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Abstract

We present new phenomenological optical model potentials (OMPs) for neutrons and protons
with incident energies from 1 keV up to 200 MeV, for (near-)spherical nuclides in the mass range
24 < A < 209. They are based on a smooth, unique functional form for the energy dependence
of the potential depths, and on physically constrained geometry parameters. For the first time, this
enables one to predict basic scattering observables over a broad mass range and over an energy range
that covers several orders of magnitude in MeV. Thereby, the necessity of using different OMPs in
different energy regions has been removed. Using extensive grid searches and a new computational
steering technique, we have obtained optical model parameters for many isotopes separately. We
recommend that the resulting, so-called local, optical models be used in theoretical analyses of
nuclear data. From these parameterizations, we have also constructed asymmetry-dependent neutron
and proton global OMPs that are superior to all other existing phenomenological ones, not only with
respect to the description of observables, but also as they cover larger mass and energy ranges. These
(nucleon) global OMPs, we believe, may be used with some confidence in other studies whenever
one of our local OMPs does not exist. To constrain our parameterization as much as possible and
to assess the performance of our OMPs, we have compared our calculated results with an extensive
experimental data set. This data set includes average resonance parameters, total and non-elastic cross
sections, elastic scattering angular distributions and analyzing powers. The numerous local OMPs
we have obtained allow us to disentangle asymmetry, Coulomb correction and mass-dependent
components of our global OMPs.
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1. Introduction

The optical model has a significant impact on many branches of nuclear reaction
physics. The central assumption of that model is that the complicated interaction between
an incident particle and a nucleus can be represented by a complex mean-field potential,
which divides the reaction flux into a part covering shape elastic scattering and a part
describing all competing non-elastic channels. Solving the Schrédinger equation with
this complex potential yields a prediction for the basic observables, namely the elastic
scattering angular distribution and analyzing power, the reaction and total cross sections
and, for low neutron energies, the and p-wave strength functionsSg, S1) and the
potential scattering radiu®(). An important feature of a good OMP is that it can be used
to reliably predict these observables for energies and nuclides for which no measurements
exist, while the ingredients of the model, either microscopic or phenomenological, are
physically well-behaved. Moreover, the quality of several derived quantities that are
provided by the optical model has animportant impact on the evaluation of the various non-
elastic channels. Well-known examples &reatrix elements and the related transmission
coefficients that enter the statistical model of compound nucleus evaporation, and the
distorted wave functions that are used for the description of direct inelastic scattering to
discrete states as well as in evaluations of multi-step direct transitions to the continuum.
The reaction cross sections that are calculated with the optical model are important for the
evaporation part of intranuclear cascade models and also for semi-classical pre-equilibrium
models. All these nuclear models for the non-elastic channels rely on various other
ingredients, such as discrete level schemes, level densities, gamma-ray strength functions,
fission barriers, etc. Uncertainties in those quantities all add to the total uncertainty of the
calculated results. Therefore, it is crucial that the OMPs which enter such nuclear model
calculations be adequately determined, independent pieces of information.

The construction of reliable phenomenological OMPs on a broad scale is exactly the
purpose of this paper. For each (near-)spherical nucleus for which appropriate experimental
data exists, we have constructed local neutron and proton OMPs for the entire 1 keV—
200 MeV energy region without any discontinuities in their parameter values. In addition,
we have constructed global neutron and proton OMPs for the same energy region and for
nearly the whole periodic table of elements (more precisely, fag 24< 209). All OMPs
are based on the same smooth energy dependent functional forms for the potential depths,
while the associated geometry parameters are constrained within acceptable limits around
a global average. Apart from an unprecedented fit to the observables, we can pin down the
behaviour of the various components of the OMP, which will serve as additional assessment
of the quality of microscopic optical model approaches. We hope that the most important
spin-off of our new OMPs is a significant increase in the precision of the description of
non-elastic reaction channels up to 200 MeV.

Throughout this paper, we will compare our OMPs with other existing potentials.
Therefore, to put our work better in perspective, we now proceed with a general
categorization of OMPs.
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1.1. Microscopic and phenomenological optical models

In a broad sense, one may distinguish between the microscopic optical model and the
phenomenological optical model. In the microscopic optical model, the nucleon—nucleon
effective interaction is folded with the matter density distribution to give a direct measure
of the strength and shape of the nuclear potential. In the phenomenological optical model,
one adopts a suitable analytical form for the potential, usually a Woods—Saxon form,
and determines its depth and geometry parameters by means of parameter adjustment to
best fit available experimental data. The simultaneous development of both approaches is
important, since they usually serve as each others’ guide and inspiration. Recently, there
has been considerable progress in microscopic optical models (see, e.g., [1-3]). In this
paper, we will develop new phenomenological OMPs that will provide a new challenge, in
terms of predictive power, to the microscopic approaches.

1.2. Local and global optical models

From the literature, it seems that there are three methods commonly used to set the
parameterization of the phenomenological OMP, which vary in the amount and type of
data used. They are (i)"@est-fit" optical mode] representing a potential for one nucleus
and one single incident energy, (ii)@cal optical modelrepresenting a potential for one
nucleus and an energy region, and (iiilgkbal optical modelin which a potential is
specified for both a mass region and an energy region. In addition to this classification, one
can consider neutron and proton potentials separately or a more general isospin dependent
nucleon potential, and one can distinguish between the spherical and deformed OMPs, the
latter being applied in coupled channels analyses. Note that we define tHectetwptical
model as the opposite case of the global optical model. Thus, in this paper the term does
notindicate an equivalent local potential for a non-local, energy-dependent potential.

Of these approaches, the best-fit potentials (case (i)) obviously give the best description
of measured data. Indeed, it is usually not too difficult to obtain a satisfactory fit of a single
elastic angular distribution since there are, usually, more than 10 parameters available for
adjustment. Unfortunately, the obtained parameter sets invariably are uncorrelated from
energy to energy, whereas one may a priori assume that at least the geometry parameters
should, albeit in an effective way, reflect the size and structure of the nucleus and thus
be energy independent. While best-fit potentials alone are useless for the prediction
of observables at energies for which no measurements exist, they are useful for the
determination of global trends in optical model parameters as a function of energy. We have
used that approach, by means of so-called grid searches, as a first step in the construction
of our parameterizations.

The other extreme is case (iii), the global optical model. From a physical point of
view, a phenomenologicagjlobal optical model should not be expected to provide an
adequate description of a nucleon—nucleus interaction, simply because the nuclear structure
differences among adjacent nuclei cannot be cast into a simple and sifieathd
A-dependence of the Woods—Saxon parameters. @mtyoscopicoptical models can
be expected to provide these local nucleus-by-nucleus differences, since they are built
from detailed nuclear structure properties. However, the global phenomenological optical
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model provides a convenient average description of the overall trend of the interaction as a
function of mass and energy and is the only option for nuclides for which experimental data
and a microscopic approach are not available. For this reason, part of the results presented
in this paper consists of new neutron and proton global OMPs. As we will show, they
significantly outperform all previous global OMPs.

Nevertheless, we argue that the best approach is given by the local optical model
(case (ii)), in which an OMP parameter set is found for each target nucleus separately,
and with its energy behaviour expressed analytically. The parameters of these functions
must then vary around those of the global OMP within acceptable limits. We expect,
and actually find, that the optical model parameters for a particular nucleus are similar
to those of a neighboring one, but the way in which the parameter sets of two adjacent
nuclides differ turns out to be unpredictable. Again, this is not surprising, since the Woods—
Saxon form factor is a very approximative representation of the complicated nucleon—
nucleus interaction, including all its shell and deformation effects, and this is reflected
by unpredictable changes in the phenomenological parameters from nucleus to nucleus.
Furthermore, it is well known that the actual nucleon—nucleus interaction is non-local; due
if to nothing else than the Pauli principle. However, as has been shown [2], there always
exists an equivalent local potential for the scattering phase shifts generated from any fully
non-local interaction. Basically the non-locality translates into an energy dependence of
that equivalent local field.

In sum, local OMPs for each nucleus are the most appropriate for the analysis of
experimental data. The best-fit potentials serve as tools to initialize the local OMP
parameter set and the global OMP serves as a guideline to keep the parameters within
physically reasonable bounds. Accordingly, this entails that in this work we have developed
local and global OMPs iteratively. Of course, such OMPs can only be taken seriously if the
number of free parameters is kept to a minimum, certainly with respect to the number of
data points to be described. We argue here that, in comparison with earlier work, we have
reducedhe number of parameters but still get a better description of the experimental data.

