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Properties of the phase shifts Relation between phase shift and potential

Relation between phase shift and potential
We consider two scattering potentials V and V̄

sin(�l � �̄l) = �
2µ

~2
k
Z 1

0

ūkl(r)

h
V(r) � V̄(r)

i
ukl(r) dr

This provides two pieces of information :
1 Change in �l goes opposite to the change in V :

V(r) > V̄(r) 8r ) �l(k) < �̄l(k) 8k
I repulsive potential (V(r) > 0 8r)) �l(k) < 0 8k
I attractive potential (V(r) < 0 8r)) �l(k) > 0 8k

2 Choosing V̄ = 0, we obtain an integral expression for �l :

sin �l = �
2µ

~2
k
Z 1

0

jkl(kr)V(r)Rkl(r) r2dr
[with Rkl(r) = 1

r ukl(r)]
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Properties of the phase shifts Low-energy behaviour

Phase shift at low-energy

tan �l �!
k!0

(kr0)
2l+1

(2l + 1)!!(2l � 1)!!

l � r0�l

(l + 1) + r0�l

(unless (l + 1) + r0�l = 0)
In the s wave, the scattering length

a = � lim
k!0

tan �0

k

At very low energy,
only the s wave contributes to the scattering cross section
and d�

d⌦ �!k!0

a2 : the differential cross section is isotropic
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Properties of the phase shifts Low-energy behaviour
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Properties of the phase shifts Low-energy behaviour
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Properties of the phase shifts Low-energy behaviour

Effective-range expansion
In partial wave l, the function k2l+1

cot �l is analytic in E, i.e. in k2.

It can be expanded in powers of E (see Hans’ 2nd lecture)
In the s wave, the first coefficient is the scattering length a

k cot �0 = �
1

a
+

re

2
k2 +

P
4

k4 + . . .

where
re is the effective range
P is the shape parameter
. . .

For l > 0

k2l+1
cot �l = �

1

al
+

rl

2
k2 +

Pl

4
k4 + . . .
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Properties of the phase shifts Low-energy behaviour
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Properties of the phase shifts Low-energy behaviour
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Properties of the phase shifts Low-energy behaviour
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Properties of the phase shifts Low-energy behaviour

Relation with bound states
A similar development can be done using a bound state (u2 ! u)
So with the two solutions (v2 ! v)

"
d2

dr2
� 2 � 2µ

~2
V(r)

#
u(r) = 0

"
d2

dr2
� 2

#
v(r) = 0, where � ~

2

2µ
2 = E0

Therefore
u(0) = 0 and u(r)�!

r!1
e�r

v(r) = e�r

For which we have (approximating u and v by u0 and v0)

k cot �0(k) +  =
1

2
re(k2 + 2)

�!
k!0

�1

a
= � + 1

2
re

2
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Properties of the phase shifts High-energy behaviour

Phase shift at high-energy
To study the phase shift at high energy, let us consider the integral
expression of the phase shift

sin �l ⇡ �
2µ

~2
k
Z 1

0

j2

l (kr) V(r) r2 dr

assuming Rkl(r) ⇡ jl(kr) (first Born approximation)
Since jl(x) �!

x!1
1

x sin(x � l⇡/2)

sin �l ⇡ � µ
~2

1

k

Z 1

0

V(r) dr

�!
k!1

0

) �l �!
k!1

0 (+n⇡)

Imposing �l �!
k!1

0 is similar to imposing �l = 0 when V = 0
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Properties of the phase shifts Levinson Theorem

Levinson Theorem
That theorem relates the phase shift at E = 0 to that at E ! 1.
It states that

�l(0) � �(1) = Nl ⇡,

where Nl is the number of bound states in the partial wave l
It relates the properties of the solutions of the radial Schrödinger
equation at positive and negative energies.
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Properties of the phase shifts Levinson Theorem

Summary : Properties of phase shifts
By convention

V(r) = 0 8r ) �l = 0 8E
, �l �!

