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I. SUPRANUCLEAR DENSITY MATTER

A. Introduction

Neutron stars are the densest observable objects in the
Universe, attaining physical conditions of matter that cannot
be replicated on Earth. Inside neutron stars, the state of matter
ranges from ions (nuclei) embedded in a sea of electrons at
low densities in the outer crust, through increasingly neutron-
rich ions in the inner crust and outer core, to the supranuclear
densities reached in the center, where particles are squeezed
together more tightly than in atomic nuclei, and theory
predicts a host of possible exotic states of matter (Fig. 1).
The nature of matter at such densities is one of the great
unsolved problems in modern science, and this makes neutron
stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
deconfined quarks at high densities (Sec. I.B). Measuring the
EOS of supranuclear density matter is therefore of major
importance to nuclear physics. However, it is also critical to
astrophysics. The dense matter EOS is clearly central to
understanding the powerful, violent, and enigmatic objects
that are neutron stars. However, neutron star–neutron star and
neutron star–black hole binary inspiral and merger, prime
sources of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007) also depend sensitively on
the EOS (Shibata and Taniguchi, 2011; Bauswein et al., 2012;
Faber and Rasio, 2012; Lackey et al., 2012; Takami, Rezzolla,
and Baiotti, 2014). The EOS affects merger dynamics, black
hole formation time scales, the precise gravitational wave and
neutrino signals, any associated mass loss and r-process
nucleosynthesis, and the attendant gamma-ray bursts and

optical flashes (Metzger et al., 2010; Hotokezaka et al.,
2011; Kumar and Zhang, 2015; Rosswog, 2015). The EOS
of dense matter is also vital to understanding core collapse
supernova explosions and their associated gravitational wave
and neutrino emission (Janka et al., 2007).1

B. The nature of matter: Major open questions

The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
nucleon interactions set in at higher momenta and densities.
Because neutron stars reach densities exceeding those in
atomic nuclei, this makes them particularly sensitive to
many-body forces (Akmal, Pandharipande, and Ravenhall,
1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
(Hebeler et al., 2010; Gandolfi, Carlson, and Reddy, 2012).

FIG. 1. Schematic structure of a neutron star. The outer layer is a
solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
the inner from the outer crust), where neutron degeneracy also
starts to play a role. At densities ∼2 × 1014 g=cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In the
core, densities reach several times the nuclear saturation density
ρsat ¼ 2.8 × 1014 g=cm3 (see text).

1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Sec. I.C), temperature corrections must be
applied when describing either newborn neutron stars in the
immediate aftermath of a supernova or the hot differentially rotating
remnants that may survive for a short period of time following a
compact object merger. The cold and hot EOS must of course connect
and be consistent with one another.

Anna L. Watts et al.: Colloquium: Measuring the neutron star …
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I. SUPRANUCLEAR DENSITY MATTER

A. Introduction

Neutron stars are the densest observable objects in the
Universe, attaining physical conditions of matter that cannot
be replicated on Earth. Inside neutron stars, the state of matter
ranges from ions (nuclei) embedded in a sea of electrons at
low densities in the outer crust, through increasingly neutron-
rich ions in the inner crust and outer core, to the supranuclear
densities reached in the center, where particles are squeezed
together more tightly than in atomic nuclei, and theory
predicts a host of possible exotic states of matter (Fig. 1).
The nature of matter at such densities is one of the great
unsolved problems in modern science, and this makes neutron
stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
deconfined quarks at high densities (Sec. I.B). Measuring the
EOS of supranuclear density matter is therefore of major
importance to nuclear physics. However, it is also critical to
astrophysics. The dense matter EOS is clearly central to
understanding the powerful, violent, and enigmatic objects
that are neutron stars. However, neutron star–neutron star and
neutron star–black hole binary inspiral and merger, prime
sources of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007) also depend sensitively on
the EOS (Shibata and Taniguchi, 2011; Bauswein et al., 2012;
Faber and Rasio, 2012; Lackey et al., 2012; Takami, Rezzolla,
and Baiotti, 2014). The EOS affects merger dynamics, black
hole formation time scales, the precise gravitational wave and
neutrino signals, any associated mass loss and r-process
nucleosynthesis, and the attendant gamma-ray bursts and

optical flashes (Metzger et al., 2010; Hotokezaka et al.,
2011; Kumar and Zhang, 2015; Rosswog, 2015). The EOS
of dense matter is also vital to understanding core collapse
supernova explosions and their associated gravitational wave
and neutrino emission (Janka et al., 2007).1

B. The nature of matter: Major open questions

The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
nucleon interactions set in at higher momenta and densities.
Because neutron stars reach densities exceeding those in
atomic nuclei, this makes them particularly sensitive to
many-body forces (Akmal, Pandharipande, and Ravenhall,
1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
(Hebeler et al., 2010; Gandolfi, Carlson, and Reddy, 2012).

FIG. 1. Schematic structure of a neutron star. The outer layer is a
solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
the inner from the outer crust), where neutron degeneracy also
starts to play a role. At densities ∼2 × 1014 g=cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In the
core, densities reach several times the nuclear saturation density
ρsat ¼ 2.8 × 1014 g=cm3 (see text).

1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Sec. I.C), temperature corrections must be
applied when describing either newborn neutron stars in the
immediate aftermath of a supernova or the hot differentially rotating
remnants that may survive for a short period of time following a
compact object merger. The cold and hot EOS must of course connect
and be consistent with one another.

Anna L. Watts et al.: Colloquium: Measuring the neutron star …
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application of modern optimization and statistical methods, together
with high-performance computing, has revolutionized nuclear DFT
during recent years.

In our study, we use quasi-local Skyrme functionals15 in the
particle–hole channel augmented by the density-dependent, zero-
range pairing term. The commonly used Skyrme EDFs reproduce total
binding energies with a root mean square error of the order of
1–4 MeV (refs 15, 16), and the agreement with the data can be signifi-
cantly improved by adding phenomenological correction terms17. The
Skyrme DFT approach has been successfully tested over the entire
chart of nuclides on a broad range of phenomena, and it usually per-
forms quite well when applied to energy differences (such as S2n), radii
and nuclear deformations. Other well-calibrated mass models include

the microscopic–macroscopic finite-range droplet model (FRDM)18,
the Brussels–Montreal Skyrme–HFB models based on the Hartree–
Fock–Bogoliubov (HFB) method17 and Gogny force models19,20.

Figure 2 illustrates the difficulties with theoretical extrapolations
towards drip lines. Shown are the S2n values for the isotopic chain of
even–even erbium isotopes predicted with different EDF, SLy421, SV-
min13, UNEDF015, UNEDF122, and with the FRDM18 and HFB-2117

models. In the region for which experimental data are available, all
models agree and well reproduce the data. However, the discrepancy
between various predictions steadily grows when moving away from
the region of known nuclei, because the dependence of the effective
force on the neutron-to-proton asymmetry (neutron excess) is poorly
determined. In the example considered, the neutron drip line is
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Figure 2 | Calculated and experimental two-neutron separation energies of
even–even erbium isotopes. Calculations performed in this work using SLy4,
SV-min, UNEDF0 and UNEDF1 functionals are compared to experiment2 and
FRDM18 and HFB-2117 models. The differences between model predictions are
small in the region where data exist (bracketed by vertical arrows) and grow

steadily when extrapolating towards the two-neutron drip line (S2n 5 0). The
bars on the SV-min results indicate statistical errors due to uncertainty in the
coupling constants of the functional. Detailed predictions around S2n 5 0 are
illustrated in the right inset. The left inset depicts the calculated and
experimental two-proton separation energies at N 5 76.
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systematic uncertainty (orange). The inset shows the irregular behaviour of the
two-neutron drip line around Z 5 100.
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I. SUPRANUCLEAR DENSITY MATTER

A. Introduction

Neutron stars are the densest observable objects in the
Universe, attaining physical conditions of matter that cannot
be replicated on Earth. Inside neutron stars, the state of matter
ranges from ions (nuclei) embedded in a sea of electrons at
low densities in the outer crust, through increasingly neutron-
rich ions in the inner crust and outer core, to the supranuclear
densities reached in the center, where particles are squeezed
together more tightly than in atomic nuclei, and theory
predicts a host of possible exotic states of matter (Fig. 1).
The nature of matter at such densities is one of the great
unsolved problems in modern science, and this makes neutron
stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
deconfined quarks at high densities (Sec. I.B). Measuring the
EOS of supranuclear density matter is therefore of major
importance to nuclear physics. However, it is also critical to
astrophysics. The dense matter EOS is clearly central to
understanding the powerful, violent, and enigmatic objects
that are neutron stars. However, neutron star–neutron star and
neutron star–black hole binary inspiral and merger, prime
sources of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007) also depend sensitively on
the EOS (Shibata and Taniguchi, 2011; Bauswein et al., 2012;
Faber and Rasio, 2012; Lackey et al., 2012; Takami, Rezzolla,
and Baiotti, 2014). The EOS affects merger dynamics, black
hole formation time scales, the precise gravitational wave and
neutrino signals, any associated mass loss and r-process
nucleosynthesis, and the attendant gamma-ray bursts and

optical flashes (Metzger et al., 2010; Hotokezaka et al.,
2011; Kumar and Zhang, 2015; Rosswog, 2015). The EOS
of dense matter is also vital to understanding core collapse
supernova explosions and their associated gravitational wave
and neutrino emission (Janka et al., 2007).1

B. The nature of matter: Major open questions

The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
nucleon interactions set in at higher momenta and densities.
Because neutron stars reach densities exceeding those in
atomic nuclei, this makes them particularly sensitive to
many-body forces (Akmal, Pandharipande, and Ravenhall,
1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
(Hebeler et al., 2010; Gandolfi, Carlson, and Reddy, 2012).

FIG. 1. Schematic structure of a neutron star. The outer layer is a
solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
the inner from the outer crust), where neutron degeneracy also
starts to play a role. At densities ∼2 × 1014 g=cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In the
core, densities reach several times the nuclear saturation density
ρsat ¼ 2.8 × 1014 g=cm3 (see text).

1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Sec. I.C), temperature corrections must be
applied when describing either newborn neutron stars in the
immediate aftermath of a supernova or the hot differentially rotating
remnants that may survive for a short period of time following a
compact object merger. The cold and hot EOS must of course connect
and be consistent with one another.

Anna L. Watts et al.: Colloquium: Measuring the neutron star …

Rev. Mod. Phys., Vol. 88, No. 2, April–June 2016 021001-3

2 D. Habs, P.G. Thirolf, M. Gross, K. Allinger, J. Bin, A. Henig, D. Kiefer, W. Ma, J. Schreiber

Fig. 1 Chart of the nuclides indicating various pathways for astrophysical nucleosynthesis: thermonuclear fusion reactions in
stars (orange vector), s-process path (red vector) and the r-process generating heavy nuclei in the Universe (red pathway).
The nuclei marked in black indicate stable nuclei. For the green nuclei some nuclear properties are known, while the yellow, yet
unexplored regions extend to the neutron and proton drip lines. The blue line connects nuclei with the same neutron/proton
ratio as for (almost) stable actinide nuclei. On this line the maximum yield of nuclei produced via fission-fusion (without
neutron evaporation) will be located. The elliptical conture lines correspond to the expected maximum fission-fusion cross
sections decreased to 50% ,10% and 0.1%, respectively, for primary 232Th beams.

beam bunches of solid-state density. ii) The strongly re-
duced stopping power of these dense bunches in a sec-
ond thick Th target, where the decomposition into fis-
sion fragments and the fusion of these fragments takes
place. After the laser flash we want to extract rather
long-lived isotopes (> 100 ms) in flight, separate them
e.g. in a (gas-filled) recoil separator and study them via
decay spectroscopy or lifetime and nuclear mass mea-
surements.

In the following we outline the relevance of the project
for nuclear astrophysics, describe the new laser acceler-
ation scheme and in particular the new fission-fusion re-
action method. Finally the planned ELI-Nuclear Physics
facility will be briefly introduced, where the production
of these nuclei and the experiments to measure their
properties will be realized.

2 The Relevance of the N=126 Waiting Point
for Nuclear Astrophysics

Fig. 1 shows the nuclidic chart marked with different
nucleosynthesis pathways for the production of heavy
elements in the Universe: the thermonuclear fusion pro-
cesses in stars producing elements up to iron (orange ar-
row), the slow neutron capture process (s-process) along
the valley of stability leading to about half of the heavier
nuclei (red arrow) and the rapid neutron capture pro-
cess (r-process) proceeding along pathways with neu-
tron separation energies Sn in the range of 2–3 MeV. In
this scenario, rather neutron-rich nuclei are populated
in an intense neutron flux [9]. The r-process path ex-

hibits characteristic vertical regions for constant magic
neutron numbers of 50, 82 and 126, where the r-process
is slowed down due to low neutron capture cross sections
when going beyond the magic neutron numbers. These
decisive bottlenecks of the r-process flow are called wait-
ing points [10].

The astrophysical site of the r-process nucleosynthe-
sis is still under debate: it may be cataclysmic core col-
lapse supernovae (II) explosions with neutrino winds [2,
3,11,12] or mergers of neutron-star binaries [13,14,15].
The r-process element abundances from galactic halo
stars tell us that the r-process site for lighter and heavier
neutron capture processes may occur under different as-
trophysical conditions [10]. For the heavier elements be-
yond barium, the isotopic abundancies are always very
similar (called universality) and the process seems to be
very robust. Perhaps also the recycling of fission frag-
ments from the end of the r-process strengthens this
stability. Presently, it seems more likely that a merger
of neutron star binaries is the source for the heavier r-
process branch, while core collapsing supernova explo-
sions contribute to the lighter elements below barium.
The modern nuclear equations of state, neutrino inter-
actions and recent supernova explosion simulations [3]
lead to detailed discussions of the waiting point N=126.
Here measured nuclear properties along the N=126 wait-
ing point may help to clarify the sites of the r-process.

Fig. 2 shows the measured solar elemental abundances
of the r-process nuclei together with a calculation, where
masses from the Extended Thomas-Fermi plus Strutin-
ski Integral (ETFSI) mass model [16] have been used to-

figure taken from Habs et al.,
Appl. Phys. B 103, 471 (2011)
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Lattice QCD
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Nuclear effective degrees of freedom

• if a nucleus is probed at high energies, 
  nucleon substructure is resolved

• at low energies, details are not resolved

• replace fine structure by something 
simpler (compare multipole expansion)

Resolution

effective field theory



Overview RG Summary Extras Physics Resolution Forces Filter Coupling

Why is textbook nuclear physics so hard?

VL=0(k , k �) ⇤
�

r2 dr j0(kr) V (r) j0(k �r) = ⌅k |VL=0|k �⇧ =⇥ Vkk � matrix

Momentum units (� = c = 1): typical relative momentum
in large nucleus � 1 fm�1 � 200 MeV but . . .
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• constructed to fit low-energy scattering data

• “hard” NN interactions contain repulsive core at small relative distance
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          nuclear many-body problem non-perturbative, hard to solve!
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Resolution: the higher the better?

• resolution of short-distance structures can obscure this information

• small details have nothing to do with long-wavelength information!

in nuclear structure we are interested in low-energy observables

(long-wavelength information!)



• long-wavelength information is preserved

• much less information necessary 

Strategy: use a lower-resolution version

low-pass filter



• long-wavelength information is preserved

• much less information necessary 

... however, it’s not that easy in nuclear physics.

