COMPILATION OF PHENOMENOLOGICAL OPTICAL-MODEL PARAMETERS* 1954-1975

C. M. PEREY and F. G. PEREY

Oak Ridge National Laboratory Oak Ridge, Tennessee 37830

Presented here is a compilation, with bibliography, of optical-model parameters determined by fitting elastic-scattering angular distributions for various incident particles including heavy ions. It includes parameters from previous compilations back to 1954 and from an extensive literature search in the leading journals and publications in nuclear physics up to June 1975.

CONTENTS

NTRODUCTION
EXPLANATION OF TABLES
ABLES. OPTICAL-MODEL PARAMETERS
I. Neutrons
II. Protons
III. Deuterons
IV. Tritons
V. Helium-3
VI. Alphas
VII. Heavy Ions

* Research sponsored by the U.S. Energy Research and Development Administration under contract with Union Carbide Corporation

1

INTRODUCTION

This compilation of phenomenological opticalmodel parameters obtained by fitting elastic-scattering data includes two compilations* previously published in Nuclear Data Tables. We hope that any major work published before July 1975 which reports opticalmodel parameters is given in this present publication either in the main tables or in the tabular bibliographies.

Since this endeavor is undertaken as a service to the physics community, we welcome any suggestions aimed at making the compilation more useful or any criticism as to its deficiencies. Since it is almost inevitable, unfortunately, that in such publications some mistakes or omissions will occur, we will appreciate having them pointed out to us so that they can be corrected in future editions. It is evident that in many publications the authors did not report some of the results of their studies in a form suitable for inclusion in our compilation; we strongly encourage such authors to communicate to us these results, particularly when the studies are documented in internal reports or are part of a published study.

We believe that consistency is one of the main problems faced in the kind of compilation which extends over so many years of work. How can one be sure that the evaluation of the fit given with some parameters is fair compared to the evaluation made more than a year earlier on similar data in another publication? What is the "reasonable" number of parameter sets to report for each angular distribution when sometimes 10 or 15 sets are given for a single data set? Which parameters are worthwhile to report? Which are not?

Maybe some users of this compilation will be annoyed by the number of occasions we refer them to the original publication. We believe that the final decision on which set of parameters is most appropriate to a given need can be made only after one refers to the conditions under which each parameter set was determined.

Scope

In the main part of the compilation we include only optical-model parameters, for the more standard forms of the potentials, as determined from a fit to elastic-scattering data. We exclude optical-model parameters determined in some other contexts, for instance, the generation of wavefunctions for distortedwave calculations, or transmission coefficients for statistical-model calculations not obtained from a fit to elastic-scattering data. We do not include systematically diagonal potentials used in coupled-channel calculations; these are strongly affected by the off-diagonal potentials, and the problem is further complicated with the need to specify the diagonal potentials in all the channels which are coupled. The rationale for excluding these parameters from the main tables is that few of the analyses were made with extensive investigation of parameter space. The extent to which parameter space is searched for a best fit varies greatly throughout the literature. At least a limited search was required on some parameters for all the potentials presented in the main tables. For example, if the prediction of certain parameters is compared with experimental data and there is no evidence of a parameter search, the parameters are not included.

With the above rules the results of some analyses are difficult to enter in the tables. It appears to us at the moment that a tabular bibliography is the best way to handle this problem.

Tabular Bibliography

The tabular bibliography, which follows the standard compilation for each incident particle, includes:

(1) In general, any study of such a nature that the results could not be entered in the main compilation. Such studies often deal with the establishment of average spherical-model parameters over a limited energy range for a limited number of nuclei and include some search over parameter space.

(2) References to publications in which the optical-model parameters have been reported only graphically as functions of energy or mass number.

(3) A few 1975 references which could have been included in the compilation but were noted too late to be included in the tables which were already in their final form.

Literature Coverage

The compilation is based upon an extensive literature search in the following publications: Nuclear Physics and Physical Review from 1964 to the end of June 1975, Physics Letters B, Physical Review Letters, Zeitschrift für Physik, Journal of Physical Society of Japan, and Soviet Journal of Nuclear Physics from 1967 to the end of 1973. We also used cross references, found in these main sources of reference, to various other publications and reports.

Since we aimed to accomplish a comprehensive review of all optical-model parameters that could be used in various calculations, we went back to the previously published compilations:

^{*}Compilation of Phenomenological Optical-Model Parameters, 1969–1970, NUCLEAR DATA TABLES 10, 539 (1972) and Compilation of Phenomenological Optical-Model Parameters, 1969–1972, NU-CLEAR DATA TABLES 13, 293 (1974)

1. "Phenomenological Optical-Model Parameters" by D. R. Winner and R. M. Drisko.¹ This compilation covers protons, deuterons, tritons, He-3, alpha particles, and heavy ions. It covers the literature from 1954 to April 1964.

2. "The Deuteron-Nucleus Optical Potential" by P. E. Hodgson.² This review article includes a compilation of deuteron optical-model parameters. It covers the literature to the end of 1965 and makes use of the Winner-Drisko¹ compilation.

3. "The Helion and Triton Optical Potentials" by P. E. Hodgson.³ A compilation of He-3 and triton optical-model parameters is included in this review. It covers the literature up to the middle of 1967 and makes use of the Winner-Drisko¹ compilation.

We are not aware of any extensive compilations of optical-model parameters for neutrons. However, we found useful a compilation of references with a short abstract of each article by L. Wallin et al.⁴ This bibliography covers the literature up to the end of 1963.

When parameters from these previous compilations are used directly in our tables without study of the original paper, it is so indicated by a note referring to the specific compilation (W65 if from Ref. 1, H66 if from Ref. 2, and H68 if from Ref. 3). In such cases no information could be given regarding the agreement between the optical-model calculations and the data, but this does not mean that no curve is available in the paper from which these parameters were taken.

Optical-Model Potential Definition

The optical-model potential is defined as follows:

$$U(r) = V_c - Vf(x_0) + \left(\frac{h}{m_{\pi}c}\right)^2 V_{so}(\sigma \cdot l) \frac{1}{r} \frac{d}{dr} f(x_{so})$$
$$-i[Wf(x_W) - 4W_D \frac{d}{dx_D} f(x_D)] \tag{1}$$

where

$$\begin{split} V_c &= ZZ' e^2 / r, r \geq R_c \\ &= (ZZ' e^2 / 2R_c) (3 - r^2 / R_c^2), \, r \leq R_c, \\ R_c &= r_c A^{1/3}; \end{split} \tag{2}$$

$$f(x_i) = (1 + e^{x_i})^{-1}$$
 where $x_i = (r - r_i A^{1/3})/a_i$; (3)

$$\left(\frac{h}{m_{\pi}c}\right)^2 = 2.000 \text{ (fermi)}^2.$$
 (4)

The operator σ is defined in terms of the spin angular momentum s as follows:

 $s = (h/2)\sigma$ for neutrons, protons, He-3, and tritons; $s = h\sigma$ for deuterons; (5)

s = 0 for α -particles.

A is the mass number of the target nucleus.

For heavy ions the factor $A^{1/3}$ is sometimes replaced by $(A_1^{1/3} + A_2^{1/3})$ where A_1 and A_2 are the mass numbers of the incident and target particles, respectively. To avoid confusion in this case, it is preferable to quote the value of $r_i A^{1/3}$ instead of the radius parameter r_i . We have adopted this convention in the heavy-ion parameter compilation.

 $V_c(r)$ is the coulomb potential of a spherical, uniform charge distribution of radius R_c .

The functions $f(x_0)$, $f(x_w)$, $f(x_D)$, and $f(x_{so})$ are Woods-Saxon form factors with appropriate radius and diffusivity parameters.

The imaginary, absorptive potential can be either volume ($W \neq 0$, $W_D = 0$), surface (W = 0, $W_D \neq 0$), or volume-plus-surface ($W \neq 0$, $W_D \neq 0$).

Surface absorption can have either a "derivative-Woods-Saxon" shape as in Formula (1) or a Gaussian shape. In this case the surface absorption term will be:

$$W_D \exp(-x_D^2), x_D = (r - r_D A^{1/3})/a_D.$$
 (6)

The factor 4 which was introduced in the "derivative-Woods-Saxon" surface absorption term is justified in order to obtain the maximum value of the form factor equal to unity (at $r = r_D A^{1/3}$). Since the maximum value of the form factor for volume absorption (at r = 0) is nearly unity, this choice facilitates the comparison of volume and surface absorption through the comparison of the parameters W and W_D .

Practically all optical-model analyses published in 1963 and after were performed with computer codes which automatically adjusted some of the parameters of the model to minimize a quantity called χ^2 . The mathematical techniques for solving the Schrödinger equation and the methods of parameter adjustment were described in detail by Melkanoff et al.⁵ The most frequently used definition of χ^2 is

$$\chi^{2} = \frac{1}{N} \sum_{i=1}^{N} \left(\frac{X_{i}^{\exp} - X_{i}^{th}}{\Delta X_{i}^{\exp}} \right)^{2}$$
(7)

where X_i stands for differential cross sections, polarization, or reaction cross sections; for neutrons it may also include total cross sections; N is the number of data points.

Since the errors ΔX_i assigned to the data vary greatly from one experiment to another and since the shape of the curve also should be taken into account, the value of χ^2 cannot give a satisfactory measure of the quality of the fits but is useful to compare the fits given by different sets of parameters relative to a single set of data. Since this compilation involves many sources of data and different search codes which do not always have the same definition for χ^2 , we decided to report instead a subjective evaluation of the quality of the fit when the theoretical curve and the corresponding data were plotted.

Ambiguities of Parameters

The potential parameters as determined from data fitting are not unique. The significance of parameters fitting only one angular distribution differs from that of a more general set of parameters which give a satisfactory agreement with several sets of data simultaneously. In any case we can find some "continuous" kinds of ambiguity (within certain regions of parameter space) or some "discrete" kinds.

The "continuous" kind of parameter ambiguity is due mostly to the well known Vr_0^n and $W_D a_D$ ambiguities coupled with the ability of the automatic parameter search codes to readjust the "free" parameters when a constraint is applied to the others.⁶

The "discrete" kind of ambiguity has been first shown in deuteron analyses.^{7,8} Different families of potentials have been obtained which give equivalent fits to the data and have nearly the same scattering matrix elements S_l , but the partial waves show one more half wavelength inside the well for each deeper well depth. The same behavior has been shown for tritons,⁹ helium-3,¹⁰ and α -particles.^{11,12}

There are arguments that under some conditions the depth of the real well for a given parameter radius should be roughly proportional to the number of nucleons in the incident particle. This means that at intermediate energies (15 MeV $\langle E \langle 40 \text{ MeV} \rangle$), if r_0 is kept at a value between 1 and 1.25 F, the real well depth should be around 45 MeV for neutrons and protons, 90 MeV for deuterons, 150 MeV for tritons and helium-3, and 200 MeV for α -particles.

The parameter ambiguities involved in heavy-ion studies with optical-model potentials were first pointed out by Igo.¹³ It is now common knowledge that only the outermost tail of the potential (around the nuclear barrier) is felt and therefore the central depth of these potentials is not well determined. However, the optical model represents a convenient way of parameterizing the scattering and of correlating different sets of data, since it has mass, charge, and energy dependence automatically built into it. It is capable of describing both the strong absorption limit and the case in which the colliding ions easily interpenetrate.

Some emphasis has been given to these points in recent publications,¹⁴⁻¹⁷ and they should be consulted for more information.

Because of the various kinds of parameter ambiguity in most optical-model analyses, several sets of parameters are frequently reported for a given set of data. We have tabulated up to three or four parameter sets selecting the ones with the most physical significance, the ones which give the better fit to the data (lower χ^2), and perferably those for which the corresponding theoretical curve is shown compared with the data in the publication.

Parameter Systematics

Sometimes optical-model parameter studies are made in order to determine an "average set" of opticalmodel parameters applicable over a certain range of energy and mass number. The motivations behind these studies are too varied to detail here and certainly affect to some degree the end results. Furthermore these parameter systematics may be strongly affected by the data sets selected, or available, and the methodology used to arrive at the average set. Many review articles and books on nuclear reactions discuss these average sets of optical-model parameters. Also we refer the reader to a book¹⁸ on the subject as a compact source of references to such studies. Results of parameter systematic studies are often used to generate wavefunctions or transmission coefficients needed in the analysis of various nuclear reactions. For various reasons it is probably best in such cases to use parameter sets which were determined systematically over a small range of energies and mass numbers, in the region of interest, rather than to use uncritically best-fit parameters to a single angular distribution or results of systematics established over a large range of energies and mass numbers. This is so, in particular because the parameters obtained from a single angular distribution may be strongly affected by systematic experimental errors and particular reaction mechanisms occurring at a given energy for a particular nucleus. It is sometimes possible to detect the presence of such effects if one compares the data with predictions of systematic parameter studies or compares the parameters obtained by fitting the data with results of systematic studies.

One of the problems most frequently incurred with experimental data is that of absolute normalization. We have encountered several cases where errors in normalization of as much as a factor of 2 did not prevent good fits with an optical-model potential whose parameters did not appear to us pathological in nature. These errors were detected in the process of establishing the systematics. We also know of cases where normalization errors as large as 20% yielded a lower χ^2 by as much as a factor of 4, with quite different parameters, and other cases where the minimum in χ^2 occurred close to the given experimental normalization.

In the case of systematics established over large energy ranges and mass numbers, the parameterization selected may not be adequate over some mass-number or energy regions. In many systematic analyses it is not possible from the information given to determine the extent of loss of goodness-of-fit of the global set over the best-fit parameters. In any event it is always difficult to judge the significance of the loss in goodness-of-fit in the particular application where these parameters are used. In systematic analyses usually the weakest point is the imaginary potential which seems to exhibit, for all incident particles, the greatest amount of variation from angular distribution to angular distribution, and is often the least well represented by a smooth variation as a function of energy and mass number.

In the interest of convenience we will give just below a few average parameter sets. Their mention here does not imply that they are better than all others but only that we are more familiar with their use in various applications. Any average parameter set should be used with caution, and the original papers should be consulted to determine the applicability in any given situation.

Neutrons

A systematic analysis for neutron potentials has been presented by Becchetti and Greenlees.¹⁹ It is applicable to A > 40 and is determined on the basis of data up to 24 MeV. Below 5 MeV most angular distributions, in addition to shape-elastic scattering, contain compound-elastic contributions which must be estimated for optical-model analysis purposes. Becchetti and Greenlees estimated the compound elastic by adding an isotropic contribution whose magnitude was adjusted to minimize χ^2 . A few of their parameters were determined from the neutron data, the others were fixed at the values obtained from their proton studies. This is unfortunate because the proton analysis was strongly influenced by the extensive data for 30 and 40 MeV, much higher than the neutron energies. The geometrical parameters they used are significantly different from those normally obtained from neutron data at these low energies. Consequently, it is not clear to what extent the results they obtained are biased to compensate for this effect. However, their neutron parameters, because of the good fits shown at 15 and 24 MeV and the similarity to their proton parameters, should be useful in distorted-wave method calculations where it is important to have similar neutron and proton optical-model potentials. Their best average neutron parameter sets are (for potentials in MeV, radii in fermis):

V = 56.3 - 0.32E - 24(N - Z)/A $r_0 = 1.17, a_0 = 0.75$ W = 0.22E - 1.56, or zero, whichever is greater $W_D = 13 - 0.25E - 12(N - Z)/A$, or zero, whichever is greater $r_W = r_D = 1.26, a_W = a_D = 0.58$

 $V_{so} = 6.2, r_{so} = 1.01, a_{so} = 0.75.$

At lower energies where the Becchetti-Greenlees potential may not be satisfactory, the local potential equivalent to the nonlocal potential of Perey and Buck²⁰ may be more adequate. The following potential by Wilmore and Hodgson²¹ was used extensively in Hauser-Feshbach calculations with some success.

$$V = 47.01 - 0.267E - 0.0018E^{2}$$

$$r_{0} = 1.322 - 7.6A \times 10^{-4} + 4A^{2} \times 10^{-6}$$

$$- 8A^{3} \times 10^{-9}$$

$$a_{0} = 0.66$$

$$W_{D} = 9.52 - 0.053E$$

$$r_{D} = 1.266 - 3.7A \times 10^{-4} + 2A^{2} \times 10^{-6}$$

$$- 4A^{3} \times 10^{-9}$$

$$a_{D} = 0.48.$$

Wilmore and Hodgson obtained this local equivalent potential from an approximate formula in the paper of Perey and Buck, without the spin-orbit potential. We think that a spin-orbit potential of 7 MeV would be adequate if J-dependent transmission coefficients are required. A limited tabulation of transmission coefficients from the nonlocal potential of Perey and Buck is available²² as well as a more extensive set of graphs.²³ Finally we should mention the systematics of Bjorklund and Fernbach²⁴ at 4.1, 7, and 14 MeV which were used extensively in Hauser-Feshbach calculations and a more recent systematic analysis at 8 MeV by Holmqvist and Wiedling²⁵ who used an extensive set of new data from Al to Pb. Except for the symmetry dependence in Vwhich was carefully investigated in the Holmqvist and Wiedling paper, both studies obtain similar results regarding the geometrical parameters and average values of the well depths.

Protons

The systematic analysis of Becchetti and Greenlees¹⁹ fitted well a large number of elastic differential cross sections and polarization data for A > 40 and E < 50 MeV. From our experience with systematics below 20 MeV we are inclined to think that the geometry they used is more adapted to data above 20 MeV. Nevertheless their parameters appear to give fairly good fits down to 10 MeV. The parameters are:

$$V = 54.0 - 0.32E + 24(N - Z)/A + 0.4(Z/A^{1/3})$$

$$r_0 = 1.17, a_0 = 0.75$$

$$W = 0.22E - 2.7, \text{ or zero, whichever is greater}$$

$$W_D = 11.8 - 0.25E + 12(N - Z)/A, \text{ or zero, whichever is greater}$$

$$r_W = r_D = 1.32, a_W = a_D = 0.51 + 0.7(N - Z)/A$$

$$V_{so} = 6.2, r_{so} = 1.01, a_{so} = 0.75.$$

A similar analysis extending from 30 to 60 MeV by Menet et al.²⁶ who used extensive reaction crosssection data to help determine the imaginary potential gave

$$V = 49.9 - 0.22E + 26.4(N - Z)/A + 0.4(Z/A^{1/3})$$

$$r_0 = 1.16, a_0 = 0.75$$

$$W = 1.2 + 0.09E$$

$$W_D = 4.2 - 0.05E + 15.5(N - Z)/A$$

$$r_W = r_D = 1.37, a_W = a_D = 0.74 - 0.008E + 1.0(N - Z)/A$$

$$V_{so} = 6.04, r_{so} = 1.064, a_{so} = 0.78$$

$$r_c = 1.25.$$

The comparison of these two sets of parameters, based on essentially the same data, indicates the extent to which such types of analysis give different results, particularly for the imaginary part of the potential.

Another set of parameters, which was used extensively at lower energies and which reproduced the data quite well, particularly for medium-weight nuclei 30 < A < 100, has a geometry similar to that for the low-energy neutron parameters. It is from an early systematic study by Perey²⁷ and provides an alternative to the Becchetti-Greenlees potential below 20 MeV.

$$V = 53.3 - 0.55E + 27(N - Z)/A + 0.4(Z/A^{1/3})$$

$$r_0 = 1.25, a_0 = 0.65$$

$$W_D = 13.5 \pm 2.0$$

$$r_D = 1.25, a_D = 0.47$$

$$V_{so} = 7.5, r_{so} = 1.25, a_{so} = 0.47$$

$$r_c = 1.25.$$

Deuterons

The recent systematic analysis by Lohr and Haeberli²⁸ is particularly interesting since it covers both elastic differential cross sections and polarization. Unfortunately the energy range is limited to 8 to 13 MeV. The deduced parameters for A > 40 are:

$$V = 91.13 + 2.2(Z/A^{1/3})$$

$$r_0 = 1.05, a_0 = 0.86^*$$

$$W_D = 218/A^{2/3}$$

$$r_W = 1.43, a_W = 0.50 + 0.013A^{2/3}$$

$$V_{so} = 7.0, r_{so} = 0.75, a_{so} = 0.5$$

$$r_c = 1.3$$

The early analysis of Perey and Perey⁷ is applicable below 25 MeV but should be used with caution below 12 MeV since both the real and imaginary potentials tend to increase rapidly at the lower energies. Also their potential does not have a spin-orbit potential since no polarization data were available then. However, their parameters, which have been used extensively in many stripping calculations, are:

$$V = 81.0 - 0.22E + 2.0(Z/A^{1/3})$$

$$r_0 = 1.15, a_0 = 0.81$$

$$W_D = 14.4 + 0.24E$$

$$r_D = 1.34, a_D = 0.68$$

$$r_c = 1.15.$$

Helium-3 and Tritons

A short report of Becchetti and Greenlees²⁹ gives the results of a He-3 systematic study for A > 40 and E < 40 MeV. Even though no details of the analysis are reported, we give here the parameters they obtained:

$$V = 151.9 - 0.17E + 50(N - Z)/A$$

$$r_{0} = 1.20, a_{0} = 0.72$$

$$W = 41.7 - 0.33E + 44(N - Z)/A$$

$$r_{W} = 1.40, a_{W} = 0.88$$

$$V_{so} = 2.5, a_{so} = 1.20, a_{so} = 0.72$$

$$r_{c} = 1.30.$$

In the same publication they also report a set of optical parameters for tritons. Since the only data analyzed to obtain these parameters were at 15 and 20 MeV, the energy dependence could not be determined and therefore was assumed to be the same as for He-3.

$$V = 165.0 - 0.17E - 6.4(N - Z)/A$$

$$r_0 = 1.20, a_0 = 0.72$$

$$W = 46.0 - 0.33E - 110(N - Z)/A$$

$$r_W = 1.40, a_W = 0.84$$

$$V_{so} = 2.5, r_{so} = 1.20, a_{so} = 0.72$$

$$r_c = 1.30.$$

Note that the spin-orbit parameters are not strongly justified and that equivalent fits to the data are obtained without any spin-orbit coupling.

Heavy Ions

There exist no general systematics of heavy-ion potentials. For a somewhat dated point of view of the situation, the proceedings of the heavy-ion scattering symposiums held at Argonne National Laboratory in 1971³⁰ and in Nashville in 1974³¹ should be consulted.

^{*} The value of this parameter is reported to be 0.80 in the Nuclear Physics publication but was corrected by Lohr and Haeberli to be 0.86.

References for Introduction

- 1. D. R. Winner and R. M. Drisko, "Phenomenological Optical-Model Parameters," Technical Report, University of Pittsburgh, Pa. (1965)
- 2. P. E. Hodgson, Adv. Phys. 15, 329 (1966)
- 3. P. E. Hodgson, Adv. Phys. 17, 563 (1968)
- 4. L. Wallin et al., "The Optical Model of the Nucleus," Report A-4374-411, The Research Institute of National Defense, Stockholm, Sweden (April 1964)
- 5. M. A. Melkanoff, J. Raynal, and T. Sawada, Methods Comp. Phys. 6, 1 (1966)
- 6. F. G. Perey, in *Nuclear Spectroscopy and Reactions*, Part B (Joseph Cerny, ed.) p. 137, Academic Press, Inc., New York and London (1974)
- 7. C. M. Perey and F. G. Perey, Phys. Rev. 132, 755 (1963)
- 8. E. C. Halbert, Nucl. Phys. 50, 353 (1964)
- 9. J. C. Hafele, E. R. Flynn, and A. G. Blair, Phys. Rev. 155, 1238 (1967)
- H. Kattenborn, C. Mayer-Boricke, and B. Mertens, Nucl. Phys. A 119, 559 (1968)
- B. T. Lucas, S. W. Cosper, and O. E. Johnson, Phys. Rev. 144, 972 (1966)
- 12. I. N. Simonov et al., Sov. J. Nucl. Phys. 14, 59 (1972)
- 13. G. Igo, Phys. Rev. 115, 1665 (1959)
- 14. R. H. Siemssen, in *Nuclear Spectroscopy and Reactions*, Part B (Joseph Cerny, ed.) p. 233, Academic Press, Inc., New York and London (1974)
- M.-C. Lemaire, M. C. Mermaz, H. Sztark, and A. Cunsolo, *Proceedings of International Conference on Reactions between Complex Nuclei*, Nashville, Tenn., Vol. 1, p. 21, North-Holland, Amsterdam/American Elsevier, New York (1974)
- 16. N. K. Glendenning, ibid., p. 137

- 17. G. R. Satchler, ibid., p. 171
- 18. P. E. Hodgson, Nuclear Reactions and Nuclear Structure, Clarendon Press, Oxford (1971)
- 19. F. D. Becchetti, Jr., and G. W. Greenlees, Phys. Rev. 182, 1190 (1969)
- 20. F. G. Perey and B. Buck, Nucl. Phys. 32, 353 (1962)
- 21. D. Wilmore and P. E. Hodgson, Nucl. Phys. 55, 673 (1964)
- 22. E. H. Auerbach and F. G. Perey, "Optical Model Neutron Transmission Coefficients, 0.1 to 5.0 MeV," Brookhaven National Laboratory BNL-765 (T-286) (1962)
- 23. A. Lindner, "Neutron Absorption Cross Sections and Transmission Coefficients from a Non-Local Optical Model," Institut für Kernphysik, Report IKF-17, Frankfurt, Germany (July 1966)
- 24. F. Bjorklund and S. Fernbach, Phys. Rev. 109, 1296 (1958)
- 25. B. Holmqvist and T. Wiedling, Nucl. Phys. A 188, 24 (1972)
- 26. J. J. H. Menet et al., Phys. Rev. C 4, 1114 (1971)
- 27. F. G. Perey, Phys. Rev. 131, 745 (1963)
- 28. J. M. Lohr and W. Haeberli, Nucl. Phys. A 232, 381 (1974)
- F. D. Becchetti, Jr., and G. W. Greenlees in *Polarization Phenomena in Nuclear Reactions* (H. H. Barschall and W. Haeberli, eds.) p. 682, The University of Wisconsin Press, Madison, Wis. (1971)
- Heavy-Ion Scattering, Proceedings of the Symposium held at Argonne National Laboratory, ANL-7837 (1971)
- Proceedings of the International Conference on Reactions between Complex Nuclei, Nashville, Tenn. North-Holland, Amsterdam/American Elsevier, New York (1974)

EXPLANATION OF TABLES

Optical-model parameters in each table are ordered by:

- 1. Increasing atomic number of the target nucleus
- 2. Increasing mass of separate isotopes (if parameters for a target of natural elements are reported, they will be tabulated before the isotopes)
- 3. Increasing energy of the incident particles

NUCLIDE	Atomic weight and symbol of the target nucleus
ENERGY	Energy of the incident particle in the laboratory system, in MeV
REAL POTENTIAL V, R, A	V_{r}, r_{0}, a_{0} in Eqs. (1) and (3)
VOL. IMAG. POTENTIAL W, RW, AW SURF. IMAG. POTENTIAL	W, r_W , a_W in Eqs. (1) and (3)
WD, KD, AD	W_D , r_D , a_D in Eqs. (1) and (3) If the surface imaginary absorption is of a Gaussian type, the value of the well- depth parameter W_D is followed by the letter G
SPIN-ORBIT POTENTIAL	$V_{\rm const}$ in Eq. (1) and (2)
VSO, RSO, ASO	V_{so}, r_{so}, a_{so} in Eqs. (1) and (3)
R**	A double asterisk following the R's in the heavy-ion table indicates that $R^{**} = r_i A^{1/3} = r'_i (A_1^{1/3} + A_2^{1/3})$
V, W, WD, VSO	Given in MeV
R, A, RW,	Given in fermis
RC ?	r_c , Coulomb radius parameter, Eq. (2) A question mark following the Coulomb radius parameter indicates that this pa- rameter was not given in the publication and that we assume a reasonable value generally equal to the real radius pa- rameter. This appears justified since the fit is not very sensitive to this parameter
	this parameter was kept fixed during the search
ST	Neutron total cross sections, in millibarns

SR	Reaction cross sections, in millibarns. For the neutrons, σ_R reported in these tables are: $\sigma_R = \sigma_T - \sigma_{se}$ where σ_{se} is the shape elastic cross section calculated by the optical-model code which does not include the compound elastic cross section
FIT S P	Gives the nature of the data fitted Differential cross-section data fitted Differential polarization data fitted
	When the fits were shown in the paper, we have indicated our judgment of the goodness of the fit by: 1 very good or good, 2 acceptable, or 3 poor, which is a purely subjective evaluation unrelated to the χ^{2} 's reported
S1P2	For example, indicates parameters obtained by fitting the differential elastic cross sec- tions and the polarization simultaneously and that these parameters give a good fit to the differential elastic cross sections and an acceptable fit to the polarization
NOTE	The numbers refer to the notes following the tables
REF	References which follow each table
TABULAR BIBLIOGRAPHY	Follows each table. See the last paragraph under Scope for an explanation of the material noted here

TABLE I. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	N N N N N	POTENT R	IAL A	VOL.IM W	AG. POT RW	ENTIAL AW	SURF.IM WD	AG. POT RD	ENTIAL AD	SPIN- VSO	ORBIT P RSO	OTENTIAL ASO	ST	\$P	FIT	NOTE	REF.
3 H 3 H 3 H 3 H 3 H	6.0 9.0 18.0 19.5	50.35 47.36 42.98 42.07	1.488* 1.488* 1.488* 1.488* 1.488*	0.144* 0.144* 0.144* 0.144*	0.52 1.49 4.69 5.46	1.501* 1.501* 1.501* 1.501*	0.378* 0.378* 0.378* 0.378*				1.73 2.47 3.22 3.07	1.049* 1.049* 1.049* 1.049* 1.049*	0.289* 0.289* 0.289* 0.289*			S1 51 51 51		SHE72 SHE72 SHE72 SHE72 SHE72
3н 3н 3н	21.0 22.1 23.0	42.0 41.60 41.86	1.488* 1.488* 1.488*	0.144* 0.148* 0.144*	6.19 7.63 7.38	1.501* 1.501* 1.501*	0.378* 0.378* 0.378*				3.77 5.94 5.24	1.049* 1.049* 1.049*	0.289* 0.289* C.289*			51 91 51		SHE72 SHE72 SHE72
6 L I	14.	42.79	1.4*	0.48				9.52G	1.4*	0.90	5,*	1.4*	0.48	1287	497	S 1		LUT63
9 B E	14.	40.67	1.4*	0.62				22.2G	1.4*	0.39	5.*	1.4*	0.62	1459	563	51		LUT63
B B	14. 14.	42.36 48.2	1.35 1.28	0.55				9.44G 6.87G	1.35 1.28	0.75 0.70	5.* 4.72	1.35 1.28	0.55 0.52	1493 1347	570 434	51 51		LUT63 FRA66
10B 11B 11B 11B	9.72 9.72 14.1 14.1	45.56 47.1 49.2 48.0	1.31* 1.31* 1.27 1.27*	0.66* 0.66* 0.52 0.45				9.08 8.38 15.8 5.77	1.26* 1.26* 1.35 1.18	0.48* 0.48* 0.16 0.47*	4.96 5.66	1.27 1.27*	0.42 0.47*	1330 1334	870 853	S3 S2 S1 S3		C0070 C0070 ALD70 ALD70
c c	14. 14.1	52.1 50.	1.25* 1.25*	0.31 0.50	6.	1.25*	0.50	7.66G 10.G	1.25* 1.25*	0.42 0.35	5.58 6.*	1.25* 1.25*	0.31 0.50	1 15 2 1 28 0	316	S 1 5 2	2	FRA66 CLA64
12C 12C 12C 12C 12C 12C	4.0 5.0 6.0 7.48 7.48 8.56	48.0 47.7 47.3 49.6 51.0 46.5	1.4* 1.4* 1.4* 1.117 1.12 1.4*	0.4* 0.4* 0.3 0.204 0.4*				3.2 4.0 4.8 1.0 1.2 6.5*	1.05* 1.05* 1.05* 1.0 1.05 1.05*	0.4* 0.4* 0.4* 0.4 0.45 0.45	5.5* 5.5* 6.09 6.35 5.5*	1.20* 1.20* 1.20* 1.1 1.15 1.20*	0.4* 0.4* 0.4 0.4 0.3 0.4			P2 S2 S2 S2 S2 S2 S2 S2	4 4 13	PEA72 PEA72 PEA72 MCD72 MCD72 PEA72
12C 12C 12C 12C 12C	14. 14.1 14.1 14.1 14.4	50.46 57.64 56.07 84.7 44.6	1.23 1.16 1.15 1.15* 1.15*	0.51 0.33 0.54 0.4* 0.4*				6.76G 0.92 11.98 6.5* 6.5*	1.23 1.16 1.49 1.05* 1.05*	0.81 1.47 0.13 0.4* 0.4*	5.* 5.05 5.72 5.5* 5.5*	1.23 1.16 1.08 1.20* 1.20*	0.51 0.12 0.24 0.4* 0.4*	1305	474 478 404	52 52P2 52P2 53 52 52	4A 4A	LUT63 SEN71 SEN71 PEA72 PEA72
12C 12C 12C 12C	15.0 17.27 18.25 18.25	46.49 44.5 43.7 42.7	1.28 1.25* 1.25* 1.25*	0.39 0.49 0.46 0.57				8.88 7.96 9.46 10.66	0.86 1.25* 1.25* 1.25*	0.39 0.71 0.63 0.63	4.39 7.2 8.4 5.9	1.28 1.25* 1.30* 1.30*	0.39 0.40* 1.74 0.60*	1270 1280 1340 1320	473 460 458	51 53 52 52		SPA71 DEC70 DEC70 DEC70 DEC70
14 N 14 N 14 N 14 N	4.50 6.02 6.53 6.8	34.0 37.7 37.0 48.4	1.25* 1.40 1.40 1.2*	0.52 0.50 0.50 0.65*				10.0G 2.3G 2.9G 4.16	1.25* 1.40 1.40 1.2*	0.98 0.98 0.98 0.47*	9.0 7.5 7.7 7.0*	1.25* 1.40 1.40 1.2*	0.52 0.50 0.50 0.65*	1420 1470 1328	220 310 634	S2 52 52 51	5 5 5 5	JOH65 JOH65 JOH65 BAU67
14 N 14 N 14 N 14 N 14 N 14 N	7.0 7.4 7.9 8.0 8.35 8.6	42.4 48.2 50.7 42.0 50.4 49.9	1.38 1.2* 1.2* 1.35 1.2* 1.2*	0.52 0.65* 0.65* 0.55 0.65* 0.65*				2.3G 2.84 5.04 3.3G 4.96 4.74	1.38 1.2* 1.2* 1.35 1.2* 1.2*	0.96 0.47* 0.47* 0.90 0.47* 0.47*	7.3 7.0* 7.0* 5.6 7.0* 7.0*	1.38 1.2* 1.2* 1.35 1.2* 1.2*	0.52 0.65* 0.65* 0.55 0.65* 0.65*	1350 1336 1304 1370 1327 1348	500 494 664 500 654 636	S1 S1 S2 S1 S1	5	JOH65 BAU67 BAU67 JOH65 BAU67 BAU67
14 N 14 N 14 N 14 N 14 N	9.4 10.1 10.9 11.5 11.6	50.9 50.6 50.6 50.1 49.1	1.2* 1.2* 1.2* 1.2* 1.2	0.65* 0.65* 0.65* 0.65* 0.65				4.37 4.60 6.26 6.04 5.46	1.2* 1.2* 1.2* 1.2* 1.2	0.47* 0.47* 0.47* 0.47* 0.47*	7.0* 7.0* 7.0* 7.0* 4.1	1. 2* 1. 2* 1. 2* 1. 2* 1. 2*	0.65* 0.65* 0.65* 0.65* 0.64	1378 1432 1453 1483 1440	615 627 703 679 500	51 52 52 51		BAU67 BAU67 BAU67 BAU67 JOH65
14 N 14 N 14 N 14 N	12.2 13.5 14. 14.0	49.2 49.0 50.40 49.1	1.2* 1.2* 1.2* 1.2*	0.65* 0.65* 0.64 0.65*				5.99 5.08 7.97G 5.14	1.2* 1.2* 1.2* 1.2*	0.47* 0.47* 0.79 0.47*	7.0* 7.0* 5.* 7.0*	1.2* 1.2* 1.2* 1.2*	0.65* 0.65* 0.64 0.65*	1534 1558 1442 1556	676 581 588 573	s2 S2 S1 S2		BAU67 BAU67 LUT63 BAU67
160 160 160 160 160	14.0 14.0 14.1 14.1	48.46 46.4 46.8 48.9 47.9	1.2* 1.25* 1.24 1.21 1.25	0.71 0.655 0.651 0.61 0.56				7.06G 4.36 5.50 3.15 25.5	1.2* 1.15 1.17 1.21 1.30	1.0 0.47* 0.344 0.61 0.12	5.* 7.5* 9.74 5.68 5.94	1.2* 1.25* 1.05 1.21 1.20	0.71 0.65* 0.866 0.61 0.62	1577 1528 1481	684 525 496 550 425	S1 S2 S2 S2P2 S2P2 S2P2		LUT63 BEA67 BEA67 SEN71 SEN71
NA NA NA	1. 1.5 14.8	47.8 42.4	1.25* 1.25* 1.25*	0.65* 0.43 0.65*				5.0G* 8.3G 6.4	1.25* 1.25* 1.25*	0.98* 0.98* 0.47*	10.* 10.* 6.0*	1.25* 1.25* 1.25*	0.65* 0.43 0.65*	3780 2452	1460	53 51 52	15 10	GIL63 KOR68 KU172
23 NA 23 NA 23 NA 23 NA 23 NA 23 NA	0.98 0.98 1.50 2.52 3.97	48. 58.9 43. 42.5 41.5	1.40* 1.3* 1.40* 1.40* 1.40*	0.35* 0.35 0.35* 0.35* 0.35*	5. 5.5 6. 7.	1.40* 1.40* 1.40* 1.40*	0.35* 0.35* 0.35* 0.35*	7.0G	1.3*	0.98				3810 3504 2660 2230 1920	18 10 1527 1170 1100 1090	S 2 S S 2 S 2 S 2	6,14	TOW62 MAD64 TOW62 TOW62 TOW62
ng ng ng ng ng ng	2.0 3.0 4.0 5.0 14.1 14.6	52. 52. 52. 52. 44. 40.3	1.22* 1.22* 1.22* 1.22* 1.25* 1.42*	0.52* 0.52* 0.52* 0.52* 0.70 0.6*	3.12 3.12 3.12 3.12 3.12 2.	1.22* 1.22* 1.22* 1.22* 1.22* 1.25*	0.52* 0.52* 0.52* 0.52* 0.52* 0.70	7.G 8.G*	1.25* 1.42*	1.10 0.978*	6.*	1.25*	0.70	1770 1800	980 990	S2 S3 S3 S2 S2 S2 S2	5 5 5 5	TH062 TH062 TH062 TH062 CLA64 BJ056

