Introduction to Scattering Theory III

Pierre Capel

28 July 2022

Properties of the phase shifts

- Relation between phase shift and potential
- Low-energy behaviour
- High-energy behaviour
- Levinson Theorem

2 Notion of Resonance

- Definition
- A pole in the S matrix

Charged case

- Rutherford Scattering
- Coulomb + Nuclear Scattering

Relation between phase shift and potential

We consider two scattering potentials V and \bar{V}

$$\sin(\delta_l - \bar{\delta}_l) = -\frac{2\mu}{\hbar^2} k \int_0^\infty \bar{u}_{kl}(r) \left[V(r) - \bar{V}(r) \right] u_{kl}(r) dr$$

This provides two pieces of information :

- Change in δ_l goes opposite to the change in V: $V(r) > \overline{V}(r) \ \forall r \Rightarrow \delta_l(k) < \overline{\delta}_l(k) \ \forall k$
 - ▶ repulsive potential $(V(r) > 0 \forall r) \Rightarrow \delta_l(k) < 0 \forall k$
 - attractive potential $(V(r) < 0 \forall r) \Rightarrow \delta_l(k) > 0 \forall k$

② Choosing $\bar{V} = 0$, we obtain an integral expression for δ_l :

$$\sin \delta_l = -\frac{2\mu}{\hbar^2} k \int_0^\infty j_{kl}(kr) V(r) R_{kl}(r) r^2 dr$$

[with $R_{kl}(r) = \frac{1}{r} u_{kl}(r)$]

Phase shift at low-energy

$$\tan \delta_l \xrightarrow[k \to 0]{} \frac{(kr_0)^{2l+1}}{(2l+1)!!(2l-1)!!} \frac{l - r_0 \gamma_l}{(l+1) + r_0 \gamma_l}$$

(unless $(l + 1) + r_0 \gamma_l = 0$)

In the *s* wave, the scattering length

$$a = -\lim_{k \to 0} \frac{\tan \delta_0}{k}$$

At very low energy,

only the *s* wave contributes to the scattering cross section and $\frac{d\sigma}{d\Omega} \xrightarrow[k \to 0]{} a^2$: the differential cross section is isotropic

Low-energy behaviour

Effective-range expansion

In partial wave *l*, the function $k^{2l+1} \cot \delta_l$ is analytic in *E*, i.e. in k^2 .

It can be expanded in powers of E (see Hans' 2nd lecture) In the *s* wave, the first coefficient is the scattering length *a*

$$k \cot \delta_0 = -\frac{1}{a} + \frac{r_e}{2}k^2 + \frac{P}{4}k^4 + \dots$$

where

- r_e is the effective range
- P is the shape parameter

• \dots

For l > 0

$$k^{2l+1} \cot \delta_l = -\frac{1}{a_l} + \frac{r_l}{2}k^2 + \frac{P_l}{4}k^4 + \dots$$

Low-energy behaviour

Relation with bound states

A similar development can be done using a bound state $(u^2 \rightarrow u^{\kappa})$ So with the two solutions $(v^2 \rightarrow v^{\kappa})$

$$\begin{bmatrix} \frac{d^2}{dr^2} - \kappa^2 - \frac{2\mu}{\hbar^2} V(r) \end{bmatrix} u^{\kappa}(r) = 0$$
$$\begin{bmatrix} \frac{d^2}{dr^2} - \kappa^2 \end{bmatrix} v^{\kappa}(r) = 0, \quad \text{where } -\frac{\hbar^2}{2\mu} \kappa^2 = E_0$$

Therefore

$$u^{\kappa}(0) = 0 \text{ and } u^{\kappa}(r) \xrightarrow{r \to \infty} e^{-\kappa r}$$
$$v^{\kappa}(r) = e^{-\kappa r} \left(\sqrt{r} \overset{\mathsf{K}}{(0)} = \left[\right] \right)$$

For which we have (approximating u^{κ} and v^{κ} by u^{0} and v^{0})

$$k \cot \delta_0(k) + \kappa = \frac{1}{2} r_e(k^2 + \kappa^2)$$
$$\xrightarrow{k \to 0} -\frac{1}{a} = -\kappa + \frac{1}{2} r_e \kappa^2$$

