Introduction to Scattering Theory

Pierre Capel

JGlu

25 July 2022



N
Outline

@ Monday
» Stationary scattering states and elastic-scattering cross section
» Partial-wave expansion and notion of phase shift
» PM : Exercise session on phase shifts

@ Tuesday
» Low- and high-energy behaviour of phase shift
» Effective-range expansion
» Notion of resonance

© Wednesday

> S Matrix
» Coulomb scattering



@ Quantum Collisions

@ Notion of cross section
@ Definition
@ Theoretical framework
e Stationary Scattering States
@ Theoretical scattering cross section

© Partial-wave expansion and phase shift
@ Partial-wave expansion
@ Phase shift
@ Scattering cross section



Quantum Collisions

Quantum Collisions
Quantum collisions used to
e study the interaction between particles/nuclei/atoms. . .
(see Hans-Werner Hammer & Kai Hebeler’s classes)
@ analyse the structure of particles/nuclei/atoms. ..
(see Sonia Bacca & Daniel Phillips’ classes)
@ measure reaction rates of particular interest
(stars, nuclear reactors, production of radioactive isotopes...)
Measurement scheme : b
scattered particles \

collimator

incident beam

a mere theorist’s viewpoint



Quantum Collisions

Reaction types

Various reactions can happen :
Q@a+b—oa+b (elastic scattering ; this series of lectures)
o —a+b* (inelastic scattering)
o — ¢+ f + b (breakup ; see Week 3)
o —>d+e (rearrangement or transfer)

Examples :
© ""Be + 2®Pb — !"Be + 2%®Pb (elastic scattering)
(2] — HBe*(1/27) + ?%Pb  (inelastic scattering)
Q — UBe + n + 2%Pb (breakup) wek 3.
o — UBe + 2Pb (transfer)



Energy conservation

Total energy is conserved :

mg, c* + my, ¢* + incident kinetic energy

= mass of products ¢? + kinetic energy
The Q value is the energy “produced” by the reaction

mgc? +myc> = mass of products ¢* + O

& 0 = m,c* +my,c® —mass of products ¢?
Q > 0 : exoenergetic, always (energetically) possible
Q < 0 : endoenergetic, requires a minimal incident kinetic energy

A channel can be open if the incident kinetic energy > —Q
otherwise the channel is closed

The elastic channel is always open (Q = 0)
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For an incident flux F; on N particles in the target,
the number An of events detected in direction Q = (6, ¢)
per unit time within the solid angle AQ is proportional to F; and N :

Al’l:F,'NAO'

_[R

The factor of proportionality o is the cross section
[Ac] = surface; unit : barn 1 b = 107*cm?
The differential cross section
4T _ i BT _ _An
dQ 400 AQ  F,NAQ
Taking Z as the beam axis, do-/d€) depends only on 6 by symmetry




Notion of cross section Theoretical framework

Theoretical framework

Let us consider particles a and b of mass m, and m,,
interacting through potential V(r),
where r = r, — r, is the a-b relative coordinate

The Hamiltonian reads

H=T,+T,+ V(r),

where
2 WA
T, = Pa _ 710
2m, 2m,
2
Tb = ﬁ = —h2Arb

2mb Zmb



Change to cm and a-b relative motion

The coordinate change \,{>
R.., = (myr, +myry)/M L
F = r,—r
with M = m, + m,,, the total mass, leads to 'ﬁ?&,

H = Tem+T,+V(r),
Pgm _ thRcm

here T = =
W o 2M 2M
2 h2 A
Tr = p_ = - 4 s
2u 2u

with Pey = p, + pp, p = (mpp, — mup,)/M = pv,
and u = mym;,/M the reduced mass of a and b

H is then the sum of two Hamiltonians : H.,,(R..,) + H(r)
Hence the two-body wave function factorises

\Ptot(raa rb) = \Pcm(Rcm) \P(I')



Notion of cross section Theoretical framework

cm motion
The cm wave function is solution of

H., \Pcm(Rcm) = Eun chm(Rcm)’
P2

oM

is the Hamiltonian of a free particle of mass M

where Hcm =

The cm motion is described by a plane wave
YK, (Ron) = m) 2 KR

with E,,, = iK2, /2M

The factor (27)>/? is chosen such that

<‘PK’Cm|\PK(m> = 0(Ken — K'cn)