Strategy: use a lower-resolution version

low-pass filter
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Strategy: use a lower-resolution version

low-pass filter

low-pass filter

• truncated interaction fails completely to reproduce original phase shifts

• problem: low- and high momentum states are coupled by interaction!
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Systematically changing the resolution:                    
the Similarity Renormalization Group

Resolution
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• elimination of coupling between low- and high momentum components,
          simplified many-body calculations!

• observables unaffected by resolution change (for exact calculations)

• residual resolution dependences can be used as tool to test calculations

Not the full story:
RG transformations also change three-body (and higher-body) interactions!

Systematic decoupling of high-momentum physics:
the Similarity Renormalization Group



S.K. Bogner et al. / Progress in Particle and Nuclear Physics 65 (2010) 94–147 105

Fig. 13. Ground-state energy of 3H as a function of the maximum momentum kmax for three different values of � [14]. The cutoff function is
exp[�(k2/k2max)

n] with n = 8. The initial potentials are (a) the N3LO NN potential of Ref. [20] and (b) the Argonne v18 potential [18].

Fig. 14. Momentum–spacematrix elements in the 3S1 channel for (a) the N3LO potential (⇤ = 500MeV) of Ref. [20], (b) the sharp cutoff N3LOWpotential
(⇤ = 2.0 fm�1) of Ref. [72], and (c) for the N3LO potential (⇤ = 500 MeV) evolved by a smooth Vlow k to ⇤ = 2.0 fm�1.

Fig. 15. Flow of Vlow k(k0 = 0, k = 0; ⇤) compared to the corresponding momentum-independent contact interaction C0(⇤) at LO and NLO, where this
coupling is determined entirely from RG invariance and fits to the scattering length as (at LO) plus effective range re (at NLO) [73].

We can gain further insights into the interplay of the RG and EFT by considering chiral EFT as providing a general operator
basis that can be used to expand the RG evolution. At a given order (Q/⇤b)

n, chiral EFT includes contributions from one-
or multi-pion exchanges and from contact interactions, with short-range couplings that depend on the resolution or cutoff
scale. As part of the RG evolution, short-range couplings included in the initial potential evolve. This is illustrated in Fig. 15
by comparing the flow of Vlow k(k0 = 0, k = 0; ⇤) with the corresponding momentum-independent contact interaction
C0(⇤) in subsequent orders of pionless EFT. In addition, the RG generates higher-order short-range contact interactions so
that observables are exactly reproduced and the truncation error is unchanged. Consequently, the cutoff variation can be

AV18

(1S0 channel)

Low- and high momentum couplings in interactions

EM 500 MeV N3LO

(3S1 channel)
• strong couplings of low- and high-momenta in interactions 

complicates convergence ab initio many-body calculations

• these couplings are reduced in chiral potentials compared to 

‘traditional’ interactions, but still present!

More on this in the SRG exercise session!
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(to be determined)
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Aren’t 3N forces unnatural? Do we really need them?

• force between earth and satellite depends on the position of moon

• tidal deformations represent internal excitations

• when all objects are described as point particles 3N forces inevitable!

• effects for the present classical problem rather small



Aren’t 3N forces unnatural? Do we really need them?

• nucleons are composite particles, they can also be internally excited

• existence of three-nucleon forces natural

• key questions: 

»how big are their contributions? 

»how do they depend on the resolution



Chiral effective field theory
nuclear interactions and currents 

nuclear structure and 
reaction observables

Development of nuclear interactions

predictions
validation

optimization
fitting of LECs
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NN+3N only fitted to 
two- and few-body observables!



• remarkable agreement between different many-body frameworks
• very good agreement between theory and experiment for masses of 
oxygen and calcium isotopes based on specific chiral interactions
• contributions from 3N force play important role for drip line

Studies of neutron-rich nuclei:
Neutron dripline and the oxygen anomaly

adapted from 
KH et al. , Ann. Rev. Nucl. Part. Sci.165, 457 (2015) 
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Ab initio calculations of heavier nuclei
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FIG. 5: (Color online) Ground-state energies from CR-CC(2,3) for (a) the NN+3N-induced Hamiltonian starting from the N3LO and N2LO-
optimized NN interaction and (c) the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c and Λ3N = 350 MeV/c. The boxes represent the
spread of the results from α = 0.04 fm4 to α = 0.08 fm4, and the tip points into the direction of smaller values of α. Also shown are the
contributions of the CR-CC(2,3) triples correction to the (b) NN+3N-induced and (d) NN+3N-full results. All results employ !Ω = 24 MeV
and 3N interactions with E3max = 18 in NO2B approximation and full inclusion of the 3N interaction in CCSD up to E3max = 12. Experimental
binding energies [32] are shown as black bars.

ies have shown that for both cutoffs, the induced 4N inter-
action are small up into the sd-shell [6, 9]. For heavier nuclei,
Fig. 5(c) reveals that the α-dependence of the ground-state
energies remains small for Λ3N = 400 MeV/c up to the heav-
iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
ditional repulsive 4N contributions originating from the ini-
tial chiral 3N interaction. By reducing the initial 3N cutoff
to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.

Binder et al., Phys. Lett B 736, 119 (2014) 
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binding energies [32] are shown as black bars.
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iest nuclei. Thus, the attractive induced 4N contributions that
originate from the initial NN interaction are canceled by ad-
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to Λ3N = 350 MeV/c, the repulsive 4N component resulting
for the initial 3N interaction is weakened [9] and the attrac-
tive induced 4N from the initial NN prevails, leading to an
increased α-dependence indicating an attractive net 4N con-
tribution. All of these effects are larger than the truncation un-
certainties of the calculations, such as the cluster truncation,
as is evident by the comparatively small triples contributions
shown in Fig. 5(b) and (d).

Taking advantage of the cancellation of induced 4N terms
for the NN+3N-full Hamiltonian with Λ3N = 400 MeV/c we
compare the energies to experiment. Throughout the different
isotopic chains starting from Ca, the experimental pattern of
the binding energies is reproduced up to a constant shift of
the order of 1 MeV per nucleon. The stability and qualitative
agreement of the these results over an unprecedented mass
range is remarkable, given the fact that the Hamiltonian was
determined in the few-body sector alone.

When considering the quantitative deviations, one has to
consider consistent chiral 3N interaction at N3LO, and the
initial 4N interaction. In particular for heavier nuclei, the

contribution of the leading-order 4N interaction might be siz-
able. Another important future aspect is the study of other
observables, such as charge radii. In the present calcula-
tions the charge radii of the HF reference states are sys-
tematically smaller than experiment and the discrepancy in-
creases with mass. For 16O, 40Ca, 88Sr, and 120Sn the cal-
culated charge radii are 0.3 fm, 0.5 fm, 0.7 fm, and 1.0 fm
too small [32]. These deviations are larger than the ex-
pected effects of beyond-HF correlations and consistent SRG-
evolutions of the radii. This discrepancy will remain a chal-
lenge for future studies of medium-mass and heavy nuclei
with chiral Hamiltonians.

Conclusions. In this Letter we have presented the first
accurate ab initio calculations for heavy nuclei using SRG-
evolved chiral interactions. We have identified and eliminated
a number of technical hurdles, e.g., regarding the SRG model
space, that have inhibited state-of-the-art medium-mass ap-
proaches to address heavy nuclei. As a result, many-body
calculations up to 132Sn are now possible with controlled un-
certainties on the order of 2%. The qualitative agreement of
ground-state energies for nuclei ranging from 16O to 132Sn
obtained in a single theoretical framework demonstrates the
potential of ab initio approaches based on chiral Hamiltoni-
ans. This is a first direct validation of chiral Hamiltonians in
the regime of heavy nuclei using ab initio techniques. Future
studies will have to involve consistent chiral Hamiltonians at
N3LO considering initial and SRG-induced 4N interactions
and provide an exploration of other observables.
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Applications of NN plus 3N forces to atomic nuclei

• contributions from 3N force play important role for location of drip lines
• remarkable agreement between different many-body frameworks
• excellent agreement between theory and experiment for energies of oxygen 
isotopes based on specific chiral interactions
• challenge: correct description of different observables over wide range of the 
nuclear chart

Tichai et al., Phys. Lett. B 786, 195 (2018)



Applications of NN plus 3N forces to atomic nuclei
remarkable reproduction of 
energies over wide range of the 
nuclear chart based on a single 
NN+3N interaction

KH et al., PRC 83, 031301 (2011)
Stroberg et al., PRL 126, 022501 (2021)

E. Epelbaum, PRC 99, 024313 (2019)

order-by-order calculations of 
light nuclei based on semilocal 
NN+3N interactions

LENPIC



First inclusions of subleading 3N contributions
3N forces fitted to empirical saturation properties of nuclear matter:
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First inclusions of subleading 3N contributions
3N forces fitted to empirical saturation properties of nuclear matter:

3N forces fitted few-body systems and medium-mass nuclei:
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which leads to typical many-body uncertainties of 10 keV and
0.001 fm for energies and radii, respectively.

For surveys of ground-state energies and radii of closed-
shell nuclei up into the nickel isotopic chain, we employ a
single-reference formulations of the IM-SRG [24–27]. We use
the Magnus formulation, truncated beyond normal-ordered
two-body terms, for an efficient calculation of radii. We use a
consistent free-space similarity renormalization group (SRG)
evolution of the Hamiltonian (up to three-body terms) and the
radius operator (up to two-body terms) with a typical flow pa-
rameter α = 0.04 fm4, corresponding to a momentum scale
of 2.24 fm−1 [28, 29]. In addition, we use the natural-orbital
single-particle basis extracted for a perturbatively corrected
one-body density matrix of the target nucleus [30].

For the description of open-shell nuclei we employ the
IM-NCSM introduced in Ref. [31]. It is based on a multi-
reference IM-SRG evolution of the Hamiltonian and all other
operators of interest starting from a multi-configurational ref-
erence state from an NCSM calculation in a small reference
space, typically Nref

max = 0 or 2. This evolution pieces of the A-
body Hamiltonian that couple the reference space to the rest
of the model space, thus, leading to an extremely fast con-
vergence of a subsequent NCSM calculation with the evolved
Hamiltonian. As for the single-reference IM-SRG we employ
a free-space SRG evolution and a natural-orbital basis. For
light p-shell nuclei we also show conventional NCSM calcu-
lations with the harmonic-oscillator basis.

New Family of Non-Local NN+3N Interactions. In a first
step towards the construction of a family of non-local NN+3N
interactions up to N3LO, we consider the few-nucleon sys-
tems 3H and 4He. We employ the EMN interactions from LO
to N3LO with non-local regulators and cutoffs Λ = 450, 500,
and 550 MeV. They are supplemented with the corresponding
3N interactions at N2LO and N3LO using non-local regula-
tors in the Jacobi momenta p and q of the form exp(−((p2 +
3/4q2)/Λ2)n) with the same Λ as in the NN interaction. We
will adopt n = 3 in the following—choosing another value
will lead to slight shifts in the values of the LEC, but will not
change many-body results significantly.

Unlike many previous studies, we do not fix cD in the few-
body domain, e.g., by using the triton half-life or the 4He ra-
dius. We keep cD as parameter and only fix cE for a range
of different cD by fitting the triton ground-state energy in con-
verged NCSM calculations. In this way, we can study different
many-body observables and their dependence on cD, before
deciding on a selection criterion for the optimum cD.

Exploring cD in Few-Body Systems. As first set of observ-
ables for this analysis, we consider the ground-state energy
E and point-proton root-mean-square (rms) radius Rp,rms of
4He obtained in converged NCSM calculations with the bare
NN+3N interactions at N2LO and N3LO. In Fig. 1 we present
the results in form of cD-trajectories in the (E,Rp,rms)-plane
for the three different cutoffs. All cD trajectories follow ro-
tated parabolic curves, which shift systematically to lower en-
ergies and radii with increasing cutoff. There is an upper limit
to the 4He ground-state energy that can be described by ad-
justing cD. In some cases, e.g., for the N3LO interaction at
Λ = 500 MeV, this makes it impossible to reproduce the ex-

Figure 1. Ground-state energy and rms-radius of 4He as parametric
function of the low-energy constant cD (see labels) for NN+3N in-
teractions at N2LO (left) and N3LO (right) for cutoffs Λ = 450 MeV
(blue), 500 MeV (red), 550 MeV (green). For each cD, the corre-
sponding cE is determined to reproduce the 3H ground-state energy.
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Figure 2. Ground-state energies and point-proton rms radii for se-
lected medium-mass isotopes obtained in IM-SRG for NN+3N in-
teraction at N3LO with Λ = 500 MeV for a range of cD parameters
from −3 (blue) to +4 (red) in steps of 1.

perimental ground-state energy—for all cD
4He is overbound.

Another interesting implication relates to the Tjon-line, i.e.
a correlation between the 3H and 4He ground-state energies
[32, 33]. For all interactions and all cD values used here,
the 3H ground state energy is fixed to the experimental value
through fitting cE. Nevertheless, the cD variation changes the
4He ground-state energy over a substantial range, thus, depart-
ing from the Tjon-line in a systematic way.

Exploring cD in Many-Body Systems. We can repeat this
analysis for ground-state energies and point-proton radii of
heavier nuclei, ranging from the oxygen to the nickel isotopic
chain. For simplicity we limit ourselves to selected closed-
shell isotopes and use single-reference IM-SRG calculations.
The results for a variation of cD for the NN+3N interaction at

Hoppe et al.
PRC 100, 024318 (2019)

Hüther et al.
PLB 808, 135651 (2020)



First inclusions of subleading 3N contributions
3N forces fitted to empirical saturation properties of nuclear matter:

3N forces fitted few-body systems and medium-mass nuclei:

no simultaneous description of matter and nuclei possible for these NN forces
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which leads to typical many-body uncertainties of 10 keV and
0.001 fm for energies and radii, respectively.

For surveys of ground-state energies and radii of closed-
shell nuclei up into the nickel isotopic chain, we employ a
single-reference formulations of the IM-SRG [24–27]. We use
the Magnus formulation, truncated beyond normal-ordered
two-body terms, for an efficient calculation of radii. We use a
consistent free-space similarity renormalization group (SRG)
evolution of the Hamiltonian (up to three-body terms) and the
radius operator (up to two-body terms) with a typical flow pa-
rameter α = 0.04 fm4, corresponding to a momentum scale
of 2.24 fm−1 [28, 29]. In addition, we use the natural-orbital
single-particle basis extracted for a perturbatively corrected
one-body density matrix of the target nucleus [30].

For the description of open-shell nuclei we employ the
IM-NCSM introduced in Ref. [31]. It is based on a multi-
reference IM-SRG evolution of the Hamiltonian and all other
operators of interest starting from a multi-configurational ref-
erence state from an NCSM calculation in a small reference
space, typically Nref

max = 0 or 2. This evolution pieces of the A-
body Hamiltonian that couple the reference space to the rest
of the model space, thus, leading to an extremely fast con-
vergence of a subsequent NCSM calculation with the evolved
Hamiltonian. As for the single-reference IM-SRG we employ
a free-space SRG evolution and a natural-orbital basis. For
light p-shell nuclei we also show conventional NCSM calcu-
lations with the harmonic-oscillator basis.

New Family of Non-Local NN+3N Interactions. In a first
step towards the construction of a family of non-local NN+3N
interactions up to N3LO, we consider the few-nucleon sys-
tems 3H and 4He. We employ the EMN interactions from LO
to N3LO with non-local regulators and cutoffs Λ = 450, 500,
and 550 MeV. They are supplemented with the corresponding
3N interactions at N2LO and N3LO using non-local regula-
tors in the Jacobi momenta p and q of the form exp(−((p2 +
3/4q2)/Λ2)n) with the same Λ as in the NN interaction. We
will adopt n = 3 in the following—choosing another value
will lead to slight shifts in the values of the LEC, but will not
change many-body results significantly.