TABLE I. Optical-Model Parameters

NUCLIDE	ENERGY (Mev)	REAL V	POTENT R	IAL A	VOL.IM W	AG. POT RW	ENTIAL AW	SURF.IN WD	AG. POT RD	ENTIAL AD	SPIN- Vso	ORBIT N RSO	POTENTIAL ASO	ST	SR	FIT	NOTE	REF.
AL AL AL AL AL	1. 1.5 2.47 3.00 3.49	40. 47.4 48.0 47.9 48.7	1.25* 1.25* 1.14 1.13 1.18	0.65* 0.46 0.65 0.72 0.61				5.0G* 6.3G 8.42 7.35 8.46	1.25* 1.25* 1.19 1.08 1.29	0.98* 0.98* 0.48* 0.48* 0.48*	10.* 10.* 8.0* 8.0* 8.0*	1.25* 1.25* 1.14 1.13 1.18	0.65* 0.46 0.65 0.72 0.61	3520 3204 2530 2520 2360	1340 1270 1250 1130	53 51 52 52 51	15 10 2 2 2	GIL63 KOR68 HOL71 HOL71 HOL71
AL AL AL AL AL	4.00 4.56 6.09 7. 7.05 7.97	49.1 50.2 47.8 45.5 49.1 49.4	1.20 1.13 1.20 1.25* 1.20 1.20	0.62 0.59 0.67 0.65* 0.68 0.69				7.99 8.38 8.23 9.56 7.90 12.1	1.26 1.26 1.23 1.25* 1.20 1.30	0.48* 0.48* 0.48* 0.98* 0.48* 0.48*	8.0* 8.0* 8.0 8.6 8.0 9.8	1.20 1.18 1.20 1.25* 1.20 1.20	0.62 0.59 0.67 0.65* 0.68 0.69	2290 2060 1880 1800	1090 1020 1070 1040	52 51 53 X3 52 51	2 2 2 2 2	HOL71 HOL71 HOL71 BJ058 HOL71 BRA72
AL AL AL AL AL	8.05 9.0 9.05 14. 24.	49.9 48.36 47.0 44. 40.	1.22 1.20* 1.20 1.25* 1.25*	0.65 0.65* 0.72 0.65* 0.70*				7.14 9.37 11.3 11.G 11.G	1.24 1.25* 1.27 1.25* 1.25*	0.48* 0.47* 0.47 0.98* 1.00*	8.0* 7.0 8.8 8.3 7.4	1.22 1.01* 1.20 1.25* 1.25*	0.65 0.65* 0.72 0.65* 0.70*	1780	10 10	S3 S1 S2 S3 S1	5 2 16	HOL71 VEL74 BRA72 BJ058 STU62
AL AL AL AL AL AL	99.4 111.5 121.4 131.0 142.1 151.9	23.9 25.1 23.1 21.1 19.4 18.1	1.25* 1.20* 1.20* 1.20* 1.20* 1.20*	0.60* 0.65* 0.65* 0.65* 0.65* 0.65*	10.4 10.8 11.4 11.9 12.2 12.8	1.25* 1.20* 1.20* 1.20* 1.20* 1.20*	0.60* 0.65* 0.65* 0.65* 0.65* 0.65*				3.6* 3.6* 3.6* 3.6* 3.6* 3.6*	1.25* 1.25* 1.25* 1.25* 1.25* 1.20*	0.60* 0.60* 0.60* 0.60* 0.65*	6 7 9	399		11 11 11 11 11 11	SCH68 SCH68 SCH68 SCH68 SCH68 SCH68 SCH68
27 AL 27 AL 27 AL 27 AL 27 AL 27 AL	0.98 1.95 3.99 3.99 24.	51.2 41. 40. 46. 40.6	1.3* 1.27 1.45* 1.25* 1.25*	0.35 0.65* 0.35 0.65 0.65*	6.71	1.45*	0.35*	9.2G 7.G 8.99G 9.7G	1.3* 1.27 1.25* 1.25*	0.98 0.98* 0.65* 1.00*	9.5 9.5* 5.6	1.27* 1.25* 1.25*	0.65* 0.65* 0.65*	3437 2352 2327	1479 1099 1096 810	S S2P2 S2 S2 S2 S2P2	6,14 2 10 10 7	MAD64 BRE64 TOW62A TOW62A PIC65
SI SI SI SI SI	7.97 9.0 9.05 9.8 14.1	48.0 51.17 45.0 52.0 44.	1.11 1.20* 1.22 1.15 1.25*	0.70 0.65* 0.72 0.78 0.70	2.	1.25*	0.70	14.5 10.17 9.5 12.1 7.G	1.21 1.25* 1.30 1.25* 1.25*	0.43 0.47* 0.48 0.47* 1.10	9.0 7.6 8.8 4.9 6.*	1.11 1.01* 1.22 1.15 1.25*	0.70 0.65* 0.72 0.78 0.70	1830	1060	S2 S2 S2 S1 S2	2 5 2 5	BRA72 VEL74 BRA72 OBS73 CLA64
285I 285I	1.95 14.7	47. 48.6	1.27 1.27	0.65* 0.60				3.G 12.1	1.27	0.98* 0.45	9.5 6.0*	1.27* 1.27	0.65* 0.60			S 2P 3 S 2	2	BPE64 Hoh69
P P P	1.5 7.97 9.05	55.3 46.5 48.5	1.25* 1.22 1.18	0.54 0.54 0.70				7.9G 11.1 12.1	1.25* 1.30 1.28	0.98* 0.47 0.45	10.* 12.9 11.0	1.25* 1.22 1.18	0.54 0.54 0.70	2969		S 1 S 2 S 1	10 2 2	KOR68 BRA72 BRA72
ន ន ន ន ន ន	2.47 3.00 3.49 3.7 4.00 4.56	51.3 50.5 46.5 42. 44.4 52.8	1.13 1.24 1.19 1.50* 1.10 1.22	0.62 0.64 0.66 0.35* 0.67 0.60	5.04	1.50*	0.35*	8.32 7.82 8.78 8.54 7.94	1.14 1.12 1.25 1.49 1.19	0.48* 0.48* 0.48* 0.48*	8.0* 8.0* 8.0* 8.0*	1.13 1.24 1.19 1.10	0.62 0.64 0.66 0.67	3040 2400 2680 3040 2570 2750	1250 1190 1220 1170 1310	S3 53 52 52 53 53	2 2 15 2	HOL71 HOL71 HOL71 MAC59 HOL71 HOL71
\$ \$ \$ \$ \$ \$ \$	6.09 7.05 7.97 8.05 9.05 9.8	47.2 47.7 48.5 49.6 47.0 49.5	1.23 1.23 1.22 1.22 1.22 1.24 1.24	0.74 0.63 0.60 0.68 0.70 0.74				8.25 9.62 9.1 8.20 8.5 10.3	1.14 1.29 1.33 1.18 1.24 1.25*	0.48* 0.48* 0.51 0.48* 0.60 0.47*	8-0* 8.0* 10.4 8.0* 3.8 4.2	1.23 1.23 1.22 1.22 1.22 1.24 1.20	0.74 0.63 0.60 0.68 0.70 0.74	2530 2220 2210	1290 1200 1190	52 53 52 52 52 52 51	2 2 2 2 2 5	HOL71 HOL71 BRA72 HOL71 BRA72 OBS73
S	14.1	44.	1.25*	0.70	2.	1.25*	0.70	7.G	1.25*	1.10	6.*	1.25*	0.70	1870	1110	\$ 2		CLA64
40 A R 40 A R	14.0 14.0	47.3 46.9	1.25* 1.26	0.497 0.493				6.49 6.50	1.28 1.27	0.47* 0.473	7.5* 12.2	1.25* 0.636	0.65* 2.03	1844 1876	1007 957	52 52		BEA67 BEA67
К К К К	1.49 2.38 3.00 3.76 14.	51.5 49.8 47.4 51.1 46.1	1.25* 1.25* 1.25* 1.25* 1.30	0.65* 0.65* 0.65* 0.65* 0.58				4. 5. 8. 11. 6.70G	1.25* 1.25* 1.25* 1.25* 1.25* 1.30	0.4* 0.4* 0.4* 0.4* 0.88	2.09	1.30	0.58	2657 3411 3417 3456 1805	908	52 52 51 52 52	10 10 10 10	TOW65 TOW65 TOW65 TOW65 FRA66
39 K 39 K 39 K 39 K 39 K 39 K	2.06 3.74 4.33 6.52 7.91	50. 50. 50. 49. 48.	1.25* 1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65* 0.65*				3. 6. 10. 7.	1.30* 1.30* 1.30* 1.30* 1.30*	0.47* 0.47* 0.47* 0.47* 0.47*	8. 6. 5.	1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65*	3170 3690 3560 2910 2650		52 51 51 52 52	5 5 5 5 5	REB67 REB67 REB67 REB67 REB67 REB67
CA CA CA CA CA	6.09 7.05 8.05 14. 14.6	59.9 55.7 53.9 45.4 40.3	1.12 1.12 1.13 1.29 1.39*	0.72 0.72 0.78 0.60 0.6*				6.55 5.25 5.93 8.54G 8.G*	1.26 1.36 1.41 1.29 1.39*	0.48* 0.48* 0.48* 0.90 0.978*	8.0* 8.0* 8.0* 2.57	1. 12 1. 12 1. 13 1. 29	0.72 0.72 0.78 0.60	3110 2950 2860 1868 2110	1200 1190 1260 1033 1230	52 52 52 52 52 53		HOL71 HOL71 HOL71 FRA66 BJ056
40CA 40CA 40CA 40CA 40CA 40CA	2.06 3.29 5.30 5.88 6.52 7.91	51. 51. 49. 50. 48.	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65* 0.65* 0.65*				7. 6. 4. 5. 6. 5.	1.30* 1.30* 1.30* 1.30* 1.30* 1.30*	0.47* 0.47* 0.47* 0.47* 0.47* 0.47*	2. 6. 7. 8. 4.	1.25* 1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65* 0.65*	3460 3770 3500 3240 3060 2780		S2 S2 S1 S1 S2 S2 S2	5 5 5 5 5 5 5 5 5	REB67 REB67 REB67 REB67 REB67 REB67 REB67

TABLE I. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	IAL A	VOL.IN W	RW	TENTIAL AW	SURF.IM WD	AG. POT	ENTIAL AD	SPIN- VSO	ORBIT F	OTENTIAL ASO	ST	SR	FIT	NOTE	REF.
ti ti ti ti	0.3 0.5 0.87 1.0	47. 47. 45.75 47.	1.25* 1.25* 1.27 1.25*	0.61 0.63 0.62* 0.61				6.5G 7.G 12.00 5.G	1.25* 1.25* 1.34 1.25*	0.98* 0.98* 0.50* 0.98*	11.5 10.5 6.00 8.5	1.25* 1.25* 1.27 1.25*	0.61 0.63 0.62* 0.61	2728 2684 2684		S2 S1 S1P3 S1	2 2 5 2	PAS70 PAS70 COX72 PAS70
TI TI TI TI	1.5 1.5 1.5 1.5	50. 53.5 49. 49.	1.25* 1.25* 1.25* 1.25*	0.51 0.41 0.57 0.55				5.5G 11.5G 9.G 7.4G	1.25* 1.25* 1.25* 1.25*	0.98* 0.98* 0.98* 0.98*	16. 15. 17.5 10.*	1.25* 1.25* 1.25* 1.25*	0.51 0.41 0.57 0.55	3216 2700 3227 3212		S1 P2 S2P2 S2	2 2 2 10	PAS70 PAS70 PAS70 KOR68
TI TI TI TI	2.0 2.0 2.0 2.5	49. 53. 48.5 49.	1.25* 1.25* 1.25* 1.25* 1.25*	0.55 0.69 0.59 0.65				6.0 12.50 8.0 8.50	1.25* 1.25* 1.25* 1.25*	0.98* 0.98* 0.98* 0.98*	10.0 2.5 10.5 8.5	1.25* 1.25* 1.25* 1.25*	0.55 0.69 0.59 0.65	3546 3406 3535 3702		51 P2 52P3 52	2 2 2 2	PAS70 PAS70 PAS70 PAS70 PAS70
TI TI TI TI TI	3.0 3.0 3.0 3.2 3.2	48. 49. 47.5 50.1 50.1*	1.25* 1.25* 1.25* 1.25* 1.25*	0.65 0.63 0.67 0.65* 0.65*				9.G 13.G 12.G 10.9 10.9*	1.25* 1.25* 1.25* 1.25* 1.25*	0.98* 0.98* 0.98* 0.48* 0.48*	10. 6. 7.5 8.0* 9.2	1.25* 1.25* 1.25* 1.12* 1.41	0.65 0.63 0.67 0.65* 0.38	3688 3440 3630		S2 P2 S2P2 S P1 S P	2 2 6,2 6,2	PAS70 PAS70 PAS70 ZIJ72 ZIJ72
TI TI	4.1 4.1	50. 47.5	1.25* 1.25*	0.65* 0.69				7.G 8.G	1.25* 1.25*	0.98* 0.98*	9.5 12.	1.25* 1.25*	0.65* 0.69	3668		52 52	2	BJ058 PAS70
V V	0.89 8.05	46.61 46.6	1.26* 1.23	0.62* 0.65				8.11 6.43	1.50 1.25	0.50* 0.48*	3.30 8.0*	1.26* 1.23	0.62* 0.65	3 10 0	1250	S 1P 2 S 2	5 3	COX72 HOL72
51V 51V 51V 51V	1.00 1.61 2.35 2.47	50. 47.0 48.6 51.3	1.25* 1.25* 1.25* 1.19	0.5 0.65* 0.55* 0.65	2.	1.45*	0.6*	8.6 9.6 8.40	1.25* 1.25* 1.21	0.45* 0.45* 0.48*	8.0*	1.19	0.65	3580	1790	5 51 51 51	10 10 10 2	BAR68 TOW68 TOW68 HOL70
51V 51V 51V 51V 51V	3.00 3.00 3.49 4.00 4.56	49. 47.4 48.6 48.1 49.2	1.25* 1.26 1.24 1.25 1.23	0.5 0.66 0.66 0.66 0.65	5.	1.45*	0.6*	8.40 8.41 8.30 8.12	1.23 1.22 1.21 1.18	0.48* 0.48* 0.48* 0.48*	8.0* 8.0* 8.0* 8.0*	1.26 1.24 1.25 1.23	0.66 0.66 0.65	3810 3710 3700 3600	1730 1600 1510 1410	s1 52 51 52 52 52	10 2 2 2 2	BAR68 HOL70 HOL70 HOL70 HOL70
51V 51V 51V 51V	5.50 6.09 7.05 8.05	52.3 51.8 50.7 46.6	1.19 1.19 1.21 1.23	0.65 0.66 0.64 0.65				7.90 7.94 7.94 6.43	1.17 1.20 1.20 1.25	0.48* 0.48* 0.48* 0.48*	8.0* 8.0* 8.0* 8.0*	1.19 1.19 1.21 1.23	0.65 0.66 0.64 0.65	3370 3280 3240 3100	1290 1270 1280 1250	S2 S2 S2 S2		HOL70 HOL70 HOL70 HOL70
CR CR CR CR	0.3 0.5 0.8 1.	46. 44.5 46. 44.	1.25* 1.25* 1.25* 1.25*	0.57 0.53 0.59 0.65*				5.G 8.G 7.G 5.0G*	1.25* 1.25* 1.25* 1.25*	0.98* 0.98* 0.98* 0.98*	7. 11. 9.5 10.*	1.25* 1.25* 1.25* 1.25*	0.57 0.53 0.59 0.65*	2395 3021 2871 3070	16 10	S 1 S 2 S 1 S 2	2 2 2 15	PAS70 PAS70 PAS70 GIL63
CR CR CR CR	1.5 1.5 1.5 1.5	49. 51.5 48.5 50.9	1.25* 1.25* 1.25* 1.25*	0.41 0.55 0.41 0.37				4.G 11.G 13.G 2.3G	1.25* 1.25* 1.25* 1.25*	0.98* 0.98* 0.98* 0.98*	16. 6.5 9.5 10.*	1.25* 1.25* 1.25* 1.25*	0.41 0.55 0.41 0.37	3062 3156 3025 3233		S1 P1 S3P2 S2	2 2 2 10	PAS70 PAS70 PAS70 KOR68
CR CR CR CR CR	2.0 2.0 2.0 2.47 2.5	49. 49.5 49. 55.4 48.5	1.25* 1.25* 1.25* 1.11 1.25*	0.55 0.79 0.55 0.63 0.57				6.5G 9.G 7.G 8.81 8.G	1.25* 1.25* 1.25* 1.15 1.25*	0.98* 0.98* 0.98* 0.48* 0.98*	8. 5.5 7. 8.0* 10.5	1.25* 1.25* 1.25* 1.11 1.25*	0.55 0.79 0.55 0.63 0.57	3462 3906 3485 3340 3422	1680	S1 91 S1P3 S2 S2	2 2 2 2 2 2	PAS70 PAS70 PAS70 HOL71 PAS70
CR CR CR CR	3.0 3.0 3.0 3.00	47.5 49. 48.5 50.9	1.25* 1.25* 1.25* 1.19	0.71 0.65 0.65 0.66				7.5G 12.5G 10.5G 8.33	1.25* 1.25* 1.25* 1.15	0.98* 0.98* 0.98* 0.48*	15.5 5. 7. 8.0*	1.25* 1.25* 1.25* 1.25* 1.19	0.71 0.65 0.65 0.66	3531 3435 3545 3690	1690	S2 P2 S3P2 S2	2 2 2 2	PAS70 PAS70 PAS70 HOL71
CR CR CR CR CR CR	3.2 3.2 3.49 4.00 4.1 4.56	50.9 50.9* 51.4 50.2 49.5 49.7	1.25* 1.25* 1.17 1.21 1.25* 1.20	0.65* 0.65* 0.64 0.66 0.67 0.65				11.5 11.5* 8.45 8.15 9.5G 7.49	1.25* 1.25* 1.20 1.16 1.25* 1.25	0.48* 0.48* 0.48* 0.48* 0.98* 0.98*	8.0* 4.4 8.0* 8.0* 12. 8.0*	1.12* 1.33 1.17 1.21 1.25* 1.20	0.65* 0.29 0.64 0.66 0.67 0.65	3530 3620 3446 3680	1540 1470 1340	5 P2 5 P 52 52 52 52 52 52	6,2 6,2 2 2 2 2 2	ZIJ72 ZIJ72 HOL71 HOL71 PAS70 HOL71
CR CR CR CR	5.50 6.09 7.05 8.05	51.7 49.7 48.0 50.6	1.19 1.21 1.24 1.21	0.68 0.68 0.64 0.61				8.74 9.49 9.77 9.13	1.18 1.15 1.23 1.21	0.48* 0.48* 0.48* 0.48*	8.0* 8.0* 8.0* 8.0*	1.19 1.21 1.24 1.21	0.68 0.68 0.64 0.61	3420 3410 3270 3070	1390 1420 1420 1310	53 53 52 52		HOL71 HOL71 HOL71 HOL71
52CR	0.98	40.3	1.3*	0.75				2.4G	1.3*	1.75				3300	1702	S	6,14	MAD64
cid Mn Mn Mn Mn	2.47 3.00 3.49 4.00 4.56	51.1 52.2 52.2 53.0 54.2	1.19 1.19 1.18 1.17 1.15	0.65 0.65 0.67 0.67 0.66				8.58 8.35 8.09 8.20 8.22	1.21 1.17 1.10 1.10 1.11	0.48* 0.48* 0.48* 0.48* 0.48*	8.0* 8.0* 8.0* 8.0* 8.0*	1.19 1.19 1.18 1.17 1.15	0.65 0.65 0.67 0.67 0.66	3520 3460 3610 3520 3410	1790 1640 1540 1400 1370	52 53 53 52 52	2 2 2	HOL71 HOL71 HOL71 HOL71 HOL71 HOL71
MN MN MN	6.09 7.05 8.05	51.3 53.1 50.5	1.19 1.17 1.19	0.68 0.67 0.65				8.83 8.54 8.04	1.19 1.18 1.17	0.48* 0.48* 0.48*	8.0* 8.0* 8.0*	1.19 1.17 1.19	0.68 0.67 0.65	3450 3350 3210	1430 1380 1320	S3 S2 S2		HOL71 HOL71 HOL71

TABLE I. Optical-Model Parameters

NUCLIDE	ENERG¥ (MEV)	REAL V	POTENI R	TIAL A	VOL.IN W	AG. POT RW	CENTIAL AW	SURF.IM WD	AG. POI RD	TENTÍAL A D	SPIN- Vso	ORBIT I RSO	OTENTIAL ASO	ST	SR	FIT	NOTE	REF.
FE FE FE FE	0.89 0.98 1. 1.	43.57 42.75 53.* 43.	1.24 1.25* 1.25* 1.25* 1.25*	0.58 0.65* 0.6* 0.65*				7.11 2.04G 7.0G* 3.0G*	1.29 1.25* 1.25* 1.25*	0.78 1.00* 1.0* 0.98*	4.46 10.* 20.* 10.*	1.24 1.25* 1.25* 1.25*	0.58 0.65* 0.6* 0.65*	3090	1220 1590	51P3 53 53	5 5 5,12 15	COX72 GIL65 H0062 GIL63
PB PE PE	2.01 2.5 2.96	47.44 39. 51.1	1.25* 1.45* 1.21	0.65* 0.35 0.61	7.8	1,45*	0.35	3.66g	1.25*	1.00* 0.48*	10.* 8.0≭	1.25*	0.42 0.65* 0.61	3330	1460 1660	52 52 52	2 15 2	GIL65 BE156 HOL71
PE PE PE FE	3.01 3.2 3.7 3.95 3.99	48.56 48.3 42. 53.8 47.86	1.25* 1.25* 1.46* 1.16 1.25*	0.65* 0.65* 0.35* 0.63 0.65*	5.88	1.46*	0.35*	10.26G 9.6 9.84 10.56G	1.25* 1.25* 1.05 1.25*	1.00* 0.48* 0.48* 1.00*	10.* 8.0* 8.0* 10.*	1.25* 1.12* 1.16 1.25*	0.65* 0.65* 0.63 0.65*	3490 3450	1650 1480 1480 1560	51 5 P 52 52 51	2 2,6,7 15 2 5	GIL65 ZIJ72 MAC59 HOL71 GIL65
FE Pe Fe Fe	4.1 4.56 5.96	39. 50. 49.2 50.57	1.45* 1.25* 1.25 1.19	0.35 0.65* 0.61 0.71	7.8	1.45*	0.35	7.G 11.19 10.67	1.25* 1.16 1.14	0.98* 0.48* 0.48*	9.5 8.0* 8.0*	1.25* 1.25 1.19	0.65* 0.61 0.71	3430 3500	1540 1560	S2 53 52 S2	15 2	BEY56 BJO58 HOL71 ROL71
pe Fe Pe Fe	7. 7. 7.05 8.05 9.0	39. 45.5 46.7 49.3 50.89	1.45* 1.25* 1.24 1.23 1.20*	0.35 0.65* 0.66 0.64 0.65*	7.8	1.45*	0.35	9.5G 10.46 10.45 9.90	1.25* 1.24 1.20 1.25*	0.98* 0.48* 0.48* 0.48*	8.6 8.0* 8.0* 6.0	1.25* 1.24 1.23 1.01*	0.65* 0.66 0.64 0.65*	3360 3310	1510 1460	S2 S2 S2 S2 S1	5	BEY56 BJ058 Hol71 Hol71 Vel74
PE Fe	14. 24.	44. 40.	1.25* 1.25*	0.65* 0.7C*				11.G 11.G	1.25* 1.25*	0.98* 1.00*	8.3 7.4	1.25* 1.25*	0.65* 0.70*			S 2 S 2	16	BJO58 STU62
56 FE 56 FE	0.98 1.0	45.9 46.6	1.3* 1.25*	0.33 0.4	2.	1.45*	0.6*	5.0G	1.3*	0.98*				2801	1504	s s	6,14 10	MAD64 BAR68
56 PE 56 PE 56 PE 56 FE	1.37 1.71 1.81 1.95	50.96 53.79 46.4 47.	1.20* 1.20* 1.241 1.27	0.55* 0.55* 0.631 0.65*				9.33 8.61 15.1 7.G	1.20* 1.20* 1.264 1.27	0.50* 0.50* 0.255 0.98*	10.0* 10.0* 14.6 9.5	1.20* 1.20* 1.241 1.27*	0.55* 0.55* 0.631 0.65*	3225 3065	1828 1697	S 1 S 1 S 2P2	2 2 9,2 2	TSU69 TSU69 TOM73 BRE64
56 FE 56 FE	2.01	52.00 49.56	1,15	0.65* 0.65*	-		A (1)	7.59 4.56	1.15 1.20*	0.30* 0.50*	10.0* 10.0*	1.15 1.20*	0.65* 0.65*	3538 3642	1688 1475	S 1 S 1	2 2	TSU69 TSU69
56 FE 56 FE	3.26 24.	49.29 38.9	1.20*	0.65* 0.65*	5.	1.45*	0.6+	7.16 9.56	1.20* 1.25*	0.50* 1.00*	10.0* 3.6	1.20* 1.25*	0.65* 0.65*	3608	1568 1163	S S 1 S 2P 2	10 2 7	BAR68 TSU69 PIC65
C0 C0 C0 C0	0.90 1.46 1.5 2.00 2.47	44.00 45.3 49. 45.5 48.8	1,26* 1,34 1,25* 1,32 1,24	0.62* 0.57 0.62 0.59 0.65				14.00 8.69 12.56 9.35 11.78	1.26* 1.34 1.25* 1.36 1.22	0.75 0.48* 0.98* 0.48* 0.48*	10.00 8.0* 10.* 8.0* 8.0*	1.26* 1.34 1.25* 1.32 1.24	0.62* 0.57 0.62 0.59 0.65	3540 3305 3490 3420	1770 1740 1830	S 1P2 52 S 1 S2 S2 S2	5 2 10 2 2	COX72 HOL71 KOR68 HOL71 HOL71
C0 C0	3.00	48.7 48.9	1.23	0.63				9.97 11.70	1.24 1.20	0.48* 0.48*	8.0* 8.0*	1.23 1.22	0.63 0.65	3450 3450	1650 1680	52 52	2 2	HOL71 HOL71
C0 C0 C0	4.00 4.56 6.09	49.3 48.3 50.3	1.22 1.23 1.20	0.35* 0.65 0.65 0.67	6.09	1.46*	0.35*	10.62 11.17 10.27	1.15 1.20 1.13	0.48* 0.48* 0.48*	8.0* 8.0* 8.0*	1.22 1.23 1.20	0.65 0.65 0.67	3530 3500 3540 3530	1580 1610 1630 1540	S2 52 S2 S2	15 2 2	HAC59 HOL71 HOL71 HOL71
C0 C0 C0	7.05 8.05 9.0	49.1 51.3 50.48	1.22 1.19 1.20*	0.66 0.66 0.65*				10.22 10.04 9.88	1.11 1.17 1.25*	0.48* 0.48* 0.47*	8.0* 8.0* 5.9	1.22 1.19 1.01*	0.66 0.66 0.65*	3540 3360	1520 1460	52 52 51	5	HOL71 HOL71 VEL74
59 CO 59 CO 59 CO	1.95 14. 14.3	47. 42.7 43.42	1.27 1.25* 1.25*	0.65* 0.65* 0.65*				7.G 7.5G 7.17	1.27 1.25* 1.25*	0.98* 1.00* 0.47*	9.5 13.1 7.5*	1.27* 1.25* 1.25*	0.65* 0.65* 0.65*	2500	1224 1260	5 1P 1 52 52	2	BRE64 PIC65 ERR67
NI NI NI	0.85 1. 1.5	46.00 53.* 47.1	1.24 1.25* 1.25*	0.62* 0.6* 0.40				18.00 7.0G* 3.5G	1.24 1.25* 1.25*	0.50* 1.0* 0.98*	6.00 20.* 10.*	1.24 1.25* 1.25*	0.62* 0.6* 0.40	3 14 9		S 1P 3 2 S 1	5 5,12 10	COX72 HOO62 KOR68
NI NI NI NI	3.00 3.2 3.2 3.49 3.7	53.2 48.4 48.4* 54.1 42.	1.18 1.25* 1.25* 1.14 1.46*	0.64 0.65* 0.65* 0.66 0.35*	6.09	1.46*	0.35*	8.68 9.6 9.6* 8.37	1.22 1.25* 1.25* 1.11	0.48* 0.48* 0.48* 0.48*	8.0* 8.0* 8.2 8.0*	1.18 1.12* 1.12 1.14	0.64 0.65* 0.09 0.66	3270 3380 3530	1570 1510 1580	S2 S P2 S P S2 S2	2 6,2 6,2 2 15	HOL71 ZIJ72 ZIJ72 HOL71 MAC59
NI NI NI NI NI	4.00 4.56 6.09 7.05 8.05 9.0	53.4 50.0 48.5 51.5 45.7 51.42	1.15 1.17 1.21 1.18 1.25 1.20*	0.67 0.72 0.73 0.71 0.68 0.65*				8.77 10.09 10.07 11.3 9.16 9.80	1.16 1.15 1.20 1.18 1.29 1.25*	0.48* 0.48* 0.48* 0.48* 0.48* 0.48* 0.48*	8.0* 8.0* 8.0* 8.0* 8.0* 5.3	1.15 1.17 1.21 1.18 1.25 1.01*	0.67 0.72 0.73 0.71 0.68 0.65*	3360 3600 3680 3450 3590	1480 1610 1640 1590 1580	52 52 53 52 53 51	2 2 5	HOL71 HOL71 HOL71 HOL71 HOL71 KOL71 VEL74
NI	14.	44.	1.25*	0.65				10.7G	1.25*	0.98*	9.7	1.25*	0.65			S 1		CLA67
58 NI 58 NI 58 NI	2.01 2.65 3.26	50.0 49.1 52.0	1.20* 1.20* 1.19	0.65* 0.70* 0.65*				5.67 5.99 6.72	1.20* 1.20* 1.19	0.50* 0.47* 0.47*	10.0* 10.0* 10.0*	1.20* 1.20* 1.19	0.65* 0.70* 0.65*	3430 3660 3290	1770 1630 1450	51 52 52	2 2 2	TSU69 TSU69 TSU69
C0 C0 C0 C0	0.85 1. 1.46 1.5 2.00 2.47	40.66 53.* 47.9 50.1 47.1 49.1	1.26* 1.25* 1.27 1.25* 1.28 1.23	0.62* 0.6* 0.67 0.56 0.61 0.69				16.44 7.0G* 8.15 8.16 10.19 9.42	1.25 1.25* 1.26 1.25* 1.24 1.18	0.50* 1.0* 0.48* 0.98* 0.48* 0.48*	6.60 20.* 8.0* 10.* 8.0* 8.0*	1.26* 1.25* 1.27 1.25* 1.28 1.23	0.62* 0.6* 0.67 0.56 0.61 0.69	3530 3115 3360 3390	1890 1790 1830	S 1P3 2 S 1 S 1 S 2 S 2 S 2	5 5,12 2 10 2 2	COX72 HOO62 HOL71 KOR68 HOL71 HOL71

TABLE I. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	R BAL V	POTENT R	IAL A	VOL.IM W	AG. POT RW	ENTIAL AW	SURF.IM WD	AG. POT RD	ENTIAL AD	SPIN- Vso	ORBIT F RSO	OTENTIAL ASO	ST	SR	FIT	NOTE	REF.
CU CU CU	3.00 3.2 3.49 3.7	48.6 47.9 47.9 42.	1.24 1.25* 1.25 1.45*	0.67 0.65* 0.68 0.35*	6.26	1,45*	0.35*	9.73 8.3 9.98	1.20 1.25* 1.19	0.48* 0.48* 0.48*	8.0* 8.0* 8.0*	1.24 1.12* 1.25	0.67 0.65* 0.68	3400 3550 3650	1780 1820 1750	S1 SP S1 S2	2 2,6,7 2 15	HOL71 ZIJ72 HOL71 MAC59
C0 C0 C0 C0 C0	4.00 4.56 6.09 7.05 8.05 14.	47.4 48.0 47.8 47.9 47.5 44.	1:24 1.23 1.23 1.21 1.22 1.25*	0.69 0.71 0.69 0.67 0.68 0.65*				10.19 9.90 10.10 9.93 10.11 11.6	1.20 1.20 1.20 1.18 1.18 1.25*	0.48* 0.48* 0.48* 0.48* 0.48* 0.98*	8.0* 8.0* 8.0* 8.0* 8.0* 8.0*	1.24 1.23 1.23 1.24 1.22 1.25*	0.69 0.71 0.69 0.67 0.58 0.65*	3700 3780 3810 3760 3580	18 10 1790 1700 1620 1570	S2 S2 S2 S2 S2 S2 S1	2 2	HOL71 HOL71 HOL71 HOL71 HOL71 BJ058
CU CU CU CU	99.4 111.5 121.4 131.0 142.1 151.9	23.9 25.1 23.1 21.1 19.4 18.1	1.25* 1.20* 1.20* 1.20* 1.20* 1.20*	0.60* 0.65* 0.65* 0.65* 0.65* 0.65*	10.4 10.8 11.4 11.9 12.2 12.8	1.25* 1.20* 1.20* 1.20* 1.20* 1.20*	0.60* 0.65* 0.65* 0.65* 0.65* 0.65*				3.6* 3.6* 3.6* 3.6* 3.6* 3.6*	1.25* 1.25* 1.25* 1.25* 1.20* 1.20*	0.60* 0.60* C.60* 0.60* 0.65* 0.65*	1366	728		11 11 11 11 11 11	SCH68 SCH68 SCH68 SCH68 SCH68 SCH68 SCH68
64CU	15.	43.7	1.25*	0.65*				10.G	1.25*	1.00*	9.1	1.25*	0.65*		1384	S 1		PIC65
ZN ZN ZN ZN ZN	0.87 1. 1.5 2.47 3.00	50.00 53.* 47.4 56.3 52.5	1.26* 1.25* 1.25* 1.16 1.19	0.62* 0.6* 0.51 0.65 0.67				20.00 7.0G* 12.6G 10.65 10.75	1.26* 1.25* 1.25* 1.19 1.18	0.75 1.0* 0.98* 0.48* 0.48*	8.00 20.* 10.* 8.0* 8.0*	1.26* 1.25* 1.25* 1.16 1.19	0.62* 0.6* 0.51 0.65 0.67	3234 2970 3190	1690 1780	S 1 P 1 2 S 1 S 1 S 2	5 5,12 10 2 2	COX72 HOO62 KOR68 HOL71 HOL71
ZN ZN	3.2	46.6	1.25*	0.65* 0.68				6.6 10.81	1.25*	0.48* 0.48*	8.0* 8.0*	1.12*	0.65* 0.68	3410	1850	S P S2	2,6,7	21J72 HOL71
2 N 2 N 2 N 2 N 2 N	3.7 4.00 4.1 4.56	42. 50.0 50. 49.3	1.45* 1.21 1.25* 1.22	0.35* 0.68 0.65* 0.68	6.30	1.45*	0.35*	10.88 7.G 10.86	1.20 1.25* 1.21	0.48* 0.98* 0.48*	8.0* 9.5 8.0*	1.21 1.25* 1.22	0.68 0.65* 0.68	3680 3510 3640	1790 1820 1830	S2 51 53 S2	15 2 2	MAC59 HOL71 BJ058 HOL71
ZN 2n 2n	6.09 7.05 8.05	51.2 48.8 49.4	1.19 1.21 1.20	0.67 0.69 0.70				10,99 10,66 10,80	1.19 1.22 1.19	0.48* 0.48* 0.48*	8.0* 8.0* 8.0*	1.19 1.21 1.20	0.67 0.69 0.70	3590 3710 3620	1680 1670 1620	52 52 52		HOL71 HOL71 HOL71
65 2 N	14.	42.9	1.25*	0.65*				9.2G	1.25*	1.00*	12.7	1.25*	0.65*		1350	S 2		PIC65
AS	8.05	49.0	1.22	0.67				9.73	1.17	0.48*	8.0*	1.22	0.67	3790	16 1 0	S 3		HOL 7 1
SE	0.83	52.89	1.25	0.62*				20.00	1.25	0.50*	3.51	1.25	0.62*			5 1 P 1	5	COX72
SR SR SR	3.2 3.2 14.8	49.5 49.5* 44.2	1.25* 1.25* 1.25*	0.65* 0.65* 0.65*				5.8 5.8* 10.3	1.25* 1.25* 1.25*	0.48* 0.48* 0.47*	8.0* 9.1 6.0*	1.12* 1.21 1.25*	0.65* 0.55 0.65*			S P1 S P S2	6,2 6,2	21J72 21J72 KU172
Y	0.89	48.85	1.26*	0.62*				15.74	1.26*	0.50*	10.80	1.26*	0.62*			5 1 P 1	5	C0X72
89¥ 89¥ 89¥ 89¥ 89¥	1.45 2.35 3.20 3.67 6.04	47.9 49.7 48.4 51.4 46.7	1.25* 1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65* 0.65*				3.4 5.5 5.9 6.0 6.9	1.25* 1.25* 1.25* 1.25* 1.25*	0.46* 0.46* 0.46* 0.46* 0.46*						S S2 S S S	2 2 2 2 2	TOW69 TOW69 TOW69 TOW69 TOW69
ZR ZR ZR ZR ZR	0.88 1. 1.5 2.5 3.2 3.2	51.00 50. 46.7 45. 49.1 49.1	1.23 1.25* 1.25* 1.33* 1.25* 1.25*	0.62* 0.65* 0.74 0.5 0.65* 0.65*	4.5	1.33*	0.5	8.00 5.0G* 5.2G 5.9 5.9*	1.32 1.25* 1.25* 1.25* 1.25*	0.50* 0.98* 0.98* 0.48*	4.00 10.* 10.* 8.0* 6.5	1.23 1.25* 1.25* 1.12* 1.20	0.62* 0.65* 0.74 0.65* 0.29	7360 5559	2400	S1P1 S1 S1 S2 S P1 S P	5 15 10 15 6,2 6,2	COX72 GIL63 KOR68 BEY56 ZIJ72 ZIJ72
ZR	4.1	45.	1.33*	0.5	4,5	1.33*	0.5	-								S2	15	BEY 56
ZR ZR	4.1	50. 45.	1.25*	0.65*	4.5	1.33*	0.5	7.G	1.25*	0,98*	9.5 8.6	1.25*	0.65*			53 53 52		BJ058 BET56 BJ058
ZR ZR	7. 14.	56. 41.3	1.11	0.80	4.5	1.11	0.80	10.3G	1.25*	0,98*	0.4 9.6	1.11	0.80			52 51		JAS58 CLA67
90 Z R 91 Z R 92 Z R	1.5 0.98 1.5	48.3 47.9 48.3	1.25* 1.3* 1.25*	0.65* 0.79 0.65*				6.7 17.6G 6.7	1.30* 1.3* 1.30*	0.47* 0.66 0.47*	5.5* 5.5*	1.25*	0.65*	7101	2973	51 5 51	5 6,14 5	MCD74 MAD64 MCD74
94 Z R	1.5	48.3	1.25*	0.65*				6.7	1,30*	0.47*	5.5*	1.25*	0,65*			SI	5	NCD /4
NB NB NB	0.88 1.5 8.05	51.00 46.9 48.8	1.25 1.25* 1.22	0.62* 0.76 0.68				12.00 8.6G 9.76	1.25 1.25* 1.13	0.50* 0.98* 0.48*	4.00 10.* 8.0*	1.25 1.25* 1.22	0.62* 0.76 0.68	5662 4040	1840	S 1P2 S2 S3	5 10	COX72 KOR68 HOL71
NO NO NO	0.86 1. 1.0 1.5	52.00 53.* 46.0 47.3	1.27 1.25* 1.26* 1.25*	0.62* 0.6* 0.62* 0.74				16.00 7.0G* 8.G 8.9G	1.27 1.25* 1.35* 1.25*	0.50* 1.0* 0.5* 0.98*	6.00 20.* 10.*	1.27 1.25* 1.25*	0.62* 0.6* 0.74	5779		S 1P 1 3 52 S 1	5 5,12 5 10	COX72 H0062 SM167 Kor68
no No	3.2 3.2 8.05	48.2 48.2* 48.4	1.25* 1.25* 1.21	0.65* 0.65* 0.68				6.8 6.8* 9.78	1.25* 1.25* 1.14	0.48* 0.48* 0.48*	8.0* 7.3 8.0*	1.12* 1.19 1.21	0.65* 0.23 0.68	4050	1850	S P2 S P S3	6,2 6,2	21j72 21j72 H0171

