Introduction to Scattering Theory III

Pierre Capel

johannes GUTENBERG UNIVERSITÄT MAINZ

28 July 2022
(9) Properties of the phase shifts

- Relation between phase shift and potential
- Low-energy behaviour
- High-energy behaviour
- Levinson Theorem
(2) Notion of Resonance
- Definition
- A pole in the S matrix
(3) Charged case
- Rutherford Scattering
- Coulomb + Nuclear Scattering

Relation between phase shift and potential

 We consider two scattering potentials V and $\bar{V}$$$
\sin \left(\delta_{l}-\bar{\delta}_{l}\right)=-\frac{2 \mu}{\hbar^{2}} k \int_{0}^{\infty} \bar{u}_{k l}(r)[V(r)-\bar{V}(r)] u_{k l}(r) d r
$$

This provides two pieces of information :
(0. Change in δ_{l} goes opposite to the change in V :

$$
V(r)>\bar{V}(r) \forall r \Rightarrow \delta_{l}(k)<\bar{\delta}_{l}(k) \forall k
$$

- repulsive potential $(V(r)>0 \forall r) \Rightarrow \delta_{l}(k)<0 \forall k$
- attractive potential $(V(r)<0 \forall r) \Rightarrow \delta_{l}(k)>0 \forall k$
(2) Choosing $\bar{V}=0$, we obtain an integral expression for δ_{l} :

$$
\begin{array}{r}
\sin \delta_{l}=-\frac{2 \mu}{\hbar^{2}} k \int_{0}^{\infty} j_{k l}(k r) V(r) R_{k l}(r) r^{2} d r \\
\quad\left[\text { with } R_{k l}(r)=\frac{1}{r} u_{k l}(r)\right]
\end{array}
$$

Phase shift at low-energy

$$
\tan \delta_{l} \underset{k \rightarrow 0}{\longrightarrow} \frac{\left(k r_{0}\right)^{2 l+1}}{(2 l+1)!!(2 l-1)!!} \frac{l-r_{0} \gamma_{l}}{(l+1)+r_{0} \gamma_{l}}
$$

(unless $\left.(l+1)+r_{0} \gamma_{l}=0\right)$
In the s wave, the scattering length

$$
a=-\lim _{k \rightarrow 0} \frac{\tan \delta_{0}}{k}
$$

At very low energy, only the s wave contributes to the scattering cross section and $\frac{d \sigma}{d \Omega} \underset{k \rightarrow 0}{\longrightarrow} a^{2}$: the differential cross section is isotropic

$$
\begin{aligned}
& {\left[\frac{d^{2}}{d r^{2}}+k^{2}-\frac{l(l+1)}{r^{2}}-\frac{2 \mu}{t^{2}} V(r)\right] u_{b l}(r)=0} \\
& s \text { wer }(l=0) k \rightarrow 0 \quad\left(u_{k l} \rightarrow u^{0}\right) \\
& {\left[\frac{d^{2}}{d r^{2}}-\frac{2 \mu}{k^{2}} V(r)\right] u^{0}(r)=0} \\
& r>r_{0} \\
& u^{0 \prime \prime}(r)=0 \Rightarrow u^{0}(r)=B r+C \\
& u^{0}(r) \underset{k \rightarrow 0}{\longrightarrow} \frac{1}{k} \sin \left(b r+\delta_{0}\right) \\
& \underset{k \rightarrow 0}{\longrightarrow}(r-a)
\end{aligned}
$$