Unlike many previous studies, we do not fix cD in the few-
body domain, e.g., by using the triton half-life or the 4He ra-
dius. We keep cD as parameter and only fix cE for a range
of different cD by fitting the triton ground-state energy in con-
verged NCSM calculations. In this way, we can study different
many-body observables and their dependence on cD, before
deciding on a selection criterion for the optimum cD.

Exploring cD in Few-Body Systems. As first set of observ-
ables for this analysis, we consider the ground-state energy
E and point-proton root-mean-square (rms) radius Rp,rms of
4He obtained in converged NCSM calculations with the bare
NN+3N interactions at N2LO and N3LO. In Fig. 1 we present
the results in form of cD-trajectories in the (E,Rp,rms)-plane
for the three different cutoffs. All cD trajectories follow ro-
tated parabolic curves, which shift systematically to lower en-
ergies and radii with increasing cutoff. There is an upper limit
to the 4He ground-state energy that can be described by ad-
justing cD. In some cases, e.g., for the N3LO interaction at
Λ = 500 MeV, this makes it impossible to reproduce the ex-

Figure 1. Ground-state energy and rms-radius of 4He as parametric
function of the low-energy constant cD (see labels) for NN+3N in-
teractions at N2LO (left) and N3LO (right) for cutoffs Λ = 450 MeV
(blue), 500 MeV (red), 550 MeV (green). For each cD, the corre-
sponding cE is determined to reproduce the 3H ground-state energy.
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Figure 2. Ground-state energies and point-proton rms radii for se-
lected medium-mass isotopes obtained in IM-SRG for NN+3N in-
teraction at N3LO with Λ = 500 MeV for a range of cD parameters
from −3 (blue) to +4 (red) in steps of 1.

perimental ground-state energy—for all cD
4He is overbound.

Another interesting implication relates to the Tjon-line, i.e.
a correlation between the 3H and 4He ground-state energies
[32, 33]. For all interactions and all cD values used here,
the 3H ground state energy is fixed to the experimental value
through fitting cE. Nevertheless, the cD variation changes the
4He ground-state energy over a substantial range, thus, depart-
ing from the Tjon-line in a systematic way.

Exploring cD in Many-Body Systems. We can repeat this
analysis for ground-state energies and point-proton radii of
heavier nuclei, ranging from the oxygen to the nickel isotopic
chain. For simplicity we limit ourselves to selected closed-
shell isotopes and use single-reference IM-SRG calculations.
The results for a variation of cD for the NN+3N interaction at

Hoppe et al.
PRC 100, 024318 (2019)

Hüther et al.
PLB 808, 135651 (2020)
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challenges from novel high-precision measurements
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Figure 2 | Predictions for observables related to the neutron distribution in 48Ca. Neutron skin Rskin (a), r.m.s. point-neutron radius Rn (b) and electric
dipole polarizability ↵D (c) plotted versus the r.m.s. point-proton radius Rp. The ab initio predictions with NNLOsat (red circles) and chiral interactions of
ref. 29 (squares) are compared to the DFT results with the energy density functionals SkM⇤, SkP, SLy4, SV-min, UNEDF0 and UNEDF1 (ref. 20; diamonds).
This is a representative subset of DFT results; for other DFT predictions, the reader is referred to ref. 20. The theoretical error bars estimate uncertainties
from truncations of the employed method and model space (see Methods for details). The blue line represents a linear fit to the data. The blue band
encompasses all error bars and estimates systematic uncertainties. The horizontal green line marks the experimental value of Rp. Its intersection with the
blue line and the blue band yields the vertical orange line and orange band, respectively, giving the predicted range for the ordinate.

0.15 0.20 0.25 0.30
FW (qc)

3.25

3.35

3.45

3.55

3.65

R n (
fm

)

qc = 0.778 fm−1

a

0.0 0.4 0.8 1.2 1.6
q (fm−1)

0.0

0.2

0.4

0.6

0.8

1.0

F W
 (q

)

b
NNLOsat
DFT

0 1 2 3 4 5 6 7 8
r (fm)

0.00

0.02

0.04

0.06

0.08

0.10

ρ− W

NNLOsat

c

 (f
m

−3
)

ρ

chρ

Figure 3 | Weak-charge observables in 48Ca. a, Root mean square point-neutron radius Rn in 48Ca versus the weak-charge form factor FW(qc) at the CREX
momentum qc =0.778 fm�1 obtained in ab initio calculations with NNLOsat (red circle) and chiral interactions of ref. 29 (squares). The theoretical error
bars estimate uncertainties from truncations of the employed method and model space (see Methods for details). The width of the horizontal orange band
shows the predicted range for Rn and is taken from Fig. 2b. The width of the vertical orange band is taken from Supplementary Fig. 2 and shows the
predicted range for FW(qc). b, Weak-charge form factor FW(q) as a function of momentum transfer q with NNLOsat (red line) and DFT with the energy
density functional SV-min21 (diamonds). The orange horizontal band shows FW(qc). c, Charge density (blue line) and (negative of) weak-charge density
(red line). The weak-charge density extends well beyond ⇢ch as it is strongly weighted by the neutron distribution. The weak charge of 48Ca, obtained by
integrating the weak-charge density is QW =�26.22 (for the weak charge of the proton and neutron see Methods).

is 0.12.Rskin . 0.15 fm. Figure 2a shows two remarkable features.
First, the ab initio calculations yield neutron skins that are almost
independent of the employed interaction. This is due to the strong
correlation between the Rn and Rp in this nucleus (Fig. 2b). In
contrast, DFT models exhibit practically no correlation between
Rskin and Rp. Second, the ab initio calculations predict a significantly
smaller neutron skin than the DFT models. The predicted range
is also appreciably lower than the combined DFT estimate of
0.176(18) fm (ref. 20) and is well below the relativistic DFT value of
Rskin =0.22(2) fm (ref. 20). To shed light on the lower values of Rskin
predicted by ab initio theory, we computed the neutron separation
energy and the three-point binding energy di�erence in 48Ca (both
being indicators of the N =28 shell gap). Our results are consistent
with experiment and indicate the pronounced magicity of 48Ca
(Supplementary Table 2), whereas DFT results usually significantly
underestimate the N =28 shell gap30. The shortcoming of DFT for
48Ca is also reflected in Rp. Although many nuclear energy density
functionals are constrained to the Rp of 48Ca (refs 18,30), the results
of DFT models shown in Fig. 2a overestimate this quantity.

For Rn (Fig. 2b) we find 3.47.Rn . 3.60 fm. Most of the DFT
results for Rn are outside this range, but fall within the blue
band. Comparing Fig. 2a,b suggests that a measurement of a
small neutron skin in 48Ca would provide a critical test for ab
initio models. For the electric dipole polarizability (Fig. 2c) our
prediction 2.19.↵D.2.60 fm3 is consistent with the DFT value
of 2.306(89) fm3 (ref. 20). Again, most of the DFT results fall
within the ab initio uncertainty band. The result for ↵D will be
tested by anticipated experimental data from the Darmstadt–Osaka
collaboration13,14. The excellent correlation between Rp, Rn and ↵D
seen in Fig. 2b,c demonstrates the usefulness of Rn and ↵D as probes
of the neutron density.

The weak-charge radiusRW is another quantity that characterizes
the size of the nucleus. The CREX experiment will measure the
parity-violating asymmetry Apv in electron scattering on 48Ca
at the momentum transfer qc = 0.778 fm�1. This observable is
proportional to the ratio of the weak-charge and electromagnetic
charge form factors FW(qc)/Fch(qc) (ref. 12). Making some
assumptions about the weak-charge form factor, one can deduce RW
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Figure 2 | Examples of hyperfine structure spectra measured for the Ca
isotopes in the 393-nm 4s 2S1/2!4p 2P3/2 ionic transition. The solid lines
show the fit with a Voigt profile. Frequency values are relative to the centroid
of 40Ca. The position of each hfs centroid is indicated by the dashed lines.

magnitude. It is now possible to routinely perform experiments with
beams of ⇠104 ions s�1 (ref. 23).

In this work, we have further optimized the photon detection
sensitivity and at the same time reduced further the photon
background events8, now allowing the study of calcium isotopes
produced with a yield of only a few hundred ions per second. While
preserving the high resolution, this sensitivity surpasses the previous
limit by two orders of magnitude, achieved by an ultrasensitive
particle detection technique employed on Ca isotopes18.

The short-lived Ca isotopes studied in this work were produced
at the ISOLDE on-line isotope separator, located at the European
Center for Nuclear Research, CERN. High-energy proton pulses
with intensities of ⇠3⇥ 1013 protons/pulse at 1.4GeV impinged
every 2.4 s on an uranium carbide target to create radioactive
species of a wide range of chemical elements. The Ca isotopes
were selected from the reaction products by using a three-step
laser ionization scheme provided by the Resonance Ionization Laser
Ion Source (RILIS; ref. 24). A detailed sketch of the di�erent
experimental processes from the ion beam production to the
fluorescence detection is shown in Fig. 1.

After selective ionization, Ca ions (Ca+) were extracted from
the ion source and accelerated up to 40 keV. The isotope of
interest was mass-separated by using the High-Resolution Mass
Separator (HRS). The selected isotopes were injected into a gas-
filled radiofrequency trap (RFQ) to accumulate the incoming
ions. After a few milliseconds, bunches of ions of ⇠5 µs temporal
width were extracted and redirected into a dedicated beam
line for collinear laser spectroscopy experiments (COLLAPS). At
COLLAPS, the ion beamwas superimposed with a continuous wave
laser beam fixed at a wavelength of 393 nm (see Methods), close
to the 4s 2S1/2 !4p 2P3/2 transition in the Ca+. The laser frequency
was fixed to a constant value, while the ion velocity was varied
inside the optical detection region. A change in the ion velocity
corresponds to a variation of laser frequency in the ion rest frame.
This Doppler tuning of the laser frequency was used to scan the
hyperfine structure (hfs) components of the 4s 2S1/2 ! 4p 2P3/2
transition. At resonance frequencies, transitions between di�erent
hfs levels were excited, and subsequently the fluorescence photons
were detected by a light collection system consisting of four lenses
and photomultiplier tubes (PMT) (see ref. 8 for details). The photon
signals were accepted only when the ion bunch passed in front of
the light collection region, reducing the background counts from
scattered laser light and PMT dark counts by a factor of ⇠104. A
sample of the hfs spectra measured during the experiment is shown
in Fig. 2. Isotopes with nuclear spin I =0 do not exhibit hyperfine
structure splitting. Consequently, only a single transition is observed
for 52Ca.
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Figure 3 | Charge radii of Ca isotopes. a, Experimental charge radii
compared to ab initio calculations with chiral EFT interactions NNLOsat,
SRG1, SRG2, as well as DFT calculations with the UNEDF0 functional.
Experimental error bars are smaller than the symbols. The absolute values
were obtained from the reference radius of 40Ca (Rch =3.478(2) fm;
ref. 26). The values of 39Ca and 41,42Ca are taken from refs 45,46,
respectively. A systematic theoretical uncertainty of 1% is estimated for the
absolute values due to the truncation level of the coupled-cluster method
and the finite basis space employed in the computation. b, Experimental
r.m.s. charge radius in 52Ca relative to that in 48Ca compared to the ab initio
results as well as those of representative density functional theory (DFT)
and configuration interaction (CI) calculations. The systematic
uncertainties in the theoretical predictions are largely cancelled when the
di�erences between r.m.s. charge radii are calculated (dotted horizontal
blue lines). Experimental uncertainties are represented by the horizontal
red lines (statistical) and the grey shaded band (systematic).

The isotope shifts were extracted from the fit of the hfs
experimental spectra, assuming multiple Voigt profiles in the � 2-
minimization (see Methods). The measured isotope shift relative
to the reference isotope 40Ca, and the corresponding change in the
mean-square charge radius are shown in Table 1. Statistical errors
(parentheses) correspond to the uncertainty in the determination
of the peak positions in the hfs spectra. The systematic errors in
the isotope shift (square brackets) are mainly due to the uncertainty
in the beam energy, which is also the main contribution to
the uncertainty in the charge radius. Independent high-precision
measurements of isotope shifts on stable Ca isotopes25 were used for
an accurate determination of the kinetic energy of each isotope. The
stability of the beam energy was controlled by measuring the stable
40Ca, before and after the measurement of each isotope of interest.

Our experimental results (Table 1 and Fig. 3) show that the root-
mean-square (r.m.s.) charge radius of 49Ca presents a considerable
increase with respect to 48Ca, �hr 2i48,49 = 0.097(4) fm2, but much
smaller than previously suggested17. The increase continues towards
N = 32, resulting in a very large charge radius for 52Ca, with an
increase relative to 48Ca of �hr 2i48,52 =0.530(5) fm2.
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isotopes in the 393-nm 4s 2S1/2!4p 2P3/2 ionic transition. The solid lines
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magnitude. It is now possible to routinely perform experiments with
beams of ⇠104 ions s�1 (ref. 23).

In this work, we have further optimized the photon detection
sensitivity and at the same time reduced further the photon
background events8, now allowing the study of calcium isotopes
produced with a yield of only a few hundred ions per second. While
preserving the high resolution, this sensitivity surpasses the previous
limit by two orders of magnitude, achieved by an ultrasensitive
particle detection technique employed on Ca isotopes18.

The short-lived Ca isotopes studied in this work were produced
at the ISOLDE on-line isotope separator, located at the European
Center for Nuclear Research, CERN. High-energy proton pulses
with intensities of ⇠3⇥ 1013 protons/pulse at 1.4GeV impinged
every 2.4 s on an uranium carbide target to create radioactive
species of a wide range of chemical elements. The Ca isotopes
were selected from the reaction products by using a three-step
laser ionization scheme provided by the Resonance Ionization Laser
Ion Source (RILIS; ref. 24). A detailed sketch of the di�erent
experimental processes from the ion beam production to the
fluorescence detection is shown in Fig. 1.

After selective ionization, Ca ions (Ca+) were extracted from
the ion source and accelerated up to 40 keV. The isotope of
interest was mass-separated by using the High-Resolution Mass
Separator (HRS). The selected isotopes were injected into a gas-
filled radiofrequency trap (RFQ) to accumulate the incoming
ions. After a few milliseconds, bunches of ions of ⇠5 µs temporal
width were extracted and redirected into a dedicated beam
line for collinear laser spectroscopy experiments (COLLAPS). At
COLLAPS, the ion beamwas superimposed with a continuous wave
laser beam fixed at a wavelength of 393 nm (see Methods), close
to the 4s 2S1/2 !4p 2P3/2 transition in the Ca+. The laser frequency
was fixed to a constant value, while the ion velocity was varied
inside the optical detection region. A change in the ion velocity
corresponds to a variation of laser frequency in the ion rest frame.
This Doppler tuning of the laser frequency was used to scan the
hyperfine structure (hfs) components of the 4s 2S1/2 ! 4p 2P3/2
transition. At resonance frequencies, transitions between di�erent
hfs levels were excited, and subsequently the fluorescence photons
were detected by a light collection system consisting of four lenses
and photomultiplier tubes (PMT) (see ref. 8 for details). The photon
signals were accepted only when the ion bunch passed in front of
the light collection region, reducing the background counts from
scattered laser light and PMT dark counts by a factor of ⇠104. A
sample of the hfs spectra measured during the experiment is shown
in Fig. 2. Isotopes with nuclear spin I =0 do not exhibit hyperfine
structure splitting. Consequently, only a single transition is observed
for 52Ca.
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Figure 3 | Charge radii of Ca isotopes. a, Experimental charge radii
compared to ab initio calculations with chiral EFT interactions NNLOsat,
SRG1, SRG2, as well as DFT calculations with the UNEDF0 functional.
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were obtained from the reference radius of 40Ca (Rch =3.478(2) fm;
ref. 26). The values of 39Ca and 41,42Ca are taken from refs 45,46,
respectively. A systematic theoretical uncertainty of 1% is estimated for the
absolute values due to the truncation level of the coupled-cluster method
and the finite basis space employed in the computation. b, Experimental
r.m.s. charge radius in 52Ca relative to that in 48Ca compared to the ab initio
results as well as those of representative density functional theory (DFT)
and configuration interaction (CI) calculations. The systematic
uncertainties in the theoretical predictions are largely cancelled when the
di�erences between r.m.s. charge radii are calculated (dotted horizontal
blue lines). Experimental uncertainties are represented by the horizontal
red lines (statistical) and the grey shaded band (systematic).