TABLE I. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	IAL A	VOL.IM V	AG. POT RW	ENTIAL AV	SURF.IM WD	AG. POT RD	ENTIAL AD	SPIN- VSO	ORBIT I RSQ	POTENTIAL ASO	ST	SR	FIT	NOTE	REF.
92 HO 94 HO 96 HO 100 HO	1.5 1.5 1.5 1.5	48.3 48.3 48.3 48.3	1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65*				6.7 6.7 6.7 6.7	1.30* 1.30* 1.30* 1.30*	0.47* 0.47* 0.47* 0.47*	5.5* 5.5* 5.5* 5.5*	1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65*			51 51 51 51	5 5 5 5	NCD74 NCD74 NCD74 NCD74 NCD74
AG Ag Ag	0.88 1.5 3.2	47.39 47.5 46.4	1.26* 1.25* 1.25*	0.62* 0.76 0.65*				7.13 14.8G 7.7	1.26* 1.25* 1.25*	1.45 0.98* 0.48*	3.44 10.* 8.0*	1.26* 1.25* 1.12*	0.62* 0.76 0.65*	5854		S1P1 S1 SP	5 10 2,6,7	COX72 KOR68 ZIJ72
108 AG	14.5	43.7	1.25*	0.65*				10.8G	1,25*	1.00*	8.	1.25*	0.65*		1789	s		PIC65
CD CD CD	0.87 1. 1.	47.00 53.* 48.	1.26* 1.25* 1.25*	0.62* 0.6* 0.65*				10.00 7.0G* 5.0G*	1,26* 1,25* 1,25*	0.50* 1.0* 0.98*	4.00 20.* 10.*	1.26* 1.25* 1.25*	0.62* 0.6* 0.65*	7 22 0	1850	S 1 P 1 2 S 2	5 5,12 15	COX72 H0062 GIL63
CD CD CD CD	3.2 4.1 8.05 14.6	44.5 50. 49.5 40.3	1.25* 1.25* 1.20 1.33*	0.65* 0.65* 0.68 0.6*				10.1 7.G 9.55 8.G*	1,25* 1,25* 1,27 1,33*	0.48* 0.98* 0.48* 0.978*	8.0* 9.5 8.0*	1.12* 1.25* 1.20	0.65* 0.65* 0.68	3970 5000	1990 1900	S P S3 S2 S2	2,6,7	21J72 BJ058 H0L71 BJ056
CD CD CD CD CD CD	99.4 111.5 121.4 131.0 142.1 151.9	23.9 25.1 23.1 21.1 19.4 18.1	1.25* 1.20* 1.20* 1.20* 1.20* 1.20*	0.60* 0.65* 0.65* 0.65* 0.65* 0.65*	10.4 10.8 11.4 11.9 12.2 12.8	1.25* 1.20* 1.20* 1.20* 1.20* 1.20*	0.60* 0.65* 0.65* 0.65* 0.65* 0.65*				3.6* 3.6* 3.6* 3.6* 3.6* 3.6*	1.25* 1.25* 1.25* 1.25* 1.25* 1.20*	0.60* 0.60* 0.60* 0.60* 0.65* 0.65*	2 17 0	1092		11 11 11 11 11 11	SCH68 SCH68 SCH68 SCH68 SCH68 SCH68 SCH68
1 12CD	0.98	44.5	1.3*	0.68				9.9G	1.3*	1.00				6840	2396	5	6,14	NAD64
IN IN IN IN IN	1.5 3.00 3.49 4.00 4.56	48.3 46.4 45.7 45.5 46.5	1.25* 1.26 1.27 1.28 1.27	0.64 0.65 0.65 0.65 0.65				7.5G 8.03 7.90 7.86 7.99	1.25* 1.25 1.26 1.24 1.23	0.98* 0.48* 0.48* 0.48* 0.48*	10.* 8.0* 8.0* 8.0* 8.0*	1.25* 1.26 1.27 1.28 1.27	0.64 0.65 0.65 0.65 0.65	6032 4530 4340 4180 4100	2140 2210 2230 2250	S1 S1 S2 S2 S2	10 2 2	KOR68 HOL71 HOL71 HOL71 HOL71
IN IN	7.05 8.05	49.5 46.0	1.20 1.24	0.69 0.66				8.68 8.15	1.25	0.48* 0.48*	8.0* 8.0*	1.20 1.24	0.69 0.66	3870 4150	2020 1930	52 52		BOL71 HOL71
SN SN SN SN	0.86 1. 1.0 1.5	46.00 48. 45.5 48.2	1.28 1.25* 1.25* 1.25*	0.62* 0.65* 0.62* 0.58				10.00 5.0G* 8.G 5.9G	1.28 1.25* 1.35* 1.25*	0.50* 0.98* 0.5* 0.98*	4.00 10.* 10.*	1.28 1.25* 1.25*	0.62* 0.65* 0.58	6750 6023	1690	5 1P 1 5 1 5 1 5 1	5 15 5 10	COX72 GIL63 SH167 KOR68
SN SN SN SN SN SN	2.5 3.2 3.2 4.1 7.	46. 47.2 47.2* 46. 45.5	1.35* 1.25* 1.25* 1.35* 1.35* 1.25*	0.4 0.65* 0.65* 0.4 0.4 0.4	4.6 4.6 4.6	1.35* 1.35* 1.35*	0.4 0.4 0.4	10.5 10.5* 9.56	1.25* 1.25* 1.25*	0.48* 0.48* 0.98*	8.0* 4.2 8.6	1.12* 0.82 1.25*	0.65* 0.63 0.65*			53 5 P2 5 P 52 52 52 52	15 6,2 6,2	BEY56 21J72 21J72 BEY56 BEY56 BJ058
SN	14.	44. NO	1.25*	0.65*				11.G	1.25*	0.98*	8.3	1.25*	0.65*			S2	16	BJ058
11658	24.	40.	1.25*	0.65*	2.3	1.25*	0.65*	7.3G	1.25*	1.00*	9.4	1.25*	0.65*		1808	\$2P2	7	PIC65
119 SN	0.98	43.9	1.3*	0.75				8.4G	1.3*	1.06				7064	2556	s	6,14	NAD64
SB SB SB SB SB	0.87 1.0 1.5 3.2 8.05	48.00 45.0 47.4 45.8 46.5	1.27 1.25* 1.25* 1.25* 1.25* 1.23	0.62* 0.62* 0.71 0.65* 0.66				8.00 8.6 7.26 11.4 8.49	1.37 1.35* 1.25* 1.25* 1.25* 1.29	0.50* 0.5* 0.98* 0.48* 0.48*	5.00 10.* 8.0* 8.0*	1.27 1.25* 1.12* 1.23	0.62* 0.71 0.65* 0.66	6479 4170	2030	S 1P 1 S 2 S 1 S P S 2	5 5 10 2,6,7	COX72 SHI67 KOR68 ZIJ72 HOL71
te Te	1.0 3.2	44.5 46.8	1.25* 1.25*	0.62* 0.65*				8.G 7.9	1.35* 1.25*	0.5* 0.48*	8.0*	1.12*	0.65*			S2 S P	5 2,6,7	SMI67 ZIJ72
I	0.89 1.5	46.00 44.8	1.26* 1.25*	0.80 0.78				10.00 8.3g	1.26* 1.25*	0.75 0.98*	2.00 10.*	1.26* 1.25*	0.80 0.78	6672		52P3 S 1	5 10	COX72 KOR68
cs	0.88	44.00	1.26*	0.80				6.00	1.26*	1.25	6.00	1.26*	0.80			S 1 P 3	5	CO172
BA BA BA	0.88 3.2 3.2	46.00 47.2 47.2*	1.26* 1.25* 1.25*	0.62* 0.65* 0.65*				10.00 8.7 8.7*	1.26* 1.25* 1.25*	1.00 0.48* 0.48*	12.00 8.0* 8.9	1.26* 1.12* 1.30	0.62* 0.65* 0.27			S2P2 S P1 S P	5 6,2 6,2	COX72 ZIJ72 ZIJ72
LA	1.	44.	1.25*	0.65*				3.0G*	1.25*	0.98*	10.*	1.25*	0.65*	7230	1320	S 2	15	GIL63
139LA	0.98	40.8	1.3*	0.80				2.5G	1.3*	1.67				7920	2213	5	6,14	MAD64
CE CE	0.87	45.91 48.	1.26* 1.25*	0.62* 0.65*				14.47 3.0G*	1.34 1.25*	1.00 0.98*	17.49 10.*	1.26* 1.25*	0.62* 0.65*	6850	2240	52P2 52	5 15	COX72 GIL63
14005	4.30	43.4	** 3*	1.03				2.29	1.3*	1.30				1106	2304	5	0,14	11064

TABLE I. Optical-Model Parameters

NUCLIDE	: ENERGY (MEV)	REAL V	POTENT R	TAL A	VOL.II	AG. PO RW	TENTIAL AW	SURF.IM ND	RD RD	ENTIAL AD	SPIN- VSO	OREIT RSO	POTENTIAL ASO	ST	SR	FIT	NOTE	REF.
PR PR	0,88 1.	44.00 48.	1.26* 1.25*	0.80 0.65*				6.00 3.06*	1.26* 1.25*	1.00 0.98+	6.00 10.*	1.26* 1.25*	0.80 0.65*	6970	2350	51P3 51	5 15	COX72 GIL63
141PR	0.98	41.3	1,3*	0.76				3.5G	1,3*	1.76				7957	2908	s	6,14	MAD64
ND	1.	48.	1.25*	0.65*				5.0G*	1.25*	0.98*	10.*	1,25*	0.65*	7210	3220	s2	15	GIL63
144 ND	0.98	48.2	1.3*	0.35				6.3G	1.3*	0.98				5905	2315	s	6,14	MAD64
SH SH	1. 1.5	46. 43.1	1.25* 1.25*	0.65* 0.72				5.0G* 13.4G	1.25* 1.25*	0.98* 0.98*	10.* 10.*	1.25* 1.25*	0.65* 0.72	7160 6802	2860	51 51	15 10	GIL63 KOR68
150 SM	0.98	41.0	1.3*	0.73				6.5G	1.3*	1.28				778 1	3315	s	6,14	MAD64
GD	1.	46.	1.25*	0.65*				5.0G*	1.25*	0.98*	10.*	1.25*	0.65*	7590	3430	s2	15	GIL63
157GD	0.98	40.3	1.3*	0.62				20.4G	1.3*	0,98*				6740	2817	s	6,14	MAD64
DY	1.	44.	1.25*	0.65*				5.0G*	1.25*	0.98*	10.*	1.25*	0.65*	7620	3100	s 2	15	GIL63
162 DY	0.98	41.0	1.3*	0.56				18.6G	1.3*	0.95				6714	2689	s	6,14	MAD64
но	۱.	43.	1.25*	0.65*				5.0G*	1.25*	0,98*	10.*	1,25*	0.65*	7560	2860	s2	15	GIL63
165H0 165H0	0.35	40.* 45.9	1.25*	0.82* 0.69*				16.* 3.48	1.25*	0.47*	7.* 7.3*	1.25*	0.82*			S2	13 8 . 13	MEA71 BEA71
165HD 165HD	0.98	40.2 40.*	1.3* 1.25*	0.55				37.2G 16.*	1.3*	0.74 0.47*	7.*	1.25*	0.82*	6284	2385	s s2	6,14 13	HAD64 HEA71
16580	1.0	45.75	1.25*	0.69*				3.45	1.25*	0.47*	7.3*	1.25*	0.69*			S 1	8,13	HEA71
ER	1.	44.	1.25*	0.65*				5.0G*	1.25*	0.98*	10.*	1.25*	0.65*	7870	3430	S 2	15	GIL63
167 ER	0.98	40.3	1.3*	0.64				23.9G	1.3*	0.93				6793	3005	S	6,14	MAD64
YB Yb	1. 1.5	44. 42.9	1.25* 1.25*	0.65* 0.72				5.0G* 16.7G	1.25* 1.25*	0.98* 0.98*	10.* 10.*	1.25* 1.25*	0.65* 0.72	7820 6947	3520	52 52	15 10	GIL63 KOR68
173 ¥B	0.98	37.7	1.3*	0.72				22.8G	1.3*	0.95				7182	3380	5	6,14	MAD64
HF	8.05	45.2	1.22	0.66				6.74	1.26	0.48*	8.0*	1.22	0.66	4510	2220	S 3		HOL71
TA	0.88	40.00	1.26*	0.62*				20.00	1.26*	1.20	8.00	1.26*	0.62*			52P2	5	COX72
TA TA TA	1.5 7.	42. 41.6 45.5	1.25* 1.25* 1.25*	0.65* 0.79 0.65*				5.0G* 15.3G 9.5G	1.25* 1.25* 1.25*	0.98* 0.98* 0.98*	10.* 10.* 8.6	1.25* 1.25* 1.25*	0.65* 0.79 0.65*	7990 7471	3540	53 52 52	15	GIL63 KOR68 BJ058
181TA	0.41	43.8	1.33	0.64				12.1G	1.33	1.0*	7.0*	1.33	0.64			S1	10,13	AUE64
181TA 181TA	0.98	43.8 69.1 43.8	0.88	1.00	20.2	0.88	1.00	12.16	1.33	1.0*	7.0*	1.33	0.64	7364	4381	5 5 52	6,14	MAD64
18 1TA	2.47	45.0	1.25*	0.65*				13.9	1.25*	0.48*	6.0*	1.25*	0.65*	7010	3340	s	1	HOL 70A
181TA 181TA 1915	3.00	45.0 44.9	1.25*	0.65*				13.0 12.6	1.25*	0.48* 0.48*	6.0* 6.0*	1.25*	0.65*	6850 6680	3280	S S	1	HOL70A
181TA 181TA	6.09	44.0	1.25*	0.65*				11.0	1.25*	0.48*	6.0*	1.25*	0.65*	5550	2870	3 S S	1	HOL70
18117	8.05	44.5	1.25*	0.65*				10.6	1.25*	0.48*	6.0*	1.25*	0.65*	5210	2750	š	i	HOL70A
W W	0.40	43.8	1.31*	0.49				13.2G	1.31*	1.0* 1.0*	7.0* 7.0*	1.31*	0.49 0.49			5 1 5 1	10,13	AUE64 AUE64
W	0.87	44.00	1.28	0.62*				20.00 13.2G	1.28 1.31*	1.25	9.00 7.0*	1.28	0.62*			S2P2 S2	5	COX72 AUE64
¥ W	1.5	42.5 50.4	1.25* 1.25*	0.87 0.65*				21.5G 9.3	1.25*	0.98* 0.48*	10.* 8.0*	1.25* 1.12*	0.87 0.65*	7 17 7		S2 SP	10 2,6,7	KOR68 ZIJ72
W	4.1	50.	1.25*	0.65*				7.G	1.25*	0.98*	9.5	1.25*	0.65*			s 3		BJ058
184W 184W	1.37	57.66 45 3	1.20*	0.65*				7.71	1.20*	0.70*	10.0*	1.20*	0.65*	6276		51 52	2	TSU69 KOR68
184W	2.01	46.79	1.20*	0.65*				10.06	1.20*	0.70*	10.0*	1.20*	0.65*	0270		52	2	TSU69
PT	1.5	47.6	1.25*	0.58				12.1G	1.25*	0.98*	10.*	1.25*	0.58	5831		52	10	KOR68
AU Au	0.88 1.5	47.00 46.6	1.26* 1.25*	0.62* 0.69				10.00 8.7g	1.26* 1.25*	1.00 0.98*	8.00 10.*	1.26* 1.25*	0.62* 0.69	5921		52P2 51	5 10	COX72 KOR68
AU	8.05	45.5	1.23	0.65				6.29	1.27	0.48*	8.0*	1.23	0.65	4930	2330	s2		HOL71
197 AU 197 AU 197 AU	0.5 1.0 1.4	43.2 43.2 43.2	1.31* 1.31* 1.31*	0.58 0.58 0.58				4.0G 4.0G 4.0G	T.31* 1.31* 1.31*	1.0* 1.0* 1.0*	7.0* 7.0* 7.0*	1.31* 1.31* 1.31*	0.58 0.58 0.58	43. 43.		52 52 52	10,13 10,13 10,13	AUE64 AUE64 AUE64
80	0.44	<u>un 00</u>	1 26=	0.60				12 00	1 76-	0 50+	a 00	1 76+	0 40			5307	5	C0 773
ng HG	1.5	45.8	1.25*	0.73				8.9G	1.25*	0.98*	10.*	1.25*	0.73	6125		51	10	KOR68
see page	§ IOL F	explana	uion o	i lables														

TABLE I. Optical-Model Parameters

Neutrons

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	IAL A	VOL.IH W	AG. POT RW	ENTIAL AW	SORP.IN WD	AG. POT RD	'ENTIAL A D	SPÍN- VSO	ORBIT I RSO	POTENTI AL ASO	SŤ	SR	FIT	NOTE	REF.
TL TL	1.5 3.2	47.2 45.0	1.25* 1.25*	0.67 0.65*				7.8G 13.0	1.25* 1.25*	0.98* 0.48*	10.* 8.0*	1.25* 1.12*	0.67 0.65*	5771		S2 S P	10 2,6,7	KOR68 ZIJ72
28 28 28 28 28 28 28	1. 1.10 1.2 1.5 2.2 3.2	51. 46.00 46. 46.9 46. 46.6	1.19 1.26* 1.31* 1.25* 1.31* 1.25*	0.65* 0.62* 0.43 0.52 0.43 0.65*				3.0G* 8.00 5.5G 5.3G 5.5G 6.9	1.19 1.26* 1.31* 1.25* 1.31* 1.25*	0.98* 0.50* 1.0* 0.98* 1.0* 0.48*	10.* 7.00 7.0* 10.* 7.0* 8.0*	1.19 1.26* 1.31* 1.25* 1.31* 1.31*	0.65* 0.62* 0.43 0.52 0.43 0.65*	4390 5371	1280	S1 S2P2 S2 S1 S3 S P	5 5 10 10 10 2,6,7	GIL63 CO172 AUE64 KOR68 AUE64 ZIJ72
PB PB PB PB	7. 8.05 14. 14.5	45.31 46.0 44. 43.28	1.25* 1.23 1.25* 1.25*	0.65* 0.65 0.65* 0.65*				6.57 6.30 11.G 9.32	1.25* 1.28 1.25* 1.25*	0.47* 0.48* 0.98* 0.47*	6.2 8.0* 8.3 7.0	1.25* 1.23 1.25* 1.25*	0.65* 0.65 0.65* 0.65*	5390	2440	52 52 52 51		PER62 HOL71 BJ058 PER62
PB PB PB PB PB	99.4 111.5 121.4 131.0 142.1 151.9	23.9 25.1 23.1 21.1 19.4 18.1	1.25* 1.20* 1.20* 1.20* 1.20* 1.20* 1.20*	0.60* 0.65* 0.65* 0.65* 0.65*	10.4 10.8 11.4 11.9 12.2 12.8	1.25* 1.20* 1.20* 1.20* 1.20* 1.20*	0.60* 0.65* 0.65* 0.65* 0.65* 0.65*				3.6* 3.6* 3.6* 3.6* 3.6* 3.6*	1.25* 1.25* 1.25* 1.25* 1.25* 1.20* 1.20*	0.60* 0.60* 0.60* 0.60* 0.65* 0.65*	3512	1684		11 11 11 11 11 11	SCH68 SCH68 SCH68 SCH68 SCH68 SCH68 SCH68
208 PB 208 PB	0.98 8.05	45.3 45.2	1.3* 1.24	0.43* 0.64				1.0G 6.69	1.3* 1.26	0.69* 0.48*	8.0*	1.24	0.64	4421 5330	230 2450	5 52	6,14	MAD64 Hol71
BI BI BI BI BI	0.92 1.5 2.5 3.2 3.2	43.50 47.3 44. 46.2 46.2*	1.30 1.25* 1.30* 1.25* 1.25*	0.62* 0.38 0.5 0.65* 0.65*	3.3	1,30*	0.5	14.00 3.9G 8.2 8.2*	1.30 1.25* 1.25* 1.25*	0.50* 0.98* 0.48* 0.48*	8.00 10.* 8.0* 6.9	1.30 1.25* 1.12* 0.90	0.62* 0.38 0.65* 0.37	5185		S1P1 S1 S2 S P1 S P	5 10 15 6,2 6,2	COX72 KOR68 BEY56 ZIJ72 ZIJ72
BI BI BI BI BI	4.1 4.1 6.09 7. 7.	44. 50. 44.1 44. 45.5	1.30* 1.25* 1.26 1.30* 1.25*	0.5 0.65* 0.66 0.5 0.65*	3.3 3.3	1.30* 1.30*	0.5 0.5	7.G 6.26 9.5G	1.25* 1.28 1.25*	0.98* 0.48* 0.98*	9.5 8.0* 8.6	1.25* 1.26 1.25*	0.65* 0.66 0.65*	6350	2540	52 53 52 52 52	15	BE¥56 BJ058 HOL71 BE¥56 BJ058 HOL71
BI	8.05	44.5	1.25	0.65				6.21	1.28	0.48*	8.0*	1.25	0.65	5510	2440	52 52		HOL71
BI BI BI BI	14.6 14.6 14.8 24.	44. 40.3 42.7 40.	1.30* 1.31* 1.25* 1.25*	0.5 0.6* 0.65* 0.70*	3.3	1.30*	0.5	8.G* 8.4 11.G	1.31* 1.25* 1.25*	0.978* 0.47* 1.00*	6.0* 7.4	1.25* 1.25*	0.65* 0.70*	5700	2300	52 52 51 52	16	BEY56 BJ056 KU172 STU62
209BI 209BI 209BI 209BI 209BI 209BI	0.90 1.0 1.45 2.02 2.5 2.55	46.3 46.3 45.47 46.27 46.35 46.02	1.29 1.29 1.25* 1.25* 1.247 1.247	0.50 0.50 0.65* 0.65* 0.639 0.65*				3.78G 3.78G 5.84 3.21 8.1 3.32	1.29 1.29 1.25* 1.25* 1.265 1.25*	1.0* 1.0* 0.48* 0.33 0.48*	7.0* 7.0* 7.0* 7.0* 32. 7.0*	1.29 1.25* 1.25* 1.25* 1.247 1.25*	0.50 0.50 0.65* 0.65* 0.639 0.65*	46. 5840 6250 7330		S2 S2 S1 S1 S1	10 10 2 2 5 2	AUE64 AUE64 TAN72 TAN72 CRA67 TAN72
209 BI 209 BI 209 BI 209 BI 209 BI	3.06 3.55 14. 14.1 24.	46.11 45.04 41.21 39.9 41.2	1.25* 1.25* 1.25* 1.30 1.25*	0.65* 0.65* 0.65* 0.75 0.65*	2.8	1.25*	0.65*	3.59 5.77 7.48 11.4G 5.1G	1.25* 1.25* 1.25* 1.28 1.25*	0.48* 0.48* 0.47* 1.28 1.00*	7.0* 7.0* 7.5* 4.62 4.7	1.25* 1.25* 1.25* 1.30 1.25*	0.65* 0.65* 0.65* 0.75 0.65*	7760 7560 5470	2290 2527	S1 S2 S2 S2 S2P2	2 2 7	TAN72 TAN72 ERR67 MAT73 PIC65
TH TH	0.87 1.5	43.00 44.7	1.30 1.25*	0.62* 0.60				20.00 10.3G	1.34 1.25*	0.50* 0.98*	8.00 10.*	1.30 1.25*	0.62* 0.60	6258		S 2 P 2 S 1	5 10	COX72 Kor6b
232тн 232тн 232тн	0.56 0.70 1.0	41.3 41.3 41.3	1.32* 1.32* 1.32*	0.47* 0.47* 0.47*				7.28G 7.28G 7.28G	1.32* 1.32* 1.32*	1.0* 1.0* 1.0*	7.0* 7.0* 7.0*	1.32* 1.32* 1.32*	0.47* 0.47* 0.47*			51 52 52	10 10 10	AUE64 AUE64 AUE64
ម ប្	0.87 1.	42.70 46.	1.26* 1.25*	0.67 0.65*				17.79 5.0G*	1.26* 1.25*	0.75 0.98*	5.31 10.*	1.26* 1.25*	0.67 0.65*	7 14 0	3580	5 2P 1 5 2	5 15	COX72 GIL63
235U	1.5	45.	1.25*	0.64				10.7G	1.25*	0.98*	10.*	1.25*	0.64	6447		S 2	10	KOR68
2380 2380 2380 2380 2380 2380	0.41 0.77 0.98 1.25 1.5	39.8 39.8 39.3 39.8 43.4	1.32* 1.32* 1.3* 1.32* 1.25*	0_47* 0.47* 0.83 0.47* 0.58				6.9G 6.9G 16.3G 6.9G 12.G	1.32* 1.32* 1.3* 1.32* 1.25*	1.0* 1.0* 1.05 1.0* 0.98*	15.0 15.0 15.0 10.*	1.32* 1.32* 1.32* 1.25*	0_47* 0.47* 0.47* 0.58	7878 6440	4595	51 52 5 52 51	10,13 10,13 6,14 10,13 10	AUP64 AUE64 MAD64 AUE64 KOR68
2380 2380 2380 2380 2380 2380 2380	99.4 111.5 121.4 131.0 142.1 151.9	23.9 25.1 23.1 21.1 19.4 18.1	1.25* 1.20* 1.20* 1.20* 1.20* 1.20*	0.60* 0.65* 0.65* 0.65* 0.65* 0.65*	10.4 10.8 11.4 11.9 12.2 12.8	1.25* 1.20* 1.20* 1.20* 1.20* 1.20*	0.60* 0.65* 0.65* 0.65* 0.65* 0.65*				3.6* 3.6* 3.6* 3.6* 3.6* 3.6*	1.25* 1.25* 1.25* 1.25* 1.20* 1.20*	0.60* 0.60* 0.60* 0.60* 0.65* 0.65*	3905	1857		T 1 11 11 11 11 11	SCH68 SCH68 SCH68 SCH68 SCH68 SCH68 SCH68

TABLE I. Optical-Model Parameters

Neutrons

NOTES

- 1. Nonspherical optical-model calculations performed in the coupled-channel adjabatic approximation with $\beta = 0.26$.
- 2. See publication for compound elastic contribution
- The optical-model parameters for 20 natural elements at 8.05 MeV given in this publication are also given in reference HOL71
- The parameters V and WD are given as a function of energy: V = (49.3-0.33 E) MeV $$\rm WD$ = (0.8 E) MeV \rm 4.
- 4A. Same as note 4 except that WD was kept fixed at 6.5 MeV
- Compound elastic contribution obtained by Hauser-Feshbach calculation 5.
- The normalization of the cross-section data is 6. adjusted by the code
- 7. Polarization data for angles smaller than 80°
- Deformed optical-model calculations performed with V = (46-0.25 E) MeV, W = (3.5-0.05 E) MeV and $\beta = 0.3$ 8.
- Energy Range ____(MeV) Target Nuclei References SAT68 E < 20 4He ²⁷Al,Fe AUE67 1 to 4 Al to Pb (36 nuclei) 3.2 BFC66 Si to U (8 nuclei) 1 to 15 WIL64 0.7 to 18 CAS62 Ca 40 < A < 150 (even isotopes) E < 1 MOL63 0.3 to 1.5 Τi BAR74 Ti to Bi (20 nuclei) 3.2 71,174 Fe,Ni,Cu,Sn,Pb^(*) 14.5 PYL69 54756Fe,59Co,58760Ni(*) 14.7 TUT74 ⁵⁹Co to ²⁰⁹Bi (10 nuclei) 4 GOR67.GOR68 E < 1.0 Zr,Nb,Mo,Cd ELW64 92,96,98,100MO 1.6 to 5.5 SM175 2 3 8U (**) 0.3 to 15 BAL64

- Total cross-sections and differential elastic cross-sections were fitted simultaneously. Hauser-Feshbach calculations performed
 - 11. Fits to total and reaction cross-sections only

9. Energy-averaged data from 1.4 to 2.2 MeV

- 12. Fit to the energy dependence of the polarization at 55° and 90°, and to the total cross-section
- More data at nearby energies are fitted with this set of parameters. See publication
- Total cross-sections and differential elastic cross-sections were fitted simultaneously. Isotropic compound elastic correction added
- 15. Isotropic compound elastic contribution added to the shane elastic
- 16. Data for angles smaller than 90°
 - Table II: Tabular bibliography of data compared with optical model calculations performed with Bjorklund and Fernbach parameters from reference BJ058.

Target Nucleí	Energy (MeV)	References
Ag,In	6.7	MAL62
B,C,S	14	TES62
C,N,S,Mo,Cd,Te	14	STR62
Al,S,Ti,Co	14	STP59
Zn,Sn,Sb,Pb,Bi	14	RAY59
C,Al,Fe,Cu,Sn,Pb	14.5	C0058
Mg,Ca,Cd,Ta,Bi	14.6	CR060
Mg,Al,Ni,Cu	14.7	BER58
Ta,Bi,Th,U	15.2	HUD62

*Folding model

** Coupled equation calculations performed

NEUTRONS REFERENCES

- ALD70 J. C. ALDER AND B. VAUCHER, NUCL. PHYS. & 147, 657 (1970) . AU EG 4 E. H. AUERBACH AND S. C. MOORE, PHYS. REV. 135, B895 (1964) E. H. AUERBACH AND S. O. MOOBE, PHYS. REV. 163, 1124 (1967) AU 267 BAL64 B. BALDONI AND A. N. SARUIS, NUOVO CIM. 33, 1145 (1964) A. W. BARROWS, R. C. LAMB, D. VELKLEY AND M. T. HCELLISTREM, NUCL. PHYS. A107, 153 (1968) BAR68 BAR74 E. BARWARD ET AL., NUCL. PHIS. A229, 189 (1974) BAU67 R. W. BAUER ET AL., HUCL. PHYS. 493, 673 (1967)
- P. L. BEACH, ROGER W. FINLAY, R. L. CASSOLA AND R. D. KOSHEL, PHYS. REV. 156, 1201 (1967) BEA67

- BEC66 R. L. BECKER, W. G. GUINDON AND G. J. SMITH, NUCL. PHYS. 89, 154 (1966)
- BER58 S. BERKO, W. D. WHITEHEAD AND B. C. GROSECLOSE, NUCL. PHYS. 6, 210 (1958)
- BEY56 J. R. BEYSTER, M. WALT AND B. W. SALMI, PHYS. REV. 104, 1319 (1956)
- BJ056 F. E. BJORKLUND, S. FERNBACH AND N. SHERMAN, PHYS. REV. 101, 1832 (1956)
- BJO58 F. BJORKLUND AND S. FERNBACH, PHIS. REV. 109, 1295 (1958)
- BRA72 J. D. BRANDENBERGER, A. MITTLER AND N. T. MCELLISTREN, NUCL. PHYS. A196, 65 (1972)
- BRE64 D. J. BREDIN, PHYS. REV. 135, 8412 (1964)

- Table I: Tabular Bibliography

TABLE I. Optical-Model Parameters N

NEUTRONS REFERENCES

- CAS62 PANDALL S. CASWELL, JOURNAL OF RESEARCH OF THE NATIONAL FUREAU OF STANDARDS, 66A, 389 (1962)
- CLA64 R. L. CLARKE AND W. G. CROSS, NUCL. PHYS. 53, 177 (1964)
- CLA67 R. L. CLAPKE AND W. G. GROSS, NUCL. PHYS. A95, 320 (1967)
- COO58 J. H. COON, P. W. DAWIS, H. E. PELTHAUSER AND D. E. NICODEMUS, PHYS. REV. 111, 250 (1958)
- CD070 J. A. COOKSON AND J. G. LOCKE, NUCL. PHYS. A 146, 417 (1970).
- COX12 SAMSON A. COX AND E. E. DOWLING COX, "POLARIZATION IN THE ELASTIC SCATTERING OF NEUTRONS PROM REDIUM- AND HEAV-WEIGHT RIMENTS," ARGONNE NATIONAL LABORATORY REPORT NO. 7935 (JUNE 1972)
- CRA67 LAWRENCE CRANBERG, THOMAS A. OLIPHANT, JULES LEVIN AND C. D. ZAFIRATOS, PHYS. REV. 159, 969 (1967)
- CR060 W. G. CROSS AND R. G. JARVIS, NUCL. PHYS. 15, 155 (1960)
- DEC70 G. DECONNINCK AND J. P. MEULDERS, PHYS. REV. C1, 1326 (1970).
- ELW64 A. J. ELWYN, R. O. LANE, A. LANGSDORF, JR., AND J. E. MONAHAN, PHYS. REV. 133, B80 (1964)
- ERR67 H. J. ERRAMUSPE, NUCL. PHYS. &105, 569 (1967)
- FRA66 A. J. FRASCA, ROGER W. FINLAY, R. D. KOSHEL AND R. L. CASSOLA, PHYS. REV. 144, 854 (1966)
- GIL63 W. B. GILBOY AND J. H. TOWLE, NUCL. PHYS. 42, 86 (1963)
- GIL65 W. B. GILBOY AND J. R. TOWLE, NUCL. PHYS. 64, 130 (1965)
- GOR67 G. V. GORLOW, N. S. LPBEDEVA AND V. N. MOROSOV, PHYS. LETT. 25B, 197 (1967)
- GOR68 V. GORLOV, N. S. LEBEDEVA AND V. M. MOROZOV, 50V. J. NUCL. PHYS. 6, 663 (1968)
- HOH69 J. HOHN, H. FOSE, D. SEELIGER AND R. REIP, NUCL. PHYS. A134, 289 (1969).
- HOL70 B. HOLMQVIST, S. G. JOHANSSON, G. LODIN AND T. WIEDLING, NUCL. PHYS. A146, 321 (1970).
- HOL70A B. HOLMQVIST, T. WIEDLING, V. BENZI, AND L. ZUFFI, NUCL. PHYS. A150, 105 (1970).
- HOL71 5. HOLMQVIST AND T. WIEDLING, "OPTICAL MODEL ANALYSES OF EXPERIMENTAL FAST NEUTRON ELASTIC-SCATTERING DATA," ATOMIC ENERGY COMPANY, STUDSVIK, SWEDEN, REPORT AE-430 (1971)
- HOL72 B. HOLMQVIST AND T. WIEDLING, NUCL. PHYS. A188, 24 (1972)
- HOO62 D. J. HOOTON, PHYS. REV. 128, 1805 (1962)
- HUD62 CECIL I. HUDSON, JR., W. SCOTT WALKER AND S. BERKO, DHYS. REV. 128, 1271 (1962)
- JAS58 R. JASTROW AND I. HARRIS, NUCL. PHYS. 9, 437 (1958)
- JOH65 B. JOHANSSON, NUCL. PHYS. 67, 289 (1965)
- KOR68 I. A. KORZH, I. E. KASHUBA, B. D. BOZIN AND M. V. PASECHNIK, SOV. J. NUCL. PHYS. 7, 190 (1968)
- KUI72 P. KUIJPER, J. C. VEEPKING AND C. C. JONKER, NUCL. PHYS. A181, 545 (1972)
- LUT63 H. F. LUTZ, J. B. MASON AND M. D. KARVELIS, NUCL. PHYS. 47, 521 (1963)
- MAC59 M. K. MACHWE, D. W. KENT, JR., AND S. C. SNOHDON, PHYS. REV. 114, 1563 (1959)
- MAD64 R. N. MADDISON, NUCL. PHYS. 54, 417 (1964)
- MAL62 P. R. MALMBERG AND S. C. SNOWDON, PHYS. REV. 128, 351 (1962)
- MAT73 M. MATOBA ET AL., NUCL. PHYS. A204, 129 (1973)
- NCD72 P. D. NCDANIEL, N. W. HCDONALD, H. P. STEUER AND R. M. WOOD, PHYS. REV. C6, 1181 (1972)
- MCD74 P. D. MCDANJEL, J. D. BRANDENBERGER, G. P. GLASGOW AND H. G. LEIGHTON, PHYS. REV. C 10, 1087 (1974)

- HEA71 J. MEADOWS, A. SMITH, J. WHALEN AND T. D. BEINON, Z. PHYSIK 243, 171 (1971)
- MOL63 P. A. MOLDAUER, NUCL. PHYS. 47, 65 (1963)
- OBS73 A. W. OBST AND J. L. WEIL, PHYS. REV. C7, 1076 (1973)
- PAS70 H. V. PASECHNIK ET AL., SOV. J. NUCL. PHYS. 11, 533 (1970)
- PEA72 C. A. PEARSON ET AL., NUCL. PHYS. A191, 1 (1972)
- PER62 F. PEREY AND B. BUCK, NUCL PHYS. 32, 353 (1962)
- PIC65 J. PICARD, NUCL. PHYS. 68, 153 (1965)
- PYL69 G. J. PYLE AND G. W. GRFENLEES, PHYS. REV. 181, 1444 (1969)
- RAY59 L. A. RAYBURN, PHYS. REV. 116, 1571 (1959)
- REB67 J. D. REBER AND J. D. BRANDENBERGER, PHYS. REV. 163, 1077 (1967)
- SAT68 G. R. SATCHLER ET AL., NUCL. PHYS. A112, 1 (1968)
- SCH68 R. J. SCHNEIDER AND A. M. CORMACK, NUCL. PHYS. A119, 197 (1968)
- SEN71 R. SENE, P. DELPIERRE, J. KAHANE AND M. DE BILLY DE CRESPIN, "POLARIZATION PHENOMENA IN NUCLEAR REACTIONS," (PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM, MADISON 1970), 611, EDITED BY H. H. BARSCHALL AND W. HAEBERLI, THE UNIVERSITY OF WISCONSIN PRESS, MADISON (1971)
- SHE72 H. S. SHEFIF AND B. S. PODMORE, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON FEW PARTICLE PROBLEMS IN THE NOCLEAR INTERACTION (LOS ANGELES, AUG. 29 -SEPT. 1, 1972), NORTH-HOLLAND PUBLISHING CO., 1972
- SMI67 A. B. SMITH AND R. HAYES, NUCL. PHYS. A93, 609 (1967)
- SHI75 A. B. SMITH, P. GUENTHER AND J. WHALEN, NUCL. PHYS. A244, 213 (1975)
- SPA71 D. SPAARGABEN AND C. C. JONKER, NUCL. PHYS. A161, 354 (1971)
- SIP59 CLAUDE ST. PIERRE, M. K. MACHWE AND PAUL LORFAIN, PHYS. REV. 115, 999 (1959)
- SIR62 V. I. STRIZHAK, V. V. BOBYR AND L. Y. GRONA, SOV. PHYS. JETP14, 225 (1962)
- STU62 T. P. STUART, J. D. ANDERSON AND C. WONG, PHYS. REV. 125, 276 (1962)
- TAN72 S. TANAKA, T. TOMITA, K. IDENO AND S. KIRUCHI, NUCL. PHYS. A179, 513 (1972)
- TES62 K. TESCH, NUCL. PHYS. 37, 412 (1962)
- TH062 D. B. THOMSON, L. CRANBERG AND J. S. LEVIN, PHYS. REV 125, 2049 (1962)
- TOM73 Y. TOMITA, NUCL. PHYS. A210, 51 (1973)
- TOW62 J. H. TOWLE AND W. B. GILBOY, NUCL. PHYS. 32, 610 (1962)
- TOW62A J. H. TOWLF AND W. B. GILBOY, NUCL. PHYS. 39, 300 (1962)
- TOW65 J. H. TOWLE AND W. B. GILBOY, NUCL. PHYS. 72, 515 (1965)
- TOW68 J. H. TOWLE, NUCL. PHYS. A117, 657 (1968)
- TOW69 J. H. TOWLE, NUCL. PHYS. A131, 561 (1969)
- TSU69 KINEO TSUKADA ET AL., NUCL. PHYS. A125, 641 (1969).
- TOT74 A. I. TUTUBALIN, A. P. KLYGCHAREY, V. YA. GOLOVNYA AND A. S. KACHAN, SOV. J. NUCL. PHYS. 19, 492 (1974)
- and at bit machine, both of model, fills: (), 4)2 (())4)
- VEL74 D. E. VELKLEY ET AL., PHYS. REV. C 9, 2181 (1974)
- WIL64 D. WILMORE AND P. E. HODGSON, NUCL. PHYS. 55, 673 (1964)
- ZIJ72 E. ZIJP, POLARIZATION MEASUREMENTS AND OPTICAL MODEL ANALYSES OF NEUTRON SCATTERING AT 3-2 MEV, UNIVERSITY OF AMSTERDAM, NETHERLANDS (MOVENBER 1972)
- ZIJ74 E. ZIJP AND C. C. JONKER, NUCL. PHYS. A222, 93 (1974)