Notion of cross section Stationary Scattering States

Stationary Scattering States
The Hamiltonian of the a-b relative motion reads

b Th= _ﬁzAn
ma o

Ma +rMJo

H=T, + V(r)

This is the Hamiltonian for a virtual particle of mass u=
evolving within the external potential well V

A stationary scattering state ¥ (r) is solution of
HY, =EY

where E = h*k?/2u
with the asymptotic behaviour

-3/2
¥,5(r) —(2)

" eikr
e + fi(0) . ]

with Z chosen as the beam axis
fx is the scattering amplitude



Notion of cross section Stationary Scattering States

Physical interpretation
To interpret the stationary scattering state

¥, 5(r) H—;O(zn)-”

) etkr
¢+ ful6) — ]

let us recall the probability current

1
Jr) = p R () p¥(r)]
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Notion of cross section Stationary Scattering States
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Notion of cross section Stationary Scattering States

Physical interpretation
To interpret the stationary scattering state

¥, 5(r) H—;O(zyr)-”2

ikr
ﬂwﬁ@e],
r
let us recall the probability current
. 1 .
Jr) = ;%[‘P (rp¥r)]

The plane wave describes the incoming current

Mﬂ%ﬁﬂ%bQMVz

where v is the a-b relative velocity
The spherical wave fk(e)e describes the scattered current

1 1
J(n =207 v |fk(9)|2§? +0 (r—3)

is purely radial at R — oo ; directed outwards ; «c v but varies with 6



Notion of cross section Stationary Scattering States

Physical interpretation

il
el [P (ln
I Ve

s =

<~ P [7_
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N |

e i<
Incoming wave : Scattered wave :
ikr 1

e s j(r) v g £(6) eT — j.(r) < v |fi(O)] SF



Notion of cross section Theoretical scattering cross section

Theoretical scattering cross section
We can assume the incoming flux

Fi=Cj
The scattered flux in direction Q is then
Fy(Q) =C j(Q)

Forscattering nucleus,
the number of events per unit time detected in direction Q reads

A= EN AT dn=F(QdS = Cj(Q)rdQ
A\

= d_O' _dn

& AV‘n AM dQ F,dQ
B r?j(Q)

FL: N — s‘

Ji
= |/(©OF

The scattering amplitude f; contains all information about V



Partial-wave expansion and phase shift Partial-wave expansion

Partial-wave expansion
If the potential does not depend on Q, i.e. V(r),

[H L] = 0
[H’ LZ] = 0
the angular motion is described by spherical harmonics
1
Y(r) = — YHQ
(r) p %“ up(r) ¥,"(€Q),

where uy, is solution of the radial equation

I+ 2
(ﬁ B (,,—2) - h_l;lv(”)‘*‘kz)ukl(l’) =0

with % - E



Partial-wave expansion and phase shift Partial-wave expansion

Free wave

Let’s start with no interaction : V(r) =0 Vr
In that case uy; is solution of

&I+,
(ﬁ_ 2 +k ukl(r)=0

If we pose uy,(r) = x fi(x), with x = kr, the equation becomes

d? +2d 1o l(l+1)
dx?  xdx

=0

which is a spherical Bessel equation (aka Helmholtz equation)
whose solutions are the spherical Bessel functions j; and n;
n; is sometimes called the spherical Neumann function



Spherical Bessel functions

1d)\ sinx 14\

] = A=) 2=~ _ N[ e COS X
jix) (m(MJ = o = (@(MJ :
. sin x COS X

Jox) = — no(x) =

x x
. sinx cosx cosx  sinx
nx) = — - m(x) = =+ —

X X X x

. x /I-1n!
I G (O e

: 1 . T 1 l7r
Ji(x) 2 sin(x — [ 5) n(x) i cos(x — 5)

Recurrence relations : for f; = j, or ny,

Xf{(X) = xfi(x) = A+ Dfi(x)
xf{(x) = 1fi(x) = xfir(x)
QI+ Dx' fi(x) = fra () + fii(x)