1.3. Energy and mass range

The use of the optical model in other nuclear reaction models, for non-elastic channels,
clearly indicates the need for OMP parameterizations over a broad energy range. The
problem one generally faces is that for the theoretical calculation of all non-elastic reaction
spectra, reliable OMPs are required from the incident projectile energy down to a few keV.
Prior to the present work, complete parameterizations for energies covering several orders
of magnitude in MeV only existed for a few nuclides, usually obtained with dispersion
relations. Thus complete nuclear reaction analyses have mostly been restricted to the use
of uncorrelated OMP parameterizations in various energy regions. Consequently there have
been undesired discontinuities at the matching energies, not only for the predicted standard
observables, but also for all other derived cross sections, spectra and angular distributions.
Especially this aspect motivated us to revisit the standard optical model with Woods—Saxon
form factors, and to eliminate these restrictions.

We realize the restrictions of adopting a spherical optical modealioenergies and
target masses. The phenomenological optical model is physically dubious for light nuclei,
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which we would define agl < 24. It is also dubious for many nuclei, especially in the
rare earth and actinide regions, which must be described by deformed OMPs that take
into account the strong channel coupling to the first collective excited states. Nuclides
for which those features are known to be relevant, therefore have been excluded from the
present analysis.

The energy range is also limited since, above about 200 MeV, the Woods—Saxon form
is known to be inappropriate, and a “wine-bottle” shape of the form factor is more
favored. This can also be attributed to the natural non-locality of the nucleon—nucleus
interaction [2]. In addition, the depth of real volume potential is changing sign around this
energy, and there are indications that the imaginary part of the volume potential increases
due to increasing importance of relativistic dynamics. Thus, in this study we have not
considered light mass and strongly deformed nuclides, and we have not considered nucleon
projectile energies above 200 MeV.

1.4. Optical model calculations and optimization

The determination of phenomenological OMP parameters from a set of different
experimental observables has often been described as an art rather than a science. In
particular,x? optimization has a reputation in optical model research that is always under
debate. Therefore, we ugé€ assessments only to initialize the OMP parameters.

There are however various reasons why we can expect an improvement over the
last large-scale optical model study of 1991, by Varner [4]. First, there is now a much
better experimental database (which includes for example high-energy neutron total cross
sections for many nuclides) with which OMP parameters can be better constrained.
Indeed, our analysis is based on an unprecedented collection of experimental data, and
the references for this database are listed in Tables 1, 2 and 7. In addition, there is
now enhanced theoretical guidance from the microscopic optical model approaches.
The significant increase in computer power enables us to use more robust parameter
optimization methods than in the past. The two methods used here are Simulated Annealing
(see Section 3), and a new visualization technique, called computational steering [5], which
enabled us to obtain the final OMP parameters manually; an activity considered impossible
until recently. Since we wish to emphasize the power of this approach, we give a description
of the relevant software package, ECISVIEW, in Section 3. All the individual optical model
calculations have been performed with the versatile code ECIS-97 [6], which takes into
account both low-energy (compound nucleus) and high-energy (relativistic) effects.

1.5. This paper

A central feature of our work is that we treat all nuclei on the same footing. In the past,
a new local OMP was generated whenever new experiments were added to the existing
experimental database for the nucleus under consideration. Inevitably, the functional form
of the OMP for a particular nucleus then differed from paper to paper. Also certain nuclides
(e.g.,%%Ca, 99Zr, and298pPb) were better covered than others. On the other hand, global
optical model studies were not so variable since they used complete databases for the
energy and mass ranges under study. However, their results lacked the precision of the
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Table 1
do/d$2 andAy () database for neutron elastic scattering
Target Ref. Energy (MeV) Ref. Energy (MeV)
24Mg [61] 34 [63] 9.8,14.8
[62] 6.1
natyig [64] 1.9,2.8,38,4.8 [67] 11
[65] 5.4,6.4,7.6,8.6 [68] 14.8
[66] 8 [69] 21.6
27p [70] 3.2 [75] 18, 20, 22, 25, 26
[71] 5.46.4,7.5, 8.6 [76] 84
[72] 7.6 [77] 96
[73] 10.9, 13.9, 16.9 [78] 136
[74] 14, 17
28g;j [79] 21.7 [80] 30.3,40
natg; [71] 5.4,6.4,7.6,8.6 [81] 11, 20, 26
[51] 8,10, 12, 14, 17 [29] 55, 65, 75
3lp [82] 35,3.9,4.2,45,4.8 [84] 7.8,9
[83] 6
32g [79] 21.7
natg [85] 3,4,7.1 [67] 11
[86] 5.5,6.4,7.6,8.5 [81] 20, 26
[51] 8,10, 12, 14, 17 [87] 30.3, 40
naic| [88] 14.1
natar [72] 7.8 [89] 14
nat [90] 3 [91] 3.7,4.3,65,7.9
40ca [91] 2.1,3.3,5.3,5.9,6.5, 7.9 [47] 11, 20, 26
[92] 9.9,11.9,13.9 [94] 19
[93] 1 [95] 21.6
[30] 16.9 [80] 30.3, 40
naica [96] 65
455¢ [97] 2.6,2.9,3.8,55.9,6.5
7.1,8,9,10
natr; [98] 45,55,6.5,7.6,8.1 [99] 14
8.4,9.1,9.5,10
5y [100] 5.4,6.4,8.6 [101] 8,9,10.1,10.9, 11.9, 13, 14.4
52¢y [85] 3,4 [35] 8,9,9.8,10.8,11.4, 12
[102] 4.3,4.9,6.4,75,8.6 12.7,13.7,14.1, 14.8
[69] 21.6
55Mn [85] 25,3,35,4,4.6,6.1,7,8 [67] 11

(continued on next paye
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Table 1 Continued

Target Ref. Energy (MeV) Ref. Energy (MeV)
S4re [103] 7,85 [104] 10,12, 14
[33] 10, 14, 17 [105] 11, 20, 24, 26
56Fe [103] 4.6,5,5.6,6.5,7.6 [105] 11, 20, 26
[106] 5 [95] 21.6
[107] 8,10,12, 14 [108] 24.8
nalEe [29] 55, 65, 75
59co [85] 2,25,3,3.5,4,4.6,6.1 [99] 14
71,81 [69] 21.6
[100] 5,5.4,6.4,7.6, 8.6 [109] 23
[67] 11
58N [110] 8,10,12, 14 [111] 24
[33] 10, 14, 17
60N [112] 4.3,4.9 [110] 8,10, 12, 14
[113] 6.4,7.5,8.6 [111] 24
natyji [85] 3,3.5,4,4.6,6.1,7 [67] 11
[112] 5,6.4,7.5 [69] 21.6
63cy [114] 5.5,7,85 [104] 8,10, 12, 14
65cu [115] 10, 14
naicy [116] 1.6,2,2.2,2.6,3,3.4,3.8 [77] 96
[76] 84 [117] 155
naiGe [118] 75
7Sas [119] 8.1
805e [120] 4 [121] 8,10
nalge [122] 1 [123] 3.7
[70] 3.2 [124] 14.1
885y [125] 11
natgy [126] 0.9 [127] 4.4
[70] 3.2 [128] 14.8
[123] 3.7
8%y [129] 3.8,45,5,5.96.5,7.1 [131] 8,10, 12, 14, 17
7.5,8.4,9,9.5 [132] 11
[130] 5.5 [69] 21.6
90zy [133] 2,2.6,3,35,4 [14] 8,10, 24
[134] 21,52 [125] 11
[135] 5.9,6.9,7.8
97y [136] 8, 10, 24

(continued on next paye
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Table 1 Continued