See page 8 for Explanation of Tables

Neutrons

TABLE II. Optical-Model Parameters

Protons

NUCLIDE	EN ERGY (MEV)	R BAL V	POTENT R	IA L A	VOL.IM W	AG. POT RW	ENTIAL AW	SURF.IM WD	AG. POT RD	ENTIAL AD	SPIN- VSO	DRBIT P RSO	OTENTIAL ASO	RC	SŁ	FII	NOTE	REF.
3 HE 3 HE	31.0 85.	47.1 15.36	1.25* 1.416	0.06 0.148	2.0	1.25*	2.86	0.1G 10.11	1.25* 1.506	4.0 0.308	0.02 4.83	1.25* 1.416	0.06 0.148	1.2? 1.3*	171 140	52 51	5	KIM64 ₩0T74
4 HE 4 HE 4 HE 4 HE 4 HE	31. 31. 31. 40.	48.8 56.2 55.2 51.0 50.7	1.2* 1.1* 1.1* 1.1* 1.1*	0.284 0.35* 0.35* 0.35* 0.35*	4.00	1.2*	0.621	1.00G 3.15 4.63 4.19 6.33	1.2* 2.56 2.65 2.39 2.45	0.9 0.10* 0.10* 0.10* 0.10*	5.2 4.26 4.19 2.75 3.20	1.2* 1.1* 1.1* 1.1* 1.1*	0.284 C.35* 0.35* 0.35* 0.35*	1.2* 1.1? 1.1? 1.1? 1.1?	69 96 147 97 147	S1 S2P2 S P S2P3 S P	4 4	BUN64 TH070 TH070 TH070 TH070
4 HE 4 HE 4 HE 4 HE 4 HE 4 HE	46. 46. 47. 55. 55. 85.	49.3 50.6 36.3 42.6 45.7 23.73	1.1* 1.1* 1.31 1.1* 1.1* 1.044	0.35* 0.35* 0.342 0.35* 0.35* 0.186				5.94 9.01 5.61 5.00 8.88 17.60	2.32 2.32 2.64 2.30 2.23 1.158	0.10* 0.10* 0.085 0.10* 0.10* 0.387	2.17 2.25 1.73 2.63 2.76 7.46	1.1* 1.1* 1.43 1.1* 1.2* 1.044	0.35* 0.35* 0.264 0.35* 0.35* 0.186	1.1? 1.1? 1.3* 1.1? 1.1? 1.3*	117 167 90 140 192	S2P3 S P S P S2P3 S P S1	4 4 5,15	TH070 TH070 SAW70 TH070 TH070 VOT74
4 HE	1000.	30.	1.60*	0.31	153.	1.60*	0.31									s2	19	PAL67
6LI 6LI 6LI 6LI 6LI 6LI	25.9 29.9 31. 33.6 35.0 40.1	59.15 54.48 27.69 44.56 34.71 31.76	1.05* 1.249 1.124 1.05* 1.05*	0.288 0.273 0.797 0.578 0.670 0.727	25.29	1.31	0.36	10.14 10.95 0.3 6.92 2.93 2.42	1.334 1.143 1.31 1.124 1.848 1.934	0.568 0.700 0.36 0.685 0.695 0.678	12.15 11.72 6.0* 7.38 3.37 2.74	1.02* 1.02* 1.249 1.124 1.02* 1.02*	0.20* 0.20* 0.797 0.578 0.20* 0.20*	1.56* 1.56* 1.25* 1.12 1.56* 1.56*	434 465 379 324	S1 S1 S S1 S1 S1P2	16,11	BRA72 BRA72 DEV69 KUL67 BRA72 BRA72
6 LI 6 LI 6 LI 6 LI	45.4 49.5 49.75 155.	28.35 26.82 37.8 18.7	1.05* 1.05* 1.14 1.07	0.757 0.825 0.79 0.51				2.63 1.69 4.48 8.3	1.969 1.841 1.32 1.18	0.611 0.630 0.48 0.52	2.36 1.88 4.6 0.63	1.02* 1.02* 1.27 1.10	0.20* 0.20* 0.55 0.62	1.56* 1.56* 1.20* 1.56*	302 186 188	S1 S1P2 S2P3 S1P2	17 15 31	BRA72 BRA72 MAN71 GE068
7LI 7LI 7LI 7LI	33.6 49.74 49.74 155.	46.45 38.5 36.7 20.5	1.187 1.07 1.21 1.10	0.478 0.76 0.55 0.42	5.62	1.73	1.22	6.34 4.23 8.5	1.187 1.80 1.23	0.727 0.48 0.50	7.18 7.0 4.9 0.90	1.187 1.01 1.0 1.18	0.478 0.61 0.53 0.48	1.19 1.20* 1.20* 1.49*	284 492	S S2P3 S2P2 S1P3	31	KUL 67 MAN 71 MAN 71 GEO 68
BE	49.4	40.22	1.097	0.712	18.07	0.416	0.142	3.02	1.432	0.652	3.12	0.955	0.436	1.2*	282	S P	15	CLA70C
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE	5.0 6.0 6.4 7.0 7.	50.0 50.7 28.0 47.4 49.1 32.4	1.38* 1.38* 1.64 1.39 1.38* 1.54	0.65* 0.65* 1.05 0.56 0.65* 1.01				11.9 16.1 30.3 11.4 18.9 21.9	1.50* 1.50* 1.94 1.41 1.50* 1.81	0.37* 0.37* 0.11 0.58 0.37* 0.18	7.3 6.5 4.9* 9.5 4.8 4.9*	1.35* 1.35* 1.64 1.30 1.35* 1.67	0.33* 0.27 0.28 0.33* 0.23*	1.33* 1.33* 1.09* 1.5* 1.33* 1.09*		S3P3 S3P3 S2P2 S2P S3P3 S2P2		LOY70 LOY70 WER71 VAS74 LOY70 WER71
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE	8.0 8. 9.0 9. 10.0 10.	45.5 37.2 44.1 40.5 43.2 45.5	1.38* 1.47 1.38* 1.39 1.38* 1.38*	0.65* 0.85 0.65* 0.78 0.65* 0.74				10.9 14.7 11.4 13.0 11.6 13.8	1.50* 1.69 1.50* 1.625 1.50* 1.52	0.37* 0.25 0.37* 0.28 0.37* 0.37*	3.1 4.9* 4.1 4.9* 4.6 4.9*	1.35* 1.55 1.35* 1.50 1.35* 1.40	0.33* 0.28 0.33* 0.29 0.33* 0.29	1.33* 1.09* 1.33* 1.09* 1.33* 1.09*		S3P3 S1P1 S2P2 S1P1 S2P2 S1P1 S1P1		LOY70 WER71 LOY70 WER71 LOY70 WER71
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE	11.0 11. 12.0 12. 13.0 14.0	41.9 48.3 42.0 51.4 55.0 55.0	1.38* 1.29 1.38* 1.27 1.24* 1.24*	0.65* 0.70 0.65* 0.66 0.63* 0.63*				10.2 12.7 9.0 12.0 12.5 13.0	1.50* 1.51 1.50* 1.47 1.36* 1.36*	0.37* 0.31 0.37* 0.32 0.35* 0.35*	4.5 4.9* 5.0 4.9* 4.9* 4.9*	1.35* 1.31 1.35* 1.24 1.20* 1.20*	0.33* 0.30 0.33* 0.30 0.31* 0.31*	1.33* 1.09* 1.33* 1.09* 1.30* 1.30*		S2P2 S1P1 S2P2 S1P1 S1P1 S2		LOY 70 WER 71 LOY 70 WER 71 VOT 73 VOT 73
9 BE 9 BE 9 BE 9 BE 9 BE	14.5 15.0 17. 17.0 17.	53.4 56.5 58.0 51.7 57.82	1.23 1.24* 1.22 1.15* 1.22*	0.63 0.63* 0.62 0.57* 0.625				10.4 13.0 16.0 5.0G 15.63	1.38 1.36* 1.35 1.55* 1.37	0.32 0.35* 0.33 1.41* 0.33*	4.9* 4.9* 4.9* 5.4	1.21 1.20* 1.20 1.075*	0.31 0.31* 0.31 0.57*	1.09* 1.30* 1.09* 1.15* 1.1*	567	P2 S2P2 S3 S2P2 S2	11	WER71 VOT73 WER71 MON73 WER73
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE	18.6 18.9 21.0 21.35 25.0 29.1	54.0 51.0 48.9 50.0 46.8 44.9	1.24* 1.15* 1.15* 1.24* 1.15* 1.15*	0.63* 0.57* 0.57* 0.63* 0.57* 0.57*	2.2 0.9 1.7 0.6	1.55* 1.55* 1.55* 1.55*	0.97* 0.97* 0.97* 0.97*	13.0 3.5G 4.1G 13.0 3.4G 4.9G	1.36* 1.55* 1.55* 1.36* 1.55* 1.55*	0.35* 1.41* 1.41* 0.35* 1.41* 1.41*	4.9* 5.7 6.1 4.9* 5.3 9.6	1.20* 1.075* 1.075* 1.20* 1.075* 1.075*	0.31* 0.57* 0.57* 0.31* 0.57* 0.57*	1.30* 1.15* 1.15* 1.30* 1.15* 1.15*	581 525 500 503	S3P3 S2P2 S2 S2 S2 S2 S2 S2	11	VOT73 MON73 MON73 VOT73 MON73 MON73
9 BE 9 BE 9 BE 9 BE	30.3 30.3 31.3 33.6	50.2 50.0 44.3 48.92	1.21 1.24* 1.15* 1.139	0.61 0.63* 0.57* 0.613	4.5 3.1	1.36* 1.55*	0.35* 0.97*	14.6 14.0 2.9G 6.44	1.26 1.36* 1.55* 1.139	0.34 0.35* 1.41* 0.616	4.9* 4.9* 8.9 6.30	1.17 1.20* 1.075* 1.139	0.32 0.31* 0.57* 0.613	1.09* 1.30* 1.15* 1.14	502	P1 S3P3 S3 S		WER71 VOT73 MON73 KUL67
9 BE 9 BE 9 BE 9 BE 9 BE	42. 45.5 45.5 49.65 49.65	41.9 66.9 24.8 32.3 38.3	0.967 0.801 1.342 1.26 1.20	0.487 0.710 0.548 0.63 0.61	4.96 4.15 4.84	2.049 2.175 1.79	0.629 0.532 0.66	3.28 2.27	1.253 1.31	1.662 0.96	3.27 2.95 7.45 4.9 4.9	0.967 0.801 1.342 1.20 1.12	0.487 0.710 0.548 0.56 0.56	1.2* 1.2* 1.2* 1.20* 1.20*	970 449 427 302 335	P1 51 52P2 52P2 52P2	15 15	SAT67A SAT67A SAT67A MAN71 MAN71
9 BE 9 BE	160. 160.	-5.40 16.2	1.018 1.0	0.489 0.385	14.17 14.0	1.633 1.55	0.385 0.40				2.31 2.5*	1.018 1.0	0.489 0.385	1.89 1.30*	257 252	\$2 \$2	33,19 12,19	R0065 R0065
10B 10B 10B 10B 10B	8.5 33.6 49.5 49.5 49.5	52.0 53.99 46.64 53.22 40.66	1.17* 1.097 1.11 0.97 1.11	0.75* 0.548 0.68 0.65 0.58	6.77 5.34	1.47 1.68	1.08 1.06	5.43 6.22 20.93	1.523 1.097 0.78	0.523 0.644 0.53	6.2* 6.31 6.44	1.01* 1.097 0.75	0.75* 0.548 0.59	1.3* 1.1? 1.2? 1.2? 1.2?		S2 S2 S1 S1 S1	5 1,15 1,15 1,15	ZWI73 KUL68 SQU70 SQU70 SQU70
11B 11B 11B	17. 30.3 155.	50. 45.18 14.2	1.13 1.09 1.44	0.7 0.59 0.44	13.3 5.79	1.13 1.18	0.7 0.85	3.38	1.30	1.01	7.79 2.27	0.98 0.97	0.57 0.48	1.2? 1.29* 1.28*		53 52P3 52P3	8 31	PUG67 KAR69A GEO68

TABLE II. Optical-Model Parameters

NUCLIDE	EN ERGY (MEV)	REAL V	POTENT R	IAL A	VOL.IM W	AG. POT RW	ENTIAL AW	SURF.IN WD	AG. POI RD	ENTIAL AD	SPIN- VSO	ORBIT H RSO	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
000000	28. 28. 29. 31. 31. 31.	37.2 40.4 37.0 55.05 36.0 49.33	1.33 1.20* 1.25* 0.917 1.20* 1.17*	0.578 0.70* 0.65* 0.582 0.70* 0.75*	5.02 10.90 7.0 9.84 4.12*	1.33 1.20* 1.25* 1.20* 1.32*	0.513 0.48* 0.65* 0.48* 0.271	3.13G 0.6 4.10G 15.75G	1.33 1.25* 0.802 1.32*	0.744 0.47* 2.30 0.393	7.06 10.6 6.0* 12.80 9.73 6.2*	1.33 1.20* 1.25* 1.27 1.20* 1.01*	0.539 0.70* 0.65* 0.678 0.70* 0.75*	1.20* 1.20* 1.25? 1.20* 1.20* 1.20*	329	S2 S2 S2P3 S2 S2 S2 S	23	SAN 70 SAN 70 CRA66 SAN 70 SAN 70 SAN 70
с с с	49. 49.4 49.4	36.7 33.43 37.53	1.15 1.23 1.10	0.68 0.661 0.731	6.88 21.00	0.778 0.368	0.949 0.187	1.8 3.43 2.93	1.31 0.958 1.450	0.52 0.454 0.503	8.0 3.77 3.92	1.15 0.683 0.902	0.68 0.247 0.391	1.25? 1.2* 1.2*	273 252	S2P3 S2P2 S2P3	23	CRA66 CLA70C CLA70C
12C 12C 12C 12C 12C 12C	3.97 4.25 6.9 7.0 7.55 7.88	50.5 50.4 63.7 51.3 49.3 49.2	1.4* 1.4* 1.25* 1.25* 1.4* 1.4*	0.4* 0.4* 0.33 0.49 0.4* 0.4*				3.18 3.40 6.0 0.36 6.04 6.30	1.05* 1.05* 1.25* 1.25* 1.05* 1.05*	0.4* 0.4* 0.068 0.065 0.4* 0.4*	5.5* 5.5* 7.4 2.5 5.5* 5.5*	1.20* 1.20* 1.25* 1.25* 1.20* 1.20*	0.40* 0.40* 0.33 0.49 0.40* 0.40*	1.25? 1.25? 1.25* 1.25* 1.25? 1.25?	255 30	S2 P3 P2 S1 P1 S2	18 18 18 18	PEA72 PEA72 GUR69 GUR69 PEA72 PEA72 PEA72
12C 12C 12C 12C 12C 12C 12C	8.4 11.85 12.07 12.25 12.43 12.67	49.0 52.0 53.0 58.1 51.9 51.5	1.4* 1.30 1.30 1.25 1.30 1.30	0.4* 0.45 0.33 0.30 0.35 0.34				6.5* 20.1G 17.6G 15.7G 19.4G 19.2G	1.05* 1.30 1.30 1.25 1.30 1.30	0.4* 0.25* 0.25* 0.25* 0.25* 0.25*	5.5* 5.1 6.6 6.3 6.0 6.0	1.20* 1.30 1.30 1.25 1.30 1.30	0.40* 0.45 0.33 0.30 0.35 0.34	1.257 1.30 1.30 1.25 1.30 1.30	368 335 281 344 339	S2 S1P2 S2P S2P S2P S2P S2P	18 11,15 11,15 11,15 11,15 11,15	PEA72 NOD62 NOD62 NOD62 NOD62 NOD62
12C 12C 12C 12C 12C 12C 12C	13.06 13.21 13.35 13.48 13.64 13.92	51.1 50.6 48.6 52.1 56.8 55.4	1.30 1.30 1.30 1.25 1.20 1.20	0.42 0.41 0.40 0.42 0.40 0.44				19.9G 27.4G 27.1G 26.9G 23.3G 21.7G	1.30 1.30 1.25 1.20 1.20	0.25* 0.25* 0.25* 0.25* 0.25* 0.25*	4.0 3.6 5.7 6.6 5.9 5.6	1.30 1.30 1.25 1.20 1.20	0.42 0.41 0.40 0.42 0.40 0.44	1.30 1.30 1.25 1.20 1.20	346 381 393 382 336 340	S2P S2P S2P S2P S1P S1P	11,15 11,15 11,15 11,15 11,15 11,15	NOD62 NOD62 NOD62 NOD62 NOD62 NOD62 NOD62
12C 12C 12C 12C 12C 12C 12C	14.0 14.0 14.1 14.36 14.6 14.7	49.2 58.2 49.2 52.6 49.0 53.0	1.24* 1.20 1.15* 1.25 1.15* 1.25	0.51 0.40 0.4* 0.46 0.4* 0.45	8,5	1.24*	0.51	19.9G 6.5* 19.0G 6.5* 21.2G	1.20 1.05* 1.25 1.05* 1.25	0.25* 0.4* 0.25* 0.4* 0.25*	6.0 5.5* 5.7 5.5* 6.4	1.20 1.20* 1.25 1.20* 1.20*	0.40 0.40* 0.46 0.40* 0.40*	1.24* 1.20 1.25? 1.25 1.25? 1.25?	317 352 374	S S 1P3 P2 S 1P S 2 S 1P S 2 S 1P	W65 15 18 11,15 18 11,15	GLA 57 NOD 62 PEA 72 NOD 62 PEA 72 NOD 62
12C 12C 12C 12C 12C 12C	14.94 15.11 15.2 15.37 15.50 15.6	52.9 58.7 53.4 57.6 57.2 56.9	1.25 1.25 1.20 1.25 1.20 1.20	0.45 0.40 0.38 0.41 0.42 0.40				21.1G 17.0G 17.9G 16.8G 16.7G 17.1G	1.25 1.25 1.20 1.25 1.20 1.20 1.20	0.25* 0.25* 0.25* 0.25* 0.25* 0.25*	6.4 6.1 6.3 5.8 5.5 5.9	1.25 1.25 1.20 1.25 1.20 1.20	0.45 0.40 0.38 0.41 0.42 0.40	1.25 1.20 1.25 1.20 1.20 1.20	372 302 332 298 295 301	S1P S1P S2P S1P S1P S2P	11,15 11,15 11,15 11,15 11,15 11,15 11,15	NOD62 NOD62 NOD62 NOD62 NOD62 NOD62 NOD62
12C 12C 12C 12C 12C 12C 12C	15.66 15.79 15.92 16.2 16.6 16.7	57.1 56.9 56.8 55.1 48.3 56.1	1.20 1.20 1.20 1.20 1.15* 1.20	0.41 0.42 0.41 0.43 0.4* 0.44				17.1G 17.7G 16.7G 17.5G 6.5* 19.1G	1.20 1.20 1.20 1.20 1.05* 1.20	0.25* 0.25* 0.25* 0.25* 0.4* 0.25*	5.6 5.4 5.3 5.5* 5.2	1.20 1.20 1.20 1.20 1.20* 1.20*	0.41 0.42 0.41 0.43 0.40* 0.44	1.20 1.20 1.20 1.20 1.25? 1.20	297 303 292 303 317	S1P S1P S1P S2P3 S2P2 S1P	11,15 11,15 11,15 15 18 11,15	NOD62 NOD62 NOD62 NOD62 PEA72 NOD62
12C 12C 12C 12C 12C 12C	17.4 17.4 17.8 17.8 18.4 18.4	53.1 55.9 51.4 42.0 49.9 54.4	1.24* 1.20 1.20 1.25* 1.24* 1.20	0.46 0.39 0.50 0.45* 0.48 0.51	7.5 2. 7.8	1.24* 1.20 1.24*	0.46 0.517 0.48	17.7G 5.6G 6. 9.9G	1.20 1.20 1.25* 1.20	0.25* 0.75 0.45* 0.6	5.5 4.1 3.0 2.7	1.20 1.20 1.25* 1.25*	0.39 0.50 0.45* 0.51	1.24* 1.20 1.25* 1.24* 1.24*	297 387 412 378	s S1P S1P3 S3P3 S S1P	W65 11,15 15 W65 11,15	GLA57 NOD62 NOD62 BAU65 GLA57 NOD62
12C 12C 12C 12C	18.9 19.3 19.4 19.4	53.7 47.4 48.9 51.0	1.20 1.15* 1.24* 1.25	0.54 0.4* 0.54 0.49	2. 8.0	1.20 1.24*	0.172 0.54	18.3G 6.5* 23.2G	1.20 1.05* 1.25	0.25* 0.4* 0.25*	2.7 5.5* 4.8	1.20 1.20* 1.25	0.54 0.40* 0.49	1.20 1.25? 1.24* 1.25	376 372	S 2P S 2P 3 S S 2P	11,15 18 W65 11,15	NOD62 PEA72 GLA57 NOD62
12C 12C 12C 12C 12C 12C 12C	30. 30.3 30.4 30.4 30.6 31.1	50.4 36.50 51.35 45.40 50. 54.3	1.15* 1.25* 1.026 1.070 1.1 1.1	0.63 0.65* 0.655 0.662 0.60 0.64	8.45 3.0 4.	1.25* 1.1 1.1	0.65* 0.45 0.69	3.33 8.67 3.86 3.86 6.5 6.496	1.34 1.25* 1.163 1.431 1.1 1.1	0.682 0.42 0.830 0.628 0.45 1.0	7.34 8.0 12.* 7.82 6.13 8. 3.7	1.01 1.25* 1.026 0.982 1.1 1.1	0.485 0.65* 0.655 0.489 0.60 0.64	1.20* 1.25* 1.125* 1.1* 1.1* 1.1? 1.1	425 386	S P S2P2 S2 S3P3 S3P3 S P S	W65	KOL69A PAN67 BAR65 GRE72 GRE72 CRA63 DIC63
12C 12C 12C 12C 12C	40. 40. 40. 40.	37.6 38.6 55.1 43.8 38.6	1.18* 1.17 1.0* 1.15* 1.15*	0.7* 0.646 0.619 0.65 0.73	5.2 5.9 7.15	1.40* 1.4* 1.25*	0.7* 0.852 0.44	6.95G 7.58	1.32 1.25*	1.1* 0.38	7.5* 7.06 8.06 5.83 3.23	1.18* 1.17 1.0* 0.95 0.75	0.7* 0.646 0.619 0.40 0.07	1.2* 1.17 1.0* 1.25* 1.25*	309 385 386 324 251	S S1P3 S2P2 S P S2P3	16 16	FRI65 SAW65 SAW65 PAN67 PAN67
12C 12C 12C 12C 12C	40. 40. 40.0 45.5 45.5	38.38 38.29 45.06 36.2 44.2	1.182 1.16* 1.08 1.142 1.054	0.624 0.75* 0.689 0.680 0.666	2.94 8.72 14.4 3.5	1.910 1.37* 0.580 1.767	0.016 0.63 0.928 0.785	5.12 1.18 5.19	1.910 1.37* 1.25	0,016 0.63* 0.533	6.18 6.04* 7.45 3.45 3.60	1.109 1.064* 1.08 0.644 0.522	0.517 0.738* 0.485 0.238 0.294	1.25* 1.25* 1.20* 1.2* 1.2*	316 316 248 350	52P3 53P3 5 P 52P3 52P3	11,15 11,12	PRI67 PRI67 KOL69A SAT67A SAT67A
12C 12C 12C 12C 12C	46.3 49.5 49.5 49.5 50.	35.8 43.36 38.55 37.06 35.7	1.185 1.08 1.08 1.11 1.15*	0.651 0.712 0.712 0.704 0.67	6.4 4.14 24.58 5.84	1.205 1.23 0.333 1.25*	0.988 0.722 0.171 0.80	6.61 2.73 3.14	1.21 1.23 1.43	0.527 0.722 0.539	6.61 8.16 10.80 4.77 4.62	1.185 1.02 1.08 0.886 0.62	0.651 0.531 0.63 0.418 0.26	1.2* 1.20* 1.25* 1.25* 1.25*	342 376 276 268	S1 SP S2P3 S1P2 S2P2		SAT67A KOL69A RUS71 RUS71 FAN67
12C 12C 12C 12C 12C 12C 12C	61.4 61.4 61.4 75. 96. 100.	20.7 19.2 33.8 25.44 20.0 25.6	1.44 1.48 1.16* 1.13 1.1* 1.02	0.60 0.61 0.75* 0.49 0.697 0.65*	2.78 2.95 6.56 6.66	1.45 1.37* 1.4* 1.70	0.06 0.63* 0.697 0.216	3.45 1.37 8.51	1.03 1.37* 1.45	0.48 0.63* 0.45	0.72 9.32 6.49	1.86 1.1* 1.02	0.40 0.697 0.65*	1.25* 1.25* 1.25* 1.33 1.1* 1.33*	141 111 243 376 237 263	S2 S1 S3 S1P3 S3 S3	22 7 7	PUL 69 PUL 69 PUL 69 ROL 66 SAW65 HAY69

TABLE II. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL ♥	POTENT R	IAL A	VOL.IN. W	AG. POT RW	'ENTIAL AW	SURP.IM WD	AG. POT RD	ENTIAL AD	SPIN- VSO	ORBIT P RSO	OTENTIAL A SO	RC	SR	FIT	NOTE	REF.
12C 12C 12C 12C 12C 12C 12C	152. 152. 153. 156. 180. 185.	18.70 10.76 18.7 12.84 27.3 18.	1.13 1.40 1.13 1.40 0.938 1.24	0.72 0.60 0.72 0.515 0.571 0.64	10.42 22.07 10.42 25.4 10.1 7.9	1.18 0.70 1.18 0.805 1.28 1.29	0.85 0.85 0.85 0.71 0.715 0.78	2.38	1.26	0.29	3.52 4.63 3.52 1.84 4.06 2.22	0.93 0.94 0.93 D.915 0.938 0.93	0.50 0.55 0.50 0.453 0.571 0.49	1.33 1.25* 1.30? 1.41 0.94 1.33	229 235 247 194 214	52P2 52P2 53F3 52 52P2 5 P2	12,31 24 31 12,13 7 14	ROL66 CLA72 TAT68 COM74 SAW65 ING73
12C	1000.	20.	2.29*	0.45*	100.	2.29*	0.45*									S 2	25	PAL67
13C 13C 13C 13C 13C	1.37 1.55 1.92 2.20 2.38	35.32 50.49 43.32 66.51 92.05	1.65 1.16 1.56 1.13 0.91	0.94 1.13 0.29 0.64 0.58				5.57 7.41 0.90	1.30 1.09 3.42	0.46 0.57 0.83	3.54 12.1 8.02 1.99 8.00	1.65 1.16 1.56 1.13 0.91	0.94 1.13 0.29 0.64 0.58	1.25* 1.25* 1.25* 1.25* 1.25*		S1 S1 S2 S1 S2		GER66 GER66 GER66 GER66 GER66
13C 13C 13C 13C 13C	6.9 7.0 12.2 30.4 30.4	62.8 42.6 48.0 46.44 42.51	1.25* 1.25* 1.27* 1.063 1.097	0.40 0.57 0.62 0.616 0.613				18.1 11.6 8.5 5.65 3.52	1.25* 1.25* 1.27* 0.743 1.266	0.067 0.081 0.48 1.085 1.096	10.4 3.1 5.5* 6.63 7.07	1.25* 1.25* 1.27* 1.063 0.956	0.40 0.57 0.62 0.616 0.616	1.25* 1.25* 1.27* 1.1* 1.1*	424 509	P2 S2 S2P2 S2P2 S2P2	26	GUR69 GUR69 RIC68 GRE72 GRE72
14C	14.5	63.0	1.13*	0.65*				9.7	1.13*	0.51+	7.5*	1.13*	0.65*	1.25*		52		CUR71
n N N	31. 31. 49.4 49.4	45.66 43.71 52.67 40.16	1.23 1.20* 1.023 1.103	0.619 0.70* 0.733 0.727	2.16 6.29 2.38 32.07	1.17 1.20* 1.010 0.251	0.459 0.48* 0.795 0.169	11.29G 5.56G 7.07 3.23	1.17 1.20* 1.221 1.461	0.665 0.70* 0.500 0.565	3.16 6.22 6.89 3.83	1.53 7.20* 1.020 0.889	0.440 0.70* 0.470 0.381	1.20* 1.20* 1.2* 1.2*	428 420 327	S2 52 S P S P		SAN70 SAN70 CLA70C CLA70C
14 N 14 N 14 N 14 N 14 N 14 N	8.6 8.6 8.6 10.6 10.6 10.6	46.66 48.95 49.84 48.26 51.46 51.71	1.25* 1.17* 1.205 1.25* 1.17* 1.205	0.65* 0.75* 0.605 0.65* 0.75* 0.605				1.74 1.90 1.61 2.73 2.76 2.44	1.25* 1.32* 1.03 1.25* 1.32* 1.32* 1.03	0.65* 0.51* 0.53 0.65* 0.51* 0.53	6.19 6.70 5.32 6.42 6.54 6.48	1.25* 1.17* 1.205 1.25* 1.17* 1.205	0.65* 0.75* 0.605 0.65* 0.75* 0.605	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	321 386 296 395 451 327	5 5 5 5 5 5 5 5 5 5	26 26 26 26 26 26 26	HAN73 HAN73 HAN73 HAN73 HAN73 HAN73 HAN73
14 N 14 N 14 N 14 N	12.2 12.6 12.6 12.6	49.0 48.99 52.65 51.61	1.27* 1.25* 1.17* 1.205	0.58 0.65* 0.75* 0.605				4.0 3.75 3.67 3.59	1.27* 1.25* 1.32* 1.03	0.49 0.65* 0.51* 0.53	5.5* 4.67 4.03 5.83	1.27* 1.25* 1.17* 1.205	0.58 0.65* 0.75* 0.605	1.27* 1.25* 1.25* 1.25*	465 515 400	52 5 5 52	26 26 26 26	RIC68 HAN73 HAN73 HAN73 HAN73
14 N 14 N 14 N 14 N 14 N	14.5 14.6 14.6 14.6 18.	60.4 49.41 56.93 53.05 56.21	1.13* 1.25* 1.17* 1.205 1.10*	0.65* 0.65* 0.75* 0.605 0.712				5.5 6.28 5.63 6.38 3.97	1.13* 1.25* 1.32* 1.03 1.36*	0.51* 0.65* 0.51* 0.53 0.50*	7.5* 2.84 2.31 3.21 6.0*	1,13* 1.25* 1.17* 1.205 1.10*	0.65* 0.65* 0.75* 0.605 0.712	1.25* 1.25* 1.25* 1.25* 1.25* 1.20?	595 612 535	S1 S S2 S1	26 26 26	CUR71 HAN73 HAN73 HAN73 LUT72
14N 14N 14N 14N 14N 14N	21. 21. 21. 21. 23. 26.	53.3 48.0 45.6 47.27 45.91 44.46	1.11 1.19* 1.25* 1.20* 1.20* 1.20*	0.64 0.70* 0.65* 0.688 0.660 0.610				7.14 4.37 6.09 4.32 3.96 4.31	1.40 1.25* 1.25* 1.36* 1.36* 1.36*	0.36 0.64* 0.47* 0.50* 0.50* 0.50*	5.68 6.02 7.02 6.0* 6.0* 65.0*	0.983 1.05* 1.25* 1.20* 1.20* 1.20*	0.34 0.55* 0.65* 0.688 0.660 0.610	1.25* 1.25* 1.25* 1.20? 1.20? 1.20?	480 528 495	S2P1 S2P3 S2P3 S2 S2 S2 S2 S2		BAR69 BAR69 BAR69 LUT72 LUT72 LUT72
14 N 14 N 14 N 14 N	31.0 49.4 49.4 155.	46.7 38.52 33.91 21.54	1.20* 1.13 1.17 1.22	0.63 0.766 0.706 0.57	4.0 6.95 12.85 10.17	1.20* 1.33 0.778 1.30	0.345 0.433 0.065 0.52	12.4G 1.75 3.37	1.20* 1.33 1.33	0.5* 0.433 0.488	6.7 8.77 5.97 3.28	1.20* 1.07 1.03 0.93	0.63 0.632 0.59 0.47	1.2? 1.25* 1.25* 1.30*	421 347 305	52 52 51 52P2	31	KIM64 RUS71 RUS71 GE068
15 N	39.84	43.9	1.13	0.66	4.54	1.42	0.48	2.93	1.42	0.48	8.0*	1.13	0.66	1.15*		S 2		SNE69A
0 0 0 0	31. 31. 49.4 49.4	48.09 43.24 41.2 40.28	1.20* 1.17* 1.142 1.130	0.70* 0.75* 0.727 0.704	4.12* 3.45 45.58	1.32* 1.145 0.196	0.486 1.17 0.173	14.01G 4.33G 4.89 3.40	1.20* 1.32* 1.272 1.422	0.70* 0.705 0.371 0.699	5.47 6.2* 5.05 3.29	1.20* 1.01* 0.994 0.806	0.70* 0.75* 0.497 0.498	1.20* 1.20* 1.2* 1.2*	487 441 431	53 5 5 P 5 P		SAN70 SAN70 CLA70C CLA70C
160 160 160 160 160	8.49 8.66 8.99 9.42 9.49	50.7 52.6 53.0 52.3 50.5	1.175* 1.25* 1.175* 1.25* 1.25* 1.175*	0.61* 0.38 0.61* 0.32 0.61*				1.0G 1.8G 1.3G 1.1G 2.0G	1.175* 1.25* 1.175* 1.25* 1.175*	1.225* 0.6 1.225* 0.6 1.225*	4.8* 7.7 4.8* 7.7 4.8*	1. 175* 1. 25* 1. 175* 1. 25* 1. 25* 1. 175*	0.61* 0.38 0.61* 0.32 0.61*	1.17* 1.25* 1.17* 1.25* 1.17*	223 174 226 119 324	51 53 51 52	34 34 34	HAR63 DUK63 HAR63 DUK63 HAR63
160 160 160 160 160 160	10.2 10.2 10.20 10.5 10.74 10.8	51.6 51.0 52.1 52.4 53.5 49.4	1.25* 1.25* 1.175* 1.25* 1.25* 1.175* 1.25*	0.38 0.40 0.61* 0.38 0.61* 0.58				3.0G 3.6G 2.3G 1.9G 2.0G 4.7G	1.25* 1.25* 1.175* 1.25* 1.175* 1.25*	0.6 0.6 1.225* 0.6 1.225* 0.6	6.9 6.7 4.8* 8.0 4.8* 4.5	1.25* 1.25* 1.175* 1.25* 1.25* 1.175* 1.25*	0.38 0.40 0.61* 0.38 0.61* 0.58	1.25* 1.25* 1.17* 1.25* 1.17* 1.25*	253 334 276 300 349	S1 S2P3 S2 S1 S1 S2 S1	12 32,34 34	DUK63 DUK63 HAR63 DUK63 HAR63 DUK63
160 160 160 160 160	11.1 11.30 11.4 11.9 11.9	46.6 51.6 47.5 49.4 53.6	1.25* 1.175* 1.25* 1.25* 1.175*	0.68 0.61* 0.59 0.59 0.61*				9.6G 1.4G 8.9G 10.7G 2.15G	1.25* 1.175* 1.25* 1.25* 1.175*	0.4 1.225* 0.3 0.3 1.225*	1.8 4.8* 4.8 5.5 4.8*	1.25* 1.175* 1.25* 1.25* 1.25* 1.175*	0.68 0.61* 0.59 0.59 0.61*	1.25* 1.17* 1.25* 1.25* 1.17*	427 227 338 411 332	52 52 52 52 52 52	34 34	DUK63 HAR63 DUK63 DUK63 HAR63
160 160 160 160	12.60 12.9 13.05 13.9	51.3 49.0 52.3 49.8	1.175* 1.25* 1.175* 1.25*	0.61* 0.57 0.61* 0.55				2.9G 11.9G 2.95G 11.2G	1.175* 1.25* 1.175* 1.25*	1.225* 0.3 1.225* 0.3	4.8* 4.7 4.8* 4.9	1.175* 1.25* 1.175* 1.25*	0.61* 0.57 0.61* 0.55	1.17* 1.25* 1.17* 1.25*	402 416 417 402	52 51 51 51	34 34	HAR63 DUK63 HAR63 DUK63
160 160 160 160 160 160	14.1 14.3 14.5 14.7 15.2 15.6	50.0 49.7 49.4 50.4 47.7 49.0	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.52 0.51 0.50 0.53 0.62 0.64	2. 4. 4. 2.	1.25* 1.25* 1.25* 1.25*	0.414 0.138 0.966 0.966	11.4G 5.8G 2.6G 0.5G 0.4G 2.0G	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.3 0.6 0.6 0.2 1.4 1.4	5.2 4.6 3.8 3.7 4.8 7.0	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.52 0.51 0.50 0.53 0.62 0.64	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	397 403 400 414 554 538	51 51 51 51 51 51 51		DUK63 DUK63 DUK63 DUK63 DUK63 DUK63 DUK63

See page 8 for Explanation of Tables

TABLE II. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	R BAL V	POTENT R	IAL A	VOL.IM W	AG. POT RW	ENTIAL AW	SURF.IM WD	RD RD	ENTIAL AD	SPIN- VSO	ORBIT P RSO	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
160 160 160 160 160 160	16.0 16.4 17.0 17.4 17.5 18.0	49.0 45.7 47.5 47.6 47.3 45.2	1.25* 1.25* 1.25* 1.25* 1.25 1.25	0.61 0.61 0.60 0.52 0.64 0.54				4.5G 22.5G 28.0G 5.7G 5.3 4.1G	1.25* 1.25* 1.25* 1.25* 1.24 1.25*	1.2 0.2 0.2 0.8 0.45 1.2	6.8 11.7 12.3 4.0 11.7 2.4	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.61 0.61 0.52 0.54 0.54	1.25* 1.25* 1.25* 1.25* 1.25? 1.25?	519 406 435 434 475	S2 S2 S2 S2 S2 S2 S2		DUK63 DUK63 DUK63 DUK63 REI69 DUK63
160 160 160 160 160 160	18.4 19.2 19.8 20.4 20.8 20.8	46.4 48.2 55.71 56.16 52.76 46.9	1.25* 1.25* 1.1* 1.1* 1.1* 1.1* 1.23	0.57 0.62 0.645* 0.645* 0.645* 0.56				4.8G 9.1G 7.74 6.81 6.22 11.0	1.25* 1.25* 1.265* 1.265* 1.265* 1.28	1.2 0.8 0.544 0.514 0.553 0.26	2.3 3.9 1.45 3.36 4.49 2.1	1.25* 1.25* 1.065 1.147 1.109 1.07	0.57 0.62 0.126 0.171 0.666 0.10	1.25* 1.25* 1.1* 1.1* 1.1* 1.38*	516 537	52 52 5 P 52P3 5 P 5 P 5 P	9 9 9	DUK63 DUK63 KAR69 KAR69 KAR69 BOY72
160 160 160 160 160 160	21. 21. 21. 21.4 22.1 23.4	50.5 47.2 44.5 54.47 53.08 47.25	1.19 1.19* 1.25* 1.1* 1.1* 1.1* 1.142*	0.54 0.70* 0.65* 0.645* 0.645* 0.726*				9.14 4.94 6.66 7.93 5.88 7.066	1.20 1.25* 1.25* 1.265* 1.265* 1.268*	0.36 0.64* 0.47* 0.545 0.543 0.676*	2.75 1.10 0.99 1.81 5.67 4.09	0.993 1.05* 1.25* 1.055 1.207 1.114*	0.010 0.55* 0.65* 0.118 1.031 0.585*	1.25* 1.25* 1.25* 1.1* 1.1* 1.25*	490 597 551 499	S2P2 S2P3 S2P3 S P S P S3P	9 9	BAR69 BAR69 BAR69 KAR69 KAR69 VOE69
160 160 160 160 160 160	24.5 25.46 27.3 30.1 30.3 30.4	44.51 48.4 48.43 47.50 36.31 44.22	1.142* 1.12* 1.142* 1.142* 1.25* 1.142*	0.726* 0.69* 0.726* 0.726* 0.65* 0.726*				6.83G 6.80 7.28G 8.35G 4.11 3.97	1.268* 1.19 1.268* 1.268* 1.25* 1.268*	0.676* 0.550 0.676* 0.676* 0.47* 0.676*	5.41 7.0* 5.63 6.82 12.* 5.73	1. 114* 1. 12* 1. 114* 1. 114* 1. 25* 1. 114*	0.585* 0.69* 0.585* 0.585* 0.65* 0.585*	1.25* 1.15* 1.25* 1.25* 1.25* 1.25* 1.25*	478 535 482 496 344	S3P S3 S3P S3P S2 S3P3		VOE69 SNE69 VOE69 VOE69 BAR65 GRE72
160 160 160 160 160 160	31.0 31.0 32.07 34.1 35.20 36.8	53.7 47.9 45.5 47.02 45.0 46.37	1.10* 1.20* 1.12* 1.142* 1.142* 1.12*	0.64 0.62 0.69* 0.726* 0.69* 0.726*	2.0 2.31 0.91 0.28	1.20* 1.268* 1.45 1.268*	0.345 0.676* 0.450 0.676*	21.4G 15.5G 5.31 6.52G 5.70 8.55G	1.10* 1.20* 1.44 1.268* 1.45 1.268*	0.5* 0.5* 0.490 0.676* 0.450 0.676*	6.8 6.1 7.0* 6.44 7.0* 7.98	1.10* 1.20* 1.12* 1.114* 1.12* 1.12*	0.64 0.62 0.69* 0.585* 0.69* 0.585*	1.2? 1.2? 1.15* 1.25* 1.15* 1.25*	420 452 487 489 498 474	S3 S2 S3 S3P S3 S2P	34	KIM64 KIM64 SNE69 VOE69 SNE69 VOE69
160 160 160 160 160 160	38.43 39.7 39.7 42.1 43.1 45.13	44.4 46.58 48.8 43.10 44.67 42.7	1.12* 1.142* 1.09 1.142* 1.142* 1.12*	0.69* 0.726* 0.74 0.726* 0.726* 0.69*	2.00 2.25 2.83 3.15 3.11	1.40 1.268* 1.268* 1.268* 1.28	0.430 0.676* 0.676* 0.676* 0.415	4.89 7.65G 8.5 6.25G 6.32G 5.65	1.40 1.268* 1.32 1.268* 1.268* 1.28	0.430 0.676* 0.45 0.676* 0.676* 0.415	7.0* 7.32 8.5 5.58 6.20* 7.0*	1.12* 1.114* 1.05 1.114* 1.114* 1.12*	0.69* 0.585* 0.60 0.585* 0.585* 0.69*	1.15* 1.25* 1.38* 1.25* 1.25* 1.15*	446 490 453 462 407	S3 S1P S P S2P S2 S2 S2		SNE 69 VOE 69 BOY 72 VOE 69 VOE 69 SNE 69
160 160 160 160 160	46.1 49.5 49.5 50. 52.5 65.8	42.13 38.90 41.8 35.4 36.85 41.3	1.142* 1.142* 1.15* 1.25* 1.142* 1.078	0.726* 0.726* 0.7* 0.65* 0.726* 0.726*	4.44 4.14 8.8 3.31 5.49 8.30	1.268* 1.268* 1.41 1.25* 1.268* 1.268*	0.676* 0.676* 0.7* 0.65* 0.676* 0.457	4.64G 3.94G 3.70 3.63G	1.268* 1.268* 1.25* 1.268*	0.676* 0.676* 0.47* 0.676*	6.20* 6.20* 5.3 5.48 4.93 7.96	1.114* 1.114* 1.18 0.96 1.114* 0.918	0.585* 0.585* 0.7* 0.65* 0.585* 0.585	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	434 390 365 405	\$2 \$2 \$ \$2 \$2 \$2 \$2 \$2 \$2 \$2		VOE69 VOE69 NEL70 FAN67 VOE69 LER72
160	1000.	21.	2.60*	0.45*	120.	2.60*	0.45*									52	25	PAL67
170 170 170 170 170	9.56 10.5 11. 11. 65.8	46.5 50.3 57.32 44.7 37.9	1.25* 1.20* 1.25* 1.25* 1.142*	0.66 0.69 0.425 0.65* 0.661	7.69 8.22	1.207 1.560	0.254 0.506	5.80 5.77 3.42	1.25* 1.20* 1.25*	0.34 0.37 0.47*	5.1 5.81 10.5 12.3 7.65	1.25* 1.20* 1.25* 1.25* 0.956*	0.66 0.69 0.425 0.65* 0.590*	1.25* 1.20* 1.3* 1.25* 1.25*		52 51 52 5 51	8 1	CRI75 CRI75 ALT67 NAQ68 LEP72
180	66.5	37.8	1.142*	0.706	8.96	1.497	0.486				5.52	0.956*	0.590*	1.25*		51	1	LER72
19 P	30.	50.6	1.07	0.74				7.10	1.28	0.70	8.0	1.09	0.74	1.2?		52	23	DS₩73
20 NE 20 NE 20 NE	18.2 30. 41.8	47.45 44.3 36.33	1.185 1.10 1.197	0.721 0.73 0.746	11.31	1,196	0.786	7.5 7.00 0.18	0.942 1.38 1.196	0.568 0.60 0.786	5.1 7.8	1.042 1.09	0.488 0.74	1.18? 1.2? 1.25*		52 52 52	23	BRA69 DSW73 FAL70
21 NE	30.	49.1	1.10	0.63				6.60	1.34	0.60	8.1	0.98	0.85	1.2?		S 2	23	D5 #7 3
ZZNE	14.0	41.7	1.25*	0.67				12.2	1.11	0.39	12.6	1.25*	0.65*	1.25*		52		HUL69
23 NA 23 NA 23 NA 23 NA 23 NA	8.0 8.5 9.0 9.5	46.8 47.0 47.3 47.3	1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65*				10.0 10.5 11.0 11.3	1.25* 1.25* 1.25* 1.25*	0.47* 0.47* 0.47* 0.47*	7.5* 7.5* 7.5* 7.5*	1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25*		S1 51 S1 S1	5 5 5 5	HEL69 HEL69 HEL69 HEL69
23NA 23NA 23NA 23NA 23NA 23NA	10.0 10.5 11.0 11.5 12.0	47.5 47.5 47.5 47.3 46.8	1.25* 1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65* 0.65*				11.5 11.5 11.3 10.8 10.0	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.47* 0.47* 0.47* 0.47* 0.47*	7.5* 7.5* 7.5* 7.5* 7.5*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25*		51 51 51 51 51 51	5 5 5 5 5	HEL69 HEL69 HEL69 HEL69 HEL69 HEL69
MG Mg	49.5 49.5	42. 49.	1.05* 1.15*	0.81 0.67	9.7	1.48	0.52	6.5	1.19	0.76				1.27		s s		KOS69 KOS69
24 MG 24 MG 24 MG 24 MG 24 MG	17.5 20.3 27.3 30.5 30.5	49.14 47.8 43.53 41.5 41.6	1.174 1.21 1.16 1.19 1.2*	0.736 0.61 0.75 0.70 0.65	4.60 4.23	1.72 1.7*	0.52	8.06 8.46 3.70	1.19 1.14 1.370	0.562 0.54 0.48	5.29 5.15 6.6	1.06 0.97 1.19	0.546 0.32 0.70	1.17? 1.20? 1.25* 1.3* 1.3*	711	52 51P3 52 5 51	7	BRA69 BLA70 KUN69 DUH68 DUH68
24 MG 24 MG 24 Mg 24 Mg 24 Mg	30.5 30.5 31. 31. 31.	42.4 44.6 41.00 41.53 41.92	1.19 1.17 1.23 1.20* 1.17*	0.67 0.66 0.647 0.70* 0.75*	2.6 3.04 6.41 4.12*	1.38 1.29 1.20* 1.32*	0.81 0.766 0.48* 1.04	3.7G 5.4G 4.07G 6.51G 1.56G	1.38 1.30 1.29 1.20* 1.32*	1.17 1.42 1.11 0.70* 1.51	6.7 7.0 6.19 6.70 6.2*	1.19 1.17 1.18 1.20* 1.01*	0.67 0.66 0.670 0.70* 0.75*	1.25* 1.25* 1.20* 1.20* 1.20*	650 642 598	51 51 52 53 5		EEN74 EEN74 SAN70 SAN70 SAN70