The isotope shifts were extracted from the fit of the hfs
experimental spectra, assuming multiple Voigt profiles in the � 2-
minimization (see Methods). The measured isotope shift relative
to the reference isotope 40Ca, and the corresponding change in the
mean-square charge radius are shown in Table 1. Statistical errors
(parentheses) correspond to the uncertainty in the determination
of the peak positions in the hfs spectra. The systematic errors in
the isotope shift (square brackets) are mainly due to the uncertainty
in the beam energy, which is also the main contribution to
the uncertainty in the charge radius. Independent high-precision
measurements of isotope shifts on stable Ca isotopes25 were used for
an accurate determination of the kinetic energy of each isotope. The
stability of the beam energy was controlled by measuring the stable
40Ca, before and after the measurement of each isotope of interest.

Our experimental results (Table 1 and Fig. 3) show that the root-
mean-square (r.m.s.) charge radius of 49Ca presents a considerable
increase with respect to 48Ca, �hr 2i48,49 = 0.097(4) fm2, but much
smaller than previously suggested17. The increase continues towards
N = 32, resulting in a very large charge radius for 52Ca, with an
increase relative to 48Ca of �hr 2i48,52 =0.530(5) fm2.
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is 0.12.Rskin . 0.15 fm. Figure 2a shows two remarkable features.
First, the ab initio calculations yield neutron skins that are almost
independent of the employed interaction. This is due to the strong
correlation between the Rn and Rp in this nucleus (Fig. 2b). In
contrast, DFT models exhibit practically no correlation between
Rskin and Rp. Second, the ab initio calculations predict a significantly
smaller neutron skin than the DFT models. The predicted range
is also appreciably lower than the combined DFT estimate of
0.176(18) fm (ref. 20) and is well below the relativistic DFT value of
Rskin =0.22(2) fm (ref. 20). To shed light on the lower values of Rskin
predicted by ab initio theory, we computed the neutron separation
energy and the three-point binding energy di�erence in 48Ca (both
being indicators of the N =28 shell gap). Our results are consistent
with experiment and indicate the pronounced magicity of 48Ca
(Supplementary Table 2), whereas DFT results usually significantly
underestimate the N =28 shell gap30. The shortcoming of DFT for
48Ca is also reflected in Rp. Although many nuclear energy density
functionals are constrained to the Rp of 48Ca (refs 18,30), the results
of DFT models shown in Fig. 2a overestimate this quantity.

For Rn (Fig. 2b) we find 3.47.Rn . 3.60 fm. Most of the DFT
results for Rn are outside this range, but fall within the blue
band. Comparing Fig. 2a,b suggests that a measurement of a
small neutron skin in 48Ca would provide a critical test for ab
initio models. For the electric dipole polarizability (Fig. 2c) our
prediction 2.19.↵D.2.60 fm3 is consistent with the DFT value
of 2.306(89) fm3 (ref. 20). Again, most of the DFT results fall
within the ab initio uncertainty band. The result for ↵D will be
tested by anticipated experimental data from the Darmstadt–Osaka
collaboration13,14. The excellent correlation between Rp, Rn and ↵D
seen in Fig. 2b,c demonstrates the usefulness of Rn and ↵D as probes
of the neutron density.

The weak-charge radiusRW is another quantity that characterizes
the size of the nucleus. The CREX experiment will measure the
parity-violating asymmetry Apv in electron scattering on 48Ca
at the momentum transfer qc = 0.778 fm�1. This observable is
proportional to the ratio of the weak-charge and electromagnetic
charge form factors FW(qc)/Fch(qc) (ref. 12). Making some
assumptions about the weak-charge form factor, one can deduce RW

188

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE PHYSICS | VOL 12 | FEBRUARY 2016 | www.nature.com/naturephysics

Hagen. et al.. Nature Phys. 12, 186 (2015) 

calcium
isotopes

Horowitz

Rskin

48Ca

208Pb

A piece of  the  weak interaction  
violates  parity  (mirror symmetry)   
which  allows  to  isolate  it. 

Negative 
longitudinal spin 

Positive    
longitudinal spin  

Pb 
208 

P 

S (spin) 

(momentum) 

Incident  electron 

Target 

Lead  (    Pb)  Radius  Experiment :   PREX 

E = 1  GeV,  
electrons   on  lead  

Elastic   Scattering    

Parity Violating   Asymmetry  PREX
Pb Radius Experiment
CREX
Ca Radius Experiment



The size of the atomic nucleus: 
challenges from novel high-precision measurements

ARTICLES NATURE PHYSICS DOI: 10.1038/NPHYS3645

150
49Ca (I = 3/2)

51Ca (I = 3/2)

52Ca (I = 0)

100

50

20

10

Co
un

ts
 p

er
 p

ro
to

n 
pu

lse

2

1

0 2,000
Relative frequency (MHz)

3,000

Figure 2 | Examples of hyperfine structure spectra measured for the Ca
isotopes in the 393-nm 4s 2S1/2!4p 2P3/2 ionic transition. The solid lines
show the fit with a Voigt profile. Frequency values are relative to the centroid
of 40Ca. The position of each hfs centroid is indicated by the dashed lines.

magnitude. It is now possible to routinely perform experiments with
beams of ⇠104 ions s�1 (ref. 23).

In this work, we have further optimized the photon detection
sensitivity and at the same time reduced further the photon
background events8, now allowing the study of calcium isotopes
produced with a yield of only a few hundred ions per second. While
preserving the high resolution, this sensitivity surpasses the previous
limit by two orders of magnitude, achieved by an ultrasensitive
particle detection technique employed on Ca isotopes18.

The short-lived Ca isotopes studied in this work were produced
at the ISOLDE on-line isotope separator, located at the European
Center for Nuclear Research, CERN. High-energy proton pulses
with intensities of ⇠3⇥ 1013 protons/pulse at 1.4GeV impinged
every 2.4 s on an uranium carbide target to create radioactive
species of a wide range of chemical elements. The Ca isotopes
were selected from the reaction products by using a three-step
laser ionization scheme provided by the Resonance Ionization Laser
Ion Source (RILIS; ref. 24). A detailed sketch of the di�erent
experimental processes from the ion beam production to the
fluorescence detection is shown in Fig. 1.

After selective ionization, Ca ions (Ca+) were extracted from
the ion source and accelerated up to 40 keV. The isotope of
interest was mass-separated by using the High-Resolution Mass
Separator (HRS). The selected isotopes were injected into a gas-
filled radiofrequency trap (RFQ) to accumulate the incoming
ions. After a few milliseconds, bunches of ions of ⇠5 µs temporal
width were extracted and redirected into a dedicated beam
line for collinear laser spectroscopy experiments (COLLAPS). At
COLLAPS, the ion beamwas superimposed with a continuous wave
laser beam fixed at a wavelength of 393 nm (see Methods), close
to the 4s 2S1/2 !4p 2P3/2 transition in the Ca+. The laser frequency
was fixed to a constant value, while the ion velocity was varied
inside the optical detection region. A change in the ion velocity
corresponds to a variation of laser frequency in the ion rest frame.
This Doppler tuning of the laser frequency was used to scan the
hyperfine structure (hfs) components of the 4s 2S1/2 ! 4p 2P3/2
transition. At resonance frequencies, transitions between di�erent
hfs levels were excited, and subsequently the fluorescence photons
were detected by a light collection system consisting of four lenses
and photomultiplier tubes (PMT) (see ref. 8 for details). The photon
signals were accepted only when the ion bunch passed in front of
the light collection region, reducing the background counts from
scattered laser light and PMT dark counts by a factor of ⇠104. A
sample of the hfs spectra measured during the experiment is shown
in Fig. 2. Isotopes with nuclear spin I =0 do not exhibit hyperfine
structure splitting. Consequently, only a single transition is observed
for 52Ca.
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Figure 3 | Charge radii of Ca isotopes. a, Experimental charge radii
compared to ab initio calculations with chiral EFT interactions NNLOsat,
SRG1, SRG2, as well as DFT calculations with the UNEDF0 functional.
Experimental error bars are smaller than the symbols. The absolute values
were obtained from the reference radius of 40Ca (Rch =3.478(2) fm;
ref. 26). The values of 39Ca and 41,42Ca are taken from refs 45,46,
respectively. A systematic theoretical uncertainty of 1% is estimated for the
absolute values due to the truncation level of the coupled-cluster method
and the finite basis space employed in the computation. b, Experimental
r.m.s. charge radius in 52Ca relative to that in 48Ca compared to the ab initio
results as well as those of representative density functional theory (DFT)
and configuration interaction (CI) calculations. The systematic
uncertainties in the theoretical predictions are largely cancelled when the
di�erences between r.m.s. charge radii are calculated (dotted horizontal
blue lines). Experimental uncertainties are represented by the horizontal
red lines (statistical) and the grey shaded band (systematic).

The isotope shifts were extracted from the fit of the hfs
experimental spectra, assuming multiple Voigt profiles in the � 2-
minimization (see Methods). The measured isotope shift relative
to the reference isotope 40Ca, and the corresponding change in the
mean-square charge radius are shown in Table 1. Statistical errors
(parentheses) correspond to the uncertainty in the determination
of the peak positions in the hfs spectra. The systematic errors in
the isotope shift (square brackets) are mainly due to the uncertainty
in the beam energy, which is also the main contribution to
the uncertainty in the charge radius. Independent high-precision
measurements of isotope shifts on stable Ca isotopes25 were used for
an accurate determination of the kinetic energy of each isotope. The
stability of the beam energy was controlled by measuring the stable
40Ca, before and after the measurement of each isotope of interest.

Our experimental results (Table 1 and Fig. 3) show that the root-
mean-square (r.m.s.) charge radius of 49Ca presents a considerable
increase with respect to 48Ca, �hr 2i48,49 = 0.097(4) fm2, but much
smaller than previously suggested17. The increase continues towards
N = 32, resulting in a very large charge radius for 52Ca, with an
increase relative to 48Ca of �hr 2i48,52 =0.530(5) fm2.
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Figure 2 | Examples of hyperfine structure spectra measured for the Ca
isotopes in the 393-nm 4s 2S1/2!4p 2P3/2 ionic transition. The solid lines
show the fit with a Voigt profile. Frequency values are relative to the centroid
of 40Ca. The position of each hfs centroid is indicated by the dashed lines.

magnitude. It is now possible to routinely perform experiments with
beams of ⇠104 ions s�1 (ref. 23).

In this work, we have further optimized the photon detection
sensitivity and at the same time reduced further the photon
background events8, now allowing the study of calcium isotopes
produced with a yield of only a few hundred ions per second. While
preserving the high resolution, this sensitivity surpasses the previous
limit by two orders of magnitude, achieved by an ultrasensitive
particle detection technique employed on Ca isotopes18.

The short-lived Ca isotopes studied in this work were produced
at the ISOLDE on-line isotope separator, located at the European
Center for Nuclear Research, CERN. High-energy proton pulses
with intensities of ⇠3⇥ 1013 protons/pulse at 1.4GeV impinged
every 2.4 s on an uranium carbide target to create radioactive
species of a wide range of chemical elements. The Ca isotopes
were selected from the reaction products by using a three-step
laser ionization scheme provided by the Resonance Ionization Laser
Ion Source (RILIS; ref. 24). A detailed sketch of the di�erent
experimental processes from the ion beam production to the
fluorescence detection is shown in Fig. 1.

After selective ionization, Ca ions (Ca+) were extracted from
the ion source and accelerated up to 40 keV. The isotope of
interest was mass-separated by using the High-Resolution Mass
Separator (HRS). The selected isotopes were injected into a gas-
filled radiofrequency trap (RFQ) to accumulate the incoming
ions. After a few milliseconds, bunches of ions of ⇠5 µs temporal
width were extracted and redirected into a dedicated beam
line for collinear laser spectroscopy experiments (COLLAPS). At
COLLAPS, the ion beamwas superimposed with a continuous wave
laser beam fixed at a wavelength of 393 nm (see Methods), close
to the 4s 2S1/2 !4p 2P3/2 transition in the Ca+. The laser frequency
was fixed to a constant value, while the ion velocity was varied
inside the optical detection region. A change in the ion velocity
corresponds to a variation of laser frequency in the ion rest frame.
This Doppler tuning of the laser frequency was used to scan the
hyperfine structure (hfs) components of the 4s 2S1/2 ! 4p 2P3/2
transition. At resonance frequencies, transitions between di�erent
hfs levels were excited, and subsequently the fluorescence photons
were detected by a light collection system consisting of four lenses
and photomultiplier tubes (PMT) (see ref. 8 for details). The photon
signals were accepted only when the ion bunch passed in front of
the light collection region, reducing the background counts from
scattered laser light and PMT dark counts by a factor of ⇠104. A
sample of the hfs spectra measured during the experiment is shown
in Fig. 2. Isotopes with nuclear spin I =0 do not exhibit hyperfine
structure splitting. Consequently, only a single transition is observed
for 52Ca.
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Figure 3 | Charge radii of Ca isotopes. a, Experimental charge radii
compared to ab initio calculations with chiral EFT interactions NNLOsat,
SRG1, SRG2, as well as DFT calculations with the UNEDF0 functional.
Experimental error bars are smaller than the symbols. The absolute values
were obtained from the reference radius of 40Ca (Rch =3.478(2) fm;
ref. 26). The values of 39Ca and 41,42Ca are taken from refs 45,46,
respectively. A systematic theoretical uncertainty of 1% is estimated for the
absolute values due to the truncation level of the coupled-cluster method
and the finite basis space employed in the computation. b, Experimental
r.m.s. charge radius in 52Ca relative to that in 48Ca compared to the ab initio
results as well as those of representative density functional theory (DFT)
and configuration interaction (CI) calculations. The systematic
uncertainties in the theoretical predictions are largely cancelled when the
di�erences between r.m.s. charge radii are calculated (dotted horizontal
blue lines). Experimental uncertainties are represented by the horizontal
red lines (statistical) and the grey shaded band (systematic).

The isotope shifts were extracted from the fit of the hfs
experimental spectra, assuming multiple Voigt profiles in the � 2-
minimization (see Methods). The measured isotope shift relative
to the reference isotope 40Ca, and the corresponding change in the
mean-square charge radius are shown in Table 1. Statistical errors
(parentheses) correspond to the uncertainty in the determination
of the peak positions in the hfs spectra. The systematic errors in
the isotope shift (square brackets) are mainly due to the uncertainty
in the beam energy, which is also the main contribution to
the uncertainty in the charge radius. Independent high-precision
measurements of isotope shifts on stable Ca isotopes25 were used for
an accurate determination of the kinetic energy of each isotope. The
stability of the beam energy was controlled by measuring the stable
40Ca, before and after the measurement of each isotope of interest.