Target Ref. Energy (MeV) Ref. Energy (MeV)
927y [133] 2,3,4 [136] 8,10, 24
[135] 5.9,7,7.8
94zr [137] 15 [136] 8,10, 24
natzy [29] 55, 65, 75
93Nb [138] 2.6,2.9 [67] 11
[139] 45,5,55,5.9,6.5,7.1 [140] 10, 12, 14, 14.6, 17
7.5,8,8.4,9.1 [141] 20
92Mo [137] 15 [143] 6
[142] 1.8,2,2.2,2.4,2.6,2.8,3 [144] 9,11, 20, 26
3.2,3.4,3.6,3.8,4
%o [137] 15 [143] 6
[142] 1.8,2,2.2,2.4,2.6,2.8,3 [144] 9,11, 20, 26
3.2,3.4,3.6,3.8,4
98Mo [142] 1.8,2,2.2,2.4,2.6,2.8,3 [144] 9,11, 20, 26
3.2,3.4,3.6,3.8,4
100\vo [137] 15 [143] 6
[142] 1.8,2,2.2,2.4,2.6,2.8,3 [144] 9,11, 20, 26
3.2,3.4,3.6,3.8,4
103Rn [138] 15,1.8,2.3,2.8,3.3,3.8 [145] 45,5 55,59,6.5,7.1
[145] 7.5,8,8.4,9.1,9.5, 10
naip [146] 15,1.8,2.3,2.8,3.3,3.8 [147] 59,7.1,8
107ag [148] 1.6,2.2,2.8,3.4,4
natag [149] 45,555,5.9,6.5, 7.1
7.5,8,8.4,9.1,9.5,10
naicg [138] 2.3,2.9, 34,4, [151] 14.6
[150] 45,5,55,5.9,6.5,7.1 [77] 96
7.5,8.1,8.4,9.1,9.5, 10
nafj, [152] 45,559,7.1,8 [67] 11
9.1,9.5,10 [153] 14
116gn [154] 10, 14 [155] 11, 24
1185 [155] 11,24
120gn [156] 1.6,2,2.2,23,25,2.7 [157] 6
2.8,3,3.4,38,4 [154] 10, 11, 14, 17
124gn [155] 11, 24
natgp [158] 24 [96] 65
123gp [156] 1.6,2.1,2.6,3,34,4 [160] 14
[159] 45,55,5.9,6.5,7.1,7.6

8.1,8.4,9.1,9.5, 10

(continued on next paye
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Table 1 Continued

Target Ref. Energy (MeV) Ref. Energy (MeV)
127) [120] 4 [161] 16.1
natre [70] 3.2 [162] 14
nalgy [122] 1 [164] 5
[163] 4.1
nay 5 [165] 2.5,3.1,36 [72] 7.8
nalce [166] 1 [167] 5
[70] 3.2 [69] 21.6
141py [168] 1.2 [167] 5
[165] 15,2,25,3.1,3.6 [169] 8
[70] 3.2
142\ [170] 25 [171] 7
144\d [170] 25 [171] 7
natg [166] 1
1485m [172] 25 [174] 7
[173] 6.2
197au [175] 25 [177] 7
[176] 41 [178] 8
[167] 5
nalpyg [179] 3.0 [124] 14.8
[70] 3.2 [161] 16.1
206pp [177] 7 [67] 11
[72] 7.7 [180] 13.7
[119] 8.1 [69] 21.6
208pp [181] 2 [87] 30.3,40
[23] 4,45,5 55 [29] 55, 65, 75
[182] 6,7,8,9,10,14,17 [76] 84
[183] 9,11, 20, 25.7 [77] 96
[69] 21.6 [78] 136
[37] 22,24 [117] 155
[109] 23
209g; [184] 2,25,3,35,4,45,6,6.5,7,7.5, [23] 5,5.5
8,9,10,11, 12, 20, 24 [186] 6,9
[179] 3 [72] 7.8
[185] 45 [187] 21.6

local optical model. In this paper we consider both local and global OMPs, using the
same methodology so that systematic “errors” in the determination of OMP parameters
are minimized.
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Table 2

Total cross section database for incident neutrons

Target Ref. Target Ref.

nafvg [25,188] 8%y [25,205]

27p] [24,189-191] 907y [24,133,206,207]
natg; [24,191-193] BNb [24,138,205,208]
natg [24,194,195] natyjo [25,195,205,209]
40ca [24,196] naign [24,205,210]

natj [25,197] naice [189,195,211-214]
natcr [25,192,198,199] 197au [25,215]

56Fe [25,192,200,201] natHg [25,195,211,216]
58 [25,202,203] 208pp [24,195,217,218]
naicy [24,116,204] 209g; [24,184,195,219,220]

Our results will be directly applicable in optical model calculations. So far, two large
OMP parameter collections have been assembled: the study by Perey and Perey [7] and,
more recently, by Young [8]. The results of this paper are added to the latter collection
and can also be obtained in direct usable form, including a parameter calculator, from the
authors [9].

This paper is set up as follows. In Section 2 we discuss the basic functional form of
our OMP. In Section 3 we give an outline of the optimization method. Section 4 contains a
comparison of our OMP results with experimental data, for incident neutrons and protons
and on a nucleus by nucleus basis. In Section 5, we identify the asymmetry and Coulomb
correction terms of the potential in order to build a global nucleon—nucleus OMP. The
results are then compared with experimental data and with other optical model predictions.
In Section 6 we provide integral properties of out global OMP by means of volume
integrals. Finally, we give the conclusions in Section 7.

2. Theory
2.1. The optical model potential

The phenomenological, OMP for nucleon—nucleus scattetingsually is defined as

Ur, E) = —Vy(r, E) —iWy(r, E) —iWp(r, E)
+ Vso(r, E).l.o +iWso(r, E).l.o + Ve (r), (1)

where Vy so and Wy p so are the real and imaginary components of the volume-
central /), surface-central §) and spin—orbit $O potentials, respectivelyt is the
laboratory energy of the incident particle in MeV. All components are separated in
E-dependent well depthd/y, Wy, Wp, Vso, and Wso, and energy-independent radial
partsf, namely
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Vy(r, E)=Vv(E)f(r, Ry,ay),
Wy (r, E) = Wy (E) f(r, Ry, ay),

d
WD(ra E) = _MDWD(E)Ef(rv RD7aD)7

ho\°1d
Vsolr, E)=Vso(E)( ) ;Ef(r, Rso, aso),

My C
h\%1d
Wsolr, E) = Wso(E )( ) —— f(r, Rso, aso). ()
myc) rdr
As usual, the form factof (r, R;, a;) is a Woods—Saxon shape
f(r Ri,a;)=(1+ eXp[(r—Ri)/ai])_l, 3)

where, with A being the atomic mass number, the geometry parameters are the radius
R; =r; AY/3 and the diffuseness parametersFor charged projectiles, the Coulomb term
Vc, as usual, is given by that of a uniformly charged sphere

Zzez< r2>
Ve(r) =——(3— — s forr<R N
c(r) 2Re R% c

_Zze2

r

, forr > Rc, (4)

with Z(z) the charge of the target (projectile), amt = rc A3 the Coulomb ra-
dius.

Itis important to note thatin Eq. (2) the real and imaginary potentials of each component
V and SO share the same form factors, i.e., we assume the same geometry parameters
for the pair (Vy, Wy) and for the pair(Vso, Wso), while Wp has its own geometry
parameters. Moreover, we take eaghand g; independent of energy. Hence, we have
not used the full flexibility of the potential form in our search process. By so doing, we
significantly curtail the number of degrees of freedom of the general form, but this is in
line with the wanted situation of as few variable parameters as possible in data analyses.

2.2. Functional forms of potential well depths

For both the local and global OMPs we have determined the values for the three pairs of
radius and diffuseness parameter and the most approjridependent parameterization
for the various potential depths. In many previous studies, this energy dependence has been
modeled by one or more straight line segments. As a consequence, the first derivatives of
such parameterizations are discontinuous at the connecting points. Associated problematic
anomalies then result for transmission coefficients and angular distributions around those
connection points. It is more appropriate to replace these straight line segments by smooth
functions that contain the same, and preferably a smaller, number of parameters which at
the same time allow more flexibility.

Previous dispersive optical model analyses suggest that all functional forms for the
potential depths depend @& — E ), whereE ¢, the Fermi energy in MeV, is defined as
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the energy halfway between the last occupied and the first unoccupied shell of the nucleus.
For incident neutrons

1
E;:—E[SH(Z,N)‘}‘Sn(Z’N—i_l)]’ ®)

with S, the neutron separation energy for a nucleus with proton nurdbend neutron
numberN, while for incident protons

E;:—%BMZJW+SAZ+LNH, 6)

with S, the proton separation energy. We have used the Audi-Wapstra mass table [10] to
obtain the values of the separation energies.

Our OMP parameterization for either incident neutrons or protons is given the common
form

Vv (E) =v1[1—v2(E — Ef) +v3(E — Ef)* — va(E — E)®],
(E — Ep)?

