt, PRC 68, 041001 (2003)

local
 (momentum space)

$$
V_{\mathrm{NN}}(\mathbf{q}) \rightarrow \exp \left[-\left(q^{2} / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}(\mathbf{q})
$$

Regularization schemes for nuclear interactions (here: NN)

 $$
\begin{aligned} \mathbf{p} & =\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) / 2 \\ \mathbf{p}^{\prime} & =\left(\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}^{\prime}\right) / 2 \\ \mathbf{q} & =\left(\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right) \end{aligned}
$$

nonlocal

$$
V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \rightarrow \exp \left[-\left(\left(p^{2}+p^{\prime 2}\right) / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)
$$

Epelbaum, Glöckle, Meissner, NPA 747, 362 (2005) Entem, Machleidt, PRC 68, 04I00I (2003)

local (momentum space)

$$
V_{\mathrm{NN}}(\mathbf{q}) \rightarrow \exp \left[-\left(q^{2} / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}(\mathbf{q})
$$

cf. Navratil, Few-body Systems 4I, II7 (2007)

local
 (coordinate space)

$$
\begin{aligned}
V_{\mathrm{NN}}^{\pi}(\mathbf{r}) & \rightarrow\left(1-\exp \left[-\left(r^{2} / R^{2}\right)^{n}\right]\right) V_{\mathrm{NN}}^{\pi}(\mathbf{r}) \\
\delta(\mathbf{r}) & \rightarrow \alpha_{n} \exp \left[-\left(r^{2} / R^{2}\right)^{n}\right]
\end{aligned}
$$

Regularization schemes for nuclear interactions (here: NN)

 $$
\begin{aligned} \mathbf{p} & =\left(\mathbf{p}_{1}-\mathbf{p}_{2}\right) / 2 \\ \mathbf{p}^{\prime} & =\left(\mathbf{p}_{1}^{\prime}-\mathbf{p}_{2}^{\prime}\right) / 2 \\ \mathbf{q} & =\left(\mathbf{p}_{1}-\mathbf{p}_{1}^{\prime}\right) \end{aligned}
$$

nonlocal

$$
V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right) \rightarrow \exp \left[-\left(\left(p^{2}+p^{\prime 2}\right) / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}\left(\mathbf{p}, \mathbf{p}^{\prime}\right)
$$

Epelbaum, Glöckle, Meissner, NPA 747, 362 (2005) Entem, Machleidt, PRC 68, 04I00I (2003)

local (momentum space)

$$
V_{\mathrm{NN}}(\mathbf{q}) \rightarrow \exp \left[-\left(q^{2} / \Lambda^{2}\right)^{n}\right] V_{\mathrm{NN}}(\mathbf{q})
$$

cf. Navratil, Few-body Systems 4I, II7 (2007)

local
 (coordinate space)

$$
\begin{aligned}
V_{\mathrm{NN}}^{\pi}(\mathbf{r}) & \rightarrow\left(1-\exp \left[-\left(r^{2} / R^{2}\right)^{n}\right]\right) V_{\mathrm{NN}}^{\pi}(\mathbf{r}) \\
\delta(\mathbf{r}) & \rightarrow \alpha_{n} \exp \left[-\left(r^{2} / R^{2}\right)^{n}\right]
\end{aligned}
$$

Gezerlis et. al, PRL, III, 03250 I (2013)

$$
V_{\mathrm{NN}}^{\pi}(\mathbf{r}) \rightarrow\left(1-\exp \left[-\left(r^{2} / R^{2}\right)\right]\right)^{n} V_{\mathrm{NN}}^{\pi}(\mathbf{r})
$$

semi-local

$$
\delta(\mathbf{r}) \rightarrow C \rightarrow \exp \left[-\left(\left(p^{2}+p^{\prime 2}\right) / \Lambda^{2}\right)^{n}\right] C
$$

Chiral effective field theory for nuclear forces

${ }_{0}^{\text {OROM }}$	x^{1900}	-	-
${ }_{0}^{\left(Q^{\prime} / /^{2}\right)}$	$\stackrel{10 n}{x+\cdots}$	(1221920	-
	\cdots	\cdots	-
${ }^{\text {a }}$			
${ }_{\text {a }}^{\text {a }}$		$\cdots+4+\frac{2}{2}+\cdots$	

Chiral effective field theory for nuclear forces

		degrees of freedom: nucleons and pions	
		${ }_{3 \mathrm{sw}}$	
O¢(1)	$x+1$	-	-
		(1)20x	
${ }_{\text {a }}^{\text {a }}$	\cdots	啊	
oud			
A)		$\ldots k+\cdots+\cdots$	$1+N+x^{\text {® }}$