k!1
0

�l is a continuous function of energy
moreover k2l+1

cot �l is analytical in E
If V(r) > V̄(r) 8r, then �l < �̄l 8E
) if V(r) < 0 8r (attractive), then �l > 0 8E
) if V(r) > 0 8r (repulsive), then �l < 0 8E
At low energy

�l(k) � �l(0) ⇠ k2l+1

Levinson Theorem :

�l(0) � �(1) = Nl ⇡,

where Nl is the number of bound states in the partial wave l
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Properties of the phase shifts Levinson Theorem

Example : p-n phaseshifts
Notation : 2S+1LJ140 R. Navarro-Pérez et al. / Physics Letters B 724 (2013) 138–143

Fig. 1. np phase shifts in degrees for J 6 5 as a function of the LAB energy. The curves have been calculated with the fitted potential. The points with error bars represent
the pseudodata obtained as the mean value and standard deviation of the phase shifts provided by the PWA [3] and the six high-quality potentials [4–7]. We fit the energies
ELAB = 1,5,10,25,50,100,150,200,250,300,350 MeV.

Table 1
Fitting delta-shell parameters (λn)

JS
l,l′ (in fm−1) with their errors for all states in the JS channel and the corresponding χ2-value for J 6 5 in np scattering. We take N = 5

equidistant points with #r = 0.6 fm. A dash symbol “−” indicates that the corresponding parameter has been fixed to (λn)
JS
l,l′ = 0.

Wave λ1 λ2 λ3 λ4 λ5 χ2/D.o.f.
1 S0 2.12(7) −0.987(7) – −0.087(2) – 0.3476
3 P0 – 1.26(4) −0.43(1) – −0.037(2) 0.6589
1 P1 – 1.23(2) – 0.079(4) – 0.0088
3 P1 – 1.33(2) – 0.053(2) – 0.4323
1 D2 – – −0.252(3) – −0.0163(9) 0.6946
3 D2 – – −0.596(8) −0.08(1) −0.050(4) 0.6144
1 F3 – – 0.34(1) – 0.010(2) 0.3812
3 F3 – – – 0.060(2) – 0.4177
1G4 – – −0.22(2) – −0.0137(9) 0.8090
3G4 – – – −0.267(3) – 1.8670
1 H5 – – – 0.071(8) – 0.6577
3 H5 – – – 0.04(1) – 0.4193
3 S1 1.57(4) −0.40(1) – −0.064(3) –
ε1 – −1.69(1) −0.379(4) −0.216(5) −0.027(3)
3 D1 – – 0.52(2) – 0.041(3) 0.4313
3 P2 – −0.415(6) – −0.0384(9) –
ε2 – 0.65(1) – 0.106(2) –
3 F2 – – 0.14(3) −0.076(6) – 0.3881
3 D3 – – – – –
ε3 – – −0.47(3) −0.24(1) −0.020(4)
3G3 – – – 0.101(6) – 0.6806
3 F4 – – −0.163(4) – −0.0101(4)

ε4 – – – 0.108(3) –
3 H4 – – – – −0.010(1) 0.2659
3G5 – – – 0.025(4) –
ε5 – – – −0.35(1) –
3 I5 – – – – – 0.5354

[Navarro Pérez, Amaro, Ruiz Arriola, PLB 724 138 (2013)]
Data used to fit the various terms of VNN (see lectures of Kai Hebeler)
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Properties of the phase shifts Levinson Theorem

Realistic VNN

(see Kai’s lecture)

Strongly repulsive core) negative phaseshifts
Short distaces, high energies
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Properties of the phase shifts Levinson Theorem

ann

ann is large and negative,
but discrepancy between experimental measurements

ann = �18.7(6) fm (TUNL)
ann = �16.2(3) fm (Bonn)
app = �17.3(4) fm

6
He + p! ↵ + n + n + p will be measured at RIKEN (Japan)

A05: Halos and clustering in nuclei
PI: T. Aumann, P. Capel, H.-W. Hammer

SFB 1245 – Nuclei: From Fundamental Interactions to Structure and Stars

Project goals

• Investigate the nature of cluster degrees
of freedom in exotic nuclei using effective
field theory