1 )
(E — Ef)?+ (w2)?
ry = constant

Wy (E) =w

ay = constant

(E — Ef)?
(E — Ef)?+ (d3)?
rp = constant

Wp(E)=d1 exg —d2(E — Ey)],

ap = constant

Vso(E) = vsqr ex —vso(E — Ef)],
(E—E)?

SYE—ENZ+ (w2

rso= constant

Wso(E) =w

aso= constant
r¢ = constant (7

whereE ; = E" for incident neutrons an#l = E”, for incident protons. An illustration of
the E-dependence adopted here for the OMP components is shown in Fig. 1 for neutrons
incident on°®Fe.

In general, all parameters change from nucleus to nucleus. Moreover, our OMP analyses
have been made separately for incident protons and neutrons. Hence, an OMP for one
specific nucleus and projectile is described by the potentials and geometries given in
Eqg. (7), and the various parameters are given in Tables 3—6 for neutrons and Tables 8,
9 for protons. A more precise definition of specific OMP parameterizations, i.e., in terms
of asymmetry-dependent and Coulomb correction components, is outlined in Section 5,
where we will provide global nucleon—nucleus potentials. We will now discuss the specific
E-dependence of the various potential depths of Eq. (7).
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Fig. 1. The various potential well depths as a function of incident (laboratory) energy, see Eq. (7). As an example,
the values for neutrons incident 8fFe are plotted.

It is well known that, due to non-locality, the depth of the real central potelitiaE)
decreases with increasing energy. Instead of a lifgéalependence, often assumed in
former OMP analyses foVy (E), we adopt a polynomial dependence. This choice is
dictated by the following considerations. First, the linéadependence is a reasonable
assumption only in a narrow energy interval, typically from 10 to 40 MeV. Second, we
know from dispersive OMP analyses and Dirac phenomenology, which both cover broad
energy ranges, thaty (E) behaves as an exponential function/(E) ~ exd—E]) for
energies up to 140 MeV and a5/ (E) ~ log(E) at higher incident energies [11,12]. In
the early stages of our study we adopted an exponential function to repnréséefiy
below 200 MeV, but that closed form leads to reasonable fits onlyrfat 140 MeV.

The polynomial form in (7) was then considered, since it bears similarity with a truncated
Taylor series expansion of the exponential function. The parametets and v, were

then taken uncorrelated, which enabled us to achieve good fits over a larger energy region.
Parameter, is equal for all nuclides and has merely been included to keep our predictions
under control at about 200 MeV. At higher energies, our functional form will fail since the
real central potential is known to become repulsive there.

Similarly, the volume Wy) and surface W p) absorption OMP components are also
given a(E — Er) dependence. The closed forms assigned to the absorptive potentials are
suggested by earlier OMP analyses covering broad energy ranges. At low incident energy,
the absorption is dominated by the surface compoféntE). Beyond about 10 MeV,
the volume termWy (E) can no longer be ignored, and at higher energies the absorption
is completely dominated bWy (E). The specificE-dependence adopted fory (E) in
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Table 3
Neutron OMP parameters. The parametafsay , rp, ap are given in fmuq, wq, wo in MeV, vy in MevV—1,
v3 in MeV—2, andva in MeV—3

Nuclide ry ay v1 v2 v3 v4 w1 wy rp ap

24mg 1.170 0.676 58.0 0.0072 0.000020 x70° 120 74 1.298 0.540
2Bpg 1.172 0.692 58.0 0.0071 0.000019 x7A0° 126 74 1.295 0.550

27p 1.162 0665 58.8 0.0071 0.000019 x710~% 128 75 1290 0.538
28g; 1.170 0.668 58.8 0.0070 0.000019 x20° 125 75 1.294 0.540
3lp 1.196 0675 57.8 0.0072 0.000019 x10° 124 76 1.293 0.540
323 1.197 0678 595 0.0072 0.000019 x10~° 126 75 1.302 0.545
35¢| 1.196 0.674 58.4 0.0072 0.000019 x70~° 125 76 1296 0.540
3% 1.194 0670 588 0.0072 0.000019 x70° 125 76 1.290 0.535
40ar 1.188 0.670 56.4 0.0072 0.000019 x7A0° 125 76 1.290 0.543
40cq 1206 0676 59.2 0.0072 0.000019 xI0~° 124 76 1.295 0.543
455¢ 1200 0.672 56.6 0.0072 0.000019 x10°° 128 78 1.282 0.532
48T 1.185 0671 56.2 0.0071 0.000019 x70° 132 76 1.286 0.535
51y 1.180 0.669 56.7 0.0071 0.000019 x70° 128 78 1.277 0533
52¢y 1.190 0.667 56.2 0.0071 0.000019 x20° 128 78 1.282 0.535
S4Fe 1.186 0663 582 0.0071 0.000019 x7I0~° 132 78 1.278 0.536
55Mn 1.183 0.663 56.4 0.0071 0.000018 x7A0° 133 74 1278 0.528
S6pe 1.186 0.663 56.8 0.0071 0.000019 x10°° 130 80 1.282 0.532
58N 1.192 0663 57.8 0.0072 0.000019 x7A0° 134 78 1.278 0.536
60N 1.193 0.664 57.0 0.0073 0.000020 x70° 128 78 1.284 0.533
59co 1203 0662 56.2 0.0072 0.000019 x20~° 129 80 1.282 0.532
63cu 1200 0663 565 0.0072 0.000019 x10~° 135 80 1.278 0.532
85cu 1.203 0663 56.0 0.0072 0.000019 x20° 135 80 1.278 0.532
69Ga 1217 0675 56.0 0.0071 0.000018 x7I0~° 138 80 1.275 0.535
74Ge 1220 0675 546 0.0071 0.000018 xI0~° 138 80 1.275 0.535
Sas 1215 0675 546 00071 0.000018 x20° 138 80 1.275 0.535
9By 1.223 0672 540 0.0071 0.000018 x70~° 13.8 80 1273 0.528
80se 1219 0675 53.4 0.0071 0.000018 xI0~° 136 80 1.273 0.535
85Rp 1.224 0668 550 0.0071 0.000017 x10° 142 80 1.270 0.530
88gy 1220 0662 552 0.0071 0.000017 xZ0~° 13.8 80 1.274 0.530
8%y 1.218 0.666 54.8 0.0071 0.000018 =702 146 82 1272 0530
907y 1.218 0.666 54.7 0.0071 0.000017 x7A0° 146 80 1.272 0.530
917y 1.216 0.666 54.4 0.0071 0.000017 x70~° 146 80 1276 0.530
927y 1220 0.663 53.4 0.0070 0.000017 xA0° 146 80 1274 0.528
92M0 1222 0661 550 0.0071 0.000018 x7A0°® 145 80 1.264 0.524
93Nb 1215 0663 540 0.0070 0.000017 x20~° 146 82 1.274 0.534

Eqg. (7) is from Ref [13]. This so-called Brown—Rho function is negligible at low energies,
then increases until it finally tends to a constant value. The form s illustrated in Fig. 1. This
picture is reasonable for the energy range considered in our work. The functional form for
Wp(E) was first used in Ref. [14], and consists of a Brown—Rho function multiplied by
an exponentially decreasing function. In dispersion analyses, the power of the Brown—-Rho
function, as inWy (E), may in general be equal to any low even integer, e.g., 2, 4 or 6. In
our work, we have found that the power of 2 for bdiy (E) and Wy (E) gives the best
description for all nuclides.
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Table 4
Neutron OMP parameters, continued. The parametgfsaggo are given in fm,dq, ds, vsq, Wsal, Ws» E;L

in MeV, andds, vsp in MeV—1

Nuclide dy do d3 rso aso Vsal V502 Wsal W@ Er;