Chiral effective field theory for nuclear forces

Chiral effective field theory for nuclear forces

Chiral effective field theory for nuclear forces

Chiral EFT uncertainty estimation

EFT expansion of an observable X at a momentum scale p :

$$
X(p)=X_{\mathrm{ref}}(p) \sum_{n=0}^{\infty} c_{n}(p) Q^{n}
$$

Chiral EFT uncertainty estimation

EFT expansion of an observable X at a momentum scale p :

$$
X(p)=X_{\mathrm{ref}}(p) \sum_{n=0}^{\infty} c_{n}(p) Q^{n}
$$

If series is truncated at order k the truncation error of series is:

$$
\Delta X^{(k)}(p)=\Delta_{k} X_{\mathrm{ref}}(p)=X_{\mathrm{ref}}(p) \sum_{n=k+1}^{\infty} c_{n}(p) Q^{n}
$$

Chiral EFT uncertainty estimation

EFT expansion of an observable X at a momentum scale p :

$$
X(p)=X_{\mathrm{ref}}(p) \sum_{n=0}^{\infty} c_{n}(p) Q^{n}
$$

If series is truncated at order k the truncation error of series is:

$$
\Delta X^{(k)}(p)=\Delta_{k} X_{\mathrm{ref}}(p)=X_{\mathrm{ref}}(p) \sum_{n=k+1}^{\infty} c_{n}(p) Q^{n}
$$

At order k the leading order term in the truncation error can be estimated as:

$$
Q^{3}\left(X^{\mathrm{NLO}}(p)-X^{\mathrm{LO}}(p)\right)=X_{\mathrm{ref}}(p) c_{2}(p) Q^{5} \approx X_{\mathrm{ref}}(p) c_{5}(p) Q^{5} \approx \Delta X^{\mathrm{N}^{3} \mathrm{LO}}(p)
$$

Chiral EFT uncertainty estimation

EFT expansion of an observable X at a momentum scale p :

$$
X(p)=X_{\mathrm{ref}}(p) \sum_{n=0}^{\infty} c_{n}(p) Q^{n}
$$

If series is truncated at order k the truncation error of series is:

$$
\Delta X^{(k)}(p)=\Delta_{k} X_{\mathrm{ref}}(p)=X_{\mathrm{ref}}(p) \sum_{n=k+1}^{\infty} c_{n}(p) Q^{n}
$$

At order k the leading order term in the truncation error can be estimated as:

$$
Q^{3}\left(X^{\mathrm{NLO}}(p)-X^{\mathrm{LO}}(p)\right)=X_{\mathrm{ref}}(p) c_{2}(p) Q^{5} \approx X_{\mathrm{ref}}(p) c_{5}(p) Q^{5} \approx \Delta X^{\mathrm{N}^{3} \mathrm{LO}}(p)
$$

A conservative prescription: $\Delta X^{\mathrm{N}^{3} \mathrm{LO}}(p)=\max \left(Q^{5}\left|X^{\mathrm{LO}}(p)\right|\right.$,

$$
\begin{aligned}
& Q^{3}\left|X^{\mathrm{LO}}(p)-X^{\mathrm{NLO}}(p)\right|, \\
& Q^{2}\left|X^{\mathrm{NLO}}(p)-X^{\mathrm{N}^{2} \mathrm{LO}}(p)\right|, \\
& \left.Q\left|X^{\mathrm{N}^{2} \mathrm{LO}}(p)-X^{\mathrm{N}^{3} L O}(p)\right|\right)
\end{aligned}
$$

Chiral EFT uncertainty estimation: examples

[^0]
Chiral EFT uncertainty estimation: examples

Epelbaum et al., PRC 99 (2019) 024313
Lonardoni et al., PRC 97 (2018) 044318

Chiral EFT uncertainty estimation: examples

Drischler et al., PRL 122 (2019) 042501

Fits of 3N LECs

Constrained from πN scattering
Hoferichter et al., Phys .Rept. 625 (2016) 1

Drischler et al., PRL 122 (2019) 042501

Fits of 3N LECs: three-body scattering cross sections

- a single scattering observable not too constraining (correlated with $\mathrm{E}^{3 H}$)
- a more global fit using several observables more robust

Determination of LECs:

From nuclear matter saturation point

Drischler et al., PRL 122 (2019) 042501

- Use nuclear matter saturation energy and density to constrain LECs
- Reasonable reproduction of both quantities possible
- Results for medium-mass nuclei still not satisfactory

Determination of LECs:

From nuclear matter saturation point

Drischler et al., PRL 122 (2019) 042501

Determination of LECs: triton beta decay half life

- utilize that electroweak $2 b$ current contributions are proportional to $C D$
- Triton beta decay half life much less correlated with E E3H
- how to choose the cutoffs consistently in currents and interaction (continuity equation?)

Determination of LECs:
 Simultaneous fit of NN and 3 N interactions

- Automatized framework for fitting NN plus 3 N interactions
- Computational challenging due to high dimension of parameter space
- Indications that simultaneous fits lead to more systematic EFT convergence
- Results for heavier systems not consistent with experimental results

Determination of LECs:
 Simultaneous fit of NN and 3 N interactions

Carlsson et al.,
PRX 6, 011019 (2016)

- Automatized framework for fitting NN plus 3 N interactions
- Computational challenging due to high dimension of parameter space
- Indications that simultaneous fits lead to more systematic EFT convergence
- Results for heavier systems not consistent with experimental results

[^0]: Epelbaum et al., PRL 115 (2015) 122301