• Accurate measurement of nn relative
energy distribution in 6He (p, p↵) reaction
in inverse kinematics (A06,A08)

• Calculate the scattering-length depen-
dence of the relative-energy distribution
of the two neutrons in the final state using
Halo EFT (A02)

• Acurate determination the nn scattering
length in a combined effort of theory and
experiment (A06,A08)

• Extend precise calculations of nuclear re-
actions by combining Halo EFT with so-
phisticated methods for calculating nuclear
breakup reactions (A06)

Project progress
Halo EFT for nuclear reactions

Exp. (⇥ < 6
�
)

NLO uncertainty band

� = 2 fm

� = 1.5 fm

� = 1.2 fm

E (MeV)

d�
b
u
/d
E

(
b
/
M
e
V
)

43210

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

• Exploration of pure Halo EFT & hybrid
with state-of-the art reaction theory

• Halo EFT description of (loosely
bound) projectile is adequate

• Systematic studies of sensitivity of re-
action cross sections to halo structure

Halo EFT for neutron halos

• Exploration of universal correlations
in halo nuclei

• Predictions based on Halo EFT and
ab initio results

• LO Halo EFT calculation of 31Ne
and E1 breakup

Experimental program

• Exclusive measurements of Coulomb
and nuclear breakup reactions of the
deformed halo candidate 31Ne

• Two main single-particle components:
30Ne(0+)⌦ 2p3/2 and 30Ne(2+)⌦ 2p3/2

• Measurement of the B(E1) strength
distributions of 6He and 8He with high
accuracy

• Known p3/2 ground-state resonances
of 5,7He corroborate calibrations and
espected quality of data

Experimental setup at RIKEN

Project plan & milestones
Determination of the nn scattering length

(A06,A08)
• Produce the nn system in flight in the 6He (p, p↵) 2n

and t (p, 2p) 2n knockout reactions at 200 MeV/nucleon
in inverse kinematics

• No systematic uncertainty from detection efficiency due
to neutrons having approximately the same velocity

• Quasi-free scattering at high momentum transfer mini-
mizes final state interaction

• Excellent resolution of HIME allows reaching overall
systematic uncertainty of 1%́, leading to experimental
contribution of ±0.2f́m to uncertainty in ann

Neutron-neutron relative energy distribution

(A02)

• Investigate sensitivity to different 6He wave functions
and FSI factors

• Quantify validity of factorization assumption and corre-
sponding corrections

• Develop consistent Halo EFT treatment of reaction
6He(p, p↵)2n and t(p, 2p)2n

Extension of Halo EFT description of the

projectile in nuclear-reaction models

(A06)

k

p

q + ...

• Extend hybrid approach to reactions to other nuclei
(15C, 19C, 31Ne)

• Calculate momentum distributions from inclusive reacti-
ons or capture reactions (astrophysical interest)

• Include core excitation effects (three-body forces or ex-
plicit degrees of freedom)

• Description of resonant breakup

• Sensitivity of different observables to core excitation

Research program
Key experiments:

• finalize the data analysis and interpretation of
Coulomb breakup of 6He and 8He

• extraction of neutron-neutron scattering length
from 6He (p, p↵) 2n and t (p, 2p) 2n reactions

Theory advances:

• calculation of the neutron distribution for
6He (p, p↵) 2n in quasifree kinematics as a
function of the neutron-neutron scattering
length using Halo EFT

• inclusion of Halo EFT within precise models of
nuclear reactions involving halo nuclei

Publications and theses

Dissertations: 6 (3 ongoing)
M.Sc./B.Sc. theses: 5/2
Publications: 14 (incl. 2 PRL)
incl. collaborative papers with A02

Available

Senior scientists: 5
Junior scientists: 2
Technical staff: 3
Students (p.a.): 3

Requested

Doctoral researchers: 3
Expt. travel: 46.6 ke

1

(from Hans’ group)

Energy spectrum will constrain ann
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Notion of Resonance Definition