2) $V(r)<0 \quad \forall R$

- no bound state

- virtual state

$$
a=\infty
$$

- bound State

$$
a>0
$$

Effective-range expansion

In partial wave l, the function $k^{2 l+1} \cot \delta_{l}$ is analytic in E, i.e. in k^{2}.
It can be expanded in powers of E
(see Hans' 2nd lecture) In the s wave, the first coefficient is the scattering length a

$$
k \cot \delta_{0}=-\frac{1}{a}+\frac{r_{e}}{2} k^{2}+\frac{P}{4} k^{4}+\ldots
$$

where

- r_{e} is the effective range
- P is the shape parameter

For $l>0$

$$
k^{2 l+1} \cot \delta_{l}=-\frac{1}{a_{l}}+\frac{r_{l}}{2} k^{2}+\frac{P_{l}}{4} k^{4}+\ldots
$$

$$
\begin{aligned}
& \begin{array}{l}
S \operatorname{warc}(l=0) \quad u_{1}, u_{2} \\
{\left[d^{2} \quad l^{2}\right.}
\end{array} \\
& {\left[\frac{d^{2}}{d r^{2}}+h_{i}^{2}-\frac{2 \mu V}{h^{2}}(r)\right] u_{i}(\Omega)=0} \\
& \frac{d}{d r}\left[u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}\right]=u_{1}^{\prime} u_{2}^{\prime}+u_{1} u_{2}^{\prime \prime}-u_{2}^{\prime} u_{1}^{\prime}-u_{2} u_{1}^{\prime \prime} \\
& =\left[-k_{2}^{2}+\frac{2 \mu}{\pi^{2}} V\left(l_{2}\right)\right] u_{1} u_{2} \\
& -\left[-k_{1}^{2 \pi^{2}}+\frac{2 \mu}{k^{2}} \sqrt{ }(\pi)\right] u_{2} u_{1} \\
& =\left(k_{1}^{2}-k_{2}^{2}\right) u_{1} u_{2} \\
& N_{1}, v_{2} \quad v_{i}=\frac{\sin \left(k_{i} r^{i}+\delta_{0}^{i}\right)}{\sin \delta_{0}^{i}} \xrightarrow[r \rightarrow 0]{\longrightarrow} 1 \\
& {\left[\frac{d^{2}}{d r^{2}}+k_{i}^{2}\right] v_{i}(2)=0 \quad \operatorname{sim} \delta_{0}^{i}(\Omega) \underset{\pi \rightarrow \infty}{\longrightarrow \rightarrow 0} v_{i}(\pi)}
\end{aligned}
$$

$$
\begin{aligned}
& \int_{0}^{\infty} \frac{d}{d r}\left[u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}-v_{1} v_{2}^{\prime}+v_{1}^{\prime} v_{2}\right] d r \\
&=\left(k_{1}^{2}-k_{2}^{2}\right) \int_{0}^{\infty}\left[u_{1}(r) u_{2}(r)-v_{1}(r) v_{2}(r)\right] d r \\
&=\left[u_{1} u_{2}^{\prime}-u_{2} u_{1}^{\prime}-v_{1} v_{2}^{\prime}+v_{1}^{\prime} v_{2}\right]_{0}^{\infty} \\
&=0-0+0-v_{1}(0) v_{2}^{\prime}(0) \\
&+v_{i}=v_{1}^{\prime}(0) v_{i} \\
&=-1 \cdot v_{2}^{\prime}(0) \\
&=k, \operatorname{cotg} \delta_{0}^{\prime}-k_{2} \operatorname{cotg} \delta_{0}^{2}+k_{1} \operatorname{cotg} \delta_{0}^{\prime} \cdot 1
\end{aligned}
$$

take the limit $k_{2} \rightarrow 0$ posing $k_{1}=k$

$$
\begin{aligned}
k \operatorname{cotg} \delta_{0}+\frac{1}{a} & =k^{2} \int_{0}^{\infty}\left[u_{k}(\pi) u_{0}(\Omega)-v_{h}(\pi) v_{0}(\eta)\right) d \pi \\
& =k^{2} \int_{0}^{\pi_{0}}\left[u_{k}(r) u_{0}(\pi)-v_{k}(\pi) v_{0}(\pi)\right] d x
\end{aligned}
$$

Since we have

$$
k \operatorname{cotg} \delta_{0}=-\frac{1}{a}+\frac{\pi e}{2} k^{2}+\cdots
$$

We deduce

$$
\begin{aligned}
r_{e} & =2 \lim _{k \rightarrow 0} \int_{0}^{\pi_{0}}\left[u_{k}(r) u_{0}(r)-v_{k}(r) v_{0}(r)\right] d r \\
& =2 \int_{0}^{r_{0}}\left[u_{0}^{2}(r)-v_{0}^{2}(r)\right] d r
\end{aligned}
$$