Our experimental results (Table 1 and Fig. 3) show that the root-
mean-square (r.m.s.) charge radius of 49Ca presents a considerable
increase with respect to 48Ca, �hr 2i48,49 = 0.097(4) fm2, but much
smaller than previously suggested17. The increase continues towards
N = 32, resulting in a very large charge radius for 52Ca, with an
increase relative to 48Ca of �hr 2i48,52 =0.530(5) fm2.
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is 0.12.Rskin . 0.15 fm. Figure 2a shows two remarkable features.
First, the ab initio calculations yield neutron skins that are almost
independent of the employed interaction. This is due to the strong
correlation between the Rn and Rp in this nucleus (Fig. 2b). In
contrast, DFT models exhibit practically no correlation between
Rskin and Rp. Second, the ab initio calculations predict a significantly
smaller neutron skin than the DFT models. The predicted range
is also appreciably lower than the combined DFT estimate of
0.176(18) fm (ref. 20) and is well below the relativistic DFT value of
Rskin =0.22(2) fm (ref. 20). To shed light on the lower values of Rskin
predicted by ab initio theory, we computed the neutron separation
energy and the three-point binding energy di�erence in 48Ca (both
being indicators of the N =28 shell gap). Our results are consistent
with experiment and indicate the pronounced magicity of 48Ca
(Supplementary Table 2), whereas DFT results usually significantly
underestimate the N =28 shell gap30. The shortcoming of DFT for
48Ca is also reflected in Rp. Although many nuclear energy density
functionals are constrained to the Rp of 48Ca (refs 18,30), the results
of DFT models shown in Fig. 2a overestimate this quantity.

For Rn (Fig. 2b) we find 3.47.Rn . 3.60 fm. Most of the DFT
results for Rn are outside this range, but fall within the blue
band. Comparing Fig. 2a,b suggests that a measurement of a
small neutron skin in 48Ca would provide a critical test for ab
initio models. For the electric dipole polarizability (Fig. 2c) our
prediction 2.19.↵D.2.60 fm3 is consistent with the DFT value
of 2.306(89) fm3 (ref. 20). Again, most of the DFT results fall
within the ab initio uncertainty band. The result for ↵D will be
tested by anticipated experimental data from the Darmstadt–Osaka
collaboration13,14. The excellent correlation between Rp, Rn and ↵D
seen in Fig. 2b,c demonstrates the usefulness of Rn and ↵D as probes
of the neutron density.

The weak-charge radiusRW is another quantity that characterizes
the size of the nucleus. The CREX experiment will measure the
parity-violating asymmetry Apv in electron scattering on 48Ca
at the momentum transfer qc = 0.778 fm�1. This observable is
proportional to the ratio of the weak-charge and electromagnetic
charge form factors FW(qc)/Fch(qc) (ref. 12). Making some
assumptions about the weak-charge form factor, one can deduce RW
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FIG. 3. The derivative of the neutron EOS at rn !
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provided by Wiringa, Fiks, and Fabrocini [17] and Akmal
and Pandharipande [18]. Generally the agreement with FP
is good up to about rn ! 0.10 neutron!fm3. At higher
density the differences in the various NN potentials [17]
and the very uncertain NNN potential become important.
Thus, although the FP neutron EOS serves as a reasonable
starting point, we do not have a truly fundamental theory
for neutron EOS. Any constraints coming from the prop-
erties of nuclei such as the neutron radii are extremely
important.

Given the difficulty of the JLAB measurement, it is
important to know to what extent a measurement of S
in one nucleus such as 208Pb will be applicable to other
nuclei. There are two points to investigate: the dependence
of S on mass and the dependence of S on the asymmetry
in the Fermi energy for protons and neutrons. For the first
case, I compare in Fig. 4 the S values for two nuclei near
the valley of stability (where the Fermi energies for protons
and neutrons are about equal to each other), those for 208Pb
and 138Ba. One observes a nearly linear relationship which
starts at S ! 0. For the second case, I compare in the
same figure the S value in 208Pb to the S value for 132Sn
where the neutrons at the Fermi surface are bound about
8 MeV less than the protons (see Figs. 4 and 5 in Ref. [6]).
Again there is a tight correlation, but the asymmetry in
the Fermi energy produces a systematic increase in the
neutron skin for all of the 18 SHF parameter sets. Thus
there are two clear mechanisms for producing a neutron
skin. One which is related to the asymmetry in the Fermi
energy is well determined within SHF, and another which
depends on the neutron EOS is undetermined unless one
adds a constraint to the neutron EOS. It is the Fermi-
energy asymmetry effect which dominates the increase in
the matter radii of neutron-rich light nuclei such as in the
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FIG. 4. The S value for 208Pb vs the S values for 132Sn (filled
circles) and 138Ba (plusses) for 18 Skyrme parameter sets. The
horizontal line is the SkX value for 208Pb.

Na isotopes [11]. Thus it is most important to accurately
determine the neutron rms radius in a stable nucleus such
as 208Pb. The neutron rms radius of 208Pb will provide
an important new constraint on the neutron EOS models
which are used to calculate the properties of neutron stars
[17]. The results discussed here are based upon a wide
variety of parametrizations for the Skyrme Hartree-Fock
model for finite nuclei and nucleon matter. It will be
important to explore the generality of these conclusions
within the Skyrme model as well as in other mean-field
models.
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I. SUPRANUCLEAR DENSITY MATTER

A. Introduction

Neutron stars are the densest observable objects in the
Universe, attaining physical conditions of matter that cannot
be replicated on Earth. Inside neutron stars, the state of matter
ranges from ions (nuclei) embedded in a sea of electrons at
low densities in the outer crust, through increasingly neutron-
rich ions in the inner crust and outer core, to the supranuclear
densities reached in the center, where particles are squeezed
together more tightly than in atomic nuclei, and theory
predicts a host of possible exotic states of matter (Fig. 1).
The nature of matter at such densities is one of the great
unsolved problems in modern science, and this makes neutron
stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
deconfined quarks at high densities (Sec. I.B). Measuring the
EOS of supranuclear density matter is therefore of major
importance to nuclear physics. However, it is also critical to
astrophysics. The dense matter EOS is clearly central to
understanding the powerful, violent, and enigmatic objects
that are neutron stars. However, neutron star–neutron star and
neutron star–black hole binary inspiral and merger, prime
sources of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007) also depend sensitively on
the EOS (Shibata and Taniguchi, 2011; Bauswein et al., 2012;
Faber and Rasio, 2012; Lackey et al., 2012; Takami, Rezzolla,
and Baiotti, 2014). The EOS affects merger dynamics, black
hole formation time scales, the precise gravitational wave and
neutrino signals, any associated mass loss and r-process
nucleosynthesis, and the attendant gamma-ray bursts and

optical flashes (Metzger et al., 2010; Hotokezaka et al.,
2011; Kumar and Zhang, 2015; Rosswog, 2015). The EOS
of dense matter is also vital to understanding core collapse
supernova explosions and their associated gravitational wave
and neutrino emission (Janka et al., 2007).1

B. The nature of matter: Major open questions

The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
nucleon interactions set in at higher momenta and densities.
Because neutron stars reach densities exceeding those in
atomic nuclei, this makes them particularly sensitive to
many-body forces (Akmal, Pandharipande, and Ravenhall,
1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
(Hebeler et al., 2010; Gandolfi, Carlson, and Reddy, 2012).

FIG. 1. Schematic structure of a neutron star. The outer layer is a
solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
the inner from the outer crust), where neutron degeneracy also
starts to play a role. At densities ∼2 × 1014 g=cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In the
core, densities reach several times the nuclear saturation density
ρsat ¼ 2.8 × 1014 g=cm3 (see text).

1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Sec. I.C), temperature corrections must be
applied when describing either newborn neutron stars in the
immediate aftermath of a supernova or the hot differentially rotating
remnants that may survive for a short period of time following a
compact object merger. The cold and hot EOS must of course connect
and be consistent with one another.
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I. SUPRANUCLEAR DENSITY MATTER

A. Introduction

Neutron stars are the densest observable objects in the
Universe, attaining physical conditions of matter that cannot
be replicated on Earth. Inside neutron stars, the state of matter
ranges from ions (nuclei) embedded in a sea of electrons at
low densities in the outer crust, through increasingly neutron-
rich ions in the inner crust and outer core, to the supranuclear
densities reached in the center, where particles are squeezed
together more tightly than in atomic nuclei, and theory
predicts a host of possible exotic states of matter (Fig. 1).
The nature of matter at such densities is one of the great
unsolved problems in modern science, and this makes neutron
stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
deconfined quarks at high densities (Sec. I.B). Measuring the
EOS of supranuclear density matter is therefore of major
importance to nuclear physics. However, it is also critical to
astrophysics. The dense matter EOS is clearly central to
understanding the powerful, violent, and enigmatic objects
that are neutron stars. However, neutron star–neutron star and
neutron star–black hole binary inspiral and merger, prime
sources of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007) also depend sensitively on
the EOS (Shibata and Taniguchi, 2011; Bauswein et al., 2012;
Faber and Rasio, 2012; Lackey et al., 2012; Takami, Rezzolla,
and Baiotti, 2014). The EOS affects merger dynamics, black
hole formation time scales, the precise gravitational wave and
neutrino signals, any associated mass loss and r-process
nucleosynthesis, and the attendant gamma-ray bursts and

optical flashes (Metzger et al., 2010; Hotokezaka et al.,
2011; Kumar and Zhang, 2015; Rosswog, 2015). The EOS
of dense matter is also vital to understanding core collapse
supernova explosions and their associated gravitational wave
and neutrino emission (Janka et al., 2007).1

B. The nature of matter: Major open questions

The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
nucleon interactions set in at higher momenta and densities.
Because neutron stars reach densities exceeding those in
atomic nuclei, this makes them particularly sensitive to
many-body forces (Akmal, Pandharipande, and Ravenhall,
1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
(Hebeler et al., 2010; Gandolfi, Carlson, and Reddy, 2012).

FIG. 1. Schematic structure of a neutron star. The outer layer is a
solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
the inner from the outer crust), where neutron degeneracy also
starts to play a role. At densities ∼2 × 1014 g=cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In the
core, densities reach several times the nuclear saturation density
ρsat ¼ 2.8 × 1014 g=cm3 (see text).

1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Sec. I.C), temperature corrections must be
applied when describing either newborn neutron stars in the
immediate aftermath of a supernova or the hot differentially rotating
remnants that may survive for a short period of time following a
compact object merger. The cold and hot EOS must of course connect
and be consistent with one another.

Anna L. Watts et al.: Colloquium: Measuring the neutron star …

Rev. Mod. Phys., Vol. 88, No. 2, April–June 2016 021001-3

09/03/2015  |  SFB 1245  |  Nuclei: From Fundamental Interactions to Structure and Stars  |  Projects B05 and B06  |  72 
 

B05 and B06: Physics introduction 
From fundamental interactions to supernovae 

Core-collapse supernova: end of massive stars, birth of neutron stars 
All forces of nature are involved 
Major contribution to chemical history of the universe 

•  Supernova simulations 

•  Matter properties, 
equation of state 

•  Neutrino-matter interactions 

•  Reactions on nuclei 

Nucleosynthesis 

B04 

B01 

B02 

The equation of state of high-density matter:
constraints for neutron stars from nuclear physics

figure taken from Krüger,
doctoral thesis (2016) www.stellarcollapse.org/nsmasses

ǉǎ $)"15&3 ȕ� */530%6$5*0/

'JHVSF ǉ�ǎ� 0WFSWJFX PG PCTFSWFE OFVUSPO�TUBS NBTTFT XJUI �Ӑ VODFSUBJOUJFT
 TPSUFE XJUI SFTQFDU UP UIF UZQF
PG CJOBSZ TZTUFN UIF TUBS SFTJEFT JO� %BUB UBLFO GSPN 3FGT� <ǐǐ
 ǐǑ>�

ĉF ėSTU EJSFDU EFUFDUJPO PG HSBWJUBUJPOBM XBWFT
 XIJDI TUSFUDI BOE DPNQSFTT UIF TQBDFUJNF BOE IBWF
CFFO QSFEJDUFE XJUIJO UIF GSBNFXPSL PG HFOFSBM SFMBUJWJUZ
 HBJOFE FOPSNPVT QVCMJD JOUFSFTU JO UIF
CFHJOOJOHPG UIJT ZFBS <Ǒǉ>� ĉF-*(0BOE7JSHP$PMMBCPSBUJPONFBTVSFEXJUI UIF A"EWBODFE-*(0�
EFUFDUPST <ǑǊ> UIF HSBWJUBUJPOBM�XBWF TJHOBM PSJHJOBUJOH GSPN UIFNFSHFS PG UXP CMBDL IPMFT� *U JT BMTP
FYQFDUFE UIBU UIF TJHOBM GSPN OFVUSPO�TUBS NFSHFST JOTJEF PVS HBMBYZ DBO CF NFBTVSFE XJUI UIFTF
EFUFDUPST� ĉF TJHOBM GSPN TVDI B NFSHFS XPVME IBWF DFSUBJO DIBSBDUFSJTUJDT
 XIJDI DPVME EFUFSNJOF
QBSBNFUFST PG UIF OFVUSPO�TUBS FRVBUJPO PG TUBUF <ǑǋmǑǍ>�

http://www.stellarcoolapse.org/nsmasses


CONTENTS

I. Supranuclear Density Matter 3
A. Introduction 3
B. The nature of matter: Major open questions 3
C. Methodology: How neutron star mass and radius

specify the EOS 4
D. Current observational constraints on the

cold dense EOS 6
E. Future observational constraints on the cold dense EOS 8

II. Hard X-ray Timing Techniques that Deliver M and R 8
A. Waveform modeling 9

1. Factors affecting the waveform 9
2. Spacetime of spinning neutron stars 10
3. Inversion: From waveform to M and R 10
4. Instrument requirements and observing strategy 11

B. Spin measurements 12
1. Rapid rotation 12
2. Spin distribution and evolution 14

C. Asteroseismology 14
III. Summary 16
Acknowledgments 16
References 16

I. SUPRANUCLEAR DENSITY MATTER

A. Introduction

Neutron stars are the densest observable objects in the
Universe, attaining physical conditions of matter that cannot
be replicated on Earth. Inside neutron stars, the state of matter
ranges from ions (nuclei) embedded in a sea of electrons at
low densities in the outer crust, through increasingly neutron-
rich ions in the inner crust and outer core, to the supranuclear
densities reached in the center, where particles are squeezed
together more tightly than in atomic nuclei, and theory
predicts a host of possible exotic states of matter (Fig. 1).
The nature of matter at such densities is one of the great
unsolved problems in modern science, and this makes neutron
stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
deconfined quarks at high densities (Sec. I.B). Measuring the
EOS of supranuclear density matter is therefore of major
importance to nuclear physics. However, it is also critical to
astrophysics. The dense matter EOS is clearly central to
understanding the powerful, violent, and enigmatic objects
that are neutron stars. However, neutron star–neutron star and
neutron star–black hole binary inspiral and merger, prime
sources of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007) also depend sensitively on
the EOS (Shibata and Taniguchi, 2011; Bauswein et al., 2012;
Faber and Rasio, 2012; Lackey et al., 2012; Takami, Rezzolla,
and Baiotti, 2014). The EOS affects merger dynamics, black
hole formation time scales, the precise gravitational wave and
neutrino signals, any associated mass loss and r-process
nucleosynthesis, and the attendant gamma-ray bursts and

optical flashes (Metzger et al., 2010; Hotokezaka et al.,
2011; Kumar and Zhang, 2015; Rosswog, 2015). The EOS
of dense matter is also vital to understanding core collapse
supernova explosions and their associated gravitational wave
and neutrino emission (Janka et al., 2007).1

B. The nature of matter: Major open questions

The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
nucleon interactions set in at higher momenta and densities.
Because neutron stars reach densities exceeding those in
atomic nuclei, this makes them particularly sensitive to
many-body forces (Akmal, Pandharipande, and Ravenhall,
1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
(Hebeler et al., 2010; Gandolfi, Carlson, and Reddy, 2012).