Phase shift at high-energy

To study the phase shift at high energy, let us consider the integral expression of the phase shift

$$\sin \delta_l \approx -\frac{2\mu}{\hbar^2} k \int_0^\infty j_l^2(kr) V(r) r^2 dr$$

assuming
$$R_{kl}(r) \approx j_l(kr)$$
 (first Born approximation)
Since $j_l(x) \xrightarrow[x \to \infty]{1} \sin(x - l\pi/2) \Rightarrow \int_0^{z} (\ln x) x \to \infty$ $\frac{1}{k^2 \pi^2} \sin^2(\ln x - \frac{l\pi}{2})$
 $\sin \delta_l \approx -\frac{\mu}{\hbar^2} \frac{1}{k} \int_0^{\infty} V(r) dr \int_0^{\infty} \left[1 - \cos(2\ln x - \ln)\right]$
 $\xrightarrow[x \to \infty]{0} 0$
 $\Rightarrow \delta_l \xrightarrow[x \to \infty]{0} 0$ (+ $n\pi$)

Imposing $\delta_l \xrightarrow[k \to \infty]{} 0$ is similar to imposing $\delta_l = 0$ when V = 0

Levinson Theorem

That theorem relates the phase shift at E = 0 to that at $E \rightarrow \infty$. It states that

$$\delta_l(0) - \delta(\infty) = N_l \pi,$$

where N_l is the number of bound states in the partial wave lIt relates the properties of the solutions of the radial Schrödinger equation at positive and negative energies.

Summary : Properties of phase shifts

By convention

$$V(r) = 0 \ \forall r \quad \Rightarrow \quad \delta_l = 0 \ \forall E$$
$$\Leftrightarrow \delta_l \quad \xrightarrow{}_{k \to \infty} \quad 0$$

- δ_l is a continuous function of energy moreover k^{2l+1} cot δ_l is analytical in E
- If $V(r) > \overline{V}(r) \forall r$, then $\delta_l < \overline{\delta}_l \forall E$ \Rightarrow if $V(r) < 0 \forall r$ (attractive), then $\delta_l > 0 \forall E$ \Rightarrow if $V(r) > 0 \forall r$ (repulsive), then $\delta_l < 0 \forall E$
- At low energy

$$\delta_l(k) - \delta_l(0) \sim k^{2l+1}$$

Levinson Theorem :

$$\delta_l(0) - \delta(\infty) = N_l \pi,$$

where N_l is the number of bound states in the partial wave l

[Navarro Pérez, Amaro, Ruiz Arriola, PLB 724 138 (2013)] Data used to fit the various terms of V_{NN} (see lectures of Kai Hebeler)

Realistic V_{NN}

Strongly repulsive core \Rightarrow negative phaseshifts Short distaces \Leftrightarrow high energies

$\begin{array}{c} 0.0\\-400-350-300-250-200-150-100-50\\\mu_{2}(5/2^{+})\,\Gamma[\mathrm{fm}^{3}]\end{array}$

a_{nn}

 a_{nn} is large and negative,

but discrepancy between experimental measurements

- $a_{nn} = -18.7(6)$ fm (TUNL)
- $a_{nn} = -16.2(3)$ fm (Bonn)
- $a_{\rm pp} = -17.3(4)$ fm

 $^{6}\text{He} + p \rightarrow \alpha + n + n + p$ will be measured at RIKEN (Japan)

(from Hans' group)

Energy spectrum will constrain a_{nn}

Notion of Resonance

Resonance \equiv

significant variation of a cross section on a short energy range

In elastic scattering, contribution of partial wave *l*

 $\sigma_l = \frac{4\pi}{k^2} (2l+1) \sin^2 \delta_l \qquad \begin{array}{l} \text{small if } \delta_l \sim n\pi \ (n \in \mathbb{Z}) \\ \text{large if } \delta_l \sim \pi/2 \end{array}$

If δ_l goes quickly from 0 to $\pi \rightarrow$ rapid increase and decrease of σ_l i.e. resonance structure Definite $l \Rightarrow$ quantum numbers and parity similar to bound state

