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Outline

1 Monday
I Stationary scattering states and elastic-scattering cross section
I Partial-wave expansion and notion of phase shift
I PM : Exercise session on phase shifts

2 Tuesday
I Low- and high-energy behaviour of phase shift
I Effective-range expansion
I Notion of resonance

3 Wednesday
I S Matrix
I Coulomb scattering
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Quantum Collisions

Quantum Collisions
Quantum collisions used to

study the interaction between particles/nuclei/atoms. . .
(see Hans-Werner Hammer & Kai Hebeler’s classes)

analyse the structure of particles/nuclei/atoms. . .
(see Sonia Bacca & Daniel Phillips’ classes)

measure reaction rates of particular interest
(stars, nuclear reactors, production of radioactive isotopes. . . )

Measurement scheme :

collimator

incident beam

target

scattered particles

⌦

�⌦

unscattered beam

a mere theorist’s viewpoint
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Quantum Collisions

Reaction types

Various reactions can happen :
1 a + b! a + b (elastic scattering ; this series of lectures)
2 ! a + b

⇤ (inelastic scattering)
3 ! c + f + b (breakup ; see Week 3)
4 ! d + e (rearrangement or transfer)

Examples :
1 11Be + 208Pb! 11Be + 208Pb (elastic scattering)
2 ! 11Be⇤(1/2�) + 208Pb (inelastic scattering)
3 ! 10Be + n + 208Pb (breakup)
4 ! 10Be + 209Pb (transfer)
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Quantum Collisions

Energy conservation

Total energy is conserved :
ma c

2 + mb c
2 + incident kinetic energy

= mass of products c
2 + kinetic energy

The Q value is the energy “produced” by the reaction

ma c
2 + mb c

2 = mass of products c
2 + Q

, Q = ma c
2 + mb c

2 �mass of products c
2

Q > 0 : exoenergetic, always (energetically) possible
Q < 0 : endoenergetic, requires a minimal incident kinetic energy

A channel can be open if the incident kinetic energy > �Q

otherwise the channel is closed

The elastic channel is always open (Q = 0)
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Notion of cross section Definition

Cross section
collimator

incident beam

target

scattered particles

⌦

�⌦

unscattered beam

For an incident flux Fi on N particles in the target,
the number �n of events detected in direction ⌦ = (✓,')
per unit time within the solid angle �⌦ is proportional to Fi and N :

�n = Fi N ��

The factor of proportionality � is the cross section
[��] = surface ; unit : barn 1 b = 10�24cm2

The differential cross section
d�

d⌦
= lim
�⌦!0

��

�⌦
=

�n

FiN�⌦

Taking Z as the beam axis, d�/d⌦ depends only on ✓ by symmetry
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Notion of cross section Theoretical framework

Theoretical framework

Let us consider particles a and b of mass ma and mb

interacting through potential V(r),
where r = ra � rb is the a-b relative coordinate

The Hamiltonian reads

H = Ta + Tb + V(r),

where

Ta =
p

2
a

2ma

= �~
2�ra

2ma

Tb =
p

2
b

2mb

= �~
2�rb

2mb
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Notion of cross section Theoretical framework

Change to cm and a-b relative motion
The coordinate change

Rcm = (mara + mbrb)/M
r = ra � rb

with M = ma + mb, the total mass, leads to

H = Tcm + Tr + V(r),

where Tcm =
P

2
cm

2M
= �~

2�Rcm

2M

Tr =
p

2

2µ
= �~

2�r

2µ
,

with Pcm = p
a
+ p

b
, p = (mb p

a
� ma p

b
)/M = µ v,

and µ = mamb/M the reduced mass of a and b

H is then the sum of two Hamiltonians : Hcm(Rcm) + H(r)
Hence the two-body wave function factorises

 tot(ra, rb) =  cm(Rcm)  (r)
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Notion of cross section Theoretical framework

cm motion
The cm wave function is solution of

Hcm  cm(Rcm) = Ecm  cm(Rcm),

where Hcm =
P

2
cm

2M

is the Hamiltonian of a free particle of mass M

The cm motion is described by a plane wave

 Kcm

(Rcm) = (2⇡)�3/2
e

iKcm·Rcm

with Ecm = ~2
K

2
cm
/2M

The factor (2⇡)�3/2 is chosen such that

h K0cm

| Kcm

i = �(Kcm � K0cm)
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Notion of cross section Stationary Scattering States