Relation with bound states

A similar development can be done using a bound state $\quad\left(u^{2} \rightarrow u^{K}\right)$
So with the two solutions

$$
\left(v^{2} \rightarrow v^{k}\right)
$$

$$
\begin{aligned}
{\left[\frac{d^{2}}{d r^{2}}-\kappa^{2}-\frac{2 \mu}{\hbar^{2}} V(r)\right] u^{\kappa}(r) } & =0 \\
{\left[\frac{d^{2}}{d r^{2}}-\kappa^{2}\right] v^{\kappa}(r) } & =0, \quad \text { where }-\frac{\hbar^{2}}{2 \mu} \kappa^{2}=E_{0}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
u^{k}(0) & =0 \text { and } u^{k}(r) \underset{r \rightarrow \infty}{\longrightarrow} e^{-k r} \\
v^{k}(r) & =e^{-\kappa r}\left(v^{k}(0)=1\right)
\end{aligned}
$$

For which we have (approximating u^{k} and v^{k} by u^{0} and v^{0})

$$
\begin{aligned}
k \cot \delta_{0}(k)+\kappa & =\frac{1}{2} r_{e}\left(k^{2}+\kappa^{2}\right) \\
\overrightarrow{k \rightarrow 0}-\frac{1}{a} & =-\kappa+\frac{1}{2} r_{e} \kappa^{2}
\end{aligned}
$$

Phase shift at high-energy

To study the phase shift at high energy, let us consider the integral expression of the phase shift

$$
\sin \delta_{l} \approx-\frac{2 \mu}{\hbar^{2}} k \int_{0}^{\infty} j_{l}^{2}(k r) V(r) r^{2} d r
$$

assuming $R_{k l}(r) \approx j_{l}(k r)$ (first Born approximation)
Since $j_{l}(x) \underset{x \rightarrow \infty}{\longrightarrow} \frac{1}{x} \sin (x-l \pi / 2) \Rightarrow j_{l}^{2}(h r) \underset{k \rightarrow \infty}{\longrightarrow} \frac{1}{k^{2} \pi^{2}}$

$$
\begin{aligned}
\sin \delta_{l} & \approx-\frac{\mu}{\hbar^{2}} \frac{1}{k} \int_{0}^{\infty} V(r) \frac{k^{2} \pi^{2}}{2 k^{2} \Gamma^{2}}[1-\cos (2 k r-k \pi)] \\
& \xrightarrow[k \rightarrow \infty]{\longrightarrow} 0 \\
\Rightarrow \delta_{l} & \xrightarrow[k \rightarrow \infty]{\longrightarrow} 0(+n \pi)
\end{aligned}
$$

Imposing $\delta_{l} \underset{k \rightarrow \infty}{\longrightarrow} 0$ is similar to imposing $\delta_{l}=0$ when $V=0$

Levinson Theorem
That theorem relates the phase shift at $E=0$ to that at $E \rightarrow \infty$. It states that

$$
\delta_{l}(0)-\delta(\infty)=N_{l} \pi
$$

where N_{l} is the number of bound states in the partial wave l It relates the properties of the solutions of the radial Schrödinger equation at positive and negative energies.

Summary : Properties of phase shifts

- By convention

$$
\begin{aligned}
& V(r)=0 \forall r \Rightarrow \delta_{l}=0 \quad \forall E \\
& \Leftrightarrow \delta_{l} \\
& \underset{k \rightarrow \infty}{\longrightarrow} 0
\end{aligned}
$$