TABLE II. Optical-Model Parameters

NUCLIDE	BNERGY (MEV)	REAL V	POTENT R	IAL A	VOL.IMA W	G. POTI	ENTIAL AW	SURP.IM WD	NG. POTI RD	ENTIAL A D	SPIN-C VSO	RBIT PO RSO	DTENTIAL A SO	RC	SR	FIT	NOTE	REF.
24 NG 24 NG 24 NG 24 NG 24 NG	49.5 49.5 49.5 50.0	43.26 39.98 44.73 43.6	1.10* 1.14 1.10 1.09	0.731 0.724 0.725 0.74	6.13 6.80 5.64 7.39	1.292* 0.76 1.285 1.53	0.602 0.274 0.608 0.533	3.16 5.94 3.635	1.292* 1.21 1.285	0.602 0.639 0.608	6.24 6.03 6.41 5.34	1.003* 1.03 1.00 0.98	0.583 0.588 0.60 0.55	1.2? 1.25* 1.25* 1.3*	601 591 612	S P2 S1P1 S2P2 S		LEN67 RUS67 RUS67 DUH68
24 MG 24 MG 24 MG	100. 100. 155.	22.1 27.0 18.3	1.27 1.21 1.27	0.68 0.44 0.74	7.23 10.29	1.50* 1.20	0.53* 0.86	12.1	1.25	0.56	9.89 6.04 2.44	1.00* 0.79 0.97	0.60* 0.66 0.62	1.25* 1.25* 1.33*	348	S 1 S 1 S 2 P 1	31	HOR72 HOR72 WIL68
25 HG 25 HG 25 HG 25 HG 25 HG	5. 6. 20.3	57.2 49.6 37.0 42.82	1.25* 1.25* 1.25* 1.25* 1.26	0.65* 0.65* 0.65* 0.67				15.4 20.* 33.8 6.88	1.25* 1.25* 1.25* 1.42	0.47* 0.47* 0.47* 0.37	4.18	1.04	0.34	1.25* 1.25* 1.25* 1.20?	665	52 52 52 51P2	26 26 26	GAL66 GAL66 GAL66 BLA70
26 NG 26 NG 26 NG 26 NG 26 NG 26 NG	13.9 20.3 31. 31. 31. 33.6	52.6 55.43 38.05 46.13 49.48 49.8	1.27 1.15 1.32 1.20* 1.17* 1.16	0.66 0.67 0.561 0.70* 0.75* 0.64	3.71 4.75 4.12*	1.31 1.20* 1.32*	0.554 0.48* 0.526	6.6 9.68 5.31G 9.55G 6.14G 6.50	1.20 1.31 1.31 1.20* 1.32* 1.16	0.66 0.42 0.803 0.70* 0.763 0.64	6.1 9.00 1.84 6.43 6.2*	1.27 0.80 1.96 1.20* 1.01*	0.66 0.97 0.393 0.70* 0.75*	1.25? 1.20? 1.20* 1.20* 1.20* 1.20* 1.16	744 659	5 51P2 51 52 5 52 52	₩65	WEI64 BLA70 SAN70 SAN70 SAN70 KOZ68
AL NL	9.4 17.0	50.9 48.02	1.25* 1.17*	0.65* 0.75*	1.04	1.32*	0.99	6.35 4.43G	1.25* 1.32*	0.47* 1.44	7.5* 6.2*	1.25* 1.01*	0.65* 0.75*	1.25* 1.20*	679 834	S3 S2	35	PER63 SAN71
AL AL AL AL AL	22.2 22.2 22.2 24.5 24.5	43.5 43.43 49.33 43.51 #7.9	1.25* 1.20 1.17* 1.21 1.17*	0.65* 0.70 0.75* 0.71 0.75*	7.93 2.18 3.80 2.69	1.20 1.32* 1.81 1.32*	0.48 0.59 0.41 0.55	9.02 6.37G 9.23G 7.58G	1.25* 1.20 1.32* 1.32*	0.47* 0.70 0.86 0.80	8.5* 15.8 6.2* 7.67 6.2*	1.25* 1.20 1.01* 1.15 1.01*	0.65* 0.70 0.75* 0.58 0.75*	1.25* 1.20* 1.20* 1.20* 1.20*	758 785 724	53 52 51 51 5	35	PER63 SAN71 SAN71 SAN71 SAN71 SAN71
AL AL AL AL AL AL	28. 28. 28. 28. 28.0 28.0	47.1 53.1 45.2 46.7 45.2 50.5	1.207 1.10 1.25 1.20* 1.15 1.17*	0.71 0.70 0.653 0.70* 1.12 0.75*	5.8 4.3 4.58 6.38 4.58 3.46	1.27 0.913 1.27 1.20* 1.27 1.32*	0.287 1.29 0.335 0.48* 0.45 0.35	15.2G 4.83G 13.8G 8.66G 13.8G 15.1G	1.27 0.913 1.27 1.20* 1.27 1.32*	0.416 1.87 0.485 0.70* 0.65 0.512	8.5 5.84 9.25 8.27 9.25 6.2*	1.207 1.10 1.12 1.20* 0.49 1.01*	0.71 0.70 0.635 0.70* 0.64 0.75*	1.25? 1.25? 1.20* 1.20* 1.20* 1.20*	708 764 719	51 5 51 51 51 5		DIT69 DIT69 SAN70 SAN70 SAN71 SAN71
AL AL AL AL AL	30.0 30.0 34.1 34.1 39.8 39.8	63.15 50.2 39.60 42.4 40.9 48.0	0.89 1.17* 1.15 1.17* 1.15* 1.20*	0.95 0.75* 0.78 0.75* 0.74 0.64	15.7 3.90 19.2 4.8 9.8	1.20 1.32* 0.765 1.32* 1.99	0.35 0.47 0.96 1.10 0.51	9.59G 1.30G 7.1	1.32* 1.32* 1.02	0.68 1.60 0.70	10.0 6.2* 5.91 6.2*	1.32 1.01* 1.40 1.01*	0.84 0.75* 0.69 0.75*	1.20* 1.20* 1.20* 1.20* 1.2? 1.2?	721 766	51 5 51 5 5 5		SAN71 SAN71 SAN71 SAN71 KOS69 ROS69
AL AL AL AL AL	40.0 40.0 46.0 46.0 61.2 61.2	40.0 40.4 40.76 38.9 51.05 36.5	1.16 1.17* 1.11 1.17* 0.99 1.17*	0.69 0.75* 0.69 0.75* 0.68 0.75*	7.1 6.1 7.4 10.7	1.40 1.32* 1.32* 1.32*	0.74 1.07 0.61 0.58	0.24G 6.1G 8.3G	1.32* 0.876 1.13	1.55 2.3 1.64	9.37 6.2* 10.8 6.2* 11.86 6.2*	1.19 1.01* 1.12 1.01* 0.94 1.01*	0.75 0.75* 0.76 0.75* 0.75* 0.75*	1.20* 1.20* 1.20* 1.20* 1.20* 1.20*	707 584 565	51 5 51 5 51 5 5		SAN71 SAN71 SAN71 SAN71 SAN71 SAN71 SAN71
27 AL 27 AL 27 AL 27 AL 27 AL 27 AL	9.1 9.8 17.6 20.3 22.2	47. 40.4 51.8 51.34 42.1	1.26 1.45 1.29* 1.17 1.25*	0.6 0.19 0.48 0.67 0.65*	3.0 9.2 8.6 5.1	1.26 1.45 1.29* 1.25*	0.6 0.19 0.48 0.65*	4.5 10.08 4.6g	1.26 1.37 1.25*	0.6 0.34 1.00*	5. 7.14 11.3	1.26 0.90 1.25*	0.6 0.80 0.65*	1.25? 1.45 1.29 1.20? 1.25*	712 761	S P S S S2P2 S1	W65 W65 W65	HOA61 GLA57A GLA57A BLA70 PIC65
27 AL 27 AL 27 AL 27 AL 27 AL 27 AL	40. 40. 61.4 61.4 96.	39.7 35.6 36.78 37.96 28.0	1.18* 1.23 1.174 1.16* 1.06	0.7* 0.665 0.660 0.75* 0.687	7.04 6.19 6.36 4.81 5.26	1.40* 1.4* 1.45 1.37* 1.61	0.7* 0.630 0.629 0.63* 0.334	0.33 1.63	1.45 1.37*	0.629 0.63*	7.5* 5.31 6.47* 6.04* 8.57	1.18* 1.23 1.089* 1.064* 1.06	0.7* 0.665 0.741* 0.738* 0.687	1.2* 1.23 1.25* 1.25* 1.06	638 567 545 533 410	S S 1P 2 S 2 S 3 S 1	16 31	PRI65 SAW65 PUL69 PUL69 SAW65
27 AL 27 AL	156. 287.	12.40 10.15	1.39 1.616	0.55 0.659	16.4 6.59	1.05	0.75 0.795				3.01 2.82	1.01 1.185	0.574 0.626	1.34 1.25*	365 146	51 52P2	12,22 25	CON74 CLA72
SI SI SI SI	10.61 11.98 17.8 17.8	54. 57. 47.8 47.4	1.21 1.11 1.25* 1.25*	0.40 0.62 0.65* 0.65*	4.5 8.5	1.21 1.11	0.40 0.62	10.46 10.46	1.25* 1.25*	0.47* 0.47*	5.57 6.17	1.25* 1.00	0.65* 0.65*	1.3* 1.3* 1.25* 1.25*	837 837	S S S 2 P 3 S 2 P 2	W65 W65	СОН 6 1 Сон 6 1 Ва и 6 6 Ва и 6 6
SI SI SI SI SI SI	24.5 28. 28. 28. 28.0 28.0	48.5 59.6 60.8 50.0 50.0 49.1	1.17* 1.06 0.92 1.20 1.20 1.17*	0.75* 0.78 0.88 0.700 0.70 0.75*	2.69 0.68 10.3 2.72 2.72 3.46	1.32* 0.91 1.5 1.20 1.20 1.32*	0.70 1.01 0.33 0.483 0.48 0.48	5.476 15.16 0.026 18.76 18.76 13.96	1.32* 0.91 1.5 1.20 1.20 1.32*	1.02 1.47 0.48 0.700 0.70 0.69	6.2* 2.8 12.5 6.79 6.8 6.2*	1.01* 1.06 0.92 1.20 0.70 1.01*	0.75* 0.78 0.88 0.700 0.70 0.75*	1.20* 1.25? 1.25? 1.20* 1.20* 1.20*	757 757 754 783	S2 S1 S2 S2 S2 S		SAN71 DIT69 DIT69 SAN70 SAN71 SAN71
SI SI SI SI SI	29. 29. 30.0 30.3 30.5	44.6 43.9 49.2 48.3 45.19	1.20* 1.20* 1.17* 1.15* 1.19	0.645* 0.645* 0.75* 0.71 0.68	3.3 1.9 4.12 8.0 9.02	1.20* 1.20* 1.32* 1.35 1.29	0.645* 0.645* 0.45 0.50 0.53	4,1 4,1 12.0G 1.8G 2.06G	1.25* 1.25* 1.32* 1.35 1.29	0.645* 0.645* 0.654 0.72 0.77	6.0* 6.0* 6.2* 5.1 9.4	1.20* 1.20* 1.01* 1.15* 0.70	0.645* 0.645* 0.75* 0.71 1.04	1.25? 1.25? 1.20* 1.20* 1.20*	710 700	S 1P1 5 1P2 S S 1 S 1 S 1	23	CRA66 CRA66 SAN71 COL66 SAN71
SI SI SI SI SI	31. 31. 31. 34.1 34.1	45.19 46.90 49.23 49.0 45.6	1.19 1.20* 1.17* 1.12 1.17*	0.684 0.70* 0.75* 0.69 0.75*	9.02 6.38 4.12* 2.58 4.80	1.29 1.20* 1.32* 1.06 1.32*	0.532 0.48* 0.377 1.10 0.57	2.06G 9.06G 12.03G 5.50G 5.35G	t.29 1.20* 1.32* 1.06 1.32*	0.771 0.70* 0.546 1.59 0.820	9.39 6.08 6.2* 4.24 6.2*	0.696 1.20* 1.01* 0.92 1.01*	1.04 0.70* 0.75* 0.114 0.75*	1.20* 1.20* 1.20* 1.20* 1.20*	704 686	S1 S2 S1 S1 S		SAN 70 SAN 70 SAN 70 SAN 71 SAN 71
SI SI SI	40.0 46.0 49.	43.3 43.5 36.4	1.17* 1.17* 1.18	0.75* 0.75* 0.70*	6.1 7.42 6.8	1.32* 1.32* 1.18	0.89 0.61 0.70*	1.0G 1.73G 1.4	1.32* 1.32* 1.47*	1.29 0.889 0.61	6.2* 6.2* 5.4	1.01* 1.01* 1.18	0.75* 0.75* 0.70*	1.20* 1.20* 1.25?	687 618	52 52 52P3	23	SAN71 SAN71 CRA66

TABLE II. Optical-Model Parameters

NUCLIDE	ENER GY (MEV)	REAL V	POTENI R	TAL A	VOL.IM W	AG. POI RW	TENTIAL AW	SURP.IM ND	RD RD	TENTIAL AD	SPIN- VSO	ORBIT P RSO	OTENTI AL ASO	8C	SR	PIT	NOTE	REF.
2851 2851 2851 2851 2851 2851 2851	17.13 17.5 17.5 19.04 20.3 20.84	51.52 55.54 48.2 51.58 45.57 49.96	1.17* 1.10 1.25 1.17* 1.20 1.17*	0.65* 0.633 0.59 0.65* 0.65 0.65	3.75 5.16 4.48	1.33* 1.33* 1.33*	0.6* 0.6* 0.6*	2.92 6.53 11.7 2.3 7.91 2.59	1.33* 1.37 1.10 1.33* 1.44 1.33*	0.6* 0.600 0.47 0.6* 0.41 0.6*	6.51 7.13 4.9 8.26 4.08 8.46	0.94* 1.10 1.25 0.94* 0.97 0.94*	0.6* 0.585 0.59 0.6* 0.35 0.6*	1.27 1.10? 1.25? 1.2? 1.20? 1.2?	760	S 1P 1 S2 S 2 S 1P 1 S2P2 S 2P 1	19,27 19 19	LAM73 BRA69 RE169 LAM73 BLA70 LAM73
2851 2851 2851 2851 2851 2851	21.2 21.2 22.99 24.93 27.14	41.42 46.07 48.83 47.77 46.64	1.24* 1.20* 1.17* 1.17* 1.17*	0.673 0.688 0.65* 0.65* 0.65*	9.8 3.06 1.36 0.14	1.28 1.33* 1.33* 1.33*	0.703 0.6* 0.6* 0.6*	14.9 3.76 5.26 6.76	0.86 1.33* 1.33* 1.33*	0.614 0.6* 0.6* 0.6*	7.42 6.58 5.29	0.94* 0.94* 0.94*	0.6* 0.6* 0.6*	1.25* 1.25* 1.2? 1.2? 1.2?		S2 S2 S1P1 S2P1 S2P1	15 15 19 19,27 19,27	BAR68 BAR68 LAM73 LAM73 LAM73
2851 2851 2851 2851 2851 2851 2851	27.6 27.6 28.98 30. 30.3 30.3	41.69 44.77 46.01 44.30 50.9 50.74	1.23 1.20* 1.17* 1.16* 1.106 1.111	0.71 0.65 0.65* 0.75* 0.687 0.746	8.53 0.96 3.92 6.88	1.43 1.37* 1.339 1.540	0.37 0.63* 0.543 0.349	7.17 6.74 3.97 3.63 0.10	1.04 1.33* 1.37* 1.339 1.540	0.71 0.6* 0.63* 0.543 0.349	4.62 6.04* 6.01 5.10*	0.94* 1.064* 0.930 1.15*	0.6* 0.738* 0.546 0.71*	1.30* 1.30* 1.2? 1.25* 1.2* 1.20*	722 736 717 716	S1 S2P2 S2P2 S2P2 SP S1	15 15 19,27 11 11	JON68 JON68 LAM73 PRI67 SAT67 PUT71
2851 2851 2851 2851 2851 2851 2851	40. 40. 100. 100. 155.	41.11 42.38 44.61 21.7 27.3 22.7	1.178 1.16* 1.134 1.27* 1.21* 1.24	0.709 0.75* 0.733 0.68* 0.44* 0.75	3.19 4.00 1.39 6.18 11.	1.560 1.37* 1.409 1.55 1.26	0.486 0.63* 0.537 0.42 0.67	1.98 1.96 4.41 12.6	1.560 1.37* 1.409 1.25*	0.486 0.63* 0.537 0.56*	6.47 6.04* 5.84 9.54 3.05 2.78	1.089 1.064* 1.012 1.08 0.78 0.95	0.741 0.738* 0.632 0.61 0.67 0.62	1.25* 1.25* 1.2* 1.25* 1.25* 1.25* 1.29*	638 630 645 394	S 2P 2 S 2P 2 S 2P 2 S 1 S 2 S 2P 2	12	FBI67 FRI67 FRI67 HOR72 HOR72 WIL68
31p	8.10	53.1	1.25*	0.65*				8.3	1.25*	0.47*	7.5*	1.25*	0.65*	1.25*		S 1	5	DAL69
s s s	17.8 17.8 31. 31.	49.3 47.9 51.43 47.18	1.25* 1.25* 1.07 1.20*	0.65* 0.65* 0.774 0.70*	7.35 2.32	1.33 1.20*	0.648 0.48*	10.50 11.01 1.24G 13.21G	1.25* 1.25* 1.33 1.20*	0.47* 0.47* 0.939 0.70*	6.00 6.03 6.54 5.06	1.25* 1.05 1.07 1.20*	0.65* 0.65* 0.774 0.70*	1.25* 1.25* 1.20* 1.20*	868 878 719	S 2 P 2 S 2 P 1 S 2 S 3		BAU66 BAU66 SAN70 SAN70
325 325 325 325	17.5 17.5 24.5 155.	52.14 44.1 53.0 19.0	1.15 1.28 1.08 1.26	0.654 0.57 0.74 0.74	10.57	1.25	0.81	6.12 7.2 7.05	1.32 1.02 1.12	0.547 0.54 0.83	5.56 12.3 4.92 2.96	0.85 1.28 1.0 0.99	0.41 0.57 0.46 0.64	1.15? 1.25? 1.25* 1.30*		S2 S2 S P S1P1	31	BRA69 REI69 MAY71 WIL68
34 S 34 S	6.03 24.5	55. 52.9	1.25* 1.12	0.50* 0.69				11.G 7.23	1.25* 1.19	1.05 0.78	7.19	0.84	0.81	1.25* 1.25*		S2 S P		ANT69 MAY71
35CL	6.03	55.	1.25*	0.50*				11.G	1.25*	1.05				1.25*		S 2		ANT69
36 AR 36 AR 36 AR	8.75 24.9 33.6	50.71 64.34 47.1	1.24 0.977 1.18	0.62 0.755 0.66	0.22	1.274	0.599	7.82 7.07 6.87	1.26 1.274 1.18	0.53 0.599 0.66	4.44 7.9*	1,24 1,00*	0.70 0.755*	1.25* 0.98 1.18		51 52 52	7	SEN71 Joh68 Koz68
38 AR	14.0	50,19	1.24	0.64				6.95	1.21	0.55	4.30	1.19	0.70	1.26*		S 2		SEN72
40 AR 40 AR 40 AR 40 AR 40 AR	9.7 9.7 10. 14.1 16.9	53.6 62. 61.8 48.84 48.00	1.265 1.20* 1.20* 1.25* 1.25*	0.487 0.41 0.415 0.687 0.65*	7.5 9.5 8.8	1.265 1.20* 1.20*	0.487 0.41 0.415	11.2 11.0	1.25* 1.25*	0.452 0.47*	8.5 10. 7.5*	1.265 1.20* 1.25*	0.487 0.415 0.687	1.26 1.20* 1.20* 1.25* 1.25*		S P S S S1 S2	12,W5 W65 12,W5	NOD60 GLA57A NOD60 GRA65 GRA65
40 AR 40 AR 40 AR 40 AR 40 AR 40 AR	21. 21. 21. 24.9 30.4 30.4	50.6 49.3 45.3 48.85 51.37 47.44	1.17 1.19* 1.25* 1.18 1.11 1.14	0.717 0.70* 0.65* 0.793 0.811 0.74	2.0 6.64 3.46	1.343 1.60 1.34	0.470 0.502 0.71	8.25 8.37 10.7 8.2 3.93	1.22 1.25* 1.25* 1.343 1.34	0.676 0.64* 0.47* 0.470 0.71	5.64 4.97 3.48 6.0* 4.24 6.31	1.01 1.05* 1.25* 1.05* 1.08 1.11	0.657 0.55* 0.65* 0.7* 0.582 0.869	1.25* 1.25* 1.25* 1.18 1.25* 1.25*	1062 1047 944 980 1018	S 2P 2 S 2P 2 S 2P 2 S 1 S P S 2P 2	1	BAR69 BAR69 BAR69 JOH68 RUS71 RUS71
40 AR 40 AR 40 AR	49.4 49.4 49.4	48.03 46.80 46.04	1.11 1.11 1.12	0.734 0.767 0.771	3.10 6.10	1.17 0.751	0.71 0.612	8.06 6.40 7.30	1.16 1.17 1.18	0.743 0.71 0.683	7.07 7.28 6.56	0.987 1.04 1.01	0.686 0.721 0.660	1.25* 1.25* 1.25*	907 878 883	S P S 1P2 S 1P2		BUS71 RUS71 RUS71
CA	26.3	49.81	1.12*	0.75*				5.65	1.33*	0.58*	4.53	1.06	0.75*	1.20*		S 2P 3	20	WAT67
40CA 40CA 40CA 40CA 40CA	9.6 9.6 9.6 9.86 9.86 9.86	58,68 55,85 57,86 44,84 59,65	1.25* 1.197 1.152* 1.352 1.152*	0.26 0.627 0.692* 0.657 0.692*				8.2* 4.00G 3.28G 10.18G 2.42G	1.25* 1.182 1.309* 1.442 1.309*	0.26 1.217 1.162* 0.277 1.162*	6.0* 4.81* 4.76* 4.81* 4.76*	1.25* 1.038* 1.014* 1.038* 1.014*	0.65* 0.511* 0.526* 0.511* 0.526*	1.25* 1.32* 1.32* 1.32* 1.32*	543 523 609 461	S S 1 S S S	5 5 5 5	BER 68 VOE7 1 VOE7 1 VOE7 1 VOE7 1
40CA 40CA 40CA 40CA 40CA 40CA	10.37 10.37 11.42 11.42 12.44 12.44	56.60 61.71 51.80 57.17 54.04 56.88	1.201 1.152* 1.220 1.152* 1.192 1.152*	0.619 0.692* 0.748 0.692* 0.641 0.692*				5.62G 3.30G 14.87G 3.77G 4.66G 4.59G	1.379 1.309* 1.442 1.309* 1.391 1.309*	0.510 1.162* 0.351 1.162* 1.058 1.162*	5.14 6.01 4.81* 4.76* 4.81* 4.76*	1. 149 1. 014* 1. 038* 1. 014* 1. 038* 1. 014*	0.268 0.526* 0.511* 0.526* 0.511* 0.526*	1.32* 1.32* 1.32* 1.32* 1.32* 1.32*	529 639 722 635 723 723	S P2 S P S S S1 S1	5 5 5 5 5	VOE71 VOE71 VOE71 VOE71 VOE71 VOE71 VOE71
40CA 40CA 40CA 40CA	13.40 13.49 13.98 13.98	57.40 55.59 50.43 56.16	1.113 1.152* 1.254 1.152*	0.648 0.692* 0.599 0.692*				4.78G 6.74G 4.88G 6.59G	1.395 1.309* 1.133 1.309*	1.594 1.162* 1.507 1.162*	4.81* 4.76* 4.81* 4.76*	1.038* 1.014* 1.038* 1.014*	0.511* 0.526* 0.511* 0.526*	1.32* 1.32* 1.32* 1.32*	907 818 783 820	ន ន ន ន	5 5 5 5	VOE71 VOE71 VOE71 VOE71
40CA 40CA 40CA 40CA 40CA	14.08 14.51 14.51 14.6 14.6	51.59 53.81 54.99 54.78 54.03	1.21 1.166 1.152* 1.150 1.152*	0,67 0.739 0.692* 0.742 0.692*				6.85 7.96G 5.89G 8.27G 6.19G	1.39 1.296 1.309* 1.279 1.309*	0.41 0.927 1.162* 0.957 1.162*	6.04 4.12 5.05 4.14 4.75	0.85 1.125 1.014* 1.088 1.014*	0.24 0.278 0.526* 0.401 0.526*	1.32* 1.32* 1.32* 1.32* 1.32*	827 797 799 810 811	S3P2 SP SP S1P SP SP	4 5 5 5 5	LOM72 VOE71 VOE71 VOE71 VOE71 VOE71

TABLE II. Optical-Model Parameters

N	UCL ID E	ENERGY (MEV)	REAL V	POTENTIAL R A	VOL.INAG. POTENTIAL W RW AW	SURF.IMAG. POTENTIAL WD RD AD	SPIN-ORBIT POTENTIAL VSO RSO ASO	RC	SR 1	FIT NOTE	REF.
	40CA 40CA 40CA 40CA 40CA 40CA	15.57 15.57 15.65 15.65 15.97 15.97	67.13 52.99 54.3 52.44 55.52 53.00	0.963 0.848 1.152* 0.692* 1.21 0.57 1.21 0.63 1.135 0.651 1.152* 0.692*		6.94G 1.426 1.101 5.96G 1.309* 1.162* 5.8 0.90 0.59 6.40 1.23 0.43 5.52G 1.224 1.207 5.97G 1.309* 1.162*	4.81* 1.038* 0.511* 4.76* 1.014* 0.526* 7.8 0.87 0.53 5.88 0.95 0.42 3.74 1.038* 0.511* 4.76* 1.014* 0.526*	1.32* 1.32* 1.32* 1.32* 1.32* 1.32* 1.32*	886 805 717 732 804	S 5 S2P2 S3P2 4 S 5 S 5	VOE71 VOE71 BOY72 LON72 VOE71 VOE71
	40CA 40CA 40CA 40CA 40CA 40CA	16.25 16.57 16.57 17.3 17.3 17.3	52.16 51.40 53.39 47.90 50.12 53.91	1.21 0.60 1.200 0.671 1.152* 0.692* 1.25* 0.65* 1.233 0.610 1.152* 0.692*		6.56 1.25 0.42 9.50G 1.234 0.724 6.14G 1.309* 1.162* 11.47 1.25* 0.47* 7.40G 1.062 1.168 6.31G 1.309* 1.162*	5.01 0.92 0.31 4.81* 1.065 0.199 3.73 1.014* 0.526* 8.* 1.25* 0.65* 5.04 1.076 0.476 4.31 1.014* 0.526*	1.32* 1.32* 1.32* 1.25* 1.32* 1.32*	697 3 709 3 815 3 764 3 812 3	S3P2 4 S P2 S P 5 S2 S 1P 5 S P 5	LOM72 VOE71 VOE71 GRA65 VOE71 VOE71
	40CA 40CA 40CA 40CA 40CA	17.57 17.57 17.8 17.8 17.8	48.35 52.63 48.0 55.94 57.22	1.244 0.587 1.152* 0.692* 1.25* 0.45* 1.178 0.657 1.152* 0.692*		6.95G 1.133 1.200 7.51G 1.309* 1.162* 8. 1.25* 0.45* 8.21G 1.196 1.003 5.36G 1.309* 1.162*	5.19 0.907 0.509 3.49 1.014* 0.526* 4.0 1.25* 0.45* 3.71 0.999 0.352 6.29 1.014* 0.526*	1.32* 1.32* 1.25* 1.32* 1.32*	769 9 857 9 726 9 754 9 738 9	S P S P 5 S 3 P 2 12 S P 5 S P 5	VOE71 VOE71 BAU65 VOE71 VOE71
	40CA 40CA 40CA 40CA 40CA 40CA	18.57 18.57 19.57 19.57 20.58 20.58	49.03 49.95 49.88 47.25 50.98 46.53	1.233 0.569 1.152* 0.692* 1.205 0.693 1.152* 0.692* 1.178 0.726 1.152* 0.692*		7.34G 1.138 1.183 7.20G 1.309* 1.162* 7.57G 1.191 1.285 7.15G 1.309* 1.62* 7.98G 1.243 1.245 7.24G 1.309* 1.162*	3.97 1.010 0.331 4.19 1.014* 0.526* 4.81* 1.038* 0.511* 4.76* 1.014* 0.526* 4.81* 1.038* 0.511* 4.76* 1.014* 0.526*	1.32* 1.32* 1.32* 1.32* 1.32* 1.32* 1.32*	788 2 842 2 869 2 835 2 893 2 835 2	S P1 S P 5 S1 S S1 S1 S	VOE71 VOE71 VOE71 VOE71 BRA71 VOE71
	40CA 40CA 40CA 40CA 40CA 40CA	21.05 21.05 21.68 21.68 23.55 23.55	50.02 50.00 55.13 46.57 55.96 47.06	1.174 0.739 1.152* 0.692* 1.111 0.781 1.152* 0.692* 1.036 0.816 1.152* 0.692*		7.34G 1.277 1.251 8.02G 1.309* 1.162* 7.55G 1.242 1.323 7.70G 1.309* 1.162* 4.80G 1.273 1.804 7.52G 1.309* 1.162*	4.30 0.837 1.024 6.48 1.014* 0.526* 4.81* 1.038* 0.511* 4.76* 1.014* 0.526 4.81* 1.038* 0.511* 4.76* 1.014* 0.526*	1.32* 1.32* 1.32* 1.32* 1.32* 1.32* 1.32*	896 3 860 3 901 3 849 3 936 3 839 3	S 1 P 2 S P S 1 S S 2 S	BRA71 VOE71 BRA71 VOE71 BRA71 VOE71
	40CA 40CA 40CA 40CA 40CA	25. 26.30 26.30 27.4 27.4	48.92 53.13 50.93 53.52 50.59	1.16* 0.75* 1.076 0.786 1.152* 0.692* 1.049 0.871 1.152* 0.692*	2.10 1.37* 0.63* 2.22 1.313 0.797 2.02 1.309* 0.549*	4.07 1.37* 0.63* 4.726 1.269 1.831 8.236 1.309* 1.162* 3.646 1.313 1.687 7.816 1.309* 1.162*	6.04* 1.064* 0.738* 4.20 1.038 0.512 6.23 1.014* 0.526* 4.81* 1.038* 0.511* 4.76* 1.014* 0.526*	1.25* 1.32* 1.32* 1.32* 1.32* 1.32*	927 865 943 915	S2 S2P2 S P S2 S	GRU72 BRA71 VOE71 BRA71 VOE71
	40CA 40CA 40CA 40CA 40CA 40CA	30. 30. 30.3 30.3 30.3 30.3 30.3	47.38 47.86 44.04 43.44 46.1 47.2	1.16* 0.75* 1.16* 0.75* 1.236 0.659 1.25* 0.65* 1.20* 0.7* 1.172 0.703	2.24 1.37* 0.63* 2.40 1.37* 0.63* 0.60 1.236 0.659 0.40 1.25* 0.7* 1.78 1.288 0.653	4.22 1.37* 0.63* 4.18 1.37* 0.63* 7.74 1.236 0.514 8.77 1.25* 0.47* 5.96 1.25* 0.7* 4.83 1.288 0.653	6.04* 1.064* 0.738* 6.04* 1.064* 0.738* 12.49 1.236 0.659 12.* 1.25* 0.65* 5.97 1.20* 0.7* 4.03 1.009 0.446	1.25* 1.25* 1.25* 1.25* 1.25* 1.20* 1.2*	940 5 849 5 830 5 904 5	S2P2 11 S1 S2 32 S2 32 S2P2 11 S P 11	PRI67 GRU72 BAR65 BAR65 GRE66 SAT67
	40CA 40CA 40CA 40CA 40CA 40CA	30.3 30.3 30.3 30.3 30.3 30.3 30.3	47.30 46.61 56.07 47.02 50.00 45.3	1.156 0.739 1.163 0.740 1.030 0.861 1.165 0.689 1.152* 0.692* 1.19 0.66	0.09 1.389 0.568 0.02 1.400 0.539 4.50 1.722 0.193 0.77 1.309* 0.549*	6.46 1.389 0.568 6.51 1.400 0.539 0.58 1.722 0.193 5.53G 1.249 1.672 7.66G 1.309* 1.162* 6.1 1.33 0.64	4.48 0.975 0.480 4.41 0.978 0.464 4.41* 0.978* 0.464* 5.37 1.093 0.613 5.56 1.014* 0.526* 5.4 1.01 0.60	1.11* 1.11* 1.32* 1.32* 1.32*	926 900 881 883 858 58	S2P12 P2 S2 S2P2 SP SP SP	HNI71 HNI71 HNI71 VOE71 VOE71 BOY72
	40CA 40CA 40CA	35. 35.8 35.8	46.42 51.92 46.64	1.16* 0.75* 1.058 0.778 1.152* 0.692*	2.37 1.37* 0.63* 0.36 1.319 0.709 2.07 1.309* 0.549*	4.17 1.37* 0.63* 5.64G 1.319 1.501 5.65G 1.309* 1.162*	6.04* 1.064* 0.738* 7.05 0.865 0.744 4.68 1.014* 0.526*	1.25* 1.32* 1.32*	858 S 796 S	52 5 P 5 P	GRU72 VOE71 VOE71
	40CA 40CA 40CA 40CA 40CA	40. 40. 40.0 40.0 40.0	41.55 43.22 46.88 44.85 44.51	1.203 0.674 1.16* 0.75* 1.113 0.786 1.152* 0.692* 1.16* 0.75*	1.56 1.255 0.704 1.21 1.37* 0.63* 3.53 1.415 0.659 4.49 1.309* 0.549* 1.71 1.37* 0.63*	4.92 1.255 0.704 4.52 1.37* 0.63* 2.74G 1.415 1.395 3.92G 1.309* 1.162* 4.42 1.37* 0.63*	6.22 1.028 0.778 6.04* 1.064* 0.738* 4.73 0.963 0.621 4.32 1.014* 0.526* 6.04* 1.064* 0.738*	1.25* 1.25* 1.32* 1.32* 1.25*	858 841 844 786	52P2 52P2 5 P 5 P 52	PRI67 PRI67 VOE71 VOE71 GRU72
	40CA 40CA 40CA 40CA 40CA 40CA	45.5 45.5 45.5 48.0 49.0 49.0	46.34 43.26 41.64 38.55 35.87 36.30	1.090 0.788 1.152* 0.692* 1.18* 0.7* 1.178 0.724 1.200 0.712 1.152* 0.692*	4.88 1.636 0.384 4.10 1.309* 0.549* 3.83 1.3* 0.6* 4.66 1.564 0.495 3.79 1.508 0.546 7.84 1.309* 0.549*	2.85G 1.636 0.813 4.21G 1.309* 1.162* 3.55 1.3* 0.6* 0.76G 1.564 1.048 1.05G 1.506 1.156 1.68G 1.309* 1.162*	6.12 1.001 0.692 4.94 1.014* 0.526* 5.67 1.05* 0.7* 6.69 0.957 0.793 5.62 0.933 0.791 6.27 1.014* 0.526*	1.32* 1.32* 1.25* 1.32* 1.32* 1.32*	770 5 756 5 778 5 951 5 676 732	S2P2 S P S2P2 24 S2P2 11 P P	VOE71 VOE71 CLA72 BRA71 VOE71 VOE71
	40CA 40CA 40CA 40CA 40CA 40CA	55.0 55.0 61.4 61.4 61.4 75.	38.70 39.48 38.03 38.90 38.23 22.97	1.182 0.720 1.152* 0.692* 1.16* 0.75* 1.149 0.995 1.152* 0.692* 1.20 0.53	7.87 1.341 0.578 7.34 1.309* 0.549* 1.45 1.37* 0.63* 7.31 1.376 0.450 3.34 1.309* 0.549*	1.48G 1.341 1.224 1.81G 1.309* 1.162* 4.44 1.37* 0.63* 1.21G 1.376 0.953 5.02G 1.309* 1.162* 13.23 1.20 0.56	4.81* 1.038* 0.511* 4.76* 1.014* 0.526* 6.04* 1.064* 0.738* 4.81* 1.038* 0.511* 4.76* 1.014* 0.526* 0.91 1.69 0.39	1.32* 1.32* 1.25* 1.32* 1.32* 1.32*	762 708 744 684 699 816	S S S 2 S 2 S 2 S 2 S 2 S 2 P 3 22	VOE71 VOE71 PUL69 VOE71 VOE71 ROL66
	40CA 40CA 40CA 40CA 40CA	76.0 76.0 153. 153. 153.	33.47 33.47 15.01 10.80 -7.67	1.149* 0.712* 1.152* 0.436* 1.01 0.47 1.005 0.309 1.152* 0.436*	11.73 1.318* 0.552* 12.41 1.309* 0.511* 15.00 1.40 0.52 16.02 1.372 0.513 19.51 1.309* 0.511*		5.26 1.038* 0.511* 5.31 1.014* 0.526* 2.11 1.12 0.61 3.55 1.067 0.612 3.31 1.014* 0.526*	1.32* 1.32* 1.32 1.32* 1.32*	671 5 693 5 654 5 639 5 639 5	SP SP S1P2 12,31 SP 12 SP 12	VOE71 VOE71 ROL66 VOE71 VOE71
	40CA 40CA 40CA 40CA 40CA 40CA	155. 156. 160. 160. 160.	19.4 12.26 17.5 14.54 17.13 12.79	1.24 0.74 1.42 0.55 1.172 0.585 1.17 0.51 1.193 0.486 1.152* 0.436*	12.64 1.23 0.84 13.1 1.22 0.57 8.2 1.535 0.483 10.* 1.50 0.50* 10.69 1.473 0.478 16.61 1.309* 0.511*		2.87 1.02 0.58 3.48 1.03 0.64 4.04 1.172 0.585 2.45* 1.17 0.51 3.39 1.038* 0.511* 4.16 1.014* 0.526*	1.32* 1.33 1.32 1.3* 1.32* 1.32*	487 584 630 612 601	S1P1 31 S1 12,19 S1 33,19 S2 12,19 S 12 S 12 S P 12	WIL68 COM74 R0065 R0065 VOE71 VOE71
	40CA 40CA 40CA	180. 180. 185.	18.69 4.96 13.1	1.003 0.328 1.152* 0.436* 1.01 0.5*	14.86 1.376 0.542 15.13 1.309* 0.511* 11.1 1.52 0.47		4.00 1.085 0.643 3.95 1.014* 0.526* 3.29 1.17 0.63	1.32* 1.32* 1.32	614 551 5	S1P2 13,12 S P 13,12 S P2 14	VOE71 VOE71 ING73