Stationary Scattering States
The Hamiltonian of the a-b relative motion reads

H = Tr + V(r)

This is the Hamiltonian for a virtual particle of mass µ
evolving within the external potential well V

A stationary scattering state  k(r) is solution of

H  k = E  k
where E = ~2

k
2/2µ

with the asymptotic behaviour

 
k ẑ(r)�!

r!1
(2⇡)�3/2

"
e

ikz + fk(✓)
e

ikr

r

#
,

with ẑ chosen as the beam axis
fk is the scattering amplitude
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Notion of cross section Stationary Scattering States

Physical interpretation
To interpret the stationary scattering state

 
k ẑ(r)�!

r!1
(2⇡)�3/2

"
e

ikz + fk(✓)
e

ikr

r

#
,

let us recall the probability current

j(r) =
1
µ
<[ ⇤(r) p (r)]
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Notion of cross section Stationary Scattering States
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Notion of cross section Stationary Scattering States

Physical interpretation
To interpret the stationary scattering state

 
k ẑ(r)�!

r!1
(2⇡)�3/2

"
e

ikz + fk(✓)
e

ikr

r

#
,

let us recall the probability current

j(r) =
1
µ
<[ ⇤(r) p (r)]

The plane wave describes the incoming current

j
i
(r) = (2⇡)�3~k

µ
ẑ = (2⇡)�3

v ẑ

where v is the a-b relative velocity
The spherical wave fk(✓) e

ikr

r
describes the scattered current

j
s
(r) = (2⇡)�3/2

v | fk(✓)|2
1
r2 r̂ + O

 
1
r3

!

is purely radial at R! 1 ; directed outwards ; / v but varies with ✓17 / 39
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Notion of cross section Stationary Scattering States

Physical interpretation

Incoming wave : Scattered wave :

e
ikz ! j

i
(r) / v ẑ fk(✓)

e
ikr

r
! j

s
(r) / v | fk(✓)|2

1
r2 r̂
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Notion of cross section Theoretical scattering cross section

Theoretical scattering cross section
We can assume the incoming flux

Fi = C ji

The scattered flux in direction ⌦ is then

Fs(⌦) = C js(⌦)

For one scattering nucleus,
the number of events per unit time detected in direction ⌦ reads

dn = Fs(⌦) dS = C js(⌦) r
2
d⌦

) d�

d⌦
=

dn

Fi d⌦

=
r

2
js(⌦)
ji

= | fk(✓)|2

The scattering amplitude fk contains all information about V
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Partial-wave expansion and phase shift Partial-wave expansion

Partial-wave expansion
If the potential does not depend on ⌦, i.e. V(r),

[H, L2] = 0
[H, LZ] = 0

the angular motion is described by spherical harmonics

 (r) =
1
r

X

l,m

ukl(r) Y
m

l
(⌦),

where ukl is solution of the radial equation
 

d
2

dr2 �
l(l + 1)

r2 � 2µ
~2 V(r) + k

2
!

ukl(r) = 0

with ~
2
k

2

2µ = E
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Partial-wave expansion and phase shift Partial-wave expansion

Free wave

Let’s start with no interaction : V(r) = 0 8r

In that case ukl is solution of
 

d
2

dr2 �
l(l + 1)

r2 + k
2
!

ukl(r) = 0

If we pose ukl(r) = x fl(x), with x = kr, the equation becomes
 

d
2

dx2 +
2
x

d

dx
+ 1 � l(l + 1)

x2

!
fl(x) = 0

which is a spherical Bessel equation (aka Helmholtz equation)
whose solutions are the spherical Bessel functions jl and nl

nl is sometimes called the spherical Neumann function
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Partial-wave expansion and phase shift Partial-wave expansion

Spherical Bessel functions

jl(x) = (�x)l

 
1
x

d

dx

!l sin x

x

j0(x) =
sin x

x

j1(x) =
sin x

x2 �
cos x

x

jl(x) �!
x!0

x
l

(2l + 1)!!