FIG. 1. Schematic structure of a neutron star. The outer layer is a
solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
the inner from the outer crust), where neutron degeneracy also
starts to play a role. At densities ∼2 × 1014 g=cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In the
core, densities reach several times the nuclear saturation density
ρsat ¼ 2.8 × 1014 g=cm3 (see text).

1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Sec. I.C), temperature corrections must be
applied when describing either newborn neutron stars in the
immediate aftermath of a supernova or the hot differentially rotating
remnants that may survive for a short period of time following a
compact object merger. The cold and hot EOS must of course connect
and be consistent with one another.
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figure taken from Krüger,
doctoral thesis (2016) www.stellarcollapse.org/nsmasses
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I. SUPRANUCLEAR DENSITY MATTER

A. Introduction

Neutron stars are the densest observable objects in the
Universe, attaining physical conditions of matter that cannot
be replicated on Earth. Inside neutron stars, the state of matter
ranges from ions (nuclei) embedded in a sea of electrons at
low densities in the outer crust, through increasingly neutron-
rich ions in the inner crust and outer core, to the supranuclear
densities reached in the center, where particles are squeezed
together more tightly than in atomic nuclei, and theory
predicts a host of possible exotic states of matter (Fig. 1).
The nature of matter at such densities is one of the great
unsolved problems in modern science, and this makes neutron
stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
deconfined quarks at high densities (Sec. I.B). Measuring the
EOS of supranuclear density matter is therefore of major
importance to nuclear physics. However, it is also critical to
astrophysics. The dense matter EOS is clearly central to
understanding the powerful, violent, and enigmatic objects
that are neutron stars. However, neutron star–neutron star and
neutron star–black hole binary inspiral and merger, prime
sources of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007) also depend sensitively on
the EOS (Shibata and Taniguchi, 2011; Bauswein et al., 2012;
Faber and Rasio, 2012; Lackey et al., 2012; Takami, Rezzolla,
and Baiotti, 2014). The EOS affects merger dynamics, black
hole formation time scales, the precise gravitational wave and
neutrino signals, any associated mass loss and r-process
nucleosynthesis, and the attendant gamma-ray bursts and

optical flashes (Metzger et al., 2010; Hotokezaka et al.,
2011; Kumar and Zhang, 2015; Rosswog, 2015). The EOS
of dense matter is also vital to understanding core collapse
supernova explosions and their associated gravitational wave
and neutrino emission (Janka et al., 2007).1

B. The nature of matter: Major open questions

The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
nucleon interactions set in at higher momenta and densities.
Because neutron stars reach densities exceeding those in
atomic nuclei, this makes them particularly sensitive to
many-body forces (Akmal, Pandharipande, and Ravenhall,
1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
(Hebeler et al., 2010; Gandolfi, Carlson, and Reddy, 2012).

FIG. 1. Schematic structure of a neutron star. The outer layer is a
solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
the inner from the outer crust), where neutron degeneracy also
starts to play a role. At densities ∼2 × 1014 g=cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In the
core, densities reach several times the nuclear saturation density
ρsat ¼ 2.8 × 1014 g=cm3 (see text).

1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Sec. I.C), temperature corrections must be
applied when describing either newborn neutron stars in the
immediate aftermath of a supernova or the hot differentially rotating
remnants that may survive for a short period of time following a
compact object merger. The cold and hot EOS must of course connect
and be consistent with one another.
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companionwith awell-determinedmass of 0.20M◉
(15) that appears to be hot (10), suggesting that its
envelope is thick. For this reason, we base the
WD mass estimate on cooling tracks with thick
hydrogen atmospheres for masses up to 0.2M◉,
which we constructed by using the MESA stellar
evolution code (8, 16). Initial models were built
for masses identical to the ones in (11), for which
previous comparisons have yielded good agree-
ment with observations (14), with the addition
of tracks with 0.175 and 0.185 M◉ for finer
coverage (Fig. 2). For masses up to 0.169M◉, our
models show excellent agreement with (11);
however, our 0.196 M◉ model is quite different,
because it has a thick envelope instead of a thin
one. Being closer to the constraints for the WD
companion to PSR J0348+0432, it yields a more
conservative mass constraint, MWD = 0.165 to
0.185 at 99.73% confidence (Fig. 3 and Table 1),
which we adopt. The corresponding radius is
RWD = 0.046 to 0.092 R◉ at 99.73% confidence.
Our models yield a cooling age of tcool ∼ 2 Gy.

Pulsar Mass
The derived WD mass and the observed mass
ratio q imply a NSmass in the range from 1.97 to
2.05M◉ at 68.27% or 1.90 to 2.18M◉ at 99.73%
confidence. Hence, PSR J0348+0432 is only the
second NS with a precisely determined mass
around 2M◉, after PSR J1614−2230 (2). It has a
3-s lower mass limit 0.05M◉ higher than the latter
and therefore provides a verification, using a dif-
ferent method, of the constraints on the EOS of
superdense matter present in NS interiors (2, 17).
For these masses and the known orbital period,
GR predicts that the orbital period should decrease

at the rate of P
:GR
b ¼ ð−2:58þ0:07

−0:11 Þ % 10−13 s s−1

(68.27%confidence) because of energy loss through
GW emission.

Radio Observations
Since April 2011, we have been observing PSR
J0348+0432 with the 1.4-GHz receiver of the
305-m radio telescope at the Arecibo Observatory
by using its four wide-band pulsar processors (18).
In order to verify the Arecibo data, we have been
independently timing PSR J0348+0432 at 1.4 GHz
by using the 100-m radio telescope in Effelsberg,
Germany. The two timing data sets produce con-
sistent rotational models, providing added con-
fidence in both. Combining the Arecibo and
Effelsberg data with the initial GBTobservations
(7), we derived the timing solution presented in
Table 1. To match the arrival times, the solution
requires a significant measurement of orbital de-
cay, P

:
b ¼ −2:73 % 10−13 T 0:45% 10−13 s s−1

(68.27% confidence).
The total proper motion and distance estimate

(Table 1) allowed us to calculate the kinematic
corrections to P

:
b from its motion in the Galaxy,

plus any contribution from possible variations of
G: dP

:
b ¼ 0:016% 10−13 T 0:003% 10−13 s s−1.

This is negligible compared to the measurement
uncertainty. Similarly, the small rate of rotational
energy loss of the pulsar (Table 1) excludes any
substantial contamination resulting frommass loss
from the system; furthermore, we can exclude
substantial contributions to P

:
b from tidal effects

[see (8) for details]. Therefore, the observedP
:
b is

caused by GW emission, and its magnitude is
entirely consistent with the one predicted by GR:
P
:
b=P

:GR
b ¼ 1:05 T 0:18 (Fig. 3).

If we assume that GR is the correct theory of
gravity, we can then derive the component masses
from the intersection of the regions allowed by
q and P

:
b (Fig. 3): MWD ¼ 0:177þ0:017

−0:018 M◉ and
MPSR ¼ 2:07þ0:20

−0:21 M◉ (68.27% confidence). These
values are not too constraining yet. However, the
uncertainty of the measurement of P

:
b decreases

with T baseline
−5/2 (where Tbaseline is the timing base-

line); therefore, this method will yield very precise
mass measurements within a couple of years.

Discussion

PSR J0348+0432 as a Testbed for Gravity
There are strong arguments for GR not to be valid
beyond a (yet unknown) critical point, like its
incompatibility with quantum theory and its pre-
diction of the formation of spacetime singularities.
Therefore, it remains an open question whether
GR is the final description of macroscopic gravity.
This strongly motivates testing gravity regimes
that have not been tested before, in particular
regimes where gravity is strong and highly non-
linear. Presently, binary pulsars provide the best
high-precision experiments to probe strong-field
deviations from GR and the best tests of the
radiative properties of gravity (19–23). The orbital
period of PSR J0348+0432 is only 15 s longer
than that of the double pulsar system PSR J0737–
3039, but it has ∼two times more fractional grav-
itational binding energy than each of the double-
pulsar NSs. This places it far outside the presently
tested binding energy range (Fig. 4A) (8). Be-
cause the magnitude of strong-field effects gener-
ally depends nonlinearly on the binding energy,
the measurement of orbital decay transforms the

Fig. 3. System masses and
orbital-inclination constraints.
Constraints on system masses and
orbital inclination from radio and
optical measurements of PSR
J0348+0432 and its WD compan-
ion. Each triplet of curves corre-
sponds to the most likely value
and standard deviations (68.27%
confidence) of the respective pa-
rameters. Of these, two (q and MWD)
are independent of specific gravity
theories (in black). The contours
contain the 68.27 and 95.45% of
the two-dimensional probability
distribution. The constraints from
the measured intrinsic orbital decay
(P
:
b
int, in orange) are calculated as-

suming that GR is the correct theory
of gravity. All curves intersect in
the same region, meaning that
GR passes this radiative test (8).
(Bottom left) cosi-MWD plane. The
gray region is excluded by the con-
dition MPSR > 0. (Bottom right)
MPSR-MWD plane. The gray region
is excluded by the condition sini ≤ 1. The lateral graphs depict the one-dimensional probability-distribution function for the WD mass (right), pulsar mass
(top right), and inclination (top left) based on the mass function, MWD, and q.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.

 89.1

 89.12

 89.14

 89.16

 89.18

 89.2

 89.22

 89.24a b

0.48 0.49 0.5 0.51 0.52

In
cl

in
at

io
n 

an
gl

e,
 i 

(°
)

Companion mass, M2 (M()
1.8 1.85 1.9 1.95 2 2.05 2.1 2.15

P
ro

ba
bi

lit
y 

de
ns

ity

Pulsar mass (M()

Figure 2 | Results of theMCMCerror analysis. a, Grey-scale image shows the
two-dimensional posterior probability density function (PDF) in theM2–i
plane, computed from a histogram ofMCMC trial values. The ellipses show 1s
and 3s contours based on a Gaussian approximation to the MCMC results.
b, PDF for pulsar mass derived from the MCMC trials. The vertical lines show
the 1s and 3s limits on the pulsar mass. In both cases, the results are very well
described by normal distributions owing to the extremely high signal-to-noise
ratio of our Shapiro delay detection. Unlike secular orbital effects (for example
precession of periastron), the Shapiro delay does not accumulate over time, so
the measurement uncertainty scales simply as T21/2, where T is the total
observing time. Therefore, we are unlikely to see a significant improvement on
these results with currently available telescopes and instrumentation.
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parameters, withMCMC error estimates, are given in Table 1. Owing to
the high significance of this detection, our MCMC procedure and a
standard x2 fit produce similar uncertainties.
From the detected Shapiro delay, we measure a companion mass of

(0.50060.006)M[, which implies that the companion is a helium–
carbon–oxygenwhite dwarf16. The Shapiro delay also shows the binary

system to be remarkably edge-on, with an inclination of 89.17u6 0.02u.
This is the most inclined pulsar binary system known at present. The
amplitude and sharpness of the Shapiro delay increase rapidly with
increasing binary inclination and the overall scaling of the signal is
linearly proportional to the mass of the companion star. Thus, the
unique combination of the high orbital inclination and massive white
dwarf companion in J1614-2230 cause a Shapiro delay amplitude
orders of magnitude larger than for most other millisecond pulsars.
In addition, the excellent timing precision achievable from the pulsar
with the GBT and GUPPI provide a very high signal-to-noise ratio
measurement of both Shapiro delay parameters within a single orbit.
The standardKeplerian orbital parameters, combinedwith the known

companionmass and orbital inclination, fully describe the dynamics of a
‘clean’ binary system—one comprising two stable compact objects—
under general relativity and therefore also determine the pulsar’s mass.
Wemeasure a pulsar mass of (1.976 0.04)M[, which is by far the high-
est preciselymeasured neutron star mass determined to date. In contrast
with X-ray-based mass/radius measurements17, the Shapiro delay pro-
videsno informationabout theneutron star’s radius.However, unlike the
X-ray methods, our result is nearly model independent, as it depends
only on general relativity being an adequate description of gravity.
In addition, unlike statistical pulsar mass determinations based on
measurement of the advance of periastron18–20, pure Shapiro delay mass
measurements involve no assumptions about classical contributions to
periastron advance or the distribution of orbital inclinations.
The mass measurement alone of a 1.97M[ neutron star signifi-

cantly constrains the nuclear matter equation of state (EOS), as shown
in Fig. 3. Any proposed EOS whose mass–radius track does not inter-
sect the J1614-2230 mass line is ruled out by this measurement. The
EOSs that produce the lowestmaximummasses tend to be thosewhich
predict significant softening past a certain central density. This is a
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Figure 1 | Shapiro delay measurement for PSR
J1614-2230. Timing residual—the excess delay
not accounted for by the timing model—as a
function of the pulsar’s orbital phase. a, Full
magnitude of the Shapiro delay when all other
model parameters are fixed at their best-fit values.
The solid line shows the functional form of the
Shapiro delay, and the red points are the 1,752
timingmeasurements in ourGBT–GUPPI data set.
The diagrams inset in this panel show top-down
schematics of the binary system at orbital phases of
0.25, 0.5 and 0.75 turns (from left to right). The
neutron star is shown in red, the white dwarf
companion in blue and the emitted radio beam,
pointing towards Earth, in yellow. At orbital phase
of 0.25 turns, the Earth–pulsar line of sight passes
nearest to the companion (,240,000 km),
producing the sharp peak in pulse delay.We found
no evidence for any kind of pulse intensity
variations, as from an eclipse, near conjunction.
b, Best-fit residuals obtained using an orbitalmodel
that does not account for general-relativistic effects.
In this case, some of the Shapiro delay signal is
absorbed by covariant non-relativistic model
parameters. That these residuals deviate
significantly from a random, Gaussian distribution
of zero mean shows that the Shapiro delay must be
included to model the pulse arrival times properly,
especially at conjunction. In addition to the red
GBT–GUPPI points, the 454 grey points show the
previous ‘long-term’ data set. The drastic
improvement in data quality is apparent. c, Post-fit
residuals for the fully relativistic timing model
(including Shapiro delay), which have a root mean
squared residual of 1.1ms and a reduced x2 value of
1.4 with 2,165 degrees of freedom. Error bars, 1s.
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Introduction: Neutron stars with masses above 1.8 solar masses (M�), possess extreme gravitational 

fi elds, which may give rise to phenomena outside general relativity. Hitherto, these strong-fi eld devia-

tions have not been probed by experiment, because they become observable only in tight binaries 

containing a high-mass pulsar and where orbital decay resulting from emission of gravitational waves 

can be tested. Understanding the origin of such a system would also help to answer fundamental ques-

tions of close-binary evolution.

Methods: We report on radio-timing observations of the pulsar J0348+0432 and phase-resolved 

optical spectroscopy of its white-dwarf companion, which is in a 2.46-hour orbit. We used these to 

derive the component masses and orbital parameters, infer the system’s motion, and constrain its age.