24\g 16.2 0.0214 125 1.00 058 6.0 0.0035 —3.1 160 —1193
26Mg 155 0.0218 135 100 058 6.0  0.0035 -3.1 160 -877
27p| 13.0 0.0224 115 1.00 0.58 6.1 0.0035 —3.1 160 —10.39
28gj 13.8 0.0216 111 1.00 058 6.0 0.0040 —3.1 160 —1283
31p 154  0.0214 115 100 0.59 6.0 0.0040 —3.1 160 -10.12
32g 156  0.0215 110 1.00 059 6.0 0.0040 —3.1 160 —1184
35¢| 133  0.0220 135 100 060 6.1 0.0040 —3.1 160 —1184
3% 13.3 00228 135 101 058 6.1 0.0040 —3.1 160 —1044
40ay 124  0.0220 125 1.01 058 6.1 0.0040 —3.1 160 —7.98
40cq 14.4  0.0205 134 101 0.60 6.1  0.0040-3.1 160 —1200
455¢ 125 0.0228 126 101 0.60 6.1  0.0040—3.1 160 —1004
487 126  0.0228 134 101 0.60 6.0 0.0040 —3.1 160 —9.88
51y 12.8 00228 134 100 060 6.1 0.0040 —3.1 160 -9.18
S2¢cr 136 0.0215 110 101 060 6.2 0.0040 —3.1 160 —-9.99
S4re 154 0.0223 109 1.00 058 6.1 0.0040-3.1 160 —1134
55Mn 136 0.0229 112 100 055 6.2 0.0035 —3.1 160 -875
S6pe 153 0.0211 109 1.00 058 6.1 0.0040-3.1 160 —9.42
58 154  0.0218 105 1.00 0.58 6.1 0.0040 —3.1 160 —1061
60N 152  0.0218 108 100 058 6.1 0.0045 —3.1 160 —-9.60
59co 156  0.0224 127 1.00 058 6.1 0.0040 —3.1 160 —-8.97
83cu 146 0.0219 116 1.00 058 6.1 0.0040 —3.1 160 —9.38
65Cu 142  0.0219 116 100 0.58 6.1 0.0040 —3.1 160 —-8.49
69Ga 128 0.0225 110 1.03 058 6.2 0.0040-3.1 160 —8.98
71Ge 128 0.0225 110 1.03 058 6.2 0.0040-3.1 160 -8.35
5as 12.4  0.0225 110 103 058 6.2 0.0040 —3.1 160 -878
9Br 136  0.0225 105 1.03 058 6.2 0.0040 —3.1 160 —9.29
80se 135 00225 108 1.03 0.58 6.2  0.0040—3.1 160 -831
85Rb 135 0.0225 126 104 0.58 6.2 0.0040 —3.1 160 -957
885y 13.0 0.0225 132 1.05 058 6.2 0.0040 —3.1 160 —8.74
8%y 13.6 00224 142 105 056 6.2 0.0040 —3.1 160 -917
90z, 13.2 0.0215 146 105 060 6.2 0.0040 —3.1 160 -958
917y 128  0.0215 136 1.05 0.60 6.2 0.0040 —3.1 160 —7.91
927y 142 00220 125 105 059 6.2 0.0040 —3.1 160 -7.68
92M0 148 0.0210 126 1.05 058 6.2 0.0040 —3.1 160 —1037
9BNb 151 0.0215 135 1.05 059 6.2 0.0040 —3.1 160 —8.03

Finally, the functional forms fo¥so(E) and Wso(E) are similar to theE-dependence
used in semi-microscopic analyses [1] and of Dirac phenomenology [12], respectively.
There is a slight decrease in the réab potential with increasing energy. Evidence for
the imaginaryS O potential is difficult to establish at low energies but analyses of proton
polarization above 100 MeV indicate that it is certainly present at higher energies. We
found it convenient to approximate its well depth by a Brown—Rho function. To obtain a
homogeneous notation for the whole OMRE— E ) dependence is also assigned to the
SO potential components in Eq. (7).
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Table 5

Neutron OMP parameters. For more details, see the caption of Table 3

Nuclide ry ay v1 v2 v3 v4 w1 wy rp ap
94zy 1.215 0.658 540 0.0071 0.000018 x70% 145 80 1.264 0.524

%Mo 1.222 0.658 542 0.0071 0.000018 x70~° 145 80 1264 0.524
%Mo 1.222 0.658 53.7 0.0071 0.000018 x70° 145 80 1270 0.534
9%B\o 1.218 0.658 53.4 0.0071 0.000018 x40 °® 145 80 1270 0.536
997¢ 1.226 0.660 53.7 0.0071 0.000018 x20~° 145 80 1.274 0534
100Mmo 1220 0.658 53.0 0.0071 0.000018 x7A0° 145 80 1270 0.536
103Rn 1.230 0660 551 0.0071 0.000017 x10° 138 82 1.266 0.530
106pg 1228 0660 546 0.0071 0.000017 x10° 138 82 1.265 0.530
107ag 1232 0.660 54.4 0.0071 0.000017 xA0° 140 82 1263 0.526
114cq 1.232 0665 524 00070 0.000016 x10° 144 84 1260 0.523
1191 1.214 0.662 52.8 0.0071 0.000018 x70~° 145 84 1272 0.535
116gp 1222 0665 53.6 0.0070 0.000017 x10° 145 84 1.265 0.524
118gp 1225 0662 528 0.0070 0.000017 xI0® 145 84 1.269 0.528
120gp 1225 0662 522 0.0070 0.000017 xI0~° 145 84 1.269 0.528
1215y 1230 0.652 52.6 0.0071 0.000018 x10° 140 84 1.263 0.524
122gp 1225 0662 519 0.0070 0.000017 xI0~°® 145 84 1.269 0.528
123gp 1230 0652 520 0.0071 0.000018 x710° 140 84 1.263 0.524
1245 1225 0662 51.8 0.0070 0.000017 x10° 145 84 1.269 0.528
127) 1.233 0652 520 0.0071 0.000017 x7A0° 140 84 1263 0524
1281¢ 1.226 0652 51.6 0.0071 0.000017 x20° 140 84 1263 0524
133¢cs 1235 0655 51.7 0.0071 0.000017 x10° 138 84 1.258 0.520
1384 1235 0665 520 0.0072 0.000017 xZ0~° 138 84 1258 0.520
139 4 1230 0.650 52.2 0.0070 0.000017 x20"° 144 86 1.258 0.520
140ce 1232 0646 523 0.0070 0.000017 x10° 144 86 1.254 0.520
141py 1232 0650 528 0.0070 0.000017 x10~° 140 86 1.258 0.520
142nd 1.230 0650 52.6 0.0070 0.000017 x20° 142 86 1.258 0.520
144\d 1226 0658 521 0.0070 0.000017 x20° 144 86 1.258 0.520
1485y 1.226  0.658 52.0 0.0070 0.000017 xI0°°® 144 86 1258 0.520
194pt 1.237 0650 51.2 0.0069 0.000015 x10° 154 88 1.255 0.515
197py 1.237 0.652 50.0 0.0069 0.000015 x70~° 158 88 1.257 0.508
202Hg 1.246 0637 50.2 0.0069 0.000015 x20° 158 88 1.254 0.515
206pp 1242 0646 50.4 0.0069 0.000015 x10° 156 88 1.246 0.510
208pp 1.244 0646 50.6 0.0069 0.000015 x10°° 156 88 1.246 0.510
209g; 1.248 0.642 50.1 0.0069 0.000015 x70~° 154 88 1.255 0.510

2.3. Compound nucleus contribution and relativistic kinematics

A sound analysis of scattering observables at low energies requires the inclusion of a
compound nucleus (CN) contribution. For this, we use the width fluctuation correction
model by Moldauer [15], coupled with the Blatt—Biedenharn formalism [16] for angular
distributions. For a particular incident energy, all channels that are open to CN emission
are included. We include the first several discrete states as competing channels and
complement this, for higher excitation energies, by a continuum described by the Gilbert—
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Table 6

Neutron OMP parameters, continued. For more details, see the caption of Table 4

Nuclide dy do d3 rso aso Vsal Vs02 Wsal W@ Er;
94zr 138 0.0212 122 105 058 6.2 0.0040 —3.1 160 —7.34
%Mo 14.8 0.0208 11.2 1.05 0.58 6.2 0.0040 —3.1 160 —8.53
%\ 15.1 0.0203 10.8 1.05 0.58 6.2 0.0040 —3.1 160 —7.99
9BMo 154 0.0203 103 105 058 6.2 0.0040 —3.1 160 —7.29
9Tc 15.1 0.0203 10.4 1.05 0.58 6.2 0.0040 -3.1 160 —7.86

100Mmo 15.4  0.0200 100 1.05 0.58 6.2 0.0040 —3.1 160 -6.84
103Rn 142 00206 100 106 0.60 6.2 0.0040 —3.1 160 -8.16
106pq 13.8 0.0210 100 1.06 0.60 6.2 0.0040 —3.1 160 —8.05
107ag 13.0 0.0225 126 1.06 0.60 6.2 0.0040 —3.1 160 —841
114cq 136 00225 110 106 0.60 6.2 0.0040 —3.1 160 —7.59

