Exercises

TALENT School "Effective Field Theories in Light Nuclei" Introduction to Effective Field Theories

This is a collection of exercises which accompany the lecture. The exercises vary in difficulty and length. You may use mathematica for analytical/numerical calculations where appropriate. Discussions are strongly encouraged.

1 Dimensional analysis I: Planck units

Construct the Planck length l_P , the Planck mass m_P , and the Planck time t_P from the fundamental constants G, \hbar and c. Estimate their size in SI units and compare to typical time scales from particle physics. What is the significance of these units?

2 Dimensional analysis II: hydrogen atom

Use dimensional analysis to estimate the size and energy of the ground state of the hydrogen atom. Which dependencies are determined by dimensional analysis and which are not?

3 Dimensional analysis III: photon-photon scattering

Consider photon-photon scattering in quantum electrodynamics. Estimate the amplitude for photon-photon scattering at energies well below the electron mass, $E_{\gamma} \ll m_e$. How can you obtain the cross section?

4 Naturalness for a square well potential

Consider the attractive radially symmetric square well potential

$$V(r) = -V_0, \qquad r < r_0, = 0, \qquad r \ge r_0,$$

where $V_0 > 0$. The S-wave scattering length for scattering of a particle of mass m off this potential is

$$a = r_0 \left(1 - \frac{\tan(\kappa_0 r_0)}{\kappa_0 r_0} \right) \,, \tag{1}$$

where $\kappa_0 = \sqrt{mV_0}$. Assume a constant probability distribution $P(\kappa_0)$ for κ_0 (r_0 fixed) and derive the resulting probability distribution P(a) for a. Use the relation

$$P(a)da = P(\kappa_0)d\kappa_0.$$

For $\kappa_0 r_0 \gg \pi$ the term $\tan(\kappa_0 r_0)$ in Eq. (1) changes for small variations of $\kappa_0 r_0$ much more strongly than $1/\kappa_0 r_0$. The variation of $1/\kappa_0 r_0$ can thus be neglected. Sketch the result and give an interpretation. What the most probable value of a?

5 EFT for natural scattering length

Consider the non-relativistic effective field theory with the Lagrangian

$$\mathcal{L} = \psi^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m} \right) \psi - \frac{g_2}{4} (\psi^{\dagger}\psi)^2 - \frac{g_{2,2}}{4} \nabla(\psi^{\dagger}\psi) \cdot \nabla(\psi^{\dagger}\psi) \,.$$

(a) Derive the classical equation of motion for the field ψ by using the Euler-Lagrange equations:

$$\partial_t rac{\delta \mathcal{L}}{\delta(\partial_t \psi)} +
abla rac{\delta \mathcal{L}}{\delta(
abla \psi)} - rac{\delta \mathcal{L}}{\delta \psi} = 0 \,.$$

(b) Consider now 2-body scattering in this EFT. In the lecture, the scattering amplitude in leading order ($\nu = 0$) and next-to-leading order ($\nu = 1$) was discussed. Calculate the contributions at order $\nu = 2$. Determine $g_2(\Lambda)$ and $g_{2,2}(\Lambda)$ at this order.

6 Power Counting

Consider an effective field theory with natural interaction terms. In the lecture it was shown that a Feynman diagram with arbitrary 2-particle exchanges for small momenta k scales like k^{ν} . The following expression was derived for the exponent ν :

$$\nu = 3L + 2 + \sum_{i} (2i - 2)V_{2i},$$

where L denotes the number of loops and V_{2i} the number of 2-body interactions with 2i derivatives. Generalize this expression to include arbitrary natural N-particle interactions. Give the diagrams for $3 \rightarrow 3$ particle scattering in the lowest three orders in ν .

7 Dimer formalism I

Show that the Lagrangian with an explicit dimer field

$$\mathcal{L}' = \psi^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m} \right) \psi + \frac{g_2}{4} d^{\dagger}d - \frac{g_2}{4} (d^{\dagger}\psi^2 + (\psi^{\dagger})^2 d) - \frac{g_3}{36} d^{\dagger}d\psi^{\dagger}\psi + \dots,$$
(2)

is equivalent to the usual Lagrangian without dimer field

$$\mathcal{L} = \psi^{\dagger} \left(i\partial_t + \frac{\nabla^2}{2m} \right) \psi - \frac{g_2}{4} (\psi^{\dagger}\psi)^2 - \frac{g_3}{36} (\psi^{\dagger}\psi)^3 + \dots,$$

up to N-body interactions with $N \ge 4$. Use the classical equation of motion for the dimer field. Do you obtain the same observables in 3- and 4-body systems with the two Lagrangians?

8 Dimer formalism II

Consider the two-particle problem in the theory with an explicit dimer field using the Lagrangian in Eq. (2).

- 1. Which diagrams contribute to the full dimeron propagator? How is the 2-body scattering amplitude obtained from the full dimer propagator?
- 2. Calculate the full dimeron propagator and the 2-body scattering amplitude.

9 Size of the dimer

In the lecture we discussed the universal properties of the weakly bound dimer for $a \gg l$. The wave function for large relative distances r between the two particles is

$$\psi_D(r) = \frac{\mathcal{N}}{r} e^{-r/a}, \qquad r \gg l.$$

How large is the dimer?

10 Asymptotic normalization constants

Consider a system with the scattering amplitude

$$\langle \mathbf{k}'|t(E)|\mathbf{k}\rangle = \frac{2\pi}{\mu} \left[\frac{1}{a} - \frac{r}{2}k^2 + ik\right]^{-1} \quad \text{with } E = k^2/(2\mu),$$
 (3)

where a and r are the scattering length and effective range of the particles while μ is their reduced mass. Near the bound state pole, the scattering amplitude can be expanded about the pole at $E = -\gamma^2/(2\mu)$:

$$\langle \mathbf{k}' | t(E) | \mathbf{k} \rangle = \frac{Z}{E + \gamma^2 / (2\mu)} + \text{regular}.$$
 (4)

In a bound two-body system, the residue Z is connected to the *asymptotic normalization* coefficient (ANC) A of the bound-state wave function. Near the bound state pole, the full Green's function has the general form

$$\langle \mathbf{k}' | \frac{1}{E - H} | \mathbf{k} \rangle = \frac{\psi(\vec{k}')\psi^*(\vec{k})}{E + \gamma^2/(2\mu)} + \text{regular}, \qquad (5)$$

where $\psi(\vec{k})$ is the asymptotic wave function for the S-wave bound state, whose co-ordinate space representation is

$$\psi(\mathbf{r}) = \frac{A}{\sqrt{4\pi}} \frac{\exp(-\gamma r)}{r} \,, \tag{6}$$

and H is the full Hamiltonian. Relate A to Z in order to determine the ANC.

11 Efimov effect

In a system of three identical bosons with large scattering length, $|a| \gg l$, the Efimov effect occurs. It leads to a geometric spectrum of 3-body bound states in the energy interval $1/ma^2 \ll B_3 \ll 1/ml^2$. For two neighbouring states, the relation

$$\frac{B_3^{(n+1)}}{B_3^{(n)}} \approx \exp(-2\pi/s_0), \qquad s_0 \approx 1.00624....$$

Give an estimate for the number of Efimov states. What happens in the limit $|a| \to \infty$?