- δ_{l} is a continuous function of energy moreover $k^{2 l+1} \cot \delta_{l}$ is analytical in E
- If $V(r)>\bar{V}(r) \forall r$, then $\delta_{l}<\bar{\delta}_{l} \forall E$
\Rightarrow if $V(r)<0 \forall r$ (attractive), then $\delta_{l}>0 \forall E$
\Rightarrow if $V(r)>0 \forall r$ (repulsive), then $\delta_{l}<0 \forall E$
- At low energy

$$
\delta_{l}(k)-\delta_{l}(0) \sim k^{2 l+1}
$$

- Levinson Theorem :

$$
\delta_{l}(0)-\delta(\infty)=N_{l} \pi,
$$

where N_{l} is the number of bound states in the partial wave l

Example : p-n phaseshifts

Notation : ${ }^{2 S+1} L_{J}$

$$
\bar{S}=\bar{S}_{p}+\bar{S}_{m} \Rightarrow S=0,01
$$

$$
\bar{J}=\bar{L}+\bar{S} \Rightarrow|L-S| \leqslant J \leqslant L+S
$$

[Navarro Pérez, Amaro, Ruiz Arriola, PLB 724138 (2013)]

Realistic $V_{N N}$

(see Kai’s lecture)
Strongly repulsive core \Rightarrow negative phaseshifts Short distaces \Leftrightarrow high energies

a_{nn}

a_{nn} is large and negative, but discrepancy between experimental measurements

- $a_{\mathrm{nn}}=-18.7(6) \mathrm{fm}$ (TUNL)
- $a_{\mathrm{nn}}=-16.2(3) \mathrm{fm}$ (Bonn)
- $a_{\mathrm{pp}}=-17.3(4) \mathrm{fm}$
${ }^{6} \mathrm{He}+\mathrm{p} \rightarrow \alpha+\mathrm{n}+\mathrm{n}+\mathrm{p} \quad$ will be measured at RIKEN (Japan)

(from Hans' group)
Energy spectrum will constrain $a_{\text {nn }}$

Notion of Resonance

Resonance \equiv
significant variation of a cross section on a short energy range

[Dubovichenko PAN 75, 173 (2012)]
In elastic scattering, contribution of partial wave l

$$
\sigma_{l}=\frac{4 \pi}{k^{2}}(2 l+1) \sin ^{2} \delta_{l} \quad \begin{aligned}
& \text { small if } \delta_{l} \sim n \pi(n \in \mathbb{Z}) \\
& \text { large if } \delta_{l} \sim \pi / 2
\end{aligned}
$$

If δ_{l} goes quickly from 0 to $\pi \rightarrow$ rapid increase and decrease of σ_{l}
i.e. resonance structure

Definite $l \Rightarrow$ quantum numbers and parity similar to bound state

Another example : nuclear breakup of ${ }^{11} \mathrm{Be}$

[Fukuda et al. PRC 70, 054606 (2004)]

Back to the S matrix

Let's rewrite the asymptotic expression

$$
u_{k l}(r) \underset{r \rightarrow \infty}{\longrightarrow} \frac{1}{2 i}\left[f_{l}(k) e^{-i(k r-l \pi / 2)}-f_{l}^{*}(k) e^{i(k r-l \pi / 2)}\right] \in \mathbb{R}
$$

in that case

$$
S_{l}(k)=e^{2 i \delta_{l}}=\frac{f_{l}^{*}(k)}{f_{l}(k)}
$$

So far we have considered $k \in \mathbb{R}^{+}$(since $E>0$) Now let's extend this to the complex plane
(f_{l} is continuous and analytic)
If $k_{0}=k_{R}+i k_{I}$ is a zero of $f_{l}: f_{l}\left(k_{0}\right)=0$

$$
u_{k_{0} l}(r) \underset{r \rightarrow \infty}{\longrightarrow} e^{i k_{R} r} e^{-k_{I} r}
$$

- if $k_{R}=0$ and $k_{I}>0$, it corresponds to a bound state
- if $k_{R}>0$ and $k_{I}<0$, it corresponds to a resonance