11514 13.8  0.0222 120 1.07  0.60 6.3 0.0040 —3.1 160 —7.91
116gp 150 00206 123 1.06 0.60 6.2 0.0040 —3.1 160 —8.25
118gp 148 00206 130 1.07 0.60 6.2 0.0040 —3.1 160 —7.91
1205 146 00206 130 1.07 0.60 6.2 0.0040 —3.1 160 -7.64
1215y 140 00210 132 1.07 0.60 6.2 0.0040 —3.1 160 —8.02
1225 143 00206 130 1.07 0.60 6.2 0.0040 —3.1 160 -7.38
123gp 140 00206 132 107 0.60 6.2 0.0040 —3.1 160 -7.72
1245 140 00206 130 1.07 0.60 6.2 0.0040 —3.1 160 —7.38
127 140 00218 132 1.07 0.60 6.2 0.0040 —3.1 160 -7.98
1281¢ 148 00216 120 107 0.60 6.2 0.0040 —3.1 160 —7.42
133¢cs 140 00220 130 1.08 0.59 6.4 0.0040 —3.1 160 -7.94
1384 13.8 00220 130 108 0.59 6.4 0.0040 —3.1 160 —6.67
139 4 140 00220 140 108 0.59 6.4 0.0040 —3.1 160 —6.97
140ce 140 00220 140 1.08 0.59 6.4 0.0040 —3.1 160 —7.32
141py 148  0.0220 14.5 1.08  0.59 6.4 0.0040 —3.1 160 —7.62

142Nnd 145 00206 132 108 0.59 6.4 0.0040 —3.1 160 —7.97
144Nd 150 00206 127 108 0.59 6.4 0.0040 —3.1 160 —6.78
148gm 152  0.0206 127 1.08 0.59 6.4 0.0040 —3.1 160 -7.01

194pt 142 00180 122 110 0.60 6.6 0.0035 —3.1 160 —7.01
197ay 127 00180 132 110 0.60 6.6 0.0035 —3.1 160 —7.29
202Hg 132 00180 122 110 0.60 6.6 0.0035 —3.1 160 —6.88
206pp 13.8 00180 143 1.08 057 6.6 0.0035-3.1 160 —7.42
208pp 13.8 00180 138 1.08 0.57 6.6 0.0035 —3.1 160 —5.65
209g; 13.8 0.0180 138 1.08 0.57 6.6 0.0035 —3.1 160 —6.03

Cameron level density formula [17]. The level density parameters are taken from Ref. [18].
The analysis of shape compound elastic scattering was iteratively performed, since the
transmission coefficients required for the CN cross section calculations are derived from
potentials that describe the shape elastic component.

For a consistent analysis at all energies we have employed the relativistic Schrédinger
equation throughout. In practice, this means that if one would apply our parameters in a
calculation without relativistic kinematics, significant deviations from the correct results
should be expected above several tens of MeV. All our optical model calculations are
performed with the true masses of the projectile and target expressed in atomic mass units.
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Table 7
o (0)/oruth and A, (9) database for proton elastic scattering
Target Ref. Energy (MeV) Ref. Energy (MeV)
27p| [221] 17 [225] 141
[222] 28 [226] 156
[223] 35.2 [227] 160
[224] 61.4 [228] 180
28gj [229] 17.8 [232] 65
[222] 28 [233] 79.1, 99, 198.1
[230] 30.4 [234] 134.2
[231] 40 [235] 180
40ca [236] 14.5,18.6, 21 [232] 65
[237] 16 [241] 75, 152
[238] 26.3,30.3 [234] 80.2, 160, 181
[239] 40 [242] 135.1
[240] 455 [226] 156
[224] 61.4 [243,244] 201.4
S4re [245] 9.7 [250] 19.6
[246] 11 [251] 30.4
[247] 12 [223] 35.0
[237] 16 [252] 40
[248] 17.2,20.4,24.6 [253] 49.4
[249] 18.6 [232] 65
56Fe [246] 11,11.7 [256] 30.3
[254] 14.5 [223] 35.2
[248] 15.3,17.2, 20.4, 24.6 [252] 40
[237] 16 [253] 49.4
[249] 18.6 [232] 65
[255] 19.1 [226] 156
nalge [257] 155 [228] 182
[258] 179
58N [259] 10.7,14.5, 15.4 [262] 35
[246] 12 [263] 39.6
[237] 16 [239] 40
[221] 17.8 [224] 61.4
[249] 18.6 [232] 65
[248] 20.4,24.6 [264] 100
[260] 21.3 [265] 160
[261] 22 [266] 178
[238,256] 30.3 [267] 200
naij [268] 17.3 [257] 155
60N [259] 14.5, 15.4 [238,256] 30.3
[237] 16 [263] 39.6
[249] 18.6 [239] 40
[248] 20.4,24.6 [232] 65

(continued on next paye
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Table 7 Continued
Target Ref. Energy (MeV) Ref. Energy (MeV)
90zy [245] 9.7,12.7,14.7 [253] 49.4

[237] 16 [224] 61

[269] 18.8 [232] 65

[270] 20.0 [234,242] 79.8,135.1, 160, 180

[271] 225 [264] 100.4

[272] 30 [226] 156

[239] 40
120 [245] 9.7 [274] 40

[237] 16 [264] 100.4

[273] 20.4,24.6 [226] 156

[256] 30.3 [265] 160
208pp [275] 11, 12,13 [224] 61.4

[237] 16 [232] 65

[276] 21,24.1, 35, 45, 47.3, 185 [242] 79.9,100.4, 121.2

[238] 26.3 [234] 79.9, 185

[256,277] 30.3 [226] 156

[239] 40 [265] 161

[253] 49.4 [278-280] 201
209 [237] 16 [241] 78, 153

[281] 57 [226] 155

[232] 65
Table 8
Proton OMP parameters. For more details, see the caption of Table 3
Nuclide ry ay vy ) v3 vg w1 w2 rp ap
27p 1.162 0.665 62.4 0.0070 0.000017 x70° 152 75 1.290 0.510
28gj 1.170 0668 62.6 0.0071 0.000018 x20° 150 75 1.294 0.510
40ca 1.206 0.676 61.6 0.0072 0.000018 x10°° 140 76 1.295 0.535
S4re 1.186 0.663 63.0 0.0072 0.000018 x10°° 152 78 1.282 0.545
S6pe 1.186 0.663 64.2 0.0072 0.000018 x10° 154 80 1.282 0.555
S8 1.192 0.663 63.8 0.0073 0.000017 x70° 154 78 1.282 0.550
60N 1.193 0.664 64.2 0.0073 0.000017 =702 152 78 1.284 0.560
62y 1.193 0.664 64.0 0.0073 0.000018 x70° 154 78 1.284 0.555
63cy 1.200 0663 63.2 00073 0.000019 x20° 155 80 1.284 0.550
64N 1.200 0.663 64.8 0.0073 0.000018 x70° 152 80 1.278 0.565
907y 1.218 0.666 63.3 0.0075 0.000019 x7A0° 156 80 1.272 0.585

120gp 1225 0662 655 0.0077 0.000019 xI0~° 160 84 1.269 0.605
208pp 1244 0646 67.2 0.0079 0.000020 x10° 166 88 1.246 0.615
209g; 1.248 0.642 66.8 0.0079 0.000019 x70° 166 88 1.255 0.615

3. Optimization of optical model parameters

From the large number of phenomenological optical model studies that have been
performed in the past, one can infer that the determination of a set of optical model
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Table 9

Proton OMP parameters, continued. The parametes given in fm. For more details, see the caption of Table 4
Nuclide dy do ds rso aso Vsal Vs Wsal Ws rc El;
27p 146 0.0224 115 100 058 6.0 0.0035-31 160 1.329 —9.93
28g; 146 00216 111 1.00 058 6.0 0.0035-3.1 160 1.324 -7.16
40ca 152 0.0205 134 101 060 6.1 0.0040-3.1 160 1.285 -—471
S4re 15.4 0.0223 109 1.00 058 6.1 0.0040-3.1 160 1.264 —6.96
S6pe 16.0 00211 109 1.00 058 6.1 0.0040-3.1 160 1.261 —9.42
58 152 0.0218 105 1.00 058 6.1 0.0040-3.1 160 1.259 —579
60 16.0 0.0218 108 1.00 058 6.1 0.0045-3.1 160 1.258 -7.17
62 16.4 0.0216 11.2 100 058 6.1 0.0040-3.1 160 1.256 —8.63
83cu 16.0 00219 116 100 058 6.1 0.0040-31 160 1.255 —6.92
64N 16,5 0.0216 11.2 1.00 058 6.1 0.0040-3.1 160 1.254 —10.00
907y 181 00215 146 105 060 6.2 0.0040-31 160 1.240 —6.80

120 19.3 0.0206 13.0 1.07 060 6.2 0.0040-3.1 160 1.231 -8.23
208pp 195 00180 13.8 1.08 057 6.6 0.0035-3.1 160 1.220 -5.90
209g; 194 00180 138 1.08 057 6.6 0.0035-3.1 160 1.220 -—4.39

parameters is considered to be successful onsflibf the following three criteria are
satisfied:

(i) Physically meaningful parametefsrom general properties of nuclei and microscopic
optical model calculations one can estimate the allowed range for the parameters
determined in a phenomenological approach,

(i) The parameters must satisfy a numerical optimization critefidggually this is related
to a minimal value of¢?, or better,x?/N, whereN = P — F is the number of degrees
of freedom, withP the number of experimental data points @nthe number of freely
varying parameters, and

(iii) A good visual fit This means that, irrespective of the values, the comparison
between theory and experiment is satisfactory when judged by eye, for all different
types of observables (angular distributions for elastic scattering cross sections and
analyzing powers, total cross sections) simultaneously.