Results: We fi nd that the white dwarf has a mass of 0.172 ± 0.003 M�, which, combined with orbital 

velocity measurements, yields a pulsar mass of 2.01 ± 0.04 M�. Additionally, over a span of 2 years, 

we observed a signifi cant decrease in the orbital period, P�
b

obs = –8.6 ± 1.4 µs year�1 in our radio-

timing data.

Discussion: Pulsar J0348+0432 is only the second neutron star with a precisely determined mass 

of 2 M� and independently confi rms the existence of such massive neutron stars in nature. For these 

masses and orbital period, general relativity 

predicts a significant orbital decay, which 

matches the observed value, P�
b

obs
/
 P�

b

GR
 = 1.05 

± 0.18.

The pulsar has a gravitational binding 

energy 60% higher than other known neu-

tron stars in binaries where gravitational-

wave damping has been detected. Because 

the magnitude of strong-field deviations 

generally depends nonlinearly on the bind-

ing energy, the measurement of orbital 

decay transforms the system into a gravita-

tional laboratory for an as-yet untested grav-

ity regime. The consistency of the observed 

orbital decay with general relativity  therefore 

supports its validity, even for such extreme 

gravity-matter couplings, and rules out 

strong-fi eld phenomena predicted by physi-

cally well-motivated alternatives. Moreover, 

our result supports the use of general rela-

tivity–based templates for the detection of 

gravitational waves from merger events with 

advanced ground-based detectors.

Lastly, the system provides insight into 

pulsar-spin evolution after mass accretion. 

Because of its short merging time scale of 

400 megayears, the system is a direct chan-

nel for the formation of an ultracompact x-ray 

binary, possibly leading to a pulsar-planet 

system or the formation of a black hole.

Artist’s impression of the PSR J0348+0432 system. 
The compact pulsar (with beams of radio emission) produces 

a strong distortion of spacetime (illustrated by the green 

mesh). Conversely, spacetime around its white dwarf com-

panion (in light blue) is substantially less curved. According 

to relativistic theories of gravity, the binary system is subject 

to energy loss by gravitational waves.
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A two-solar-mass neutron star 
measured using Shapiro delay

Mmax = 2.0± 0.04M�

R ⇠ 10 km



The equation of state of high-density matter:
constraints for neutron stars from nuclear physics

• consider forces on a mass element:

r
gravity:

Fp = A (pout � pin) = A dp
pressure
difference:

Fg = �GM(r)⇢(r)A dr
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common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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Théor. 44, 263–292 (1986).

15. Freire, P.C.C.&Wex,N.Theorthometricparameterisationof theShapiro delay and
an improved test of general relativity with binary pulsars. Mon. Not. R. Astron. Soc.
(in the press).

16. Iben, I. Jr & Tutukov, A. V. On the evolution of close binaries with components of
initial mass between 3 solar masses and 12 solar masses. Astrophys. J Suppl. Ser.
58, 661–710 (1985).
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exotic matter; green, strange quark matter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.97 6 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases the maximum possible mass for each EOS. For a 3.15-ms spin period,
this is a =2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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Microscopic calculations of the equation of state
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Problem:
Calculation of neutron star properties require EOS up to high densities.

Strategy: 
Use observations to constrain the high-density part of the nuclear EOS.
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I. SUPRANUCLEAR DENSITY MATTER

A. Introduction

Neutron stars are the densest observable objects in the
Universe, attaining physical conditions of matter that cannot
be replicated on Earth. Inside neutron stars, the state of matter
ranges from ions (nuclei) embedded in a sea of electrons at
low densities in the outer crust, through increasingly neutron-
rich ions in the inner crust and outer core, to the supranuclear
densities reached in the center, where particles are squeezed
together more tightly than in atomic nuclei, and theory
predicts a host of possible exotic states of matter (Fig. 1).
The nature of matter at such densities is one of the great
unsolved problems in modern science, and this makes neutron
stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
deconfined quarks at high densities (Sec. I.B). Measuring the
EOS of supranuclear density matter is therefore of major
importance to nuclear physics. However, it is also critical to
astrophysics. The dense matter EOS is clearly central to
understanding the powerful, violent, and enigmatic objects
that are neutron stars. However, neutron star–neutron star and
neutron star–black hole binary inspiral and merger, prime
sources of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007) also depend sensitively on
the EOS (Shibata and Taniguchi, 2011; Bauswein et al., 2012;
Faber and Rasio, 2012; Lackey et al., 2012; Takami, Rezzolla,
and Baiotti, 2014). The EOS affects merger dynamics, black
hole formation time scales, the precise gravitational wave and
neutrino signals, any associated mass loss and r-process
nucleosynthesis, and the attendant gamma-ray bursts and

optical flashes (Metzger et al., 2010; Hotokezaka et al.,
2011; Kumar and Zhang, 2015; Rosswog, 2015). The EOS
of dense matter is also vital to understanding core collapse
supernova explosions and their associated gravitational wave
and neutrino emission (Janka et al., 2007).1

B. The nature of matter: Major open questions

The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
nucleon interactions set in at higher momenta and densities.
Because neutron stars reach densities exceeding those in
atomic nuclei, this makes them particularly sensitive to
many-body forces (Akmal, Pandharipande, and Ravenhall,
1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
(Hebeler et al., 2010; Gandolfi, Carlson, and Reddy, 2012).

FIG. 1. Schematic structure of a neutron star. The outer layer is a
solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
the inner from the outer crust), where neutron degeneracy also
starts to play a role. At densities ∼2 × 1014 g=cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In the
core, densities reach several times the nuclear saturation density
ρsat ¼ 2.8 × 1014 g=cm3 (see text).

1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Sec. I.C), temperature corrections must be
applied when describing either newborn neutron stars in the
immediate aftermath of a supernova or the hot differentially rotating
remnants that may survive for a short period of time following a
compact object merger. The cold and hot EOS must of course connect
and be consistent with one another.
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companionwith awell-determinedmass of 0.20M◉
(15) that appears to be hot (10), suggesting that its
envelope is thick. For this reason, we base the
WD mass estimate on cooling tracks with thick
hydrogen atmospheres for masses up to 0.2M◉,
which we constructed by using the MESA stellar
evolution code (8, 16). Initial models were built
for masses identical to the ones in (11), for which
previous comparisons have yielded good agree-
ment with observations (14), with the addition
of tracks with 0.175 and 0.185 M◉ for finer
coverage (Fig. 2). For masses up to 0.169M◉, our
models show excellent agreement with (11);
however, our 0.196 M◉ model is quite different,
because it has a thick envelope instead of a thin
one. Being closer to the constraints for the WD
companion to PSR J0348+0432, it yields a more
conservative mass constraint, MWD = 0.165 to
0.185 at 99.73% confidence (Fig. 3 and Table 1),
which we adopt. The corresponding radius is
RWD = 0.046 to 0.092 R◉ at 99.73% confidence.
Our models yield a cooling age of tcool ∼ 2 Gy.

Pulsar Mass
The derived WD mass and the observed mass
ratio q imply a NSmass in the range from 1.97 to
2.05M◉ at 68.27% or 1.90 to 2.18M◉ at 99.73%
confidence. Hence, PSR J0348+0432 is only the
second NS with a precisely determined mass
around 2M◉, after PSR J1614−2230 (2). It has a
3-s lower mass limit 0.05M◉ higher than the latter
and therefore provides a verification, using a dif-
ferent method, of the constraints on the EOS of
superdense matter present in NS interiors (2, 17).
For these masses and the known orbital period,
GR predicts that the orbital period should decrease

at the rate of P
:GR
b ¼ ð−2:58þ0:07

−0:11 Þ % 10−13 s s−1

(68.27%confidence) because of energy loss through
GW emission.

Radio Observations
Since April 2011, we have been observing PSR
J0348+0432 with the 1.4-GHz receiver of the
305-m radio telescope at the Arecibo Observatory
by using its four wide-band pulsar processors (18).
In order to verify the Arecibo data, we have been
independently timing PSR J0348+0432 at 1.4 GHz
by using the 100-m radio telescope in Effelsberg,
Germany. The two timing data sets produce con-
sistent rotational models, providing added con-
fidence in both. Combining the Arecibo and
Effelsberg data with the initial GBTobservations
(7), we derived the timing solution presented in
Table 1. To match the arrival times, the solution
requires a significant measurement of orbital de-
cay, P

:
b ¼ −2:73 % 10−13 T 0:45% 10−13 s s−1

(68.27% confidence).
The total proper motion and distance estimate

(Table 1) allowed us to calculate the kinematic
corrections to P

:
b from its motion in the Galaxy,

plus any contribution from possible variations of
G: dP

:
b ¼ 0:016% 10−13 T 0:003% 10−13 s s−1.

This is negligible compared to the measurement
uncertainty. Similarly, the small rate of rotational
energy loss of the pulsar (Table 1) excludes any
substantial contamination resulting frommass loss
from the system; furthermore, we can exclude
substantial contributions to P

:
b from tidal effects

[see (8) for details]. Therefore, the observedP
:
b is

caused by GW emission, and its magnitude is
entirely consistent with the one predicted by GR:
P
:
b=P

:GR
b ¼ 1:05 T 0:18 (Fig. 3).

If we assume that GR is the correct theory of
gravity, we can then derive the component masses
from the intersection of the regions allowed by
q and P

:
b (Fig. 3): MWD ¼ 0:177þ0:017

−0:018 M◉ and
MPSR ¼ 2:07þ0:20

−0:21 M◉ (68.27% confidence). These
values are not too constraining yet. However, the
uncertainty of the measurement of P

:
b decreases

with T baseline
−5/2 (where Tbaseline is the timing base-

line); therefore, this method will yield very precise
mass measurements within a couple of years.

Discussion

PSR J0348+0432 as a Testbed for Gravity
There are strong arguments for GR not to be valid
beyond a (yet unknown) critical point, like its
incompatibility with quantum theory and its pre-
diction of the formation of spacetime singularities.
Therefore, it remains an open question whether
GR is the final description of macroscopic gravity.
This strongly motivates testing gravity regimes
that have not been tested before, in particular
regimes where gravity is strong and highly non-
linear. Presently, binary pulsars provide the best
high-precision experiments to probe strong-field
deviations from GR and the best tests of the
radiative properties of gravity (19–23). The orbital
period of PSR J0348+0432 is only 15 s longer
than that of the double pulsar system PSR J0737–
3039, but it has ∼two times more fractional grav-
itational binding energy than each of the double-
pulsar NSs. This places it far outside the presently
tested binding energy range (Fig. 4A) (8). Be-
cause the magnitude of strong-field effects gener-
ally depends nonlinearly on the binding energy,
the measurement of orbital decay transforms the

Fig. 3. System masses and
orbital-inclination constraints.
Constraints on system masses and
orbital inclination from radio and
optical measurements of PSR
J0348+0432 and its WD compan-
ion. Each triplet of curves corre-
sponds to the most likely value
and standard deviations (68.27%
confidence) of the respective pa-
rameters. Of these, two (q and MWD)
are independent of specific gravity
theories (in black). The contours
contain the 68.27 and 95.45% of
the two-dimensional probability
distribution. The constraints from
the measured intrinsic orbital decay
(P
:
b
int, in orange) are calculated as-

suming that GR is the correct theory
of gravity. All curves intersect in
the same region, meaning that
GR passes this radiative test (8).
(Bottom left) cosi-MWD plane. The
gray region is excluded by the con-
dition MPSR > 0. (Bottom right)
MPSR-MWD plane. The gray region
is excluded by the condition sini ≤ 1. The lateral graphs depict the one-dimensional probability-distribution function for the WD mass (right), pulsar mass
(top right), and inclination (top left) based on the mass function, MWD, and q.
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I. SUPRANUCLEAR DENSITY MATTER

A. Introduction

Neutron stars are the densest observable objects in the
Universe, attaining physical conditions of matter that cannot
be replicated on Earth. Inside neutron stars, the state of matter
ranges from ions (nuclei) embedded in a sea of electrons at
low densities in the outer crust, through increasingly neutron-
rich ions in the inner crust and outer core, to the supranuclear
densities reached in the center, where particles are squeezed
together more tightly than in atomic nuclei, and theory
predicts a host of possible exotic states of matter (Fig. 1).
The nature of matter at such densities is one of the great
unsolved problems in modern science, and this makes neutron
stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
deconfined quarks at high densities (Sec. I.B). Measuring the
EOS of supranuclear density matter is therefore of major
importance to nuclear physics. However, it is also critical to
astrophysics. The dense matter EOS is clearly central to
understanding the powerful, violent, and enigmatic objects
that are neutron stars. However, neutron star–neutron star and
neutron star–black hole binary inspiral and merger, prime
sources of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007) also depend sensitively on
the EOS (Shibata and Taniguchi, 2011; Bauswein et al., 2012;
Faber and Rasio, 2012; Lackey et al., 2012; Takami, Rezzolla,
and Baiotti, 2014). The EOS affects merger dynamics, black
hole formation time scales, the precise gravitational wave and
neutrino signals, any associated mass loss and r-process
nucleosynthesis, and the attendant gamma-ray bursts and

optical flashes (Metzger et al., 2010; Hotokezaka et al.,
2011; Kumar and Zhang, 2015; Rosswog, 2015). The EOS
of dense matter is also vital to understanding core collapse
supernova explosions and their associated gravitational wave
and neutrino emission (Janka et al., 2007).1

B. The nature of matter: Major open questions

The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
nucleon interactions set in at higher momenta and densities.
Because neutron stars reach densities exceeding those in
atomic nuclei, this makes them particularly sensitive to
many-body forces (Akmal, Pandharipande, and Ravenhall,
1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
(Hebeler et al., 2010; Gandolfi, Carlson, and Reddy, 2012).

FIG. 1. Schematic structure of a neutron star. The outer layer is a
solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
the inner from the outer crust), where neutron degeneracy also
starts to play a role. At densities ∼2 × 1014 g=cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In the
core, densities reach several times the nuclear saturation density
ρsat ¼ 2.8 × 1014 g=cm3 (see text).

1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Sec. I.C), temperature corrections must be
applied when describing either newborn neutron stars in the
immediate aftermath of a supernova or the hot differentially rotating
remnants that may survive for a short period of time following a
compact object merger. The cold and hot EOS must of course connect
and be consistent with one another.
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companionwith awell-determinedmass of 0.20M◉
(15) that appears to be hot (10), suggesting that its
envelope is thick. For this reason, we base the
WD mass estimate on cooling tracks with thick
hydrogen atmospheres for masses up to 0.2M◉,
which we constructed by using the MESA stellar
evolution code (8, 16). Initial models were built
for masses identical to the ones in (11), for which
previous comparisons have yielded good agree-
ment with observations (14), with the addition
of tracks with 0.175 and 0.185 M◉ for finer
coverage (Fig. 2). For masses up to 0.169M◉, our
models show excellent agreement with (11);
however, our 0.196 M◉ model is quite different,
because it has a thick envelope instead of a thin
one. Being closer to the constraints for the WD
companion to PSR J0348+0432, it yields a more
conservative mass constraint, MWD = 0.165 to
0.185 at 99.73% confidence (Fig. 3 and Table 1),
which we adopt. The corresponding radius is
RWD = 0.046 to 0.092 R◉ at 99.73% confidence.
Our models yield a cooling age of tcool ∼ 2 Gy.