Notion of Resonance
Resonance ⌘

significant variation of a cross section on a short energy range

  [Dubovichenko PAN 75, 173 (2012)]
In elastic scattering, contribution of partial wave l

�l =
4⇡

k2
(2l + 1) sin

2 �l
small if �l ⇠ n⇡ (n 2 Z)
large if �l ⇠ ⇡/2

If �l goes quickly from 0 to ⇡! rapid increase and decrease of �l
i.e. resonance structure
Definite l) quantum numbers and parity similar to bound state
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Notion of Resonance Definition
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Notion of Resonance Definition

Another example : nuclear breakup of 11Be
11

Be + 12
C! 10

Be + n + 12
C @ 67AMeV

neutron was obtained by taking the mean value of the two
timings of the fired detector of NEUT. The horizontal posi-
tion was obtained by taking the difference of the two tim-
ings. The vertical position was determined by the position of
the fired rod. The momentum vector P!n" was thus recon-
structed from the position and TOF information of these de-
tectors. The momentum resolution !1!" of the neutron in the
projectile rest frame was 1.7% and 2.0% for the Pb and C
targets, respectively. The intrinsic neutron detection effi-
ciency of 13.4% for the threshold energy 6 MeV ee (electron
equivalent) was obtained from a separate experiment using
the 7Li!p ,n"7Be reaction at 66.7 MeV. This energy threshold
was used to reject all the "-ray-related events.
The 10Be fragment emitted in the reaction was bent by a

large-gap dipole magnet, was traced by the multiwire drift
chamber (FDC) located downstream of the magnet, and pen-
etrated the hodoscope (HOD) which consists of seven plastic
scintillator slats of 1 cm thickness. Particle identification was
performed by combining #E and TOF information from the
hodoscope with the magnetic rigidity information from the
tracking. The momentum vector of 10Be #P!10Be"$ was de-
duced by the combination of TOF between the target and
HOD (about 4 m) and tracking analysis. The momentum
resolutions !1!" of 10Be for the reaction with the Pb target
were 0.80%, 0.77%, and 0.32%, respectively, for the Px, Py,
and Pz, which represent the horizontal, vertical, and parallel
momenta. Those for the C target were 0.47%, 0.47%, and
0.32%, respectively. This difference in the energy resolution
for the transverse directions according to the target is due to
the different multiple scattering between the heavy and light
targets.
The relative energy resolution was determined by a Monte

Carlo simulation incorporating the momentum resolutions of
10Be and the neutron. The relative energy resolution [full
width at half maximum (FWHM)] was thus estimated to be
0.44%Erel MeV and 0.45%Erel MeV, respectively, for the Pb
and C targets. The angular resolution of $ in 1! was 0.41°
and 0.48°, respectively, for the Pb and C targets.
The geometrical acceptance for the 10Be and neutron was

estimated by a Monte Carlo simulation. Here, events were
generated as a function of Erel and $, and the corresponding
acceptance functions for the Pb and C targets were deduced
for these observables. The net geometrical acceptance was
obtained as a ratio of the breakup events of interest with and
without acceptance correction. The acceptance thus esti-
mated turned out to be 52% for the Pb target with the energy-
angular ranges of 0%Erel%5 MeV and 0°%$%6°. The
same quantity was 31% for the C target, with the ranges of
0%Erel%8 MeV and 0°%$%12°.

IV. RESULTS AND DISCUSSIONS

A. Overview of Erel spectra for Pb and C targets

The relative energy spectra for the Pb target and C target
data are shown in Figs. 2(a) and 2(b), respectively. There, the
cross sections for the breakup channel into 10Be+n are plot-
ted for the angular range 0°%$%6° !0°%$%12° " corre-
sponding to the current whole acceptance and for the se-

lected forward angular ranges 0°%$%1.3° !0°%$
%0.5° " for the Pb(C) targets. The angular ranges for the
whole acceptance are different depending on the target used
because the angle $ in the projectile-target center-of-mass
frame is about twice as much as that in the laboratory frame
for the C target, while they are about the same for the Pb
target.
The spectra for the whole acceptance show conspicuously