Of these criteria, the best consensus seems to exist for case (i), see, e.g., Ref. [19]. Also
criterion (iii) is, albeit somewhat subjective, easily imaginable. It is the unambiguous
definition of the optimization criterion (ii) which is very difficult, if not impossible, to
judge. Moreover, even if such an optimization criterion is invoked, the obtained result
often turns out to be in disagreement with the subjective criterion (iii), and in some case
also with (i). This occurs especially when only a few experimental data sets are available.
This outstanding problem of the phenomenological optical model was already addressed
by Satchler [20], who concluded that “Sometimes#/ N is large, a subjective judgment

(‘by eye’) of the goodness of fit may have, in an ill-defined way, more significancexthan
itself. Similar remarks apply if the minimurp? corresponds to parameter values that are
obviously unphysical”.



A.J. Koning, J.P. Delaroche / Nuclear Physics A 713 (2003) 231-310 251

We will now enumerate the problems one encounters when attempting to solve the
optical model problem completely numerically. We do this to justify our computational
steering technique, which we will outline thereafter. Finally, we will establish the complete
optimization approach that we have used for our parameter determination.

3.1. Numerical goodness-of-fit estimator

3.1.1. The optimization problem

In 1963, Perey [21] gave a systematic discussion of the optimization problem for
phenomenological optical model analyses of nuclear scattering. He concluded that for
the optical modely? may have litle meaning as an estimator of the goodness-of-fit.
Nevertheless, in the absence of any reasonable and full-proof alternative, that method has
generally been adopted to obtain “best-fit” OMPs. Since our optimization method also
uses thex? method to some extent (to get the best initial parameters), we will here list
some of the problems that will be encountered when determining OMP parameters purely
numerically:

() Phasing of elastic angular distributionsnless it is close to the value %2 does not
give an indication of the oscillatory behaviour of the calculated curve relative to the
measured data. Hence, a result found for minigfal- 1 may exhibit, when judged
visually, theoretical angular distributions which are clearly out of phase with their
experimental counterparts.

(i) x2> 1. This was first reported by Perey. Whef s large, a change in? does not
correspond to the expected associated visual change. In other wogdsisifarge,

a decrease of 2 does not necessarily mean a better subjective, visual result. Among
others, this is related to the aforementioned phasing problem. Whéensmall, this
correspondence is much better.

(i) Experimental uncertaintyWwhen constructing optical models over a large energy
range, one does not consider only one measurement or even one consistent set of
measurements. Instead one makes use of completely uncorrelated experimental data
sets, measured at different laboratories with different methods. Even though the
statistical errors usually are reported, the systematical errors are often difficult to
establish. The optimization procedure is very sensitive to these errors, which means
that even a slightly incorrect error estimation can easily vitiate an automated fitting
procedure.

(iv) Distribution of experimental data sets over energy for one type of observable
In a phenomenological approach, the obtained OMP parameters for each nucleus
obviously depend on the included experimental data sets. If these happen to be oddly
concentrated in energy, an automated optimization procedure will be biased towards
the region where the data are clustered. If for an adjacent nucleus the available
measurements are differently distributed over energy, one may find a completely
different set of parameters. From physical considerations, one expects that both
systems should be described by similar optical models. Hence, information from
neighboring nuclei or a global optical model needs to be taken into account to guide
the parameterization for the nucleus under study. It is however, very difficult to
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devise a computational method to constrain the parameters consistently using this
information, because the parametéosactually vary from nucleus to nucleus, and in
an unpredictable manner.

(v) Weight of different types of observablégyood optical model should simultaneously
give a good description of angular distributions for elastic scattering cross sections
and analyzing powers, total (reaction) cross sections, and for low-energiesahe
p-wave strength function§y and S1 and potential scattering radiu&. One could
define one average? for each type of observable, but even then the problem of how
to weight them in an overall numerical optimization in which all observables need
to be fitted together, remains. An extra complication is that the total cross sections
usually are measured at energies different from those for the angular distributions
do/d$2 and the analyzing powers, .

(vi) The validity of the optical model itselflthough a physical rather than a numerical
problem, it has an impact on the parameter search. The conventional spherical optical
model probably is inadequate to describe scattering from nuclides known to be
strongly deformed and especially if there is strong channel coupling as a result. It may
not describe cases for which particular shell effects are needed to describe reactions.
Both such phenomena can have a significant impact on the final parameters found
using a spherical OMP to analyze associated scattering data.

These considerations lead us to the statement that it is impossible to define a unique
goodness-of-fit estimator for the phenomenological optical model that consistently gives
numerical, physical and subjective (i.e., visual) satisfaction simultaneously. Even for cases
where the systematic errors are completely known, which is very rare, there is always a
point in the optimization scheme where one needs to introduce an arbitrary weighting,
not only for one type of observable at different energies but also for different types of
observables. This weighting is then subjective, i.e., it is usually only accepted if the final
results come up to the expectations when judged by eye.

3.1.2. Simulated annealing

Part of our quest for the best OMP parameters is based on autopdatigtimization.

We have constructed an optical model optimization program written around ECIS-97 [6].
In fact, we have integrated ECIS-97 in this code as a subroutine and suppressed its input
and output to maximize the speed of the optical model calculations. In this way, we can
typically perform 500 ECIS calculations per second. The search scheme utilizes simulated
annealing [22]; a global optimization method that distinguishes between different local
optima.

In simulated annealing, starting from an initial point and evaluated function, the
algorithm makes a change in variable and re-evaluates the function. The algorithm then
accepts any “downhill” step and the process is repeated. An “uphill” step may be accepted
as well, an aspect of the process that enables it to escape from local optima. This “uphill”
decision is made using a Monte Carlo criteria with “temperature” and the size of the
“downhill” move assessed a probabilistic manner. The smaller the “temperature” and the
size of the “downhill” move, the more likely that move will be accepted. If the trial is
accepted, the algorithm moves on from that point. If it is rejected, another point is chosen
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instead for a trial evaluation. As the optimization process proceeds, the algorithm closes
in on the global optimum. Since the algorithm makes very few assumptions regarding the
function to be optimized, it is quite robust with respect to non-quadratic surfaces. For
the simulated annealing optimization, we have used the SIMANN program by Goffe et
al. [22], who developed it for econometric applications. We have found it competitive, if
not superior, to multiple restarts of conventional optimization routines for the optical model
optimization problem. For a certain initial temperature, a user-defined number of function
evaluations is tried. Then, the temperature is reduced, and starting from the previously
found minimum, the search continues. The degree of robustness of the search can be
adjusted by the user. The temperature, the number of function trials for each temperature
and the temperature reduction factor are the crucial parameters in a simulated annealing
search. It determines the probability that the function to be minimized escapes from a
local minimum, and also how quickly a final optimum is reached. We have minimized
the total number of trial evaluations by investigating the sensitivity of the optical model
problem to the parameters of the simulated annealing program. Nevertheless, the part of
the optimization that is done by? minimization takes about 2 million ECIS calculations

for a typical nucleus. We estimate the total number of ECIS calculations that lie at the
basis of this paper, i.e., including local and global OMPs, between 1 and 2 billions. The
automatic optimization of local and global OMP parameters has been done in iteration with
the visual method that will be discussed later.