jl(x) �!
x!1

1
x

sin(x � l
⇡

2
)

nl(x) = (�x)l

 
1
x

d

dx

!l cos x

x

n0(x) =
cos x

x

n1(x) =
cos x

x2 +
sin x

x

nl(x) �!
x!0

(2l � 1)!!
xl+1

nl(x) �!
x!1

1
x

cos(x � l
⇡

2
)

Recurrence relations : for fl = jl or nl,

x f
0
l
(x) = x fl�1(x) � (l + 1) fl(x)

x f
0
l
(x) = l fl(x) � x fl+1(x)

(2l + 1)x
�1

fl(x) = fl+1(x) + fl�1(x)
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Partial-wave expansion and phase shift Partial-wave expansion

Plane waves and spherical Bessel functions
When V(r) = 0 8r, the plane wave e

ikz (so with fk(✓) = 0)
is also a solution of the Schrödinger equation, so

e
ikz =

1X

l=0

⇥
al jl(kr) + bl nl(kr)

⇤
Y

0
l
(⌦)

bl = 0 8l since nl(kr)�!
r!0

(2l�1)!!
(kr)l+1

For al, one gets

al = i
l
p

4⇡(2l + 1)
and

e
ikz =

1X

l=0

i
l
p

4⇡(2l + 1) jl(kr) Y
0
l
(⌦)

�!
r!1

1X

l=0

i
l
p

4⇡(2l + 1)
1
kr

sin(kr � l⇡/2) Y
0
l
(⌦)
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Partial-wave expansion and phase shift Partial-wave expansion

Distorted wave
Switching on the a-b interaction (V , 0),
we have to solve the radial equation

 
d

2

dr2 �
l(l + 1)

r2 � 2µ
~2 V(r) + k

2
!

ukl(r) = 0

with ~
2
k

2

2µ = E

But for a “few” cases (see exercises this afternoon)
it is done numerically (see exercises new week with N. Barnea and S. Bacca)

To compute the cross section from the solution ukl

we need the scattering amplitude fk(✓)
which is deduced from the asymptotics of the wave function

If we assume r
2
V(r)�!

r!1
0, ukl(r)�!

r!1
u

as
kl

(r), which is solution of
 

d
2

dr2 �
l(l + 1)

r2 + k
2
!

u
as
kl

(r) = 0
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Partial-wave expansion and phase shift Phase shift

Phase shift �l
The solutions of

 
d

2

dr2 �
l(l + 1)

r2 + k
2
!

u
as
kl

(r) = 0

are once again spherical Bessel functions

u
as
kl

(r) = al kr jl(kr) + bl kr nl(kr)
�!
r!1

al sin(kr � l⇡/2) + bl cos(kr � l⇡/2)

Posing al = cl cos �l and bl = cl sin �l

u
as
kl

(r)�!
r!1

cl sin(kr � l⇡/2 + �l)

cl is just a normalisation factor
�l is the phaseshift : it contains all information on the influence of V
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Partial-wave expansion and phase shift Phase shift

Phase shift : Physical interpretation
The asymptotics of the distorted wave

u
as
kl

(r)�!
r!1

cl sin(kr � l⇡/2 + �l)

is phase shifted compared to the plane wave

al kr jkl(r)�!
r!1

al sin(kr � l⇡/2)
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Partial-wave expansion and phase shift Phase shift

Phase shift : Physical interpretation
The asymptotics of the distorted wave

u
as
kl

(r)�!
r!1

cl sin(kr � l⇡/2 + �l)

is phase shifted compared to the plane wave

al kr jkl(r)�!
r!1

al sin(kr � l⇡/2)

V(r) = 0 8r ) �l = 0 : no shift
the colliding particles don’t see each other
V(r) < 0 8r ) �l > 0 : wave attracted by the field
the colliding particles tend to stick together
V(r) > 0 8r ) �l < 0 : wave repulsed by the field
the colliding particles repulse each other

(see exercises this afternoon)
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Partial-wave expansion and phase shift Phase shift