TABLE II. Optical-Model Parameters

NUCLIDE	EN ER GY (MEV)	R E A L V	POTENT R	IAL A	VOL.IM W	AG. POT RW	ENTIAL AW	SURP.IN. WD	NG. POT RD	ENTIAL AD	SPIN-0 VSO	RBIT P RSO	OTENTIAL ASO	RC	SR	fit	NOTE	REF.
42CA 42CA 42CA 42CA	9.0 9.0 12.0 12.0	52.4 49.5 53.6 49.5	1.209 1.25* 1.217 1.25*	0.678 0.65* 0.600 0.65*				6.9 5.0 17.1 9.5	1.363 1.25* 1.264 1.25*	0.305 0.47* 0.310 0.47*	7.5* 7.5* 7.5* 7.5*	1.209 1.25* 1.217 1.25*	0.678 0.65* 0.600 0.65*	1.25* 1.25* 1.25* 1.25*	638 654 701 846	S2 S2 S1 S2	26 26	MAR66 MAR66 MAR66 MAR66
42CA 42CA 42CA 42CA 42CA	22.9 22.9 26.5 49.35 49.35	46.9 43.4 40.2 43.6 42.2	1.18* 1.25* 1.25* 1.16 1.17*	0.70* 0.65* 0.65* 0.78 0.75*	1.30 8.99 9.8 2.5	1.30* 1.25* 1.32 1.32*	0.60* 0.47* 0.54 0.63*	6.80 10.53 1.9 5.6	1.30* 1.25* 1.32 1.32*	0.60* 0.47* 0.54 0.63*	6.0* 7.5* 12.0 5.8 8.7	1.05* 1.25* 1.25* 1.03 1.01*	0.7* 0.47* 0.65* 0.59 0.75*	1.25* 1.25* 1.25* 1.25* 1.25*	870 900	S1 S2 S1 SP S2P	1 1 1	BAN68 BAN68 SMI69 MAN71A MAN71A
44 CA 44 CA 44 CA 44 CA 44 CA 44 CA	9.0 9.0 10.75 12.0 12.0 14.15	50.8 50.3 51.9 48.9 49.3 50.2	1.233 1.25* 1.25 1.278 1.25* 1.25* 1.24	0.720 0.65* 0.56 0.590 0.65* 0.59				11.8 8.3 9.6 17.3 11.6 7.8	1.366 1.25* 1.26 1.246 1.25* 1.25*	0.290 0.47* 0.44 0.324 0.47* 0.59	7.5* 7.5* 5.98 7.5* 7.5* 6.30	1.233 1.25* 0.89 1.278 1.25* 0.94	0.720 0.65* 0.33 0.590 0.65* 0.54	1.25* 1.25* 1.29* 1.25* 1.25* 1.25*	759 778 788 898	S2 S2 S1P1 S1 S2 S1P1		MAR66 HAR66 LOM72 MAR66 MAR66 LOM72
44CA 44CA 44CA 44CA 44CA 44CA	15.61 17.5 22.9 22.9 49.35 49.35	53.2 46.5 49.3 45.5 43.1 42.4	1.18 1.251 1.18* 1.25* 1.16 1.17*	0.60 0.62 0.70* 0.65* 0.74 0.75*	2.36 8.6 0.8	1.30* 1.29 1.32*	0.60* 0.61 0.63*	6.3 11.0 6.80 11.95 2.7 6.9	1.24 1.26 1.30* 1.25* 1.29 1.32*	0.70 0.58 0.60* 0.47* 0.61 0.63*	6.80 6.42 6.0* 7.5* 7.2 8.2	0.85 1.251 1.05* 1.25* 1.00 1.01*	0.47 0.62 0.7* 0.47* 0.64 0.75*	1.29* 1.25* 1.25* 1.25* 1.25* 1.25* 1.20*	915 940	51P1 52 51 52 5 P 52P2	3 1 1	LOM72 PET68A BAN68 BAN68 MAN71A MAN71A
48CA 48CA 48CA 48CA 48CA 48CA	9.0 9.0 10.0 12.0 12.0 12.	51.4 50.4 56.76 41.6 52.4 52.4	1.240 1.25* 1.17* 1.441 1.25* 1.25*	0.630 0.65* 0.62* 0.456 0.65* 0.65*				8.6 13.2 5.68 20,2 15.4 16.0	1.194 1.25* 1.32* 1.215 1.25* 1.25*	0.642 0.47* 0.72* 0.364 0.47* 0.47*	7.5* 7.5* 5.80 7.5* 7.5* 5.4	1.240 1.25* 1.07* 1.441 1.25* 1.12*	0.630 0.65* 0.75* 0.456 0.65* 0.47*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	916 874 965 989	52 52 51P1 51 52 52 52		MAR66 MAR66 LIE71 MAR66 MAR66 TEL69
48CA 48CA 48CA 48CA 48CA	12.0 14.03 15.06 15.63 17.5	56.86 52.8 52.0 50.1 42.9	1.17* 1.19 1.20 1.24 1.34	0.62* 0.68 0.68 0.65 0.76				6.65 9.3 9.5 11.2 16.0	1.32* 1.36 1.30 1.31 1.25*	0.72* 0.59 0.57 0.49 0.50*	7.99 8.46 7.86 6.67 7.5*	1.07* 0.83 0.85 0.93 1.34*	0.75* 1.04 0.80 0.74 0.76*	1.25* 1.24* 1.24* 1.24* 1.24*		5 1P 1 5 1P 1 5 1P 1 5 1P 1 5 2		LIE71 LOM72 LOM72 LOM72 PET68
48CA 48CA 48CA 48CA	25. 30. 35. 40.	51.72 45.93 46.50 46.58	1.20* 1.20* 1.20* 1.20*	0.68* 0.68* 0.68* 0.68*	0.36 0.15 3.49 4.13	1.20* 1.20* 1.20* 1.20*	0.68* 0.68* 0.68* 0.68*	6.95 6.57 4.62 4.57	1.20* 1.20* 1.20* 1.20* 1.20*	0.68* 0.68* 0.68* 0.68*				1.25* 1.25* 1.25* 1.25*		53 53 52 52		GRU72A GRU72A GRU72A GRU72A
45 SC 45 SC 45 SC 45 SC 45 SC 45 SC	6.9 9.6 10.5 17.5 49.35 49.35	54.6 51.29 46.61 46.5 42.6 41.6	1.25* 1.25* 1.285* 1.251 1.16 1.17*	0.58 0.56 0.65* 0.62 0.74 0.75*	7.9 1.2	1.27 1.32*	0.65 0.63*	10.0G 8.2* 13.38 11.0 2.8 6.3	1.25* 1.25* 1.285* 1.26 1.27 1.32*	0.74* 0.56 0.53* 0.58 0.65 0.63*	14.0 6.0* 8.53 6.42 6.9 8.3	1.25* 1.25* 1.285* 1.251 1.00 1.01*	0.58 0.65* 0.53* 0.62 0.66 0.75*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.20*	963 910 930	S3 S P1 S2 S P S2P1	3 1 1	PRO70A BER68 PER68 PET68A MAN71A MAN71A
TI TI	12.0 14.3	51.3 49.9	1.25* 1.25*	0.65* 0.65*				13.1 13.6	1.25* 1.25*	0.47* 0.47*	7.5* 7.5*	1.25* 1.25*	0.65* 0.65*	1.25* 1.25*	922 975	S2 S1	35 35	PER63 PER63
46 TI 46 TI 46 TI 46 TI 46 TI 46 TI	6.9 17.5 21.2 21.2 26.0 26.0	49.6 46.5 50.50 45.51 43.16 43.23	1.25* 1.251 1.20 1.28 1.20* 1.20*	0.54 0.62 0.77 0.719 0.84 0.78	6.98	1.52	0.44	3.0G 11.0 13.4 18.4 7.67	1.25* 1.26 1.14 1.21 1.075	0.74* 0.58 0.547 0.389 0.75	21.5 6.42 6.0	1.25* 1.251 1.28	0.54 0.62 0.719	1.25* 1.25* 1.25* 1.25* 1.3* 1.3*		S3 S2 S2 S2 S1 S2	3	PRO70A PET68A BAR68A BAR68A JON68A JON68A
47TI	6.9	55.6	1.25*	0.38				6.5G	1.25*	0.74*	13.5	1.25*	0.38	1.25*		\$ 2		PRO 70 A
48TI 48TI 48TI 48TI 48TI 48TI	6.9 11.0 11.0 12.2 14.3	53.6 52.88 46.52 48.1 47.4	1.25* 1.255 1.285* 1.25* 1.25*	0.28 0.390 0.65* 0.65* 0.65*				5.5G 20.91 10.27 9.7 11.0	1.25* 0.968 1.285* 1.25* 1.25*	0.74* 0.333 0.53* 0.47* 0.47*	18.0 8.76 8.60 8.0* 8.0*	1.25* 0.976 1.285* 1.25* 1.25*	0.28 0.280 0.53* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25*	693 925 905 970	S2 S1P1 S2P2 S1 S1 S1	11 11 23 23	PRO70A PER68 PER68 BUC63 BUC63
48TI 48TI 48TI 48TI 48TI 48TI	16.5 18.0 18.6 18.6 18.6	46.3 45.8 50.3 60.05 50.40	1.25* 1.25* 1.25* 1.1* 1.24*	0.60* 0.60* 0.65* 0.75* 0.65*				12.5 11.4 11.0 8.28 9.62	1.25* 1.25* 1.25* 1.35* 1.28*	0.47* 0.47* 0.47* 0.55* 0.55*	7.0 8.0* 5.6 5.7 5.28	1.25* 1.25* 1.09 0.95 1.08	0.60* 0.60* 0.47* 0.55* 0.42*	1.25* 1.25* 1.25* 1.1* 1.25*	993 1051 1003	S2 S1 S2P1 S2P1 S P	23 23 20 30	LUT74 LUT74 KOS67 KOS68 KOS68
48TI 48TI 48TI 48TI 48TI	20.0 22.0 24.0 156.	45.2 44.6 44.0 14.32	1.25* 1.25* 1.25* 1.36	0.60* 0.60* 0.60* 0.53	16.0	1.18	0.64	11.0 10.9 10.8	1.25* 1.25* 1.25*	0.47* 0.47* 0.47*	8.0* 8.0* 8.0* 3.	1.25* 1.25* 1.25* 1.04	0.60* 0.60* 0.60* 0.60	1.25* 1.25* 1.25* 1.29	604	51 51 52 51	23 23 23 12,22	LUT74 LUT74 LUT74 CON74
49TI 49TI 49TI 49TI 49TI	6.9 10.5 14.5 20.9	53.6 46.80 51.18 54.5	1.25* 1.285* 1.20 1.12	0.58 0.65* 0.620 0.75				2.0G 12.98 9.22 7.93	1.25* 1.285* 1.341 1.244	0.74* 0.53* 0.609 0.70	20.0 8.59 7.71 5.0	1.25* 1.285* 1.20 1.03	0.58 0.53* 0.620 0.47*	1,25* 1.25* 1.3* 1.25*	976 1067 1153	S2 P1 S1P2 S P	12	PRO70A PER68 ALT67A MAY71
50TI 50TI 50TI	6.9 14.15 15.35	52.1 52.9 52.2	1.25* 1.19 1.19	0.38 0.68 0.67				6.0G 8.6 8.9	1.25* 1.28 1.24	0.74* 0.68 0.65	16.0 6.38 6.84	1.25* 0.99 0.98	0.38 0.71 0.66	1.25* 1.26* 1.26*		S2 S1P1 S1P1		PRO70A Lon72A Lon72A
50TI 50TI 50TI 50TI 50TI	18.2 18.6 18.6 18.6 39.9	46.9 49.6 58.98 49.91 44.85	1.25* 1.25* 1.1* 1.24* 1.16*	0.65* 0.65* 0.75* 0.65* 0.75*	7.82	1.37*	0.63*	11.47 11.2 8.41 9.78 1.14*	1.25* 1.25* 1.35* 1.28* 1.37*	0.47* 0.47* 0.55* 0.5* 0.63*	7.2 5.75 7.4 6.04*	1.20 1.00 1.24 1.064*	0.47* 0.55* 0.42* 0.738*	1.25* 1.25* 1.1* 1.25* 1.25*	1006 1082 1012	S2 S2P1 S P S P S2	20 30 1	GRA65A KOS67 KOS68 KOS68 PRE70

TABLE II. Optical-Model Parameters

NUCLIDE	EN ER GY (M EV)	REAL V	POTENT R	IAL A	VOL.IN W	AG. POT RW	TENTIAL AW	SURF.IM WD	AG. POT RD	ENTIAL AD	SPIN- VSO	ORBIT P RSO	OTENTIAL ASO	BC	SR	PIT	NOTE	REF.
v	22.2	46.0	1.25*	0.65*				12.0	1.25*	0.47*	8.5*	1.25*	0.65*	1,25*	1032	S 2	35	PER63
51V 51V	6.9	56.6	1.25*	0.50	a	1 25#	0.65	9.0G	1.25*	0.74*	12.5	1.25*	0.50	1.25*		S 1		PRO70A
51V 51V	7.5	55. 50.86	1.25*	0.55			0000	4.G 8.2*	1.25* 1.25*	1.4 0.62	-9.1 6.0*	1.25* 1.25*	0.65 0.65*	1.25*		5 5 5	4,165	SHO61 BER68
51V 51V 51V 51V 51V	10.81 11.0 11.0 15.20 39.9	49.9 50.05 47.45 50.3 42.32	1.26 1.240 1.285* 1.21 1.16*	0.62 0.666 0.65* 0.69 0.75*	8.18	1.37*	0.63*	11.1 8.37 10.41 8.6 1.14*	1.28 1.270 1.285* 1.29 1.37*	0.46 0.620 0.53* 0.61 0.63*	6.64 7.87 7.39 6.57 6.04*	1.12 1.303 1.285* 1.01 1.064*	0.42 D.619 0.53* 0.64 0.738*	1.27* 1.25* 1.25* 1.27* 1.25*	959 94 1	S 1P 1 S 1P 1 S 1P 1 S 2P 1 S 2	11 11 1	LOM72A PER68 PER68 LOM72A PRE70
CR CR	12.0 14.3	51.3 50.0	1.25* 1.25*	0.65* 0.65*				12.8 13.4	1.25* 1.25*	0.47* 0.47*	7.5* 7.5*	1.25* 1.25*	0.65* 0.65*	1.25* 1.25*	911 981	52 52	35 35	PER63 PER63
50CR 50CR 50CR	6.9 10. 22.9	54.1 46.29 49.63	1.25* 1.25* 1.17*	0.18 0.772 0.732				2.5G 11.60G 8.09	1.25* 1.379 1.179	0.74* 0.992 0.689	20.5 8.59 7.24	1.25* 1.25* 0.956	0.18 0.772 0.741	1.25* 1.3* 1.2*	880	S2 S1 S1		PRO70A AND64 PET72
52CR 53CR 52CR	5.45 5.45 6.9	60. 60. 52.1	1.23* 1.23* 1.25*	0.40 0.36 0.30				11.5G 7.5G 5.0G	1.23* 1.23* 1.25*	1.2* 1.2* 0.74*	18.5	1,25*	0.30	1.23? 1.23? 1.25*		S S S2	W65 W65	VANG1 VANG1 PRO70A
52CR 52CR 52CR 52CR 52CR 52CR	10. 10.77 11.0 11.0 12.0 14.3	48.90 45.8 48.85 47.11 50.2 49.6	1.25* 1.33 1.260 1.285* 1.25* 1.25*	0.666 0.57 0.658 0.65* 0.65* 0.65*				12.10G 13.7 11.07 8.96 10.8 12.2	1.319 1.32 1.285 1.285* 1.25* 1.25*	0.987 0.39 0.461 0.53* 0.47* 0.47*	10.10 6.67 9.63 9.95 8.0* 8.0*	1.25* 1.06 1.278 1.285* 1.25* 1.25*	0.666 0.47 0.482 0.53* 0.65* 0.65*	1.3* 1.27* 1.25* 1.25* 1.25* 1.25*	782 841 882 904 983	S1 S1P1 S1P1 S1P1 S1 S1 S1	11 11 23 23	AND64 LOM72A PER68 PER68 BUC63 BUC63
52CR 52CR 52CR 52CR 52CR 52CR	15.35 16.5 18.6 18.6 18.6 39.9	51.6 51.5 49.2 59.13 48.9 41.79	1.19 1.25* 1.25* 1.1* 1.24* 1.16*	0.67 0.65* 0.65* 0.75* 0.65* 0.75*	7.42	1.37*	0.63*	7.5 9.7 10.7 8.51 9.31 1.14*	1.26 1.25* 1.25* 1.35* 1.28* 1.28*	0.69 0.47* 0.47* 0.55* 0.5* 0.63*	5.70 4.6 6.9 6.2 6.36 6.04*	1.02 1.07 1.15 0.96 1.13 1.064*	0.45 0.47* 0.47* 0.55* 0.42* 0.738*	1.27* 1.25* 1.25* 1.1* 1.25* 1.25*	1142 991 1080 1003	S1P1 S2P1 S2P1 S P S P S2	20 20 30 1	LON72A KOS67 KOS67 KOS68 KOS68 PRE70
53CR 53CR 53CR 53CR 53CR 53CR 53CR	6.9 10. 10.13 10.27 10.43 10.66	55.0 48.31 54.23 54.44 54.85 54.32	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.42 0.760 0.541 0.508 0.490 0.484	9.16 9.25 9.22 9.16	1.25* 1.25* 1.25* 1.25*	0.541 0.508 0.490 0.484	9.0G 8.38G	1.25* 1.254	0.74* 1.519	18.0 7.82	1.25* 1.25*	0.42 0.760	1.25* 1.3* 1.25* 1.25* 1.25* 1.25* 1.25*	1000	S2 S1 S2 S2 S2 S2 S2	15	PRO70A AND64 LEG66 LEG66 LEG66 LEG66
53CR 53CP 53CR 53CR 53CR 53CR 53CR	11. 11.13 11.40 11.70 12.00 16.6	48.41 50.83 50.71 53.40 51.74 52.2	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.759 0.553 0.547 0.485 0.534 0.74	8.87 9.01 9.26 8.79	1.25* 1.25* 1.25* 1.25*	0.553 0.547 0.485 0.534	8.47G 9.12	1.219	0.63	7.75 5.8	1.25*	0.759	1.3* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	1063 1164	51 52 52 52 52 52 52		AND64 LEG66 LEG66 LEG66 LEG66 MAT71
54 CR 54 CR	6.9 10.	54.1 49.28	1.25* 1.25*	0.42 0.576				13.5G 3.25G	1.25* 1.288	0.74* 2.531	10.0 11.32	1.25* 1.25*	0.42 0.576	1.25± 1.3*	1007	52 51		PRO70A AND64
MN	22.2	45.9	1,25*	0.65*				12.4	1.25*	0.47*	8.5*	1.25*	0,65*	1.25*	1060	\$ 2	35	PER63
55 M N	10.5	47.99	1.285*	0.65*				12.16	1.285*	0,53*	7.96	1.285*	0.53*	1.25*	961	P1		PER68
Fe Pe Fe Fe	14.3 17.3 17.3 17.8 17.8	49.8 48.37 48.0 48.5 48.5	1.25* 1.238 1.25* 1.25* 1.25*	0.65* 0.690 0.65* 0.65* 0.65*				14.0 12.20 11.5 10.89 11.16	1.25* 1.284 1.25* 1.25* 1.25*	0.47* 0.456 0.47* 0.47* 0.47*	7.5* 8.76 8.5* 7.17 6.41	1.25* 1.238 1.25* 1.25* 1.04	0.65* 0.690 0.65* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	982 1037 1005 1002 1013	S1 S1 S1 S2P2 S1P1	35 35	PER63 PER63 PER63 BAU66 BAU66
54 FE 54 FE 54 FE 54 FE	9.8 9.8 10.5 10.80	54.8 53.0 46.36 50.3	1.17* 1.22 1.285* 1.24	0.75* 0.62 0.65* 0.65				11.4 23.1 11.13 14.21	1.32* 1.17 1.285* 1.34	0.54 0.26 0.53* 0.34	6.6 7.7 7.12 5.22	1.01* 1.0* 1.285* 0.88	0.75* 0.66* 0.53* 0.50	1.17? 1.25* 1.25* 1.29*	908	S3P2 S2P3 P1 S1P1	5 4,26	AHM70 GRE71 PER68 LOM72A
54 PE 54 PE 54 PE	11.0 15.13 17.9	45.61 55.9 46.0	1.306 1.13 1.24	0.701 0.72 0.65*				19.37 6.9 11.27	1.370 1.25 1.29	0.293 0.71 0.47*	8.68 6.49	1.284 0.95	0.359 0.58	1.25* 1.29* 1.24	787	5 1P 1 5 1P 1 52	11	PER68 Lon72a gra65a
54 PB 54 PE 54 PE 54 PB 54 PB 54 PB	18.6 18.6 18.6 18.6 18.6 18.6	47.7 46.8 50.3 59.78 49.8 49.1	1.25* 1.25* 1.25* 1.1* 1.24* 1.22	0.702 0.729 0.65* 0.75* 0.65* 0.70				10.9G 11.7G 12.1 9.44 9.87 8.3	1.25* 1.307 t.25* 1.35* 1.28* 1.34	1.00* 1.31 0.47* 0.55* 0.5* 0.53	7.0* 7.0* 5.02 6.4 6.0 5.78	1.25* 1.25* 1.15 1.04 1.16 1.07	0.702 0.729 0.47* 0.55* 0.42* 0.46	1.25* 1.25* 1.25* 1.1* 1.25* 1.25* 1.29*	4018 1105 1009	51 51 52P1 5 P 5 P 5 P 5 P	20 30	ECC66 ECC66 KOS67 KOS68 KOS68 LOH72A
54 PE 54 FE 54 PE	19.6 19.6 19.6	49.89 50.51 48.82	1.19 1.19 1.22	0.73 0.70 0.66				8.83 7.94 8.04	1.34 1.31 1.30	0.50 0.55 0.54	4.00* 5.06 6.00*	1.06 1.075 1.13	0.22 0.40 0.45	1.20? 1.20? 1.20?		S 2P 1 S 2P 1 S 2P 2		HEN69 HEN69 HEN69
54 PB 54 PB 54 PB 54 PB 54 PB 54 PB 54 PB	30.3 30.3 30.4 30.4 30.4 30.4 30.4	44.3 45.15 52.6 53.26 51.74 50.40	1.188 1.190 1.12* 1.103 1.097 1.111	0.686 0.70 0.75* 0.776 0.809 0.790	3.0* 6.65 6.75 2.99	1.33* 1.357 1.148 1.296	0.58* 0.573 0.806 0.616	7.39 7.07 4.8 2.02 3.02 4.35	1.075 1.054 1.33* 1.357 1.392 1.397	0.849 0.841 0.58* 0.573 0.535 0.545	6.37 6.56 5.0* 6.87 6.54 6.73	1.188 1.104 1.12* 1.103 1.097 0.958	0.686 0.627 0.5 0.776 0.809 0.709	1.25* 1.25* 1.2* 1.12* 1.12* 1.12*		S P3 S P2 S2P2 S2P2 S2P2 S2P2 S1P1		KAR70 KAR70 BAU67 GRE72 GRE72 GRE72

TABLE II. Optical-Model Parameters

NUCLIDE	ENERGY (NEV)	REAL V	POTENT R	IAL A	VOL.IN: W	NG. POT RW	ENTIAL AV	SURP.IM WD	NG. POT	ENTIAL AD	SPIN-0 VSO	DRBIT P RSO	OT ENTI AL A SO	RC	SR	FIT	NOTE	REF.
54 PE 54 PE 54 PE 54 PE 54 FE 54 FE	39.7 40. 40. 40. 40. 40.	44.8 44.8 42.5 41.43 45.79 47.61	1.169 1.169 1.18* 1.208 1.16* 1.104	0.755 0.755 0.7* 0.761 0.75* 0.800	8.1 8.1 7.35 6.40 6.89 5.06	1.403 1.403 1.40* 1.279 1.37* 1.587	0.440 0.441 0.7* 0.609 0.63* 0.583	2.47 1.14 0.12	1.279 1.37* 1.587	0.609 0.63* 0.583	6.51 6.51 7.5* 5.30 6.04* 4.41	1.169 1.169 1.18* 1.188 1.064* 1.045	0.755 0.755 0.7* 0.679 0.738* 0.659	1.25* 1.2* 1.2* 1.25* 1.25* 1.25* 1.25*	938 992 990 1015 998	S S1 S2P2 S2P2 S2P2 S2P2	15 15 12	ST064 PRI65 PRI65 PRI67 PRI67 PRI67A
54 PE 54 PE	49.35 49.35	40.7 42.2	1.20 1.17*	0.63 0.75*	0.8 0.3	1.26 1.32*	0.55 0.63*	7.5 6.2	1.26 1.32*	0.55 0.63*	8.2 7.9	1.17 1.01*	0.62 0.75*	1.25* 1.20*	905 960	s 53	1 1	NAN71A NAN71A
56 PE 56 PE 56 PE 56 FE	6.9 6.9 9.6 10.93	57.6 57.6 51.14 49.64	1.25* 1.25* 1.25* 1.25*	0.44 0.44 0.65 0.65*				12.5G 10.5G 8.2* 8.16	1.25* 1.25* 1.25* 1.25*	0.74* 0.74* 0.65 0.47*	17.0 17.0 6.0* 8.0*	1.25* 1.25* 1.25* 1.25*	0.44 0.44 0.65* 0.65*	1.25* 1.25* 1.25* 1.25*		S P S2 S S2	23	PRO70 PRO70A BER68 BER64
56 FE 56 FE 56 FE 56 FE 56 FE 56 FE	11.0 11.0 11.66 14.1 17.3	45.34 47.80 49.58 48.2 47.6	1.322 1.285* 1.25* 1.25* 1.25* 1.25*	0.652 0.65* 0.65* 0.65* 0.65*				12.87 11.27 9.08 11.6 10.0	1.297 1.285* 1.25* 1.25* 1.25* 1.25*	0.484 0.53* 0.47* 0.47* 0.47*	7.79 7.51 8.0* 8.0* 8.0*	1.323 1.285* 1.25* 1.25* 1.25*	0.517 0.53* 0.65* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25*	944 934 980 1007	5 1P 1 5 1P 1 5 1 5 1 5 1 5 1	11 23 23 23	PER68 PER68 BEN64 BUC63 BUC63
56 PE 56 PE 56 PE 56 PE 56 PE 56 PE	18.6 18.6 18.6 19.1 19.1 19.6	49.6 59.99 49.9 48.3 47.4 50.48	1.25* 1.1* 1.24* 1.25* 1.25* 1.25*	0.65* 0.75* 0.65* 0.710 0.778 0.70				11.8 9.14 11.26 11.5G 11.9G 8.83	1.25* 1.35* 1.28* 1.25* 1.298 1.31	0.47* 0.55* 0.5* 1.00* 1.30 0.55	6.18 6.66 6.3 7.0* 7.0* 5.12	1.13 0.96 1.12 1.25* 1.25* 1.075	0.47* 0.55* 0.42* 0.710 0.778 0.40	1.25* 1.1* 1.25* 1.25* 1.25* 1.25*	1027 1123 1056	5 2P 1 5 2P 1 5 P 5 1 5 1 5 2P 2	20 30	KOS67 KOS68 KOS68 ECC66 ECC66 ECC66 HEN69
56 PE 56 PE 56 FE 56 PE 56 PE	22.2 30. 30.3 30.3 30.3	45. 49.10 46.69 42.95 46.4	1.25* 1.16* 1.189 1.25* 1.20*	0.65* 0.75* 0.686 0.65* 0.7*	5.70 2.16 2.7	1.37* 1.189 1.25*	0.63* 0.686 0.7*	13.6 1.42 6.49 10.35 5.2	1.25* 1.37* 1.189 1.25* 1.25*	1.00* 0.63* 0.648 0.47* 0.7*	11. 6.04* 13.16 12.* 5.8	1.25* 1.064* 1.189 1.25* 1.20*	0.65* 0.738* 0.686 0.65* 0.7*	1.25* 1.25* 1.25* 1.25* 1.20*	1016 1147 1072 1015	51 5 52 52 51		PIC65 PRI67 BAR65 BAR65 GRE66
56 PB 56 PE 56 PE 56 PE 56 PE 56 PB	30.3 30.3 30.3 30.3 30.3 30.3 30.3	52,5 52.4 47.20 49.06 45.85 52.40	1.112 1.12* 1.199 1.142 1.183 1.122	0.732 0.75* 0.661 0.742 0.706 0.733	3.71 3.0* 3.13 0.82 2.38	1.341 1.33* 1.375 1.263 1.289	0.555 0.58* 0.593 0.713 0.615	4.90 5.40 7.84 4.49 6.73 5.93	1.341 1.33* 1.164 1.375 1.263 1.289	0.555 0.58* 0.688 0.593 0.713 0.615	7.42 6.40* 7.46 6.60 6.27 6.27*	1.024 1.12* 1.031 0.957 1.008 1.008*	1.048 0.75* 0.682 0.672 0.640 0.640*	1.2* 1.2* 1.25* 1.11* 1.11* 1.11*	1091 1109 1125 1175 1099	51 51 5 P2 5 1P1 9 5	2 2 2	SAT67 SAT67 KAR70 HNI71 HNI71 HNI71
56 PE 56 PE 56 PE 56 PE 56 PE 56 PE	39.7 40. 40. 49.35 49.35 156.	43,5 44.3 42.9 41.3 41.7 12.01	1.173 1.180 1.18* 1.20 1.17* 1.38	0.736 0.703 0.7* 0.64 0.75* 0.55	6.5 7.44 0.9 0.9 17.2	1.451 1.40* 1.25 1.32* 1.13	0.758 0.7* 0.56 0.63* 0.73	7.6 8.2 6.1	1.028 1.25 1.32*	0.805 0.56 0.63*	6.37 7.43 7.5* 7.5 7.2 3.	1. 173 1. 180 1. 18* 1. 15 1. 01* 1. 05	0.736 0.703 0.7* 0.61 0.75* 0.60	1.2* 1.2* 1.2* 1.25* 1.20* 1.28	1015 1024 965 1010 583	S S S S S S S S 1	15 15 1 1 12,22	ST064 PRI65 PRI65 MAN71A MAN71A COH74
57 FE 57 FE	10.5 17.3	47.80 46.6	1.285* 1.24	0.65* 0.64				12.98 14.45	1.285* 1.36	0.53* 0.48	9.02 6.4	1.285* 1.16	0.53* 0.39	1.25* 1.25*	962 1056	P1 SP		PER68 May71
58 FE 58 FE 58 FE 58 FE	6.9 10.93 11.0 11.66	56.6 51.46 48.16 50.94	1.25* 1.25* 1.285* 1.25*	0.50 0.65* 0.65* 0.65*				14.0G 10.29 11.51 10.60	1.25* 1.25* 1.285* 1.285*	0.74* 0.47* 0.53* 0.47*	11.5 8.0* 5.53 8.0*	1.25* 1.25* 1.285* 1.285*	0.50 0.65* 0.53* 0.65*	1.25* 1.25* 1.25* 1.25*	962	52 52 51P1 51	23 11 23	PRO 70A BEN64 PER68 BEN64
C0 C0 C0 C0	17.3 17.3 17.8 17.8 22.2	47.64 48.4 48.4 48.2 46.0	1.245 1.25* 1.25* 1.25* 1.25*	0.739 0.65* 0.65* 0.65* 0.65*				13.27 11.8 10.28 10.53 11.6	1.282 1.25* 1.25* 1.25* 1.25*	0.433 0.47* 0.47* 0.47* 0.47*	10.32 8.5* 8.00 6.84 8.5*	1.245 1.25* 1.25* 1.09 1.25*	0.739 0.65* 0.65* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25*	4079 1020 995 1009 1064	51 51 52P2 51P1 52	35 35	PER63 PER63 BAU66 BAU66 PER63
59 C0 59 C0 59 C0 59 C0 59 C0	5.45 6.9 6.9 9.8 9.8 9.8	58. 53.1 53.1 49.0 55.79	1.23* 1.25* 1.25* 1.27 1.20*	0.35 0.72 0.74 0.70 0.65*				8.5G 15.0G 15.0G 11.8 14.09	1.23* 1.25* 1.25* 1.35 1.25*	1.2* 0.74* 0.74* 0.47 0.47*	16.5 17.5 5.3 6.3	1.25* 1.25* 1.0* 1.20*	0.72 0.74 0.66* 0.65*	1.23? 1.25* 1.25* 1.25* 1.25* 1.20*		5 5 P 5 1 5 1P 1 P 1	¥65 4	VANG1 PRO70 PRO70A GRE71 VBL74
59C0 59C0 59C0 59C0 59C0	11.0 11.0 14.4 17.	45.41 48.23 49.00 48.9	1.313 1.285* 1.25* 1.25*	0.682 0.65* 0.65* 0.65*				11.72 11.33 13.64 13.9G	1.354 1.285* 1.25* 1.25*	0.500 0.53* 0.47* 1.00*	6.43 6.84 7.5* 8.8	1.307 1.285* 1.25* 1.25*	0.587 0.53* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25*	995 944 995 982	S 12 1 S 12 1 S 1 S 1 S 2	11 11	PER68 PER68 ERR67 PIC65
59CD 59CO 59CO 59CO 59CO	30. 30.3 30.3 30.3 30.3 30.3	47.13 48.85 44.55 47.8 47.5	1.16* 1.170 1.25* 1.20* 1.20*	0.75* 0.694 0.65* 0.687 0.7*	1.78 1.87 2.38 2.8	1.37* 1.170 1.238 1.25*	0.63* 0.694 0.682 0.7*	4.97 6.38 10.80 5.88 5.7	1.37* 1.170 1.25* 1.238 1.25*	0.63* 0.696 0.47* 0.682 0.7*	6.04* 13.97 12.* 5.85 5.8	1.064* 1.170 1.25* 1.20* 1.20*	0.738* 0.694 0.65* 0.687 0.7*	1.25* 1.25* 1.25* 1.20* 1.20*	1150 1104 1053 1156	S2P1 S2 S3 S1P1 S1P1	11 32 32 11 11	FRI67 BAR65 BAR65 GRE66 GRE66
59C0 59C0 59C0 59C0 59C0	30.3 30.3 30.3 30.3 30.3 30.3	65.3 53.3 49.38 47.53 53.78	0.999 1.12* 1.133 1.147 1.120	0.886 0.75* 0.759 0.742 0.726	4.44 3.0* 2.88 1.76 1.74	1.395 1.33* 1.386 1.247 1.245	0.565 0.58* 0.651 0.862 0.670	4.10 5.45 4.18 5.66 6.32	1.395 1.33* 1.386 1.247 1.245	0.565 0.58* 0.651 0.862 0.670	6.86 6.35 6.54 5.78 5.78*	1.129 1.12* 0.970 1.005 1.005*	0.517 0.75* 0.636 0.548 0.548*	1.2* 1.2* 1.11* 1.11* 1.11*	1186 1140 1193 1320 1134	S 2P 1 S 1P 1 S 2P 1 P S	11 11 2 2 2	SAT67 SAT67 HN171 HN171 HN171 HN171
59C0 59C0	40. 40.	45.65 45.71	1.151 1.16*	0.759 0.75*	6.06 5.68	1.397 1.37*	0.718 0.63*	1.12 2.08	1.397 1.37*	0.718 0.63*	6.01 6.04*	1.010 1.064*	0.846 0.738*	1.25* 1.25*	11 1 1 1088	s 1 p 1 s 1 p 1		PR167 PR167