Definition

Another example : nuclear breakup of ¹¹Be

[Fukuda et al. PRC 70, 054606 (2004)]

Back to the *S* matrix

Let's rewrite the asymptotic expression

$$u_{kl}(r) \xrightarrow[r \to \infty]{} \frac{1}{2i} \left[f_l(k) e^{-i(kr - l\pi/2)} - f_l^*(k) e^{i(kr - l\pi/2)} \right] \in \mathbb{R}$$

in that case

$$S_l(k) = e^{2i\delta_l} = \frac{f_l^*(k)}{f_l(k)}$$

So far we have considered $k \in \mathbb{R}^+$ (since E > 0) Now let's extend this to the complex plane (f_l is continuous and analytic)

If $k_0 = k_R + ik_I$ is a zero of $f_l : f_l(k_0) = 0$

$$u_{k_0l}(r) \xrightarrow[r \to \infty]{} e^{ik_R r} e^{-k_I r}$$

• if $k_R = 0$ and $k_I > 0$, it corresponds to a bound state

• if $k_R > 0$ and $k_I < 0$, it corresponds to a resonance

A pole in the S matrix

Poles of the *S* matrix Since $S_l = \frac{f_l^*}{f_l}$, a zero of *f* corresponds to a pole of S_l Close to that pole

$$S_{l}(k) = e^{2i\phi} \frac{k - k_{0}}{k - k_{0}}$$

or $S_{l}(E) = e^{2i\phi} \frac{E - E_{0}^{*}}{E - E_{0}}$
with $E_{0} = \frac{\hbar^{2}}{2\mu}k_{0}^{2} = E_{r} - i\Gamma/2$
Since $S_{l} = e^{2i\delta_{l}}$,

$$\delta_l = -\phi + \arctan \frac{\Gamma/2}{E_r - E}$$

When $\phi \ll 1$, $\delta(E_r) = \pi/2$, $\delta(E_r - \Gamma/2) = \pi/4$, $\delta(E_r + \Gamma/2) = 3\pi/4$ We also have

$$\left.\frac{d\delta_l}{dE}\right|_{E_r} = \frac{2}{\Gamma}$$

Breit-Wigner formula

The contribution of the *l* partial wave to the cross section

 $\sigma_l = \frac{4\pi}{k^2} (2l+1) \frac{\tan^2 \delta_l}{1 + \tan^2 \delta_l} \left(- \sin^2 \delta_l \right)$ $= \frac{4\pi}{k^2}(2l+1)\frac{\Gamma^2/4}{(E_x-E)^2+\Gamma^2/4}$ This is the Breit-Wigner formula (Lorentzian) Since $\sigma_l(E_r - \Gamma/2) = \sigma_l(E_r + \Gamma/2) = \sigma_l(E_r)/2$ Γ is the full width at half maximum (FWHM) FR Related to the lifetime of the resonance

$$\tau = \frac{\hbar}{\Gamma}$$

E

When the non-resonant phase ϕ is not negligible the shape can differ significantly from a simple Lorentzian

Notion of Resonance

A pole in the S matrix

Rutherford Scattering

Coulomb scattering

We assumed $r^2 V(r) \xrightarrow[r \to \infty]{} 0$, which excludes Coulomb $V_C(r) = \frac{Z_a Z_b e^2}{4\pi\epsilon_0 r}$ Coulomb requires special treatment, but similar results are obtained Defining the Sommerfeld parameter $\eta = \frac{Z_a Z_b e^2}{4\pi\epsilon_0 \hbar v}$,