Scattering matrix S l

Another way of seeing this is to interpret

u
as
kl

(r)�!
r!1

cl sin(kr � l⇡/2 + �l)

in terms of incoming and outgoing (spherical) waves :

ukl(r) �!
r!1

i cl

e
�i�l

2

h
e
�i(kr�l⇡/2) � S l e

i(kr�l⇡/2)
i

where

S l = e
2i�l

is the scattering matrix or S matrix

The outgoing wave is shifted from the incoming wave by 2�l

due to the effect of V ) used to compute the scattering amplitude fk
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Partial-wave expansion and phase shift Phase shift

Scattering amplitude
The scattering wave function can be expanded in partial waves

(2⇡)3/2 
k ẑ(r) =

1
kr

1X

l=0

ukr(r) Y
0
l
(⌦)

�!
r!1

e
ikz + fk(✓)

e
ikr

r

Since e
ikz �!

r!1

1X

l=0

i
l
p

4⇡(2l + 1)
i

2kr

h
e
�i(kr�l⇡/2) � e

i(kr�l⇡/2)
i

Y
0
l
(⌦)

and ukl �!
r!1

i cl

e
�i�l

2

h
e
�i(kr�l⇡/2) � S l e

i(kr�l⇡/2)
i

comparing the incoming waves we obtain cl = i
l
p

4⇡(2l + 1) e
i�l

and deduce the scattering amplitude from S l = e
2i�l

fk(✓) =
1

2ik

1X

l=0

p
4⇡(2l + 1)(S l � 1)Y0

l
(⌦) =

1
2ik

1X

l=0

(2l + 1)(S l � 1)Pl(cos ✓)
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Partial-wave expansion and phase shift Scattering cross section

Scattering cross section
d�

d⌦
= | fk(✓)|2

=

�������
1

2ik

1X

l=0

(2l + 1)(S l � 1)Pl(cos ✓)

�������

2

After integration over ⌦ the total scattering cross section reads

� =
4⇡
k2

1X

l=0

(2l + 1) sin2 �l
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Partial-wave expansion and phase shift Scattering cross section

Contribution of partial waves

Each partial wave contributes to � but with variable importance

� =
4⇡
k2

1X

l=0

(2l + 1) sin2 �l

Centrifugal barrier l(l+1)
r2

ensures �l �!
l!1

0
) limited sum

L = 4

L = 3

L = 2

L = 1

L = 0

R (fm)
V

e↵ L
(M

eV
)

1086420

150

100

50

0

-50

At very low E, only l = 0 contributes and � = 4⇡
k2 sin2 �0

At large E many partial waves must be included to reach
convergence () low-energy method)
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Partial-wave expansion and phase shift Scattering cross section

How to compute �l ?
For short-range potentials, space can be divided in two regions :

External one, where V(r) ⇡ 0 8r > r0, where ukl(r) is

u
as
kl

(r) = cl

⇥
cos �l kr jl(kr) + sin �l kr nl(kr)

⇤�!
r!1

cl sin(kr � l⇡/2 + �l)

Internal one (r < r0), where V is non-negligible
and where we have to solve the radial equation

 
d

2

dr2 �
l(l + 1)

r2 � 2µ
~2 V(r) + k

2
!

u
int
kl

(r) = 0

e.g. numerically (see exercises next week with N. Barnea and S. Bacca)
At the boundary

u
int
kl

(r0) = u
as
kl

(r0) and u
int0
kl

(r0) = u
as0
kl

(r0)

or
u

int0
kl

u
int
kl

������
r0

=
u

as0
kl

u
as
kl

������
r0

=
k cos(kr0 � l⇡/2 + �l)
sin(kr0 � l⇡/2 + �l)

,

which gives access to the phase shift �l (see exercises this afternoon)
33 / 39



Partial-wave expansion and phase shift Scattering cross section

How to infer �l from data?