TABLE II. Optical-Model Parameters

NUCLIDE	ENERGY (NBV)	REAL V	POTENT R	IAL A	VOL.IN	AG. POT RW	BNTIAL AW	SURF.IN WD	AG. POT	ENTIAL AD	SPIN-0 VSO	RBIT P	OTENTIAL A SO	RC	SR	FIT	NOTE	REP.
NI NI NI NI NI	9.4 9.9 9.9 12.0 12.0 14.3	52.3 47.7 59. 48.4 50.7 48.5	1.25* 1.325 1.20* 1.25* 1.25* 1.25* 1.25*	0.65* 0.580 0.45 0.65* 0.65* 0.65*	6.9	1.20*	0.45	15.8 16.2G 9.1 9.4 9.7	1.25* 1.325 1.25* 1.25* 1.25*	0.47* 0.798 0.47* 0.47* 0.47*	7.5* 8.0* 7.5* 8.0*	1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65*	1.25* 1.3? 1.20* 1.25* 1.25* 1.25*	769 882 838 954	S3 S S2 S2 S1	35 ₩65 ₩65 23 35 23	PER63 WIL63 GLA 57A BUC63 PER63 BUC63
NI NI NI NI NI	14.3 15.0 16.8 17.3 17.3 17.3	49.4 48.2 48.4 47.5 47.59 47.7	1.25* 1.25* 1.25* 1.25* 1.251 1.251	0.65* 0.65* 0.65* 0.65* 0.677 0.65*				12.2 10.3 9.7 9.1 12.50 10.4	1.25* 1.25* 1.25* 1.25* 1.245 1.25*	0.47* 0.47* 0.47* 0.47* 0.414 0.414	7.5* 8.0* 8.0* 8.0* 9.77 8.5*	1.25* 1.25* 1.25* 1.25* 1.25* 1.251 1.25*	0.65* 0.65* 0.65* 0.65* 0.677 0.65*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	956 975 989 982 974 979	51 51 51 51 51 51	35 23 23 23 35	PER63 BUC63 BUC63 BUC63 PER63 PER63 PER63
58 NI 58 NI 58 NI 58 NI 58 NI	5.45 6.9 9.0 9.8	57. 63.1 54.4 41.3	1.23* 1.25* 1.25* 1.42	0.35 0.14 0.65* 0.59				3.5G 8.0G 8.7 31.2	1.23* 1.25* 1.25* 1.31	1.2* 0.74* 0.47* 0.21	14.0 7.5* 6.7	1.25* 1.25* 1.0*	0.14 0.65* 0.66*	1.23? 1.25* 1.25* 1.25*	672	S S 1 S 3P 2	₩65 4,26	VANGI PRO70A MAR66 GRE71
58NI 58NI 58NI 58NI 58NI	10. 10.5 11. 11.66 12.	52.2 47.68 49.8 48.57 49.6	1.25* 1.285* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65* 0.65*				6.9 11.39 7.7 6.65 8.7	1.25* 1.285* 1.25* 1.25* 1.25* 1.25*	0.47* 0.53* 0.47* 0.47* 0.47*	7.5* 7.20 7.5* 8.0* 7.5*	1.25* 1.285* 1.25* 1.25* 1.25*	0.65* 0.53* 0.65* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	676 904 739 810	S P1 S S2 S	23	MAR66 PER68 MAR66 BEN64 MAR66
58 NI 58 NI 58 NI 58 NI 58 NI	15.0 16.0 17.7 17.8 17.8	61.80 50.36 46.94 48.1 48.1	1.1* 1.220 1.25* 1.25* 1.25*	0.7* 0.600 0.781 0.65* 0.65*				7.19 14.07 10.90 9.59 9.97	1.25* 1.227 1.304 1.25* 1.25*	0.7* 0.401 0.432 0.47* 0.47*	5.8 6.90* 4.39 7.20 6.44	1.00* 1.01* 1.202 1.25* 1.13	0.7* 0.75* 0.530 0.65* 0.65*	1.1* 1.11* 1.25* 1.25* 1.25*	873 1078 962 975	S2 S2 S2P2 S2P2 S2P2 S2P2	2,4	KOL69 MAK72 JAR67 BAU66 BAU66
58 NI 58 NI 58 NI 58 NI 58 NI 58 NI	18.6 18.6 18.6 18.6 18.6	47.5 46.9 48.6 58.96 48.6	1.25* 1.25* 1.25* 1.1* 1.24*	0.808 0.823 0.65* 0.75* 0.65*				13.0G 12.5G 10.0 8.3 7.82	1.25* 1.276 1.25* 1.35* 1.28*	1.00* 1.00 0.47* 0.55* 0.5*	7.0* 7.0* 7.05 6.3 6.75	1.25* 1.25* 1.16 0.96 1.16	0.808 0.823 0.47* 0.55* 0.42*	1.25* 1.25* 1.25* 1.1* 1.25*	974 1088 948	S2 S1 S2P1 S P S P S P	20 30	ECC66 ECC66 KOS67 KOS68 KOS68
58NI 58NI 58NI 58NI 58NI 58NI	20.0 21. 21. 21. 24.5 26.3	59.88 52.2 49.8 47.9 51.8 52.44	1.1* 1.15 1.19* 1.25* 1.17 1.12*	0.7* 0.770 0.70* 0.65* 0.71 0.75*	0.63	1,33*	0.58*	6.91 8.87 7.08 9.51 9.13 6.51	1.25* 1.33 1.25* 1.25* 1.26 1.33*	0.7* 0.517 0.64* 0.47* 0.51 0.58*	5.3 4.93 5.18 4.97 5.0 5.07	1.00* 1.01 1.05* 1.25* 1.12* 0.97	0.7* 0.535 0.55* 0.65* 0.47* 0.75*	1.1* 1.25* 1.25* 1.25* 1.25* 1.25* 1.20*	1093 1084 995 1018	S2 S1P1 S2P2 S2P2 S P S2P2	20	KOL69 BAR69 BAR69 BAB69 MAY71 WAT67
58 NI 58 NI 58 NI 58 NI 58 NI	30. 30.3 30.3 30.3 30.3 30.3	46.03 46.43 42.16 48.1 47.0	1.16* 1.180 1.25* 1.20* 1.20*	0.75* 0.692 0.65* 0.712 0.7*	2.65 2.42 1.8 3.4	1.37* 1.180 1.235 1.25*	0.63* 0.692 0.702 0.7*	3.75 5.50 9.41 5.7 4.4	1.37* 1.180 1.25* 1.235 1.25*	0.63* 0.684 0.47* 0.702 0.7*	6.04* 13.53 12.* 5.8 4.4	1.064* 1.180 1.25* 1.20* 1.20*	0.738* 0.692 0.65* 0.712 0.7*	1.25* 1.25* 1.25* 1.20* 1.20*	1096 1059 988 1117	S2P2 S2 S3 S1P1 S1P1	11 32 32 11 11	PRI67 BAR65 BAR65 GRE66 GRE66
58NI 58NI 58NI 58NI 58NI	30.3 30.3 30.3 30.3 30.3 30.3	61.5 52.4 48.62 45.70 53.36	1.036 1.12* 1.148 1.180 1.105	0.855 0.75* 0.748 0.715 0.770	4.43 3.0* 3.27 0.75 3.37	1.355 1.33* 1.370 1.277 1.336	0.508 0.58* 0.550 0.717 0.551	4.42 4.93 4.31 6.32 4.76	1.355 1.33* 1.370 1.277 1.336	0.508 0.58* 0.550 0.717 0.551	5.18 6.01 6.16 5.78 5.78*	1.066 1.12* 0.995 1.012 1.012*	0.451 0.75* 0.612 0.597 0.597*	1.2* 1.2* 1.11* 1.11* 1.11*	1093 1093 1090 1172 1079	52P1 52P2 52P2 52P2 51	11 11 2 2 2	SAT67 SAT67 GRE70 GRE70 GRE70 GRE70
58 NI 58 NI 58 NI 58 NI 58 NI 58 NI	30.3 30.3 30.3 30.3 30.3 30.3	47.1 46.6 54.29 53.85 50.24	1.178 1.186 1.105* 1.099 1.134	0.713 0.707 0.770* 0.772 0.756	3.41 3.99 3.50	1.336* 1.382 1.376	0.551* 0.516 0.561	7.33 7.36 4.71 4.04 3.97	1.141 1.205 1.336* 1.382 1.376	0.765 0.662 0.551* 0.516 0.561	6.61 6.66 5.78* 6.19 6.09	1.178 1.042 1.012* 1.099 0.994	0.713 0.628 0.597* 0.772 0.624	1.25* 1.25* 1.11* 1.20* 1.20*		S P3 S3P2 S1 S1P2 S2P1	11 21	KAR70 KAR70 PUT71 VOS72 VOS72
58 NI 58 NI	39.6 39.7	43.43 39.6	1.208 1.251	0.701 0.760	3.42 9.57	1.241 1.387	0.504 0.254	6.20	1.241	0.504	6.50 4.5	1.094 1.251	0.663 0.760	1.27 1.2*		52P2 51		LIE70 STO64
58NI 58NI 58NI 58NI 58NI 58NI	40. 40. 40. 40. 40.	44.5 42.7 49.49 45.05 51.11 42.92	1.165 1.18* 1.109 1.16* 1.080 1.20*	0.747 0.7* 0.782 0.75* 0.798 0.70*	7.27 6.50 6.63 5.71 5.47	1.40* 1.477 1.37* 1.531 1.25*	0.7* 0.495 0.63* 0.430 0.67*	10.8 0.52 1.22 0.74 3.50	1.027 1.477 1.37* 1.531 1.25*	0.604 0.495 0.63* 0.430 0.67*	10.3 7.5* 5.53 6.04* 5.19 5.85	1.165 1.18* 1.071 1.064* 1.043 1.02	0.747 0.7* 0.641 0.738* 0.614 0.7*	1.2* 1.2* 1.25* 1.25* 1.25* 1.2* 1.27*	957 1028 1023 1046 1019	S1 S2P2 S2P2 S2P2 S2P2 S2P3	15 15 12	PRI65 PRI65 PRI67 PRI67 PRI67A LIN70
58NI 58NI 58NI 58NI	61.4 61.4 160. 160.	41.11 40.29 11.29 14.2	1.160 1.16* 1.127 1.20	0.728 0.75* 0.648 0.52	6.66 6.83 9.86 10.*	1.33 1.37* 1.49 1.45	0.504 0.63* 0.316 0.50*	2.32 0.83	1.33 1.37*	0.504 0.63*	5.53* 6.04* 3.40 2.45*	1.071* 1.064* 1.27 1.20	0.641* 0.738* 0.648 0.52	1.25* 1.25* 1.25* 1.25*	891 908 662 766	52 52 51 52	33,19 12,19	FUL69 FUL69 R0065 R0065
60 NI 60 NI 60 NI 60 NI 60 NI 60 NI	5.45 6.80 6.80 6.9 8.00 8.00	57. 62.56 63.67 59.1 55.65 55.65	1.23* 1.25* 1.25* 1.25* 1.25* 1.25*	0.36 0.373* 0.373* 0.42 0.373* 0.373*				8.5G 2.18 2.95 7.0G 12.91 7.89	1.23* 1.328* 1.328* 1.25* 1.328* 1.328*	1.2* 0.47* 0.47* 0.74* 0.47* 0.47*	8.99 17.5 5.92	1.25* 1.25* 1.25*	0.373* 0.42 0.373*	1.23? 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	121 282 598 546	S S3 S2 S2 S3 S2	₩65	VANG 1 BLNG7 BLNG7 PRO70A ELNG7 BLNG7
60 NI 60 NI 60 NI 60 NI	9.0 9.8 10. 10.0	52.1 55.9 51.2 51.32	1.25* 1.17* 1.25* 1.25*	0.65* 0.75* 0.65* 0.65*				13.7 10.2 12.2 14.85	1.25* 1.32* 1.25* 1.263*	0.47* 0.56 0.47* 0.47*	7.5* 7.7 7.5*	1.25* 1.01* 1.25*	0.65* 0.75* 0.65*	1.25* 1.17? 1.25* 1.25*	738 790 815	S S 2P 1 S S 2	5	HAR66 AHM70 MAR66 ELN67
60 NI 60 NI 60 NI 60 NI 60 NI 60 NI	11. 11.0 11.0 11.0 12. 12.0	50.8 50.59 47.38 48.52 50.4 50.19	1.25* 1.25* 1.290 1.285* 1.25* 1.25*	0.65* 0.65* 0.707 0.65* 0.65* 0.65*				12.0 14.94 13.09 10.87 12.2 15.04	1.25* 1.263* 1.341 1.285* 1.25* 1.263*	0.47* 0.47* 0.455 0.53* 0.47* 0.47*	7.5* 7.67 7.85 7.5*	1.25* 1.313 1.285* 1.25*	0.65* 0.513 0.53* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	843 871 950 923 891 918	S S2 S1P1 S1P1 S S2	11 11	MAR66 ELN67 PER68 PER68 MAR66 ELN67

TABLE II. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	IAL A	VOL.IM	AG. POT RW	ENTIAL AW	SURF.IN WD	NG. POT RD	ENTIAL AD	SPIN-0 VSO	RBIT P RSO	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
60NI 60NI 60NI 60NI 60NI 60NI	14.0 16.5 17.8 17.8 17.9	60.81 48.56 49.15 47.3 47.3 46.45	1.1* 1.264 1.25* 1.25* 1.25* 1.25*	0.7* 0.590 0.65* 0.65* 0.65* 0.846				7.72 12.11 11.3 9.82 9.85 11.90	1.25* 1.201 1.25* 1.25* 1.25* 1.25* 1.279	0.7* 0.456 0.47* 0.47* 0.47* 0.45	3.2 6.90* 5.4 7.01 6.07 5.48	1.00* 1.01* 1.12 1.25* 1.06 1.253	0.7* 0.75* 0.47* 0.65* 0.65* 0.502	1.1* 1.25* 1.25* 1.25* 1.25* 1.25*	939 1424 983 993 1185	52 52 52P1 5 P2 5 P2 52P2	2,4 20	KOL69 MAK72 KOS67 BAU66 BAU66 JAR67
60NI 60NI 60NI 60NI 60NI	18.6 18.6 18.6 30. 30.	47.1 47.7 51.0 48.22 54.09	1.25* 1.25* 1.25* 1.16* 1.099	0.750 0.856 0.65* 0.75* 0.772	3.21 3.24	1.37* 1.295	0.63* 0.601	14.1G 16.7G 11.0 4.11 5.37	1.25* 1.355 1.25* 1.37* 1.295	1.00* 0.92 0.47* 0.63* 0.601	7.0* 7.0* 6.15 6.04* 5.74	1.25* 1.25* 1.09 1.064* 1.022	0.750 0.856 0.47* 0.738* 0.688	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	1023 1180	S2 S2 S1 S2P1 S1	20 11	ECC66 ECC66 KOS67 FRI67 ASC70
60 NI 60 NI 60 NI 60 NI 60 NI	30.3 30.3 30.3 30.3 30.3 30.3 30.3	48.46 43.96 48.2 47.6 59.2 53.1	1.175 1.25* 1.20* 1.20* 1.062 1.12*	0.690 0.65* 0.697 0.7* 0.842 0.75*	1.83 2.6 2.8 3.92 3.0*	1.175 1.237 1.25* 1.322 1.33*	0.690 0.689 0.7* 0.574 0.58*	6.48 10.76 6.1 5.5 5.20 5.48	1.175 1.25* 1.237 1.25* 1.322 1.33*	0.700 0.47* 0.689 0.7* 0.574 0.58*	13.91 12.* 5.6 5.4 5.68 6.15	1. 175 1. 25* 1. 20* 1. 20* 1. 103 1. 12*	0.690 0.65* 0.697 0.7* 0.468 0.75*	1.25* 1.25* 1.20* 1.20* 1.2* 1.2*	1119 1053 1159 1161 1144	52 53 51P1 51P1 52P1 51P2	32 32 11 11 11 11	BAR65 BAR65 GRE66 GRE66 SAT67 SAT67
60NI 60NI 60NI 60NI 60NI	30.8 30.8 31. 31. 31.	59.5 52.6 59.51 50.06 50.24	1.1 1.2 1.10 1.20* 1.17*	0.82 0.78 0.800 0.70* 0.75*	2. 2.27 4.12*	1.2 1.20* 1.32*	0.69 0.48* 0.835	10.5G 15.4G 9.01G 17.89G 5.57G	1.1 1.2 1.08 1.20* 1.32*	1.5 1.0 1.81 0.70* 1.21	4.6 4.0 3.93 7.37 6.2*	1.1 1.2 1.10 1.20* 1.01*	0.82 0.78 0.800 0.70* 0.75*	1.1 1.2 1.20* 1.20* 1.20*	1001	S S S 2 S 3 S	₩65 ₩65	DEV62 DEV62 SAN70 SAN70 SAN70
60NI 60NI	39.6 39.7	44.34 44.3	1.199 1.165	0.706 0.754	3.20 7.1	1.245 1.459	0.521 0.594	6.36	1.245	0.521	6.17 6.52	1.077 1.165	0.668 0.754	1.2? 1.2*		52P2 51	7	LIE70 STO64
60 NI 60 NI 60 NI 60 NI 60 NI 60 NI	40. 40. 40. 40. 40.	44.7 42.7 48.28 45.74 51.59 43.05	1.184 1.18* 1.120 1.16* 1.081 1.20*	0.707 0.7* 0.769 0.75* 0.815 0.70*	7.87 5.41 5.47 4.70 2.84	1.40* 1.470 1.37* 1.410 1.25*	0.7* 0.597 0.63* 0.525 0.70*	9.9 1.58 2.5 3.55 5.15	1.056 1.470 1.37* 1.410 1.25*	0.653 0.597 0.63* 0.525 0.70*	7.54 7.5* 7.03 6.04* 7.03 6.72	1.184 1.18* 0.979 1.064* 0.975 0.99	0.707 0.7* 0.856 0.738* 0.789 0.74	1.2* 1.25* 1.25* 1.25* 1.2* 1.2*	1021 1085 1126 1118 118	S1 S2P2 S2P2 S1P1 S2P3	15 15 12	PRI65 PRI65 PRI67 PRI67 PRI67A LIN70
61NI 61NI	6.9 16.6	55.1 51.4	1.25* 1.21	0.54 0.73				11.5G 11.1	1.25* 1.32	0.74* 0.49	12.0 6.2	1.25* 1.15	0.54 0.47*	1.25* 1.25*	1094	S2 S P		PRO70A MAY71
62NI 62NI 62NI 62NI	5.45 6.9 8.02 8.02	60.5 55.5 55.2 55.2	1.23* 1.25* 1.25* 1.25*	0.36 0.60 0.65* 0.65*				7.0G 10.5G 10.1 10.8	1.23* 1.25* 1.25* 1.25*	1.2* 0.74* 0.47* 0.47*	10.0 7.5* 7.5*	1.25* 1.25* 1.25*	0.60 0.65* 0.65*	1.237 1.25* 1.25* 1.25*		5 53 51 51	W65 5	VANG1 PRO70A DALG9 DALG9
62NI 62NI 62NI 62NI 62NI 62NI	11.0 11.0 12. 12. 16.0 16.5	47.08 48.87 51.5 52.3 50.92 49.4	1.291 1.285* 1.25* 1.25* 1.25* 1.214 1.25*	0.711 0.65* 0.65* 0.65* 0.751 0.65*				11.32 11.15 12.5 14.6 13.08 11.9	1.356 1.285* 1.25* 1.25* 1.323 1.25*	0.511 0.53* 0.47* 0.47* 0.457 0.457	5.79 5.62 7.5* 5.1 6.90* 6.2	1.234 1.285* 1.25* 1.25* 1.01* 1.12	0.565 0.53* 0.65* 0.47* 0.75* 0.47*	1.25* 1.25* 1.25* 1.25* 1.11* 1.25*	1023 950 922 1115 1401	S 1 P 1 S 1 P 1 S S 2 S 2 S 2 P 1	11 11 2,4 20	PER68 PER68 NAR66 BEU69 NAK72 KOS67
62 NI 62 NI 62 NI 62 NI 62 NI	18.6 18.6 18.6 18.6 18.6	49.6 48.9 50.8 61.69 51.2	1.25* 1.25* 1.25* 1.1* 1.24*	0.748 0.782 0.65* 0.75* 0.65*				13.4G 14.7G 11.8 8.57 9.83	1.25* 1.321 1.25* 1.35* 1.28*	1.00* 0.95 0.47* 0.55* 0.5*	7.0* 7.0* 6.12 7.25 5.7	1.25* 1.25* 1.15 0.94 1.16	0.748 0.782 0.47* 0.55* 0.42*	1.25* 1.25* 1.25* 1.1* 1.25*	1053 1137 1047	S2 S2 S2P1 S2P2 S P	20 30	BCC66 BCC66 KOS67 KOS68 KOS68
62NI 62NI	39.6 156.	44.32 9.73	1.186 1.44	0.703 0.52	3.51 13.7	1.294 1.24	0.633 0.57	4.65	1.294	0.633	6.35 3.	1.037 1.05	0.707 0.60	1.2?	699	52P2 51	12,22	LIE70 Com74
64 NI 64 NI 64 NI 64 NI 64 NI	5.45 6.9 9.60 9.8 10.5	58.5 51.6 51.84 54.2 65.15	1.23* 1.25* 1.25* 1.20 1.1*	0.40 0.78 0.65* 0.76 0.7*				5.5G 13.5G 10.80 10.6 7.52	1.23* 1.25* 1.25* 1.35 1.25*	1.2* 0.74* 0.47* 0.52 0.7*	19.0 8.0* 5.8 6.0	1.25* 1.25* 1.0* 1.00*	0.78 0.65* 0.66* 0.7*	1.23? 1.25* 1.25* 1.25* 1.25*		S S1 S1 S1P1 S1	W65 23 4	VANG1 PRO70A BEN64 GRE71 KOL69
64 NI 64 NI 64 NI 64 NI 64 NI 64 NI	11.0 11.0 11.7 12. 12. 14.0	50.12 49.09 50.71 50.9 52.2 61.84	1.271 1.285* 1.25* 1.25* 1.25* 1.25*	0.663 0.65* 0.65* 0.65* 0.65* 0.7*				12.14 11.39 11.43 13.3 14.0 8.80	1.298 1.285* 1.25* 1.25* 1.25* 1.25*	0.50* 0.53* 0.47* 0.47* 0.47* 0.7*	6.31 6.11 8.0* 7.5* 8.0 4.9	1.285 1.285* 1.25* 1.25* 1.25* 1.25* 1.00*	0.50* 0.53* 0.65* 0.65* 0.47* 0.7*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.1*	966 978 946	S1P1 S1P1 S1 S2 S2 S2	11 11 23	PEB68 PER68 BEN64 MAR66 BEU69 KOL69
64 NI 64 NI 64 NI 64 NI 64 NI 64 NI	16.0 18.6 18.6 22.2 39.6	52.46 50.4 60.57 51.34 47.1 47.92	1.199 1.25* 1.1* 1.24* 1.25* 1.156	0.743 0.65* 0.75* 0.65* 0.65* 0.705	3.82	1.292	0.668	11.53 12.1 10.39 12.88 12.2 4.75	1.305 1.25* 1.35* 1.28* 1.25* 1.292	0.513 0.47* 0.55* 0.5* 0.47* 0.668	6.90* 5.65 7.5 6.95 8.5* 7.88	1.01* 1.10 1.03 1.19 1.25* 0.940	0.75* 0.47* 0.55* 0.42* 0.65* 0.853	1.11* 1.25* 1.1* 1.25* 1.25* 1.25*	1149 1081 1190 1125 1139	S1 S2P1 S P S P S2 S2P2	2,4 20 30 35	MAK72 KOS67 KOS68 KOS68 PER63 LIE70
C0 C0 C0 C0	7.34 7.5 7.5 9.4 9.4	51. 50. 55. 52.60 53.5	1.3* 1.27 1.25 1.209 1.25*	0.41 0.55 0.55 0.794 0.65*	4.	1.25*	2.0	5.3G 6.5G 11.49 14.3	1.3* 1.48 1.431 1.25*	1.5 1.36 0.457 0.47*	4. 9. -4.6 6.70 7.5*	1.3* 1.27 1.25 1.209 1.25*	0.41 0.55 0.55 0.794 0.65*	1.3* 1.25? 1.25* 1.25* 1.25*	919 785	S S S P S 1P 1 S 2	#65 #65 4,#65 35	OLK63 HOD62 SHO61 PER63 PER63
Са Са Са Са	9.75 9.75 10.2 12.29 12.29	53. 54.9 48. 48. 56.	1.25 1.26 1.3* 1.3* 1.2*	0.60 0.518 0.62 0.63 0.63	4.5 8.0	1.6 1.26	0.60 0.518	8.3G 15.0G 9.4G	1.3* 1.3* 1.2*	1.5 1.0 1.5	8. 3.5 2. 1. 2.	1.25 1.26 1.3* 1.3* 1.2*	0.60 0.518 0.62 0.63 0.62	1.25? 1.26 1.3* 1.3* 1.2*		S S P S P S S	W65 12,W5 W65 W65 W65	HOD62 NOD60 OLK63 OLK63 OLK63
C0 C0 C0 C0	17.3 17.3 17.3 17.3 17.3 17.3 17.3	44.44 48.33 46. 53. 45.67 48.7	1.33* 1.25* 1.3* 1.2* 1.301 1.25*	0.5* 0.65* 0.67 0.65 0.668 0.65*	10.32	1.33*	0.5*	18.12G 20.0G 9.5G 17.66 10.9	1.25* 1.3* 1.2* 1.305 1.25*	0.98* 0.75 1.25 0.343 0.47*	7. 8. 8.02 8.5*	1.3* 1.2* 1.301 1.25*	0.67 0.65 0.668 0.65*	1.33* 1.25* 1.3* 1.2* 1.25* 1.25*	1035 1008	S S P S P S 1 S 1	#65 #65 #65 #65 35	HOD63 HOD63 OLK63 OLK63 PER63 PER63

TABLE II. Optical-Model Parameters

NUCLIDE	EN ER GI (MEV)	(REAL V	POTENI R	TAL A	VOL.IN W	NAG. PO' RW	TENTIAL AW	SURF.IM	RD RD	ENTIAL AD	SPIN- VSO	ORBIT :	POTENTIAL ASO	RC	SR	FIT	NOTE	REF.
C0 C0 C0 C0 C0 C0	17.8 17.8 28. 28. 28. 28. 28.	49.4 49.2 55.7 45.2 43.4 49.7	1.25* 1.25* 1.10 1.30 1.33 1.20*	0.65* 0.65* 0.74 0.58 0.531 0.70*	0.02 1.40 2.88	1.15 1.17 1.20*	0.607 0.513 0.48*	10.34 10.36 6.71G 15.5G 15.5G 16.50G	1.25* 1.25* 1.16 1.15 1.17 1.20*	0.47* 0.47* 1.95 0.88 0.743 0.70*	5.69 4.92 6.5 1.96 6.64 8.30	1.25* 0.96 1.10 1.30 0.87 1.20*	0.65* 0.65* 0.74 0.58 0.863 0.70*	1.25* 1.25* 1.25? 1.25? 1.20* 1.20*	1015 1029 1190 1054	S2P2 S1P1 S1 S S1 S1 S2		BAU66 BAU66 DIT69 DIT69 SAN70 SAN70
CU CU CU CU	30.3 30.3 30.3 30.3 30.3 30.3	46.27 44.67 47.7 52.8 53.5	1.177 1.25* 1.20* 1.110 1.12*	0.733 0.65* 0.7* 0.692 0.75*	2.01 1.8 2.62 3.0*	1.177 1.25* 1.280 1.33*	0.733 0.7* 0.602 0.58*	4.97 11.25 6.1 6.23 5.91	1.177 1.25* 1.25* 1.280 1.33*	0.882 0.47* 0.7* 0.602 0.58*	13.12 12.* 5.8 7.46 6.40*	1.177 1.25* 1.20* 1.269 1.12*	0.733 0.65* 0.7* 0.971 0.75*	1.25* 1.25* 1.20* 1.2* 1.2*	1241 1095 1140 1194	S1 53 51 51 51		BAR65 BAR65 GRB66 SAT67 SAT67
63CU 63CU 63CU 63CU 63CU 63CU	6.9 7.0 8.0 9.0 10. 10.2	56.1 53.1 53.3 52.8 52.7 48.8	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.68 0.65* 0.65* 0.65* 0.65* 0.622				15.5G 12.9 11.8 11.9 12.5 11.5G	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.30	0.74* 0.47* 0.47* 0.47* 0.47* 1.20	15.0 7.5* 7.5* 7.5* 7.5*	1.25* 1.25* 1.25* 1.25* 1.25*	0.68 0.65* 0.65* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.30?	546 636 720 803	52 5 5 5 5 5 5 5	₩65	PRO 70A MAR66 MAR66 MAR66 MAR66 WIL63
63CU 63CU 63CU 63CU 63CU	11. 11.0 11.0 12. 12.29	52.5 48.95 48.61 51.5 48.41	1.25* 1.261 1.285* 1.25* 1.31*	0.65* 0.760 0.65* 0.65* 0.534	7.78	1.31*	0.534	12.6 15.56 10.41 11.7	1.25* 1.426 1.285* 1.25*	0.47* 0.351 0.53* 0.47*	7.5* 6.58 6.38 7.5* 4.86	1.25* 1.392 1.285* 1.25* 1.31*	0.65* 0.427 0.53* 0.65* 0.534	1.25* 1.25* 1.25* 1.25* 1.25*	866 940 923 899 914	S S 1 P 1 S 1 P 1 S S 1	11 11 12,20	MAR66 PER68 PER68 MAR66 TH064
63CU 63CU 63CU 63CU 63CU 63CU	18.6 18.6 18.6 30.3 30.3 30.3	50.0 59.9 50.58 52.46 49.09 53.10	1.25* 1.3* 1.24* 1.13 1.16* 1.12*	0.65* 0.75* 0.65* 0.76 0.75* 0.75*	3.18 3.47 2.65	1.35 1.37* 1.33*	0.63 0.63* 0.58*	12.0 8.82 10.17 4.68 4.07 5.99	1.25* 1.35* 1.28* 1.35 1.37* 1.33*	0.47* 0.55* 0.5* 0.63 0.63* 0.58*	5.4 6.65 5.6 6.29 6.32 7.03	1.12 1.00 1.16 1.08 1.06* 1.12*	0.47* 0.55* 0.42* 0.73 0.74* 0.75*	1.25* 1.1* 1.25* 1.2* 1.2* 1.2*	1055 1137 1052 1207 1216 1178	S2P1 SP SP S1P2 SP SP SP	20 30	KOS67 KOS68 KOS68 TH071 TH071 TH071
630U 630U 630U	49.3 49.3 49.3	44.13 44.13 47.68	1.15 1.16* 1.12*	∩.75 0.75* 0.75¥	6.62 6.47 6.44	1.34 1.37* 1.33*	0.63 0.63* 0.58*	2.28 1.87 2.96	1,34 1.37* 1.33*	0.63 0.63* 0.58*	6.53 6.04 6.81	1.03 1.06* 1.12*	0.79 0.74* 0.75*	1.2* 1.2* 1.2*	1093 1094 1074	S1P2 S P S P		THO71 THO71 THO71
64CU 64CU	17. 96.	49.7 2°.0	1.25* 1.14	0.65* 0.764	5.46	1.53	0.555	12.5G	1.25*	1.00*	8.4 7.85	1.25* 1.14	0.65* 0.764	1.25* 1.14	977 812	52P2 51	31	PIC65 SAW65
65CU 65CU 65CU 65CU 65CU	5.45 6.9 7.0 8.0 9.0	60.5 54.1 52.4 52.3 54.0	1.23* 1.25* 1.25* 1.25* 1.25* 1.25*	0.36 0.58 0.65* 0.65* 0.65*				6.0G 11.0G 11.5 11.0 12.5	1.23* 1.25* 1.25* 1.25* 1.25* 1.25*	1.2* 0.74* 0.47* 0.47* 0.47*	8.0 7.5* 7.5* 7.5*	1.25* 1.25* 1.25* 1.25*	0.58 0.65* 0.65* 0.65*	1.23? 1.25* 1.25* 1.25* 1.25*	552 641 753	S S3 S S S	₩65	VAN61 PRO70A MAR66 MAR66 NAR66
65CU 65CU 65CU 65CU 65CU 65CU	10. 11. 11.0 11.0 12. 12.29	53.6 52.4 50.20 49.00 51.1 49.08	1.25* 1.25* 1.283 1.285* 1.25* 1.31*	0.65* 0.65* 0.627 0.65* 0.65* 0.536	8.07	1.31*	0.536	12.4 12.5 11.09 10.00 12.0	1.25* 1.25* 1.265 1.285* 1.25*	0.47* 0.47* 0.500 0.53* 0.47*	7.5* 7.5* 7.30 7.56 7.5* 5.75	1.25* 1.25* 1.267 1.285* 1.25* 1.31*	0.65* 0.65* 0.437 0.53* 0.65* 0.536	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.3?	832 886 904 942 919 948	5 5 5121 5121 5 51	11 11 12,20	MAB66 MAR66 PER68 PER68 MAR66 TH064
65CU 65CU 65CU	30.3 30.3 30.3	52.96 49.75 53.56	1.13 1.16* 1.12*	0.78 0.75* 0.75*	3.53 3.47 2.85	1.35 1.37* 1.33*	0.62 0.63* 0.58*	4.96 4.50 6.32	1.35 1.37* 1.33*	0.62 0.63* 0.58*	6.20 6.31 7.22	1.11 1.06* 1.12*	0.71 0.74* 0.75*	1.2* 1.2* 1.2*	1265 1265 1221	S1P2 S P S P		т 6071 тно71 тно71
65CU 65CU 65CU 65CU 65CU	40. 40. 49.3 49.3 49.3	44.9 45.1 45.03 44.65 48.27	1.163 1.18* 1.16 1.16* 1.12*	0.806 0.7* 0.74 0.75* 0.75*	9.45 6.33 6.56 6.74	1.40* 1.34 1.37* 1.33*	0.7* 0.66 0.63* 0.58*	9.9 2.48 2.06 3.05	0.973 1.34 1.37* 1.33*	0.818 0.66 0.63* 0.58*	7.52 7.5* 6.69 6.10 6.89	1.163 1.18* 1.02 1.06* 1.12*	0.806 0.7* 0.78 0.74* 0.75*	1.2* 1.2* 1.2* 1.2* 1.2*	1165 1217 1144 1137 1113	S1 S S1P2 S P S P	15 15	PRI65 PRI65 TH071 TH071 TH071
ZN ZN ZN ZN ZN	9.4 11.9 12.0 14.3 14.3	53.4 50.0 51.8 49.0 50.5	1.25* 1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65* 0.65*				13.4 10.6 13.3 11.8 13.4	1.25* 1.25* 1.25* 1.25* 1.25*	0.47* 0.47* 0.47* 0.47* 0.47*	7.5* 8.0* 7.5* 8.0* 7.5*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25*	765 920 915 1001 994	51 51 51 51 51	35 23 35 23 35	PER63 BUC63 PER63 BUC63 PER63
ZN ZN ZN ZN ZN	17.3 17.3 17.3 17.8 17.8	48.2 44.52 48.7 48.9 48.7	1.25* 1.318 1.25* 1.25* 1.25*	0.65* 0.667 0.65* 0.65* 0.65*				10.5 18.37 12.4 9.65 10.15	1.25* 1.280 1.25* 1.25* 1.25*	0.47* 0.364 0.47* 0.47* 0.47*	8.0* 8.57 8.5* 5.38 5.58	1.25* 1.318 1.25* 1.25* 1.05	0.65* 0.667 0.65* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	1047 1080 1036 997 1020	S1 S1 S2 S2P1 S2P1	23 35	BUC63 PER63 PER63 BAU66 BAU66
64 ZN 64 ZN 64 ZN 64 ZN 64 ZN 64 ZN	5.45 6.9 9.5 11.0 11.0 11.7	60. 56.6 50.51 46.77 48.70 49.78	1.23* 1.25* 1.25* 1.287 1.285* 1.285*	0.40 0.54 0.65* 0.753 0.65* 0.65*				5.5G 11.0G 7.44 12.70 10.61 9.20	1.23* 1.25* 1.25* 1.397 1.285* 1.25*	1.2* 0.74* 0.47* 0.444 0.53* 0.47*	16.0 8.0* 5.94 5.76 8.0*	1.25* 1.25* 1.281 1.285* 1.25*	0.54 0.65* 0.497 0.53* 0.65*	1.23? 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	991 908	5 52 51 51P1 51P1 51	W65 23 11 11 23	VAN61 PR070A BEN64 PER68 PER68 BEN64
64 ZN 64 ZN 64 ZN 64 ZN 64 ZN 64 ZN	22.2 26. 30.5 30.5 39.6	45.5 54.15 51.97 50.85 45.53	1.25* 1.107 1.126 1.142* 1.160	0.65* 0.768 0.760 0.766* 0.731	2.57 2.92 3.83	1.065 1.085* 1.301	0.753 0.699* 0.647	13.7 6.24 5.829 5.813 4.04	1.25* 1.308 1.270 1.275* 1.301	0.47* 0.739 0.694 0.665* 0.647	8.5* 6.45 6.32 6.15	1.25* 1.065 1.085* 1.013	0.65* 0.753 0.699* 0.716	1.25* 1.3* 1.11* 1.11* 1.2?	1110 1230 1225	S2 S2 S1P2 S1P2 S2P2	35 2 2	PER63 JOH68A TAI71 TAI71 LIE70
64 2N 64 2N 64 2N 64 2N 64 2N 64 2N 64 2N	49.1 49.6 49.6 49.6 49.6 49.6	46.20 41.19 39.97 42.51 48.78 44.36	1.12* 1.144 1.184 1.16* 1.095* 1.139*	0.80* 0.810 0.799 0.75* 0.822 0.767	6.13 11.75 14.01 6.87 8.37 6.61	1.31* 1.144 1.184 1.37* 1.296* 1.367*	0.62* 0.737 0.799 0.63* 0.622 0.646	3.06 1.78 1.70 2.75 2.14	1.32* 1.144 1.37* 1.296* 1.367*	0.69* 0.737 0.63* 0.622 0.646	6.17 4.50* 2.22 6.04* 6.66 6.37	1.01* 1.144 1.184 1.16* 1.005 1.029*	0.69* 0.810 0.799 0.75* 0.667 0.728	1.25* 1.25* 1.25* 1.25* 1.25* 1.2?	1136 1128 1129	51P2 51 51 51 5 P2 5 P2	15 20 20 20 12	CAL67 EDW67 EDW67 EDW67 LEW67 LEW67
65 Z N	17.	48.9	1.25*	0.65*	3.7	1.25*	0.65*	7.9G	1.25*	1.00*	7.9	1.25*	0.65*	1.25*	1049	52		PIC65

TABLE II. Optical-Model Parameters

NUCLIDE	ENERGY (Mev)	R EA L V	POTENTIAL R A		VOL.IMAG. POTENTIAL W RW AW		BNTIAL AW	SURF.IMAG. POTENTIAL WD RD AD			SPIN-ORBIT POTENTIAL VSO RSO ASO			RC	SR	FIT	NOTE	REF.
66 ZN 66 ZN 66 ZN	6.9 11.0 11.0	55.6 52.12 49.19	1.25* 1.246 1.285*	0.64 0.648 0.65*				16.0G 8.46 10.81	1.25* 1.235 1.285*	0.74* 0.666 0.53*	16.0 5.86 5.84	1.25* 1.082 1.285*	0.64 0.474 0.53*	1.25* 1.25* 1.25*	961 935	52 5 12 1 5 12 1	11 11	PRO70A PER68 PER68
66 ZN 66 ZN 66 ZN 66 ZN	30.5 30.5 39.6 49.1	52.56 51.53 46.22 46.04	1.131 1.142* 1.166 1.12*	0.780 0.766* 0.691 0.80*	2.61 2.73 2.14 6.76	1.082 1.085* 1.286 1.31*	0.704 0.699* 0.722 0.62*	6.349 6.382 5.11 2.56	1.255 1.275* 1.286 1.32*	0.698 0.665* 0.722 0.69*	6.58* 6.58* 7.98 6.00	1.082* 1.085* 0.874 1.01*	0.704* 0.699* 0.952 0.69*	1.11* 1.11* 1.2? 1.25*	1277 1268 1141	S1 S1 S2P2 S1	2 2 15	TAI71 TAI71 LIE70 CAL67
67 JN	6.9	53.1	1.25*	0.62				10.5G	1.25*	0.74*	7.0	1.25*	0.62	1.25*		\$ 3		PRO70A
682N 682N 682N 682N 682N	5.45 6.9 9.8 11.0 11.0	59.5 55.0 54.7 47.74 49.25	1.23* 1.25* 1.21 1.307 1.285*	0.40 0.68 0.72 0.660 0.65*				5.5G 14.5G 8.4 12.76 11.29	1.23* 1.25* 1.31 1.305 1.285*	1.2* 0.74* 0.64 0.490 0.53*	14.0 5.8 6.14 5.17	1.25* 1.0* 1.200 1.285*	0.68 0.66* 0.410 0.53*	1.237 1.25* 1.25* 1.25* 1.25* 1.25*	987 963	S S S 1 P 1 S 1 P 1 S 1 P 1	¥65 4 11 11	VANG1 PRO70A GRE71 PER68 PER68
682N 682N 682N 682N 682N 682N 682N	30.5 30.5 39.6 40. 40. 49.1	50.14 51.58 46.89 47.43 46.60 46.20	1.162 1.142* 1.154 1.155 1.16* 1.12*	0.758 0.766* 0.734 0.751 0.75* 0.80*	2.58 2.42 3.08 6.94 6.70 7.63	1.100 1.085* 1.297 1.318 1.37* 1.31*	0.660 0.699* 0.741 0.689 0.63* 0.62*	6.994 6.864 4.52 0.28 2.46 2.36	1.281 1.275* 1.297 1.318 1.37* 1.32*	0.636 0.665* 0.741 0.689 0.63* 0.69*	6.69 6.76 6.78 5.72 6.04* 6.50	1.100 1.085* 0.936 1.040 1.064* 1.01*	0.660 0.699* 0.855 0.720 0.738* 0.69*	1.11* 1.11* 1.2? 1.25* 1.25* 1.25*	1291 1301 1262 1250 1177	S1P1 S1P1 S2P2 S2P1 S2P1 S1P2	2 2 15	TAI71 TAI71 LIE70 PRI67 FRI67 CAL67
68 ZN 68 ZN	61.4	38.27	1.208	0.750 0.75#	8.57	1.24	0.773	2.28	1.24	0.773	5.72* 6.04*	1.040*	0.720*	1.25*	1112	S2		FUL69
70 Z N 70 Z N	6.9 49.1	54.6 48.38	1.25* 1.12*	0.72	5.71	1.31*	0-62*	15.0G 3.65	1.25*	0.74* 0.69*	13.5 5.96	1.25* 1.01*	0.72 0.69*	1.25* 1.25*	1235	52 52 52	15	PRO70A CAL67
GA GA GA	9.6 17.8 17.8	52.86 50.7 50.2	1.25* 1.25* 1.25*	0.65 0.65* 0.65*				8.2* 8.96 9.61	1.25* 1.25* 1.25*	0.65 0.47* 0.47*	6.0* 4.17 3.35	1.25* 1.25* 1.16	0.65* 0.65* 0.65*	1.25* 1.25* 1.25*	1008 1028	S S 2P 1 S 2P 1		BER68 BAU66 BAU66
70ge 70ge	11.0 14.5	49.62 50.3	1.285* 1.24*	0.65* 0.65*				11.21 11.4	1.285* 1.24*	0.53* 0.57*	5.00* 7.2*	1.285* 1.24*	0.53* 0.65*	1.25* 1.25*	930	51 52		PER68 CUR70
72 GE 72 GE	11.0	49.21 50.4	1.285* 1.24*	0.65* 0.65*				12.15 11.5	1.285*	0.53*	5.00* 7.2*	1.285* 1.24*	0.53* 0.65*	1.25*	958	S1 52		PER68 CUR70
73GE	12.3	50.4	1.23	0.65				12.1	1.23	0.65				1.25*		S 2		HEY69
74 GE 74 GE	11.0 14.5	48.70 50.3	1.285* 1.24*	0.65* 0.65*				14.35 11.6	1.285* 1.24*	0.53* 0.57*	5.00* 7.2*	1.285* 1.24*	0.53* 0.65*	1.25* 1.25*	989	s 1 52		PBR68 CUR70
76 GE 76 GE	11.0 14.5	48.64 50.8	1.285* 1.24*	0.65* 0.65*				14.52 11.7	1.285* 1.24*	0.53* 0.57*	4.70* 7.2*	1.285* 1.24*	0.53* 0.65*	1.25* 1.25*	1007	S 1 52		PER68 CUR70
76 SE 76 SE	6.4	49.7	1.25*	0.695				9.45 1.28	1.25*	1.21	2.72	1.25*	0.14	1.25*	1035	S p		HEN70 HEN70
775E	13.0	51.4	1.27	0.55	10.	1.27	0.55							1.25?		s	W65	HIN62
78 SE 78 SE	6.4 6.4	51.3 62.6	1.25* 1.25*	0.719				5.45 1.89	1.25* 1.25*	1.16 0.97	0.77	1.25*	0.14	1.25*	818	s s		HEN70 HEN70
80 SE	6.4	54.0	1.25*	0.692				6.72	1.25*	0.84	0 71	1 25 *	0.58	1.25*	540	S		HEN70
825E 8255	6.4 6.4	53.5 62.0	1.25* 1.25*	0.669 0.590				7.11 3.50	1.25* 1.25*	0.87	1. 12	1. 25*	0.59	1.25*	560	s s		HEN70 HEN70
84 KR	12.0	53.2	1.25*	0.646				14.9	1.25*	0.467	7.5*	1.25*	0.65*	1.25*		S 1		ARO74
86 KR	9.63	57.09	1.22	0.66				12.52	1.25*	0.48	6.0	1.25*	0.65*	1.25*		S2		HAR70
OUKK	12.0		1.254	0.004				10.0	1.25*	0.565	7.5*	1.23*	0.05	1.25*		51		ARU 74
86 SR 88 SR	12.	52.6 56 1	1.21	0.71				12.1 8.5	1.32	0.43	7.5*	1.21	0.71	1.25*		S1	8	RAM72
88 SR 88 SR 88 SR	19.5 19.5 20.2	57.1 51.0 51.9	1.14 1.20* 1.19*	0.71 0.70* 0.78*				9.4 10.9 12.3	1.25* 1.25* 1.27*	0.74 0.65* 0.59*	6.0 4.7 7.4*	1. 14 1. 20* 1. 25*	0.71 0.70* 0.65*	1.25* 1.25* 1.25*		5 52 53	6 6	STA67 STA67 STA67 PIC69
89Y 89Y 89Y 89Y 89Y	7.44 8.08 9.01 18.9 18.9	53.7 54.6 53.3 47.0 52.6	1.25* 1.25* 1.25* 1.29 1.20*	0.67 0.61 0.63 0.65* 0.70*				7.4G 5.2G 6.2G 16.9 9.8	1.25* 1.25* 1.25* 1.25* 1.25*	1.07 1.26 1.49 0.45 0.65*	5.5* 5.5* 5.5* 3.9 5.7	1.25* 1.25* 1.25* 1.29 1.20*	0.67 0.61 0.63 0.65* 0.70*	1.25* 1.25* 1.25* 1.25* 1.25*		51 51 51 5 52	6 6	BRA67 BRA67 BRA67 STA67 STA67
897 897 897 897	24.5 49.35 49.35 156.	46.57 49.6 45.5 15.70	1.232 1.15 1.17* 1.31	0.627 0.91 0.75* 0.60	9.9 0.2 17.0	1.44 1.32* 1.09	0.34 0.63* 0.95	10.92 0.6 8.6	1.275 1.44 1.32*	0.536 0.34 0.63*	7.0* 6.7 7.5 2.46	1.232 1.18 1.01* 1.08	0.627 0.50 0.75* 0.63	1.31* 1.25* 1.20* 1.25	1350 1400 975	S1 SP S2P S2	1 1 12,19	BEN68 MAN71A MAN71A COM74
902R 902R 902R 902R 902R 902R 902R	6.35 6.90 8.38 9.70 9.70 9.8	56.6 56.2 55.4 53.03 56.51 51.3	1.23* 1.23* 1.23* 1.254 1.185 1.27	0.60* 0.60* 0.60* 0.656 0.7* 0.67				0.15 0.39 5.88 17.39 8.96 14.0	1.23* 1.23* 1.23* 1.346 1.326 1.37	0.75 0.90 0.68 0.236 0.47* 0.29	6.25* 6.25* 6.25* 5.63 4.55 6.3	1.23* 1.23* 1.23* 0.828 0.752 1.0*	0.65* 0.65* 0.65* 0.401 0.7* 0.66*	1.20* 1.20* 1.25* 1.25* 1.25*	591	S2 S3 S121 S121 S121 S121	29 29 29 21 20 4	LIE68 LIE68 LIE68 VOS72 VOS72 GRE71