Schrödinger equation for a and b scattered by Coulomb reads

$$\left(\Delta - \frac{2\eta k}{r} + k^2\right)\Psi_C(\mathbf{r}) = 0,$$

which can be solved exactly and

$$\Psi_{C}(\mathbf{r}) \xrightarrow[r \to \infty]{} (2\pi)^{-3/2} \left(e^{i \left[kz + \eta \ln k(r-z)\right]} + f_{C}(\theta) \frac{e^{i \left[kr - \eta \ln 2kr\right]}}{r} \right),$$

with $f_{C}(\theta) = -\frac{\eta}{2k \sin^{2}(\theta/2)} e^{2i \left[\sigma_{0} - \eta \ln \sin(\theta/2)\right]} \left[\sigma_{0} = \arg \Gamma(1 + i\eta)\right]$

the Coulomb scattering amplitude

Rutherford cross section

The same analysis can be done defining j_i and j_s to define the Coulomb elastic scattering cross section or Rutherford cross section :

$$\frac{d\sigma_R}{d\Omega} = |f_C(\theta)|^2$$
$$= \left(\frac{Z_a Z_b e^2}{4\pi\epsilon_0}\right)^2 \frac{1}{16E^2 \sin^4(\theta/2)}$$

Note that it diverges at $\theta = 0$

Partial-wave analysis

We can again separate the angular from the radial part solution of

$$\left(\frac{d^2}{dr^2} - \frac{l(l+1)}{r^2} - \frac{2\eta k}{r} - \frac{2\mu}{\hbar^2}V_N(r) + k^2\right)u_{kl}(r) = 0$$

If additional (nuclear) term $r^2 V_N(r) \xrightarrow[r \to \infty]{} 0, \ u_{kl}(r) \xrightarrow[r \to \infty]{} u_{kl}^{as}(r)$:

$$u_{kl}^{as}(r) = A F_l(\eta, kr) + B G_l(\eta, kr)$$

$$\xrightarrow[r \to \infty]{} A \sin(kr - l\pi/2 - \eta \ln kr + \sigma_l)$$

$$+ B \cos(kr - l\pi/2 - \eta \ln kr + \sigma_l)$$

where F_l and G_l are regular and irregular Coulomb functions and $\sigma_l = \arg \Gamma(l + 1 + i\eta)$ is the Coulomb phaseshift

$$\Rightarrow u_{kl}^{\rm as}(r) \quad \underset{r \to \infty}{\longrightarrow} \quad C \sin(kr - l\pi/2 - \eta \ln kr + \sigma_l + \delta_l)$$

 δ_l is an additional phaseshift, which contains all information about the nuclear interaction V_N

(Additional) scattering amplitude

The stationary scattering states have now the asymptotic behaviour

$$\Psi(\mathbf{r}) \xrightarrow[r \to \infty]{} \Psi_C(\mathbf{r}) + (2\pi)^{-3/2} f_{add}(\theta) \frac{e^{i(kr - \eta \ln kr)}}{r}$$

with $f_{add}(\theta) = \frac{1}{2ik} \sum_{l=0}^{\infty} (2l+1)e^{2i\sigma_l}(e^{2i\delta_l} - 1)P_l(\cos\theta)$

the additional scattering amplitude The total scattering amplitude $f(\theta) = f_C(\theta) + f_{add}(\theta)$ gives the elastic-scattering cross section

$$\frac{d\sigma}{d\Omega} = \left| f_C(\theta) + f_{\text{add}}(\theta) \right|^2$$

At forward angles ($\theta \ll 1$), $f_C \gg f_{add}$, and $d\sigma/d\Omega \approx d\sigma_R/d\Omega$ \Rightarrow usually $(d\sigma/d\Omega)/(d\sigma_R/d\Omega)$ is plotted

Example : ${}^{6}\text{He} + {}^{64}\text{Zn} @ 14\text{MeV}$

[Rodrìguez-Gallardo et al. PRC 77, 064609 (2008)]

Bibliography

The following books are good references for more details on low-energy nuclear-reaction theory :

- C. J. Joachain *Quantum Collision Theory* (North-Holland, Amsterdam, 1975)
- C. Cohen-Tannoudji, B. Diu & F. Laloë *Quantum Mechanics*, Vol.2 (John Wiley & Sons, Paris, 1977)
- C. A. Bertulani & P. Danielewicz Introduction to Nuclear Reations (Institute of Physics, London, 2004)
- I. J. Thompson & F. M. Nunes Nuclear Reactions for Astrophysics : Principles, Calculation and Applications of Low-Energy Reactions (Cambridge University Press, 2009)
- J. R. Taylor Scattering Theory : The Quantum Theory of Nonrelativistic Collisions (Dover, New York, 1972)