Poles of the S matrix

Since $S_{l}=\frac{f_{l}^{*}}{f_{i}}$, a zero of f corresponds to a pole of S_{l}
Close to that pole

$$
\begin{aligned}
S_{l}(k) & =e^{2 i \phi} \frac{k-k_{0}^{*}}{k-k_{0}} \\
\text { or } S_{l}(E) & =e^{2 i \phi} \frac{E-E_{0}^{*}}{E-E_{0}} \\
\text { with } E_{0} & =\frac{\hbar^{2}}{2 \mu} k_{0}^{2}=E_{r}-i \Gamma / 2
\end{aligned}
$$

Since $S_{l}=e^{2 i \delta_{l}}$,

$$
\delta_{l}=-\phi+\arctan \frac{\Gamma / 2}{E_{r}-E}
$$

When $\phi \ll 1, \delta\left(E_{r}\right)=\pi / 2, \delta\left(E_{r}-\Gamma / 2\right)=\pi / 4, \delta\left(E_{r}+\Gamma / 2\right)=3 \pi / 4$
We also have

$$
\left.\frac{d \delta_{l}}{d E}\right|_{E_{r}}=\frac{2}{\Gamma}
$$

Breit-Wigner formula

The contribution of the l partial wave to the cross section

$$
\begin{aligned}
\sigma_{l} & =\frac{4 \pi}{k^{2}}(2 l+1) \frac{\tan ^{2} \delta_{l}}{1+\tan ^{2} \delta_{l}}\left(=\sin ^{2} \delta e\right) \\
& =\frac{4 \pi}{k^{2}}(2 l+1) \frac{\Gamma^{2} / 4}{\left(E_{r}-E\right)^{2}+\Gamma^{2} / 4}
\end{aligned}
$$

This is the Breit-Wigner formula (Lorentzian) Since $\sigma_{l}\left(E_{r}-\Gamma / 2\right)=\sigma_{l}\left(E_{r}+\Gamma / 2\right)=\sigma_{l}\left(E_{r}\right) / 2$ Γ is the full width at half maximum (FWHM) Related to the lifetime of the resonance

$$
\tau=\frac{\hbar}{\Gamma}
$$

When the non-resonant phase ϕ is not negligible the shape can differ significantly from a simple Lorentzian

Interpretation of a resonance as e state in a potential pocket due to the centrifugal barrier.

Bound states, resonances, and virtual state seen as pole of the S matrix in the complex plane.

Coulomb scattering

We assumed $r^{2} V(r) \underset{r \rightarrow \infty}{\longrightarrow} 0, \quad$ which excludes Coulomb $V_{C}(r)=\frac{Z_{a} Z_{b} e^{2}}{4 \pi \epsilon_{0} r}$
Coulomb requires special treatment, but similar results are obtained Defining the Sommerfeld parameter $\eta=\frac{Z_{a} Z_{b} e^{2}}{4 \pi \sigma_{t} t v}$,
Schrödinger equation for a and b scattered by Coulomb reads

$$
\left(\Delta-\frac{2 \eta k}{r}+k^{2}\right) \Psi_{C}(\boldsymbol{r})=0
$$

which can be solved exactly and

$$
\Psi_{C}(\boldsymbol{r}) \underset{r \rightarrow \infty}{\longrightarrow}(2 \pi)^{-3 / 2}\left(e^{i[k z+\eta \ln k(r-z)]}+f_{C}(\theta) \frac{e^{i[k r-\eta \ln 2 k r]}}{r}\right),
$$

with $f_{C}(\theta)=-\frac{\eta}{2 k \sin ^{2}(\theta / 2)} e^{2 i\left[\sigma_{0}-\eta \ln \sin (\theta / 2)\right]} \quad\left[\sigma_{0}=\arg \Gamma(1+i \eta)\right]$
the Coulomb scattering amplitude

Rutherford cross section

The same analysis can be done defining \boldsymbol{j}_{i} and \boldsymbol{j}_{s} to define the Coulomb elastic scattering cross section or Rutherford cross section :

$$
\begin{aligned}
\frac{d \sigma_{R}}{d \Omega} & =\left|f_{C}(\theta)\right|^{2} \\
& =\left(\frac{Z_{a} Z_{b} e^{2}}{4 \pi \epsilon_{0}}\right)^{2} \frac{1}{16 E^{2} \sin ^{4}(\theta / 2)}
\end{aligned}
$$