different characteristics depending on the target. A huge
asymmetric peak is seen for the Pb target, while two peaks,
corresponding to the known states at Ex=1.78 MeV and
3.41 MeV, are seen on top of the decreasing continuum for
the C target. The breakup cross sections for the whole accep-
tance with Erel integrated up to 5 MeV are
1790±20!stat"±110!syst" mb for the Pb target and
93.3±0.8!stat" +5.6−10.3 !syst" mb for the C target (see the first
column of Table I). Here, the systematic uncertainty comes
mainly from that in the neutron detection efficiency, which
affects solely the absolute normalization of the spectrum. A
minor contribution to the uncertainty is due to the target
excitation and due to the events decaying to the 10Be excited
states, which can be significant for the carbon target data.

FIG. 2. Relative energy spectra for 11Be+Pb at
69 MeV/nucleon (a) and for 11Be+C at 67 MeV/nucleon (b).
These are plotted for the whole acceptance region (open circles) and
for the selected forward angles (open diamonds). The data points
are compared to the E1 direct breakup model calculation. The solid
curves are obtained with the ECIS code with &2 (spectroscopic factor
for the halo configuration) of 0.72, while the dotted curves are
obtained with the equivalent photon method with &2=0.69. For the
carbon data, two discrete peaks corresponding to Ex=1.78 MeV
and 3.41 MeV marked by the arrows are observed.

FUKUDA et al. PHYSICAL REVIEW C 70, 054606 (2004)

054606-4

[Fukuda et al. PRC 70, 054606 (2004)]
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Notion of Resonance A pole in the S matrix

Back to the S matrix
Let’s rewrite the asymptotic expression

ukl(r)�!
r!1

1

2i

h
fl(k) e�i(kr�l⇡/2) � f ⇤l (k) ei(kr�l⇡/2)

i

in that case

S l(k) = e2i�l =
f ⇤l (k)

fl(k)

So far we have considered k 2 R+ (since E > 0)
Now let’s extend this to the complex plane

( fl is continuous and analytic)
If k0 = kR + ikI is a zero of fl : fl(k0) = 0

uk0l(r)�!
r!1

eikRre�kIr

if kR = 0 and kI > 0, it corresponds to a bound state
if kR > 0 and kI < 0, it corresponds to a resonance

20 / 31
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Notion of Resonance A pole in the S matrix

Poles of the S matrix
Since S l =

f ⇤l
fl

, a zero of f corresponds to a pole of S l

Close to that pole

S l(k) = e2i� k � k⇤
0

k � k0

or S l(E) = e2i�E � E⇤
0

E � E0

with E0 =
~2

2µ
k2

0
= Er � i�/2

Since S l = e2i�l ,

�l = �� + arctan
�/2

Er � E
When � ⌧ 1, �(Er) = ⇡/2, �(Er � �/2) = ⇡/4, �(Er + �/2) = 3⇡/4
We also have

d�l

dE

�����
Er

=
2

�
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Notion of Resonance A pole in the S matrix

Breit-Wigner formula
The contribution of the l partial wave to the cross section

�l =
4⇡

k2
(2l + 1)

tan
2 �l

1 + tan2 �l

=
4⇡

k2
(2l + 1)

�2/4

(Er � E)2 + �2/4

This is the Breit-Wigner formula (Lorentzian)

Since �l(Er � �/2) = �l(Er + �/2) = �l(Er)/2

� is the full width at half maximum (FWHM)
Related to the lifetime of the resonance

⌧ =
~

�

When the non-resonant phase � is not negligible
the shape can differ significantly from a simple Lorentzian
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Notion of Resonance A pole in the S matrix
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Interpretation of a resonance as a state
in a potential pocket due to the
centrifugal barrier .

centrifugal
f

barrier

=vH+ff¥÷



Notion of Resonance A pole in the S matrix
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Bound states
,
resonances

,
and virtual state

seen as pole of the S matrix in the

complex plane .
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Charged case Rutherford Scattering

Coulomb scattering
We assumed r2V(r)�!