Pulsar Mass
The derived WD mass and the observed mass
ratio q imply a NSmass in the range from 1.97 to
2.05M◉ at 68.27% or 1.90 to 2.18M◉ at 99.73%
confidence. Hence, PSR J0348+0432 is only the
second NS with a precisely determined mass
around 2M◉, after PSR J1614−2230 (2). It has a
3-s lower mass limit 0.05M◉ higher than the latter
and therefore provides a verification, using a dif-
ferent method, of the constraints on the EOS of
superdense matter present in NS interiors (2, 17).
For these masses and the known orbital period,
GR predicts that the orbital period should decrease

at the rate of P
:GR
b ¼ ð−2:58þ0:07

−0:11 Þ % 10−13 s s−1

(68.27%confidence) because of energy loss through
GW emission.

Radio Observations
Since April 2011, we have been observing PSR
J0348+0432 with the 1.4-GHz receiver of the
305-m radio telescope at the Arecibo Observatory
by using its four wide-band pulsar processors (18).
In order to verify the Arecibo data, we have been
independently timing PSR J0348+0432 at 1.4 GHz
by using the 100-m radio telescope in Effelsberg,
Germany. The two timing data sets produce con-
sistent rotational models, providing added con-
fidence in both. Combining the Arecibo and
Effelsberg data with the initial GBTobservations
(7), we derived the timing solution presented in
Table 1. To match the arrival times, the solution
requires a significant measurement of orbital de-
cay, P

:
b ¼ −2:73 % 10−13 T 0:45% 10−13 s s−1

(68.27% confidence).
The total proper motion and distance estimate

(Table 1) allowed us to calculate the kinematic
corrections to P

:
b from its motion in the Galaxy,

plus any contribution from possible variations of
G: dP

:
b ¼ 0:016% 10−13 T 0:003% 10−13 s s−1.

This is negligible compared to the measurement
uncertainty. Similarly, the small rate of rotational
energy loss of the pulsar (Table 1) excludes any
substantial contamination resulting frommass loss
from the system; furthermore, we can exclude
substantial contributions to P

:
b from tidal effects

[see (8) for details]. Therefore, the observedP
:
b is

caused by GW emission, and its magnitude is
entirely consistent with the one predicted by GR:
P
:
b=P

:GR
b ¼ 1:05 T 0:18 (Fig. 3).

If we assume that GR is the correct theory of
gravity, we can then derive the component masses
from the intersection of the regions allowed by
q and P

:
b (Fig. 3): MWD ¼ 0:177þ0:017

−0:018 M◉ and
MPSR ¼ 2:07þ0:20

−0:21 M◉ (68.27% confidence). These
values are not too constraining yet. However, the
uncertainty of the measurement of P

:
b decreases

with T baseline
−5/2 (where Tbaseline is the timing base-

line); therefore, this method will yield very precise
mass measurements within a couple of years.

Discussion

PSR J0348+0432 as a Testbed for Gravity
There are strong arguments for GR not to be valid
beyond a (yet unknown) critical point, like its
incompatibility with quantum theory and its pre-
diction of the formation of spacetime singularities.
Therefore, it remains an open question whether
GR is the final description of macroscopic gravity.
This strongly motivates testing gravity regimes
that have not been tested before, in particular
regimes where gravity is strong and highly non-
linear. Presently, binary pulsars provide the best
high-precision experiments to probe strong-field
deviations from GR and the best tests of the
radiative properties of gravity (19–23). The orbital
period of PSR J0348+0432 is only 15 s longer
than that of the double pulsar system PSR J0737–
3039, but it has ∼two times more fractional grav-
itational binding energy than each of the double-
pulsar NSs. This places it far outside the presently
tested binding energy range (Fig. 4A) (8). Be-
cause the magnitude of strong-field effects gener-
ally depends nonlinearly on the binding energy,
the measurement of orbital decay transforms the

Fig. 3. System masses and
orbital-inclination constraints.
Constraints on system masses and
orbital inclination from radio and
optical measurements of PSR
J0348+0432 and its WD compan-
ion. Each triplet of curves corre-
sponds to the most likely value
and standard deviations (68.27%
confidence) of the respective pa-
rameters. Of these, two (q and MWD)
are independent of specific gravity
theories (in black). The contours
contain the 68.27 and 95.45% of
the two-dimensional probability
distribution. The constraints from
the measured intrinsic orbital decay
(P
:
b
int, in orange) are calculated as-

suming that GR is the correct theory
of gravity. All curves intersect in
the same region, meaning that
GR passes this radiative test (8).
(Bottom left) cosi-MWD plane. The
gray region is excluded by the con-
dition MPSR > 0. (Bottom right)
MPSR-MWD plane. The gray region
is excluded by the condition sini ≤ 1. The lateral graphs depict the one-dimensional probability-distribution function for the WD mass (right), pulsar mass
(top right), and inclination (top left) based on the mass function, MWD, and q.
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I. SUPRANUCLEAR DENSITY MATTER

A. Introduction

Neutron stars are the densest observable objects in the
Universe, attaining physical conditions of matter that cannot
be replicated on Earth. Inside neutron stars, the state of matter
ranges from ions (nuclei) embedded in a sea of electrons at
low densities in the outer crust, through increasingly neutron-
rich ions in the inner crust and outer core, to the supranuclear
densities reached in the center, where particles are squeezed
together more tightly than in atomic nuclei, and theory
predicts a host of possible exotic states of matter (Fig. 1).
The nature of matter at such densities is one of the great
unsolved problems in modern science, and this makes neutron
stars unparalleled laboratories for nuclear physics and quan-
tum chromodynamics (QCD) under extreme conditions.
The most fundamental macroscopic diagnostic of dense

matter is the pressure-density-temperature relation of bulk
matter, the equation of state (EOS). The EOS can be used to
infer key aspects of the microphysics, such as the role of
many-body interactions at nuclear densities or the presence of
deconfined quarks at high densities (Sec. I.B). Measuring the
EOS of supranuclear density matter is therefore of major
importance to nuclear physics. However, it is also critical to
astrophysics. The dense matter EOS is clearly central to
understanding the powerful, violent, and enigmatic objects
that are neutron stars. However, neutron star–neutron star and
neutron star–black hole binary inspiral and merger, prime
sources of gravitational waves and the likely engines of short
gamma-ray bursts (Nakar, 2007) also depend sensitively on
the EOS (Shibata and Taniguchi, 2011; Bauswein et al., 2012;
Faber and Rasio, 2012; Lackey et al., 2012; Takami, Rezzolla,
and Baiotti, 2014). The EOS affects merger dynamics, black
hole formation time scales, the precise gravitational wave and
neutrino signals, any associated mass loss and r-process
nucleosynthesis, and the attendant gamma-ray bursts and

optical flashes (Metzger et al., 2010; Hotokezaka et al.,
2011; Kumar and Zhang, 2015; Rosswog, 2015). The EOS
of dense matter is also vital to understanding core collapse
supernova explosions and their associated gravitational wave
and neutrino emission (Janka et al., 2007).1

B. The nature of matter: Major open questions

The properties of neutron stars, like those of atomic nuclei,
depend crucially on the interactions between protons and
neutrons (nucleons) governed by the strong force. This is
evident from the seminal work of Oppenheimer and Volkoff
(1939), which showed that the maximal mass of neutron stars
consisting of noninteracting neutrons is 0.7M⊙. To stabilize
heavier neutron stars, as realized in nature, requires repulsive
interactions between nucleons, which set in with increasing
density. At low energies, and thus low densities, the inter-
actions between nucleons are attractive, as they have to be to
bind neutrons and protons into nuclei. However, to prevent
nuclei from collapsing, repulsive two-nucleon and three-
nucleon interactions set in at higher momenta and densities.
Because neutron stars reach densities exceeding those in
atomic nuclei, this makes them particularly sensitive to
many-body forces (Akmal, Pandharipande, and Ravenhall,
1998), and recently it was shown that the dominant uncer-
tainty at nuclear densities is due to three-nucleon forces
(Hebeler et al., 2010; Gandolfi, Carlson, and Reddy, 2012).

FIG. 1. Schematic structure of a neutron star. The outer layer is a
solid ionic crust supported by electron degeneracy pressure.
Neutrons begin to leak out of ions (nuclei) at densities
∼4 × 1011 g=cm3 (the neutron drip density, which separates
the inner from the outer crust), where neutron degeneracy also
starts to play a role. At densities ∼2 × 1014 g=cm3, the nuclei
dissolve completely. This marks the crust-core boundary. In the
core, densities reach several times the nuclear saturation density
ρsat ¼ 2.8 × 1014 g=cm3 (see text).

1Note that while most neutron stars, even during the binary
inspiral phase, can be described by the cold EOS that is the focus of
this Colloquium (see Sec. I.C), temperature corrections must be
applied when describing either newborn neutron stars in the
immediate aftermath of a supernova or the hot differentially rotating
remnants that may survive for a short period of time following a
compact object merger. The cold and hot EOS must of course connect
and be consistent with one another.
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The equation of state of high-density matter:
constraints from neutron star observations

companionwith awell-determinedmass of 0.20M◉
(15) that appears to be hot (10), suggesting that its
envelope is thick. For this reason, we base the
WD mass estimate on cooling tracks with thick
hydrogen atmospheres for masses up to 0.2M◉,
which we constructed by using the MESA stellar
evolution code (8, 16). Initial models were built
for masses identical to the ones in (11), for which
previous comparisons have yielded good agree-
ment with observations (14), with the addition
of tracks with 0.175 and 0.185 M◉ for finer
coverage (Fig. 2). For masses up to 0.169M◉, our
models show excellent agreement with (11);
however, our 0.196 M◉ model is quite different,
because it has a thick envelope instead of a thin
one. Being closer to the constraints for the WD
companion to PSR J0348+0432, it yields a more
conservative mass constraint, MWD = 0.165 to
0.185 at 99.73% confidence (Fig. 3 and Table 1),
which we adopt. The corresponding radius is
RWD = 0.046 to 0.092 R◉ at 99.73% confidence.
Our models yield a cooling age of tcool ∼ 2 Gy.

Pulsar Mass
The derived WD mass and the observed mass
ratio q imply a NSmass in the range from 1.97 to
2.05M◉ at 68.27% or 1.90 to 2.18M◉ at 99.73%
confidence. Hence, PSR J0348+0432 is only the
second NS with a precisely determined mass
around 2M◉, after PSR J1614−2230 (2). It has a
3-s lower mass limit 0.05M◉ higher than the latter
and therefore provides a verification, using a dif-
ferent method, of the constraints on the EOS of
superdense matter present in NS interiors (2, 17).
For these masses and the known orbital period,
GR predicts that the orbital period should decrease

at the rate of P
:GR
b ¼ ð−2:58þ0:07

−0:11 Þ % 10−13 s s−1

(68.27%confidence) because of energy loss through
GW emission.

Radio Observations
Since April 2011, we have been observing PSR
J0348+0432 with the 1.4-GHz receiver of the
305-m radio telescope at the Arecibo Observatory
by using its four wide-band pulsar processors (18).
In order to verify the Arecibo data, we have been
independently timing PSR J0348+0432 at 1.4 GHz
by using the 100-m radio telescope in Effelsberg,
Germany. The two timing data sets produce con-
sistent rotational models, providing added con-
fidence in both. Combining the Arecibo and
Effelsberg data with the initial GBTobservations
(7), we derived the timing solution presented in
Table 1. To match the arrival times, the solution
requires a significant measurement of orbital de-
cay, P

:
b ¼ −2:73 % 10−13 T 0:45% 10−13 s s−1

(68.27% confidence).
The total proper motion and distance estimate

(Table 1) allowed us to calculate the kinematic
corrections to P

:
b from its motion in the Galaxy,

plus any contribution from possible variations of
G: dP

:
b ¼ 0:016% 10−13 T 0:003% 10−13 s s−1.

This is negligible compared to the measurement
uncertainty. Similarly, the small rate of rotational
energy loss of the pulsar (Table 1) excludes any
substantial contamination resulting frommass loss
from the system; furthermore, we can exclude
substantial contributions to P

:
b from tidal effects

[see (8) for details]. Therefore, the observedP
:
b is

caused by GW emission, and its magnitude is
entirely consistent with the one predicted by GR:
P
:
b=P

:GR
b ¼ 1:05 T 0:18 (Fig. 3).

If we assume that GR is the correct theory of
gravity, we can then derive the component masses
from the intersection of the regions allowed by
q and P

:
b (Fig. 3): MWD ¼ 0:177þ0:017

−0:018 M◉ and
MPSR ¼ 2:07þ0:20

−0:21 M◉ (68.27% confidence). These
values are not too constraining yet. However, the
uncertainty of the measurement of P

:
b decreases

with T baseline
−5/2 (where Tbaseline is the timing base-

line); therefore, this method will yield very precise
mass measurements within a couple of years.

Discussion

PSR J0348+0432 as a Testbed for Gravity
There are strong arguments for GR not to be valid
beyond a (yet unknown) critical point, like its
incompatibility with quantum theory and its pre-
diction of the formation of spacetime singularities.
Therefore, it remains an open question whether
GR is the final description of macroscopic gravity.
This strongly motivates testing gravity regimes
that have not been tested before, in particular
regimes where gravity is strong and highly non-
linear. Presently, binary pulsars provide the best
high-precision experiments to probe strong-field
deviations from GR and the best tests of the
radiative properties of gravity (19–23). The orbital
period of PSR J0348+0432 is only 15 s longer
than that of the double pulsar system PSR J0737–
3039, but it has ∼two times more fractional grav-
itational binding energy than each of the double-
pulsar NSs. This places it far outside the presently
tested binding energy range (Fig. 4A) (8). Be-
cause the magnitude of strong-field effects gener-
ally depends nonlinearly on the binding energy,
the measurement of orbital decay transforms the

Fig. 3. System masses and
orbital-inclination constraints.
Constraints on system masses and
orbital inclination from radio and
optical measurements of PSR
J0348+0432 and its WD compan-
ion. Each triplet of curves corre-
sponds to the most likely value
and standard deviations (68.27%
confidence) of the respective pa-
rameters. Of these, two (q and MWD)
are independent of specific gravity
theories (in black). The contours
contain the 68.27 and 95.45% of
the two-dimensional probability
distribution. The constraints from
the measured intrinsic orbital decay
(P
:
b
int, in orange) are calculated as-

suming that GR is the correct theory
of gravity. All curves intersect in
the same region, meaning that
GR passes this radiative test (8).
(Bottom left) cosi-MWD plane. The
gray region is excluded by the con-
dition MPSR > 0. (Bottom right)
MPSR-MWD plane. The gray region
is excluded by the condition sini ≤ 1. The lateral graphs depict the one-dimensional probability-distribution function for the WD mass (right), pulsar mass
(top right), and inclination (top left) based on the mass function, MWD, and q.
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Constraints on the nuclear equation of state
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• current radius prediction for typical            neutron star:  
• low-density part of EOS sets scale for allowed high-density extensions 
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Constraints on neutron star radii
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constraints on EOS and NS radii from first NICER observations: 

additionally incorporating constraints from LIGO and mass measurements:



Constraints on neutron star radii

Raaijmakers et al.,  APJL 887, 22 (2019)

constraints on EOS and NS radii from first NICER observations: 

additionally incorporating constraints from LIGO and mass measurements:

Constraints on EOS at supranuclear densities from observation not 
very constraining yet. New measurements presently in progress!



discrepancies to experiment dominated by 
deficiencies of present nuclear interactions

remarkable agreement between 
different ab intio many-body methods

significant increase in scope of 
ab initio many-body frameworks

systematic estimates of
theoretical uncertainties

unified study of atomic nuclei, nuclear matter 
and reactions based on novel interactions

presently active efforts to 
develop improved NN and 3N interactions

(improved fits of LECs, power counting, regularization...)

Status and achievements

Current developments and open questions

Key goals