3.1.3. Grid search

For the nuclides for which enough experimental data is available, we have used a grid
search as the initial step to obtain the OMP parameters. The basic idea behind the grid
search method, developed in Refs. [1,14,23], is that the search for the émdeggndent
geometry parameters is separated from the search for the etegrggdentunctional form
of the potential depths. In this way, one can avoid, to some extent, continuous parameter
ambiguities such a®pap = constant and/r‘z, = constant. We will now outline how
we have used grid search in our work. For the nucleus under study, our search includes
all experimental elastic scattering angular distributidiagd 2, total cross sections on
a reasonable (logarithmically equidistant) energy grid, and analyzing potygey by
means of the producd ,(9)do/dS2. We fix all geometry parameters, av, rp, ap,
rso, andasp to reasonable starting values, e.g., those of a preliminary version of our
global optical model. Then for each incident energy for which experimental observables
exist, we search for those values of the potential degthsWy, Wp, Vso, and Wso that
have the minimal? for that particular initial set of geometry parameters. Summed over
incident energies, this gives the toted for the geometry parameter set. Next, wergt
vary around its starting value in steps of 0.04 fm and repeat the search for all incident
energies. In this way, we determine the value for which the sum over minimgl2
values is itself minimal. Then, we repeat this with the other 5 geometry parameters. We
then return toy, now using steps of 0.01 fm, and the whole procedure is repeated a few
times until we have obtained a precision of 0.001 fm for each geometry parameter. The
final result of the grid search is thus one set of parametersy, rp, ap, rso, andaspoand
several sets of “best-fit” parametédrs, Wy, Wp, Vso, andWso, one set for each incident
energy. When plotted against energy, the potential depths belonging to this set of geometry
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parameters show a behaviour for which suitable functional forms can be estimated, and
these are the ones given in Eq. (7). Grid search is a powerful method to investigate the
energy behaviour of the various potential depths, although we were of course able to
anticipate some of our functional forms from previous works. Theoretically, the final result
should be the same if we would start with a general search of all geometry parameters
and all individual parameters that construct the functional forms for the potential depths.
However, the optimization problems mentioned in the previous section imply that this is
not guaranteed. The problem should be tackled on a more step-by-step basis. Indeed, we
can confirm that the separation of the search into a geometry part and a potential depth part
leads to better constrained results than allowing a fully free search from scratch. Only after
we determined the final grid search values for the geometry parameters and the parameters
(v1, v2, etc.) for the potential depths, have we performed a final “half-constrained” OMP
search for all parameters, since the chance of being caught in a local minimum was reduced
by the grid search. In this way, we found our final answer fortheart of the optimization

which was then used as a starting point in our visual estimation.

3.2. Visual goodness-of-fit estimator

Although the problems of using? as a measure may be obvious, they do not give
guidance to a solution for the optimization problem. Indeed, in the past, a purely numerical
optimization problem simplfradto be adopted in the absence of an alternative approach.
Varner et al. [4], in their extensive global optical model study, noted that “the procedure
had to search without human guidance, more than a dozen correlated parameters in a highly
non-linear model, since we know of no way that a human can compare data and predictions
in 292 angular distributions and reliably decide how to change the global parameters”.
However, in the past decade computer power has increased by several orders, enabling us
to use an approach that actually does rely on direct human guidance.

Realizing that the quality of an OMP is eventually always judged by visual estimates,

a method was developed at ECN [5] to obtain a good visual fit directly by means of so-
called computational steering. We used this in combination, and iteratively, with numerical
optimization to arrive at the best results. The means to perform the visual fitting is a
software package called ECISVIEW, a graphical interface built around the optical model
code ECIS-97 [6]. The basic purpose of ECISVIEW is the possibility to change optical
potential parameters interactively, with the keyboard or the mouse, and to display the
calculated curves, together with the experimental data, in real time on the computer screen.

ECISVIEW links to the input and output files of ECIS-97, while holding ECIS-97 itself
in the background in a wait state until the command to perform calculations is given. When
the user changes OMP parameters (with the mouse or the keyboard via several dialog boxes
as in a usual X-windows environment), ECISVIEW creates the associated ECIS input file
and initiates ECIS-97 calculations. The whole process leading to a graph on the screen is
very fast; seemingly instantaneous to the observer.

The data from a typical example is illustrative. Consider a nucleus for which angular
distributions at 10 different energies and total scattering cross sections for many energies up
to 200 MeV have been measured. With a run of ECISVIEW, those 10 experimental angular
distributions and, in a separate panel, the experimental total cross section, are displayed
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together with the theoretical curves calculated by some initial OMP parameterization.
When a parameter is changed, e.g., the radiyswithin about 0.2 seconds 10 new
calculated angular distributions are displayed with the data. Within about 2 seconds a
new calculated total cross section is plotted for the whole energy range. The analyzing
powers also can be displayed in a separate panel. One of the key features of ECISVIEW
is that one can specifgny functional form of the potential parameters; be it a function

of energy,Z and A, or of user-defined parameters. That flexibility and speed enables one
to try various functional forms for the parameters, and so seek insights about the OMP
that would otherwise be unattainable. In fact, our final OMP (7) was obtained with this
approach, of course in combination with the grid search that we described previously.

At a certain point in the optimization process, visual judgment of all observables
simultaneously often suggests which parameters need to be changed. For example, it is
known that at low incident energy an underestimation of angular distributions at backward
angles indicates a surface absorption that is too strong. If this underestimation occurs only
locally in energy, experience indicates which of the parameters that W& ) needs to
be changed. Another important example is the maximum in the proton total reaction cross
section at a few tens of MeV. The OMP result for this peak is known to be very sensitive
to the imaginary surface diffusivityp, and less sensitive t&p(E). Accordingly, we
interactively varyup until the proton reaction cross section is satisfactorily reproduced and
simultaneously “repair” the backward angular distributions by adjustiiag Hence, we
find that by simultaneously fitting the elastic angular distributions and the proton reaction
cross section data, we can circumvent the well-known ambigUjy p = constant.

For completeness we note that compound nucleus contributions [15] are included and
one can also change the level density parameters to study their influence on the calculated
results. Other features are described in Ref. [5].

Finally, for nuclides for which enough experimental data exists, comparison of our
OMPs visually obtained with those obtained by a purely automatic optimization through
grid search and using?/N per type of observable as the quality criterion lead to
differences of no more than 10%, so justifying use of the computational steering method.
Of course, in all cases, our final OMPs were the result of an iteration of grid search, visual
optimization and global OMP construction. However, we did start with a nucleus for which
a lot of experimental data existed. The resulting parameterization then heavily influenced
that we chose for neighboring nuclides with more restricted experimental databases. In that
way, all of our parameters could be kept reasonably close to a global average.

4. Resultsfor local neutron and proton OMPs

The complete experimental database for our work is detailed in Tables 1, 2 and 7 for
incident neutrons and protons, respectively. This database, together with the optimization
method outlined in Section 3 has yielded a suite of local OMPs. With our iterative
approach, we have been able to unify many of the parameters (mostly the geometry) for
neutrons and protons, which puts a heavy constraint on our OMPs. For each individual
isotope, the OMP is described by Eq. (7) with the parameters given in Tables 3—6
for incident neutrons and in Tables 8, 9 for incident protons. Results are available in
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computational format [9] as well. In this section, we discuss the performance of the OMPs
when compared with experimental data. Since global optical models will be the topic of
Section 5, the following discussion is restricted to the results from local OMP analyses.

4.1. Presentation of the results

This paper contains a comprehensive collection of figures in which experimental data
(represented by symbols) are compared with the local OMP (represented by solid lines)
and the global OMP (represented by dashed lines). The experimental data tables indicate
whether isotopes or natural samples are used.

For neutron total cross sections, as, e.g., in Fig. 2, the curves and data points at
the top represent true values, while the others are offset by factors of 2, 4, 8, and 16.
The experimental cross sections below 4 MeV have been averaged over logarithmically
equidistant energy bins in order to reduce the number of points.

For neutron elastic differential cross sections, as, e.g., in Fig. 3, the incident laboratory
energies are indicated in MeV. The curves and data points at the top represent true values,
while the others are offset by factors of 10, 100, etc. A similar representation is used for
proton elastic differential cross sections, as, e.g., in Fig. 33, although here the differential
cross sections are presented as ratios to the Rutherford cross sections.

For analyzing powers, as, e.g., in Fig. 7, the curves and data poi