r!1
0, which excludes Coulomb VC(r) = ZaZbe2

4⇡✏0r

Coulomb requires special treatment, but similar results are obtained
Defining the Sommerfeld parameter ⌘ = ZaZbe2

4⇡✏0~v
,

Schrödinger equation for a and b scattered by Coulomb reads
 
� � 2⌘k

r
+ k2

!
 C(r) = 0,

which can be solved exactly and

 C(r) �!
r!1

(2⇡)�3/2

0
BBBB@ei[kz+⌘ ln k(r�z)] + fC(✓)

ei[kr�⌘ ln 2kr]

r

1
CCCCA ,

with fC(✓) = � ⌘

2k sin
2
(✓/2)

e2i[�0�⌘ ln sin(✓/2)]
⇥
�0 = arg�(1 + i⌘)

⇤

the Coulomb scattering amplitude
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Charged case Rutherford Scattering

Rutherford cross section

The same analysis can be done defining ji and js
to define the Coulomb elastic scattering cross section
or Rutherford cross section :

d�R

d⌦
= | fC(✓)|2

=

 
ZaZbe2

4⇡✏0

!2

1

16E2 sin
4
(✓/2)

Note that it diverges at ✓ = 0
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Charged case Coulomb + Nuclear Scattering

Partial-wave analysis
We can again separate the angular from the radial part solution of

 
d2

dr2
� l(l + 1)

r2
� 2⌘k

r
� 2µ

~2
VN(r) + k2

!
ukl(r) = 0

If additional (nuclear) term r2VN(r)�!
r!1

0, ukl(r)�!
r!1

uas

kl (r) :

uas

kl (r) = A Fl(⌘, kr) + B Gl(⌘, kr)

�!
r!1

A sin(kr � l⇡/2 � ⌘ ln kr + �l)

+B cos(kr � l⇡/2 � ⌘ ln kr + �l)

where Fl and Gl are regular and irregular Coulomb functions
and �l = arg�(l + 1 + i⌘) is the Coulomb phaseshift

) uas

kl (r) �!
r!1

C sin(kr � l⇡/2 � ⌘ ln kr + �l + �l)

�l is an additional phaseshift,
which contains all information about the nuclear interaction VN

27 / 31



Charged case Coulomb + Nuclear Scattering

(Additional) scattering amplitude
The stationary scattering states have now the asymptotic behaviour

 (r) �!
r!1

 C(r) + (2⇡)�3/2 fadd(✓)
ei(kr�⌘ ln kr)

r

with fadd(✓) =
1

2ik

1X

l=0

(2l + 1)e2i�l(e2i�l � 1)Pl(cos ✓)

the additional scattering amplitude
The total scattering amplitude f (✓) = fC(✓) + fadd(✓)
gives the elastic-scattering cross section

d�
d⌦
= | fC(✓) + fadd(✓)|2

At forward angles (✓ ⌧ 1), fC � fadd, and d�/d⌦ ⇡ d�R/d⌦
) usually (d�/d⌦)/(d�R/d⌦) is plotted
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Charged case Coulomb + Nuclear Scattering

Example : 6
He + 64

Zn @ 14MeV

[Rodrı̀guez-Gallardo et al. PRC 77, 064609 (2008)]
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Charged case Coulomb + Nuclear Scattering

Bibliography

The following books are good references for more details on
low-energy nuclear-reaction theory :

C. J. Joachain Quantum Collision Theory (North-Holland,
Amsterdam, 1975)
C. Cohen-Tannoudji, B. Diu & F. Laloë Quantum Mechanics,
Vol.2 (John Wiley & Sons, Paris, 1977)
C. A. Bertulani & P. Danielewicz Introduction to Nuclear
Reations (Institute of Physics, London, 2004)
I. J. Thompson & F. M. Nunes Nuclear Reactions for
Astrophysics : Principles, Calculation and Applications of
Low-Energy Reactions (Cambridge University Press, 2009)
J. R. Taylor Scattering Theory : The Quantum Theory of
Nonrelativistic Collisions (Dover, New York, 1972)

30 / 31