Partial-wave expansion and phase shift Partial-wave expansion

Plane waves and spherical Bessel functions
When V(r) = 0 Vr, the plane wave ¢ (so with f.(6) = 0)
is also a solution of the Schrédinger equation, so

ke = Z [ay jikr) +}<nl(kr)] Y2(Q)

bi =0 Vlsince ni(kr)— (f]f ),‘2,' ' /
For a,;, one gets

a; = i \An(2l + 1)

and

ikz

i' \JAm(21 + 1) ji(kr) YO(Q)

i' \JAm(21 + 1)% sin(kr — Im/2) Y'(Q)

—
r—oo

DMs TV

N
Il
(=}



Partial-wave expansion and phase shift Partial-wave expansion

Distorted wave
Switching on the a-b interaction (V # 0),
we have to solve the radial equation

> I(I+1) 2u
— VO + | ug(r) =0
( 2 2 i (r) x(r)
with 2 =
But for a “few” cases (see exercises this afternoon)
it is done numerically (see exercises new week with N. Barnea and S. Bacca)

To compute the cross section from the solution uy,
we need the scattering amplitude fi.(6)
which is deduced from the asymptotics of the wave function

If we assume r*V(r) — 0, uy(r) — ui;(r), which is solution of
r—00 r—00

&£ Il+1)

dr? r2

+ k| ul5(r) = 0



Phase shift ¢,

The solutions of

> ll+1)

R + k2| uS(r) = 0

are once again spherical Bessel functions
uy(r)y = aykr jkr)+ b kr ny(kr)

— a; sin(kr = In/2) + b; cos(kr — Ir/2)

F—00

Posing a; = ¢;COS 0y and bl =( sin 0;

Uy (r) — ¢, sin(kr — In/2 + 6))

¢; is just a normalisation factor
0, is the phaseshift : it contains all information on the influence of V



Partial-wave expansion and phase shift Phase shift

Phase shift : Physical interpretation
The asymptotics of the distorted wave ( V#0)

Uy (r)y — ¢, sin(kr — In/2 + 6))

is phase shifted compared to the plane wave (V’—: O)

a; kr ju(r) H—o: a; sin(kr — In/2)

V\\ (\[Zo) | S~ AN
Uve AP Se Lo (V20
7
T A
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Phase shift : Physical interpretation
The asymptotics of the distorted wave

Uy (r) — ¢; sin(kr — In/2 + 6))

is phase shifted compared to the plane wave
aj kr ju(r)y— a; sin(kr — Ir/2)
e V(=0 Vr = ¢6,=0:no shift

the colliding particles don’t see each other

e V(r)<0 Vr = ¢§,>0:wave attracted by the field
the colliding particles tend to stick together

e V(r)>0 Vr = 6, <0 :wave repulsed by the field
the colliding particles repulse each other

(see exercises this afternoon)



Scattering matrix S

Another way of seeing this is to interpret

Uy (r) — ¢;sin(kr — In/2 + 6)

in terms of incoming and outgoing (spherical) waves :

—i0

N R . i(kr—
ug(r) — ic 5 [e i(kr—Im/2) -5, oikr /;r/z)]

r—00

where
Sl — €2i61
is the scattering matrix or S matrix

The outgoing wave is shifted from the incoming wave by 26,
due to the effect of V = used to compute the scattering amplitude f;



Partial-wave expansion and phase shift Phase shift

Scattering amplitude
The scattering wave function can be expanded in partial waves

1 (o)
QOP¥e(r) = D () V)
=0

) eikr
— 54 £(0)
p

r—00

Since &% — le /7471(21+ 1 [ —i(kr—lr/2) _ei(kr—ln/Z)] YIO(Q)

r—co
=0

e—tél
and uy —> ic > [eﬂ(k; In/2) -5, ez(krflrr/Z)]

r—oo

comparing the incoming waves we obtain ¢; = i’ V4r(2[ + 1) €
and deduce the scattering amplitude from §; = ¢

o0

fi(0) = Zi Var(2l+ 1)(S, - DY(Q) = 2sz Z(21+ 1)(S; = 1)Py(cos )
=0 =0



Partial-wave expansion and phase shift Scattering cross section

Scattering cross section

do )
0 /x(6)]