Note that it diverges at $\theta=0$

Partial-wave analysis

We can again separate the angular from the radial part solution of

$$
\left(\frac{d^{2}}{d r^{2}}-\frac{l(l+1)}{r^{2}}-\frac{2 \eta k}{r}-\frac{2 \mu}{\hbar^{2}} V_{N}(r)+k^{2}\right) u_{k l}(r)=0
$$

If additional (nuclear) term $r^{2} V_{N}(r) \underset{r \rightarrow \infty}{\longrightarrow} 0, u_{k l}(r) \underset{r \rightarrow \infty}{\longrightarrow} u_{k l}^{\text {as }}(r)$:

$$
\begin{aligned}
u_{k l}^{\mathrm{as}}(r)= & A F_{l}(\eta, k r)+B G_{l}(\eta, k r) \\
\longrightarrow & A \sin \left(k r-l \pi / 2-\eta \ln k r+\sigma_{l}\right) \\
& +B \cos \left(k r-l \pi / 2-\eta \ln k r+\sigma_{l}\right)
\end{aligned}
$$

where F_{l} and G_{l} are regular and irregular Coulomb functions and $\sigma_{l}=\arg \Gamma(l+1+i \eta)$ is the Coulomb phaseshift

$$
\Rightarrow u_{k l}^{\text {as }}(r) \underset{r \rightarrow \infty}{\longrightarrow} C \sin \left(k r-l \pi / 2-\eta \ln k r+\sigma_{l}+\delta_{l}\right)
$$

δ_{l} is an additional phaseshift,
which contains all information about the nuclear interaction V_{N}

(Additional) scattering amplitude

The stationary scattering states have now the asymptotic behaviour

$$
\Psi(\boldsymbol{r}) \underset{r \rightarrow \infty}{\longrightarrow} \Psi_{C}(\boldsymbol{r})+(2 \pi)^{-3 / 2} f_{\text {add }}(\theta) \frac{e^{i(k r-\eta \ln k r)}}{r}
$$

with $\quad f_{\text {add }}(\theta)=\frac{1}{2 i k} \sum_{l=0}^{\infty}(2 l+1) e^{2 i \sigma_{l}}\left(e^{2 i \delta_{l}}-1\right) P_{l}(\cos \theta)$
the additional scattering amplitude
The total scattering amplitude $f(\theta)=f_{C}(\theta)+f_{\text {add }}(\theta)$ gives the elastic-scattering cross section

$$
\frac{d \sigma}{d \Omega}=\left|f_{C}(\theta)+f_{\mathrm{add}}(\theta)\right|^{2}
$$

At forward angles $(\theta \ll 1), f_{C} \gg f_{\text {add }}$, and $d \sigma / d \Omega \approx d \sigma_{R} / d \Omega$
\Rightarrow usually $(d \sigma / d \Omega) /\left(d \sigma_{R} / d \Omega\right)$ is plotted

Example : ${ }^{6} \mathrm{He}+{ }^{64} \mathrm{Zn} @ 14 \mathrm{MeV}$

[Rodrìguez-Gallardo et al. PRC 77, 064609 (2008)]

Bibliography

The following books are good references for more details on low-energy nuclear-reaction theory :

- C. J. Joachain Quantum Collision Theory (North-Holland, Amsterdam, 1975)
- C. Cohen-Tannoudji, B. Diu \& F. Laloë Quantum Mechanics, Vol. 2 (John Wiley \& Sons, Paris, 1977)
- C. A. Bertulani \& P. Danielewicz Introduction to Nuclear Reations (Institute of Physics, London, 2004)
- I. J. Thompson \& F. M. Nunes Nuclear Reactions for Astrophysics: Principles, Calculation and Applications of Low-Energy Reactions (Cambridge University Press, 2009)
- J. R. Taylor Scattering Theory : The Quantum Theory of Nonrelativistic Collisions (Dover, New York, 1972)