Because the elastic-scattering cross section is a function of �l

d�

d⌦
=

�������
1

2ik

1X

l=0

(2l + 1)(S l � 1)Pl(cos ✓)

�������

2

,

experimental phase shifts can be obtained from data

A development of the differential cross section
in Legendre polynomials Pl provides �l “experimentally”

(see exercises this afternoon)
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Partial-wave expansion and phase shift Scattering cross section

Example : p-n phaseshifts
Notation : 2S+1

LJ
140 R. Navarro-Pérez et al. / Physics Letters B 724 (2013) 138–143

Fig. 1. np phase shifts in degrees for J 6 5 as a function of the LAB energy. The curves have been calculated with the fitted potential. The points with error bars represent
the pseudodata obtained as the mean value and standard deviation of the phase shifts provided by the PWA [3] and the six high-quality potentials [4–7]. We fit the energies
ELAB = 1,5,10,25,50,100,150,200,250,300,350 MeV.

Table 1
Fitting delta-shell parameters (λn)

JS
l,l′ (in fm−1) with their errors for all states in the JS channel and the corresponding χ2-value for J 6 5 in np scattering. We take N = 5

equidistant points with #r = 0.6 fm. A dash symbol “−” indicates that the corresponding parameter has been fixed to (λn)
JS
l,l′ = 0.

Wave λ1 λ2 λ3 λ4 λ5 χ2/D.o.f.
1 S0 2.12(7) −0.987(7) – −0.087(2) – 0.3476
3 P0 – 1.26(4) −0.43(1) – −0.037(2) 0.6589
1 P1 – 1.23(2) – 0.079(4) – 0.0088
3 P1 – 1.33(2) – 0.053(2) – 0.4323
1 D2 – – −0.252(3) – −0.0163(9) 0.6946
3 D2 – – −0.596(8) −0.08(1) −0.050(4) 0.6144
1 F3 – – 0.34(1) – 0.010(2) 0.3812
3 F3 – – – 0.060(2) – 0.4177
1G4 – – −0.22(2) – −0.0137(9) 0.8090
3G4 – – – −0.267(3) – 1.8670
1 H5 – – – 0.071(8) – 0.6577
3 H5 – – – 0.04(1) – 0.4193
3 S1 1.57(4) −0.40(1) – −0.064(3) –
ε1 – −1.69(1) −0.379(4) −0.216(5) −0.027(3)
3 D1 – – 0.52(2) – 0.041(3) 0.4313
3 P2 – −0.415(6) – −0.0384(9) –
ε2 – 0.65(1) – 0.106(2) –
3 F2 – – 0.14(3) −0.076(6) – 0.3881
3 D3 – – – – –
ε3 – – −0.47(3) −0.24(1) −0.020(4)
3G3 – – – 0.101(6) – 0.6806
3 F4 – – −0.163(4) – −0.0101(4)

ε4 – – – 0.108(3) –
3 H4 – – – – −0.010(1) 0.2659
3G5 – – – 0.025(4) –
ε5 – – – −0.35(1) –
3 I5 – – – – – 0.5354

[Navarro Pérez, Amaro, Ruiz Arriola, PLB 724 138 (2013)]
Data used to fit the various terms of VNN (see lectures of Kai Hebeler)

35 / 39



Partial-wave expansion and phase shift Scattering cross section

Summary

Collisions used to study interaction and structure of “particles”
Notion of cross section used to characterise a process in
quantum collision theory

d�

d⌦
= lim
�⌦!0

�n

FiN�⌦

Computing stationary scattering state

 
k ẑ(r)�!

r!1
(2⇡)�3/2

"
e

ikz + fk(✓)
e

ikr

r

#
,

gives the scattering cross section

d�

d⌦
= | fk(✓)|2
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Partial-wave expansion and phase shift Scattering cross section

Summary (2)
In partial-wave expansion, defining phaseshifts

u
as
kl

(r)�!
r!1

cl sin(kr � l⇡/2 + �l)

the scattering cross section reads

d�

d⌦
=

�������
1
k

1X

l=0

(2l + 1)(S l � 1)Pl(cos ✓)

�������

2

Phase shifts �l obtained by solving the radial equation for r < r0
 

d
2

dr2 �
l(l + 1)

r2 � 2µ
~2 V(r) + k

2
!

u
int
kl

(r) = 0

and matching the solution with the external one u
as
kl

:

u
int0
kl

u
int
kl

������
r0

=
u

as0
kl

u
as
kl

������
r0
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Partial-wave expansion and phase shift Scattering cross section
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