2

1 [ee]
— > 21+ 1)(S; - 1)P)(cos )
2ik IZ(; :

After integration over Q the total scattering cross section reads

4 . 2
o= ﬁ;(2l+ 1) sin” §;

~ | r n . / N ,.’%
T= | d2 EI— 2 (W) (20+1) ((S-1) (S~
R TIRN ST
A ACSIRAED
N\ 7 LN N \ niz ]
_ 7 () (20 ) Ce ) (S 200
SRR S 2+




Partial-wave expansion and phase shift Scattering cross section

Contribution of partial waves

Each partial wave contributes to o but with variable importance

4r 150 L L=0—
o= 2(21 + 1)sin’ 8, | L=1-—-

k 100—"| [ éizhh

1(1+1) E b k=4
Centrifugal barrier =0 N :
ensures ¢; — 0 = o .
—00 ~o_--"
= limited sum ol
0 2 1 6 8 10

At very low E, only [ = 0 contributes and o = 3 sin” &,

At large E many partial waves must be included to reach
convergence (= low-energy method)



Partial-wave expansion and phase shift Scattering cross section

How to compute 6;?
For short-range potentials, space can be divided in two regions :
@ External one, where V(r) ~ 0 Vr > ry, where uy(r) is

uy(ry = c¢[cosd; kr ji(kr) + siné; kr ny(kr)] — ¢;sin(kr — In/2 + &)

e Internal one (r < ry), where V is non-negligible
and where we have to solve the radial equation
> II+1) 2u .
(ﬁ - T - ﬁV(r) + k2 u}c’}t(r) =0
e.g. numerically (see exercises next week with N. Barnea and S. Bacca)
At the boundary

M}f}t(’”o) = uy(ry) and M}f}t'(f’o) = uy (ro)

wy'| gy kcos(kry — In/2 + 6))
int — 7 . _ ’

uy "o w1y, sin(krg — In/2 + 6))

which gives access to the phase shift §,  (see exercises this afternoon)



Partial-wave expansion and phase shift Scattering cross section

How to infer §; from data ?

Because the elastic-scattering cross section is a function of §;

2

do 1 &
= |5 ;(zz +1)(S, = DPy(cosh)| ,

dQ

experimental phase shifts can be obtained from data

A development of the differential cross section
in Legendre polynomials P, provides ¢, “experimentally”
(see exercises this afternoon)



Partial-wave expansion and phase shift Scattering cross section

Example : p-n phaseshifts
Notation : 2+,

63 1 n F
15 1 N

27 1 S

7

o
PR VIl IR /FRERTES) EYERIIN W IV AR R A}

4 E q -1.35
M
150 250 350 050 150 250 350 050 150 250 330 050 150 250 350
Erap [MeV]

[Navarro Pérez, Amaro, Ruiz Arriola, PLB 724 138 (2013)]
Data used to fit the various terms of Vyy  (see lectures of Kai Hebeler)
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Partial-wave expansion and phase shift Scattering cross section

Summary

e Collisions used to study interaction and structure of “particles”

@ Notion of cross section used to characterise a process in
quantum collision theory

do ~ lim An
dQ B AQ—0 FlNAQ

e Computing stationary scattering state

-3/2
¥ 5(r) —(2m)

) etkr
e + fk<0>7] :

gives the scattering cross section

do

_ 2
o = WO



Partial-wave expansion and phase shift Scattering cross section

Summary (2)
e In partial-wave expansion, defining phaseshifts

Uiy (r) — ¢;sin(kr — In/2 + &)

the scattering cross section reads

2
dO'_

1 (o]
= ~ @1+ 1)(S, - 1)P,(cos 6)
aQ k ; !

e Phase shifts ¢; obtained by solving the radial equation for r < ry

> II+1) 2u 2\ int
(drz a2 T —V( r)+k u,d (r)=
and matching the solution with the external one u; :

ints
Uy

int
Uy

as/

Uy
as
"o kl

o
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