TABLE II. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	IAL A	VOL.IN W	AG. POT RW	ENTIAL AW	SURP.IM WD	AG. POT RD	ENTIAL AD	SPIN- VSO	DRBIT P RSO	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
902R 902R 902R	10.75 10.75 10.75	53.5 54.5 55.0	1.22* 1.23* 1.25*	0.607 0.6C* 0.65*				5.76 8.36 14.5	1.29 1.27 1.25*	0.74 0.54 0.47*	7.5 5.2 6.8	1.22* 1.20* 1.20*	0.607 0.42* 0.42*	1.25* 1.25* 1.25*		S 2 S 2 S 2	3 3 3	CLA70A CLA70A CLA70A
902R 902R 902R 902R 902R 902R	12.7 12.7 12.7 12.7 12.7	52.8 52.4 54.2 54.6 50.91	1.25* 1.220 1.22* 1.25* 1.244	0.65* 0.607 0.607 0.65* 0.625				15.6 5.4 5.4 14.8 7.25	1.25* 1.293 1.29 1.25* 1.234	0.412 0.737 0.737 0.47* 0.698	6.0* 7.9 7.9 6.8 6.90*	1.12* 1.220 1.22* 1.20* 1.01*	0.47* 0.607 0.607 0.42* 0.75*	1.25* 1.25* 1.25* 1.25* 1.25*	878 964 1139	S 1 S 1 S 2 S 2 S 1	3 3 2,4	DIC68 DIC68 CLA70A CLA70A MAK72
90 ZR 90 ZR 90 ZR 90 ZR 90 ZR 90 ZR	18.8 18.8 18.8 18.8 19.08 19.08	55.1 54.2 52.0* 52.0 46.27 52.15	1.148 1.166 1.2* 1.20* 1.297 1.176	0.753 0.716 0.7* 0.7* 0.674 0.7*				7.7 8.5 9.25 9.25 13.22 13.62	1.296 1.298 1.25* 1.25* 1.255 1.070	0.757 0.681 0.65* 0.65* 0.475 0.424	6.76 6.42 6.2* 6.2 9.84 15.47	1.148 1.166 1.2* 1.20* 1.313 1.266	0.753 0.716 0.7* 0.7* 0.319 0.7*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	14 08 13 26 1268 1268	S1 S1 S1 S S1 S1 S	28 28 20 20	GBA66 GRA66 GRA66 STA66 VOS72 VOS72
90 ZF 90 ZR 90 ZR 90 ZR 90 ZR 90 ZF	20.25 20.37 20.37 22.04 22.04	48.20 47.42 49.79 49.00 48.62	1.24 1.274 1.229 1.231 1.234	0.618 0.669 0.7* 0.686 0.7*				8.05 12.99 13.77 16.80 18.13	1.29 1.272 1.257 1.233 1.238	0.60 0.459 0.456 0.383 0.361	5.75 5.80 7.21 6.90 7.79	1.07 1.131 1.236 1.386 1.360	0.53 0.252 0.7* 0.792 0.7*	1.25? 1.25* 1.25* 1.25* 1.25*	1240	5121 51 51 51 51 51	8 20 20 20 20	GLA69 VOS72 VOS72 VOS72 VOS72
90 ZR 90 ZR 90 ZR 90 ZR 90 ZR 90 ZR	22.5 22.5 22.5 22.5 22.5 22.5 22.9	46.7 51.6 50.7 50.42 50.16 50.1	1.26* 1.186 1.2* 1.212 1.212 1.22	0.664* 0.778 0.7* 0.717 0.7* 0.63	0.5*	1.23*	0.567*	10.6* 11.1 9.5 8.55 9.71 11.54	1.23* 1.268 1.25* 1.231 1.271 1.27	0.567* 0.587 0.65* 0.694 0.611 0.54	7.75* 7.36 6.2* 5.73 6.82 6.4	1.26* 1.186 1.2* 1.021 1.094 1.15*	0.664* 0.778 0.7* 0.340 0.7* 0.5*	1.26* 1.25* 1.25* 1.25* 1.25* 1.25*	1362 1338 1234	S1 S1 S1 S1 S1 S P	20 20	BAL64 GRA66 GRA66 VOS72 VOS72 HAY71
90 ZR 90 ZR 90 ZR 90 ZR 90 ZR 90 ZR	40. 40. 40.0 40.0 40.0	45.95 47.76 48.64 52.82 50.98	1.186 1.16* 1.171 1.104 1.123	0.674 0.75* 0.722 0.816 0.639	3.21 4.69 6.13 5.48	1.300 1.37* 1.585 1.408	0.655 0.63* 0.459 0.545	5.25 3.46 9.91 3.04	1.300 1.37* 1.066 1.408	0.655 0.63* 0.774 0.545	6.92 6.04* 7.21 6.72 7.03	1.002 1.064* 1.022 0.942 0.964	0.861 0.738* 0.858 0.828 0.810	1.25* 1.25* 1.25* 1.25* 1.25*	1375 1410	S 1 P 1 S 1 P 1 S 2 P 2 S 1 P 1 S 1 P 1 S 1 P 1	21 21 21	FRI67 FRI67 VOS72 VOS72 VOS72
90 ZR 90 ZR 90 ZR 90 ZR 90 ZR 90 ZR	49.35 49.35 61.4 61.4 156. 185.	45.8 45.8 39.52 42.86 11.95 11.1	1.18 1.17* 1.201 1.16* 1.41 1.2*	0.73 0.75* 0.693 0.75* 0.56 0.62	6.5 6.2 5.12 4.66 12.0 10.6	1.31 1.32* 1.40 1.37* 1.25 1.43	0.60 0.63* 0.534 0.63* 0.43 0.43	3.0 2.4 2.54 3.99	1.31 1.32* 1.40 1.37*	0.60 0.63* 0.534 0.63*	6.0 5.7 6.92* 6.04* 2.0 1.9	1.07 1.01* 1.002* 1.064* 1.08 1.16	0.74 0.75* 0.861* 0.738* 0.71 0.7*	1.25* 1.20* 1.25* 1.25* 1.25 1.25 1.3*	43 10 1300 1239 1279 801	S P S 1P 1 S 2 S 2 S 1 S P 2	12,22 14	MAN71A MAN71A FUL69 FUL69 COM74 ING73
912R 912R 912R 912R 912R 912R	14.5 14.5 14.52 14.52 14.8	52.40 51.72 50.7 50.0* 52.73	1.23* 1.23* 1.25* 1.25* 1.25*	0.623 0.633 0.608 0.65* 0.65*	4.54	1,627	0.388	8.03 4.85 9.0* 9.35	1.312 1.25* 1.25* 1.254	0.649 0.919 0.65* 0.65*	12.47 12.17 8.2 6.2* 5.5	1.23* 1.23* 1.25* 1.25* 1.25*	0.623 0.633 0.608 0.65* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25* 1.22	4073 1107	S2P1 S2P1 S1 S1 S2P1		POR67 POR67 AWA69 AWA69 MIC69
912R 912R 912R 912R 912R 912R 912R	16. 18.7 19.08 19.08 20.37 20.37	55.63 52.13 45.91 52.70 52.95 51.52	1.190 1.20* 1.310 1.183 1.191 1.201	0.65* 0.70* 0.635 0.7* 0.668 0.7*				7.73 9.48 13.64 12.69 9.20 11.74	1.310 1.25* 1.252 1.145 1.254 1.254	0.65* 0.65* 0.477 0.499 0.653 0.541	7.05 6.20* 7.22 11.07 4.95 7.55	1.190 1.20* 1.234 1.291 1.129 1.232	0.65* 0.70* 0.249 0.7* 0.061 0.7*	1.19 1.25* 1.25* 1.25* 1.25* 1.25*		S2P2 S1 S1 S S1 S1 S1	20 20 20 20	MIC69 BL069 VOS72 VOS72 VOS72 VOS72
912R 912R 912R 912R 912R 912R 912R	22.04 22.04 22.5 22.5 22.5 22.5 24.5	49.09 49.33 46.9 47.71 48.95 50.5	1.230 1.225 1.26* 1.254 1.234 1.18	0.691 0.7* 0.664* 0.681 0.7* 0.88	0.5*	1.23*	0.567*	12.95 12.98 10.6* 12.31 11.72 14.9	1.252 1.255 1.23* 1.260 1.257 1.32	0.481 0.481 0.567* 0.515 0.544 0.46	7.63 7.82 7.75* 8.08 7.85 4.9	1.258 1.264 1.26* 1.251 1.230 1.12*	0.738 0.7* 0.664* 0.622 0.7* 0.47*	1.25* 1.25* 1.26* 1.25* 1.25* 1.25*	1409	S1 S1 S1 S1 S1 S P	20 20 20 20	VOS72 VOS72 BAL64 VOS72 VOS72 BAY71
91ZR 91ZR	49.35 49.35	46.5 44.1	1.15 1.17*	0.78 0.75*	8.9 2.0	1.36 1.32*	0.64 0.63*	0.9 5.7	1.36 1.32*	0.64 0.63*	6.2 5.9	1.05 1.01*	0.71 0.75*	1.25* 1.20*	1380 1320	S P S2P		MAN71A MAN71A
92 ZR 92 ZR 92 ZR 92 ZR 92 ZR	10.75 12.7 12.7 12.7 12.7 12.7	55.34 52.2 54.5 55.08 52.6	1.23* 1.25* 1.231 1.23* 1.25*	0.60* 0.65* 0.596 0.60* 0.65*				9.66 12.3 9.2 9.66 13.5	1.18 1.25* 1.181 1.18 1.25*	0.67 0.525 0.668 0.67 0.47*	6.4 6.0* 6.4 6.75	1.20* 1.12* 1.231 1.20* 1.20*	0.42* 0.47* 0.596 0.42* 0.42*	1.25* 1.25* 1.25* 1.25* 1.25*	963 951	52 51 51 52 52	3 3 3	CLA70B DIC68 DIC68 CLA70B CLA70B
922R 922R 927R 927R	18.6 18.6 19.4 19.4	61.86 51.49 50.9 57.9	1.1* 1.24* 1.20* 1.11	0.75* 0.65* 0.7* 0.77				11.24 12.27 10.3 8.5	1.35* 1.28* 1.25* 1.25*	0.55* 0.5* 0.65* 0.77	5.3 6.78 6.2* 6.8	0.76 1.20 1.20* 1.11	0.55* 0.42* 0.7* 0.77	1.1* 1.25* 1.25* 1.11	1249 1170 1324 1429	S P S P S2 S1	30	KOS68 KOS68 STA66 STA66
92 ZR 92 ZR 92 ZR	20.25 20.37 20.37	47.82 51.48 49.50	1.26 1.208 1.234	0.609 0.683 0.7*				9.32 9.19 12.80	1.30 1.214 1.232	0.57 0.699 0.526	6.30 5.05 7.85	1.14 1.129 1.227	0.53 0.055 0.7*	1.25? 1.25* 1.25*	12 18	S 1P 1 S 1 S 1 S 1	8 20 20	GLA69 Vos72 Vos72
92 ZR 92 ZR 92 ZR 92 ZR 92 ZR 92 ZR	22.04 22.04 22.5 22.5 22.5	46.17 45.49 46.7 54.70 53.31	1.279 1.293 1.26* 1.134 1.155	0.718 0.7* 0.664* 0.805 0.7*	0.5*	1.23*	0.567*	17.07 17.37 10.6* 12.23 11.17	1.284 1.285 1.23* 1.236 1.256	0.417 0.407 0.567* 0.569 0.614	7.25 7.10 7.75* 10.98 7.57	1.256 1.242 1.26* 1.341 1.339	0.687 0.7* 0.664* 0.544 0.7*	1.25* 1.25* 1.26* 1.25* 1.25*		S 1 S 1 S 1 S 1 S 1 S	20 20 20 20	VOS72 VOS72 BAL64 VOS72 VOS72
92 Z R 92 Z R	49.35 49.35	45.5 43.1	1.14 1.17*	0.78 0.75*	8.7 0.6	1.35 1.32*	0.70 0.63*	1.7 7.5	1.35 1.32*	0.70 0.63*	5.9 5.1	1.04 1.01*	0.67 0.75*	1.25* 1.20*	1460 1380	S P S2P2		MAN71A MAN71A
942R 942R 942R 942R	12.7 12.7 19.4 19.4	51.8 55.2 50.9 57.4	1.15* 1.216 1.20* 1.13	0.65* 0.646 0.7* 0.74				8.6 8.3 11.1 9.5	1.25* 1.180 1.25* 1.25*	0.727 0.768 0.65* 0.74	6.0* 6.5 6.2* 6.7	1.12* 1.216 1.20* 1.13	0.47* 0.646 0.7* 0.74	1.25* 1.25* 1.25* 1.13	1122 1071 1357 1420	51 51 52 51		DIC68 DIC68 ST166 ST166
94 ZR 94 ZR 94 ZR	22.5 49.35 49.35	47.4 46.2 45.2	1.26* 1.15 1.17*	0.664* 0.78 0.75*	0.5* 8.1 6.1	1.23* 1.36 1.32*	0.567* 0.67 0.63*	10.6* 2.1 3.8	1.23* 1.36 1.32*	0.567* 0.67 0.63*	7.75* 5.9 5.7	1.26* 1.06 1.01*	0.664* 0.72 0.75*	1.26* 1.25* 1.20*	1475 1420	S1 SP S1P		BAL64 MAN71A MAN71A

TABLE II. Optical-Model Parameters

NUCLIDE	EN ËR GY (MEV)	REAL V	POTENT	IAL A	VOL.INAG. POTENTIAL W RW AW			SURF.IMAG. POTENTIAL WD RD AD			SPIN-ORBIT POTENTIAL VSO RSO ASO			RC SR		PIT NOT:		REF.
96 ZR 96 ZR 96 ZR 96 ZR 96 ZR	19.4 22.5 49.35 49.35	51.9 48.2 46.6 45.9	1.20* 1.26* 1.16 1.17*	0.70* 0.664* 0.75 0.75*	0.5* 7.2 6.3	1.23* 1.36 1.32*	0.567* 0.66 0.63*	11.4 10.6* 2.2 3.4	1.25* 1.23* 1.36 1.32*	0.65* 0.567* 0.66 0.63*	6.2 7.75* 6.6 6.3	1.20* 1.26* 1.03 1.01*	0.70* 0.664* 0.82 0.75*	1.25* 1.26* 1.25* 1.20*	1465 1430	S2 S2 SP S1P1		STA67A BAL64 HAN71A MAN71A
NB 93 NB	22.2 16.2	47.7 50.6	1.25* 1.25*	0.65* 0.678				13.6 14.1	1.25* 1.25*	0.47* 0.47	8.5* 8.*	1.25* 1.25*	0.65 * 0.678	1.25+ 1.25+	1209	5) 5	35 W65	PER63 SMI64
HO NO	17.8 17.8	49.2 48.9	1.25* 1.25*	0.65* 0.65*				15.53 16.90	1.25* 1.25*	0.47* 0.47*	3.27 4.06	1.25* 0.87	0.65* 0.65*	1.25* 1.25*	1146 1155	5 1 P 2 5 1 P 1		BAU66 BAU66
92 MO 92 MO 92 MO 92 MO 92 MO 92 MO	12.5 19.85 20.25 30.3 49.4	53.73 59.15 47.73 51.76 49.77	1.222* 1.121 1.24 1.161 1.153	0.616* 0.780 0.616 0.773 0.754	1.75 3.14 9.69	1.298 1.357 1.310	0.612 0.616 0.629	6.00 9.45 7.88 4.35 1.53	1.218* 1.298 1.33 1.357 1.310	0.723 0.612 0.60 0.616 0.629	6.5* 5.49 5.94 6.46 6.02	1.222* 1.055 1.03 1.004 1.100	0.616* 0.678 0.53 0.594 0.784	1.25* 1.25* 1.25? 1.25* 1.25*	1221	S2 S2 S1P1 S2P2 S2	7,29 8	BUR75 SIN72 GLA69 SIN72 SIN72
94 MO 94 MO	12.5 49.4	53.99 48.09	1.222* 1.140	0.616* 0.870	10.76	1,350	0.632	7.14 0.46	1.218* 1.350	0.726 0.632	6.5* 7.66	1.222* 0.938	0.616* 0.550	1.25* 1.25*		52 52	7	BUR75 SIN72
96 MO 96 MO 96 MO	12.5 30.3 49.4	54.50 53.69 49.99	1.222* 1.156 1.150	0.616* 0.795 0.740	5.74 8.77	1.420 1.300	0.589 0.660	8.12 2.59 1.97	1.218* 1.420 1.300	0.729 0.589 0.660	6.5* 7.36 7.09	1.222* 1.018 1.047	0.616* 0.660 0.748	1.25* 1.25* 1.25*		52 52P3 52	7	BUR75 SIN72 SIN72
98 MO 98 MO 98 MO	12.5 14.7 14.7	55.49 55.14 55.16*	1.222* 1.18* 1.18*	0.616* 0.650 0.740*				8.52 5.48 9.50*	1.218* 1.43 1.28*	0.729 0.813 0.702*	6.5* 8.23 7.68*	1.222* 1.18* 1.18*	0.616* 0.65 0.74*	1.25* 1.25* 1.25*	14 1 2 12 5 6	52 51 51	7	BUR 75 AWA 72 AWA 72
100 MO 100 MO 100 MO 100 MO 100 MO	12.5 14.7 19.85 30.3 49.4	55.24 55.16 57.25 51.40 52.89	1.222* 1.18* 1.132 1.172 1.140	0.616* 0.740 0.740 0.878 0.830	1.35 4.89 5.81	1.370 1.354 1.200	0.672 0.573 1.150	9.40 9.50 8.68 6.40 5.13	1.218* 1.28 1.370 1.354 1.200	0.730 0.702 0.672 0.573 1.150	6.5* 7.68 6.27 8.61 7.42	1.222* 1.18* 1.106 1.051 1.002	0.616* 0.740 0.652 0.559 0.870	1.25* 1.25* 1.25* 1.25* 1.25*	1272	52 51 52 53P3 52	7	BUR 75 AWA72 SIN 72 SIN 72 SIN 72
RH RH	17.2 17.2	57.66 50.6	1.150 1.25*	0.687 0.65*				8.21 16.2	1.263 1.25*	0.738 0.47*	8.16 8.5*	1. 150 1. 25*	0.687 0.65*	1.25* 1.25*	1268 1127	51 52	34,35	PER63 PER63
106 PD 106 PD	13. 13.	56.0 53.6	1.156 1.2*	0.80 0.7*				10.5 8.8	1.355 1.3*	0.584 0.7*	6.* 6.*	1.156 1.2*	0.804 0.7*	1.25* 1.25*	1105	s 1 52		ROB66 ROB66
108 PD 108 PD 108 PD 108 PD 108 PD	12. 12. 13. 13.	56.9 54.4 56.1 54.2	1.174 1.2* 1.181 1.2*	0.67 0.7* 0.69 0.7*				8.8 9.6 9.2 9.4	1.297 1.3* 1.274 1.3*	0.734 0.7* 0.748 0.7*	6.* 6-* 6.*	1.174 1.2* 1.181 1.2*	0.677 0.7* 0.690 0.7*	1.25* 1.25* 1.25* 1.25*	1025 1127	S 1 S 1 S 1 S 2		ROB66 ROB66 ROB66 ROB66
AG Ag Ag Ag Ag	9.4 17.1 17.1 17.1 17.8 17.8	55.6 56.3 55.59 50.9 50.2 49.8	1.25* 1.20* 1.172 1.25* 1.25* 1.25*	0.65* 0.56 0.746 0.65* 0.65* 0.65*	12.8	1.20*	0.56	14.4 12.09 15.6 16.88 17.45	1.25* 1.261 1.25* 1.25* 1.25*	0.47* 0.593 0.47* 0.47* 0.47*	7.5* 7.18 8.5* 4.13 4.78	1.25* 1.172 1.25* 1.25* 1.06	0.65* 0.746 0.65* 0.65* 0.65*	1.25* 1.20* 1.25* 1.25* 1.25* 1.25*	534 1234 1120 1157 1161	S1 S1 S2 S1P2 S1P1	35 W65 34,35	PER63 GLA57 PER63 PER63 BAU66 BAU66
NG Ng Ng	28. 28. 28. 28.	44.9 49.2 54.4 49.6	1.27 1.21 1.13 1.20*	0.57 0.63 0.702 0.70*	4.4 5.0 2.58 5.21	1.11 1.22 1.10 1.20*	0.607 1.06 1.09 0.48*	10.0G 3.9G 7.0G 11.20G	1.11 1.22 1.10 1.20*	0.88 1.53 1.58 0.70*	11.9 9.1 8.35 11.20	1.27 1.21 1.18 1.20*	0.57 0.63 1.27 0.70*	1.25? 1.25? 1.20* 1.20*	1269 1448	51 5 51 53		DIT69 DIT69 SAN70 SAN70
107 AG 108 Ag 109 Ag	12.94 17. 13.0	54.3 50.6 54.4	1.21 1.25* 1.21	0.68 0.65* 0.70	6.7	1.25*	0.65*	9.3 7.8g 10.35	1.24 1.25* 1.29	0.71 1.00* 0.64	6.0* 5.6 6.0*	1.21 1.25* 1.21	0.68 0.65* 0.70	t.25* 1.25* 1.25*	1173	S1 51P2 S1	20	FOR67 PIC65 FOR70
110CD	16.0	54.90	1.2*	0.7*				10.85	1.25*	0.65*	6.0*	1.1*	0.7*	1.2*	1202	51		MAK68
111CD	14.2 13.	53.8 56.	1.25* 1.2*	0.65* 0.7*				11.0G 9.5	1.25* 1.25*	1.3* 0.7*	7.0¥	1,25* 1,2*	0.65* 0.7*	1.25*		52 51		KOI67 STE68
112CD 112CD	14.7	54.0 55.06	1.25* 1.2*	0.65* 0.7*				11.0G 11.16	1.25* 1.25*	1.3* 0.65*	7.0* 6.0*	1.25* 1.1*	0.65* 0.7*	1.25*	1222	52 S 1		KOI67 MAK68
113 CD	14.2	55,5	1.25*	0.65*				13.5G	1.25*	1.3*	7.0*	1.25*	0.65*	1.25*		S 2		K0167
114CD 114CD	13. 16.0	55. 55.36	1.2* 1.2*	0.7* 0.7*				10.25 11.84	1.25* 1.25*	0.7* 0.65*	6.* 6.0*	1.2* 1.1*	0.7* 0.7*	1.25* 1.2*	1246	51 51		STE68 MAK68
114CD 114CD 114CD 114CD 114CD 114CD	49.6 49.6 49.6 50. 55.16	35.40 43.67 44.22 43.16 37.	1.238 1.147 1.16* 1.18 1.25*	0.779 0.852 0.75* 0.748 0.65*	10.16 11.56 7.51 6.70	1.238 1.304 1.37* 1.32	0.748 0.660 0.63* 0.757	1.063 1.50 2.52 9.0	1.238 1.37* 1.32 1.25*	0.748 0.63* 0.757 0.65*	4.68 7.80 6.04* 5.71 7.0	1.238 1.147 1.16* 1.047 1.25*	0.779 0.852 0.75* 0.747 0.65*	1.25* 1.25* 1.25* 1.25* 1.25*		51 51 51 51P1 53	20 20 20	EDW67 EDW67 EDW67 LEW68 KOI68
1 16 CD 1 16 CD 1 16 CD	12. 16.0 22.2	56.2 55.77 49.5	1.18 1.2* 1.25*	0.75 0.7* 0.65*				10.35 12.45 15.7	1.28 1.25* 1.25*	0.7 0.65* 0.47*	6.0* 6.0* 8.5*	1. 18 1. 1* 1. 25*	0.75 0.7* 0.65*	1.25* 1.2* 1.25*	1269 1314	S1 51 52	8 35	DEY72 MAK68 PER63
IN In	17.8 17.8	50.4 49.4	1.25* 1.25*	0.65* 0.65*				15.77 18.51	1.25* 1.25*	0.47* 0.47*	3.75 4.54	1.25* 0.97	0.65* 0.65*	1.25* 1.25*	1161 1177	52P1 51P1		BAU66 BAU66

TABLE II. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	IAL A	VOL.IM	AG. POT RW	ENTIAL AW	SURF.IN WD	AG. POT RD	ENTIAL AD	SPIN-0 VSO	RBIT P RSO	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
SN SN SN	9.72 19.6 40.	62. 54.8 46.3	1.20* 1.20* 1.18*	0.54 0.445 0.7*	6.9 10.2 9.52	1.20* 1.20* 1.40*	0.54 0.445 0.7*				7.5*	1. 18*	0.7*	1.20* 1.20* 1.2*	1636	s s	N65 N65 28	GLA57A SMI62 PRI65
1 12 SN 1 12 SN 1 12 SN	9.8 16. 16.0	52.51 52.4 55.46	1.25* 1.25* 1.2*	0.7* 0.625* 0.7*				11.04 15.3 10.38	1.31* 1.198 1.25*	0.53* 0.566 0.65*	7.5* 7.5* 6.0*	1.25* 1.25* 1.1*	0.7* 0.625* 0.7*	1.3* 1.25* 1.2*	586 1166	51 51 51		DUR65 MAK67 MAK68
1 16 SN 1 16 SN 1 16 SN 1 16 SN 1 16 SN	9.8 16.0 16. 16.	52.24 55.25 50.91 52.97	1.25* 1.2* 1.249 1.221	0.7* 0.7* 0.686 0.675				10.08 10.73 11.72 9.08	1.31* 1.25* 1.288 1.280	0.53* 0.65* 0.556 0.661	7.5* 6.0* 6.56 6.24	1.25* 1.1* 1.155 1.162	0.7* 0.7* 0.517 0.458	1.3* 1.2* 1.22* 1.22*	601 1199	SI SI SP SP	10 10	DUR65 MAK68 BOY71 BOY71
† 16 SN 1 16 SN 1 16 SN 1 16 SN 1 16 SN 1 16 SN	21. 21. 21. 22.2 22.2 24.5	53.9 53.7 49.5 48.7 50.6 57.05	1.18 1.19* 1.25* 1.25* 1.25* 1.13*	0.71 0.70* 0.65* 0.65* 0.65* 0.715	4.9	1.25*	0.65*	10.6 11.1 14.7 14.5 8.9G 10.64	1.26 1.25* 1.25* 1.25* 1.25* 1.25* 1.33*	0.660 0.64* 0.47* 0.47* 1.00* 0.65*	5.24 5.33 5.74 8.5* 6.2 6.1*	1.07 1.05* 1.25* 1.25* 1.25* 1.25* 1.13*	0.448 0.55* 0.65* 0.65* 0.65* 0.65*	1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.20*	1423 1392 1253 1267 1322 1545	S 1P 1 S 1P 1 S2P2 S3 S1 S	35 6	BAR69 BAR69 BAR69 PER63 PIC65 BEE70
1165N 1165N 1165N 1165N	39.6 49.35 61.4 61.4	51.89 46.8 41.93 44.18	1.119 1.17* 1.197 1.16*	0.851 0.75* 0.687 0.75*	4.10 0.4 3.80 4.76	1.396 1.32* 1.24 1.37*	0.625 0.63* 0.808 0.63*	4.09 7.8 5.01 3.90	1.396 1.32* 1.24 1.37*	0.625 0.63* 0.808 0.63*	6.54 6.9 6.11* 6.04*	1.013 1.01* 1.057* 1.064*	0.739 0.75* 0.800* 0.738*	1.2? 1.20* 1.25* 1.25*	1530 1575 1565	S 1P2 S2 S2 S2 S2	1	LIE70 MAN71A PUL69 FUL69
1 18 SN 1 18 SN 1 18 SN 1 18 SN 1 18 SN 1 18 SN 1 18 SN	16.0 16. 15. 24.5 24.5 24.5	55.28 54.45 54.20 56.05 56.69 51.4	1.2* 1.221 1.220 1.13* 1.13* 1.13*	0.7* 0.653 0.656 0.723 0.726* 0.76				11.83 11.81 10.86 10.74 10.78 11.44	1.25* 1.265 1.272 1.33* 1.33* 1.33	0.65* 0.567 0.609 0.65* 0.65* 0.62	6.0* 7.27 7.43 6.1* 6.1* 6.2	1. 1* 1. 128 1. 13 1 1. 13* 1. 13* 1. 15	0.7* 0.422 0.381 0.75* 0.75* 0.55	1.2* 1.22* 1.22* 1.20* 1.20* 1.25*	1229 1568 1571 1589	S2 SP SP S S SP	10 10 6 6	MAK68 BOY71 BOY71 BEE70 BEE70 MAY71
1 185N 1 185N 1 185N	39.6 49.35 49.35	46.34 45.4 47.5	1.210 1.24 1.17*	0.752 0.67 0.75*	3.40 0.5 5.9	1.262 1.12 1.32*	0.609 0.61 0.63*	7.00 13.5 4.6	1.262 1.12 1.32*	0.609 0.61 0.63*	6.53 8.0 7.6	1.126 1.13 1.01*	0.696 0.62 0.75*	1.2? 1.25* 1.20*	1520 1630	\$ 1P 2 5 5 1	1 1	LIE70 MAN71A MAN71A
1205N 1205N 1205N	9.8 9.8 12.38	52.27 51.5 54.18	1.25* 1.30 1.244	0.7* 0.62 0.703				11.72 14.1 14.29	1.31* 1.25 1.256	0.53* 0.52 0.538	7.5* 6.7 6.8*	1.25* 1.0* 1.20*	0.7* 0.66* 0.60*	1.3* 1.25* 1.22*	621	51 51P1 5	4	DUR 65 GRE7 1 ARK 70
120 SN 120 SN 120 SN 120 SN 120 SN 120 SN	16.0 16. 16. 16.0 17.8	55.79 56.12 54.44 52.71 50.70	1.2* 1.179 1.201 1.236 1.25*	0.7* 0.749 0.728 0.710 0.665				11.52 10.55 10.65 13.87 13.22	1.25* 1.303 1.300 1.282 1.230	0.65* 0.625 0.624 0.513 0.556	6.0* 6.62 6.84 6.90* 7.40	1.1* 1.139 1.141 1.01* 1.25*	0.7* C.479 C.443 C.75* C.665	1.2* 1.22* 1.22* 1.12* 1.12* 1.25*	1239 1187 1243	\$1 \$121 \$ P \$1 \$1 \$1P	10 10 2,4	MAK68 BOY71 BOY71 MAK72 JAR67
1205N 1205N 1205N 1205N 1205N	24.5 24.5 30. 30.3 30.3	57.43 57.27 51.08 47.48 46.20	1.13* 1.13* 1.16* 1.234 1.25*	0.744 0.739* 0.75* 0.658 0.65*	4.18 1.39	1.37* 1.234	0.63* 0.658	11.16 11.08 5.26 12.93 16.99	1.33* 1.33* 1.37* 1.234 1.25*	0.65* 0.65* 0.63* 0.510 0.47*	6.1* 6.1* 6.04* 13.24 12.*	1.13* 1.13* 1.064* 1.234 1.25*	0.75* 0.75* 0.738* 0.658 0.65*	1.20* 1.20* 1.25* 1.25* 1.25*	1609 1605 1668 1481 1467	S S S 1P 1 S 1 S 2	6 6 11 32 32	BEE70 BEE70 FRI67 BAR65 BAR65
120 SN 120 SN 120 SN 120 SN 120 SN 120 SN 120 SN	30.3 30.3 30.3 30.3 30.3 30.3 30.3	51.1 48.8 55.9 51.39 48.18 51.21	1.20* 1.202 1.12* 1.158 1.177 1.176	0.7* 0.704 0.75* 0.772 0.756 0.706	1.2 2.58 3.0* 2.62 0.01 2.34	1.25* 1.322 1.33* 1.326 1.217 1.309	0.7* 0.644 0.58* 0.696 0.956 0.679	8.7 7.22 7.25 6.09 7.94 7.11	1.25* 1.322 1.33* 1.326 1.217 1.309	0.7* 0.644 0.58* 0.696 0.956 0.697	6.0 4.96 6.36 6.25 5.71 5.71*	1.20* 1.142 1.12* 1.005 1.031 1.031*	0.7* 0.508 0.75* 0.728 0.684 0.684*	1.20* 1.2* 1.2* 1.12* 1.12* 1.12*	1644 1652 1675 1883 1641	S 1 P 1 S 1	11 11 11 2 2 2	GR E66 SAT67 SAT67 GR E70 GR E70 GR E70 GR E70
120 SN 120 SN 120 SN 120 SN 120 SN	30.3 30.3 30.3 30.3 30.3 30.3	49.0 50.4 51.97 51.24 51.82	1.184 1.174 1.176* 1.173 1.155	0.80 0.806 0.706* 0.700 0.773	2.33 2.64 2.77	1.309* 1.311 1.330	0.679* 0.665 0.700	13.55 13.78 7.13 7.10 5.96	1.304 1.294 1.309* 1.311 1.330	0.567 0.574 0.679* 0.665 0.700	5.55 5.65 5.71* 6.14 6.27	1. 184 1. 083 1. 03 1* 1. 173 1. 009	0.80 0.652 0.684* 0.700 0.736	1.25* 1.25* 1.12* 1.20* 1.20*		S P2 S P2 S1 S1P1 S1P1	11	KAR70 KAR70 PUT71 VOS72 VOS72
120 SN 120 SN 120 SN 120 SN 120 SN 120 SN	39.6 40. 40. 49.35 49.35	49.07 48.36 48.77 46.2 48.2	1.170 1.168 1.16* 1.08 1.17*	0.710 0.746 0.75* 0.56 0.75*	3.11 4.62 4.72 0.4 0.65	1.274 1.322 1.37* 1.10 1.32*	0.773 0.728 0.63* 0.82 0.63*	5.56 4.39 4.62 10.8 8.2	1.274 1.322 1.37* 1.10 1.32*	0.773 0.728 0.63* 0.82 0.63*	7.22 6.11 6.04* 9.1 7.1	1.009 1.057 1.064* 1.41 1.01*	0.904 0.800 0.738* 0.65 0.75*	1.2? 1.25* 1.25* 1.25* 1.25* 1.20*	1704 1691 1550 1610	5 1P 2 5 1P 1 5 1P 1 5 5 2	1	LIE70 PRI67 PRI67 MAN71A MAN71A
120 SN 120 SN 120 SN	156. 160. 160.	18.20 37.64 16.2	1.29 1.00 1.18	0.72 0.71 0.55	7.25 16.09 10.*	1.32 1.342 1.40	0.54 0.512 0.50*				2.53 4.53 2.5*	1.105 1.00 1.18	0.65 0.71 0.55	1.22 1.20* 1.3*	902 1339 1215	\$2 51 53	12,22 33,19 12,19	COM74 R0065 R0065
1225N 1225N 1225N 1225N	11.25 16.0 24.5 24.5	54.26 56.14 57.61 57.35	1.267 1.2* 1.13* 1.13*	0.669 0.7* 0.749 0.749*				16.56 11.75 11.26 11.26	1.260 1.25* 1.33* 1.33*	0.471 0.65* 0.65* 0.65*	6.8* 6.0* 6.1* 6.1*	1.20* 1.1* 1.13* 1.13*	0.60* 0.7* 0.75* 0.75*	1.22* 1.2* 1.20* 1.20*	1256 1630 1631	5 51 5 5	6 6	ARK70 MAK68 BEE70 BEE70
122 SN 122 SN 122 SN	39.6 49.35 49.35	51.35 46.7 48.2	1.131 1.11 1.17*	0.771 0.54 0.75*	3.54 0.6 0.69	1.376 1.19 1.32*	0.685 0.75 0.63*	4.63 11.2 8.3	1.376 1.19 1.32#	0.685 0.75 0.63*	7.27 8.8 6.8	0.933 1.37 1.01*	0.984 0.61 0.75*	1.2? 1.25* 1.20*	1625 1640	S 1P 2 S S2	1 1	LIE70 MAN71A MAN71A
124 SN 124 SN 124 SN 124 SN 124 SN 124 SN 124 SN	9.8 11.54 16. 16.0 16. 16.	52.74 54.14 54.6 56.37 55.35 56.11	1.25* 1.268 1.25* 1.2* 1.205 1.188	0.7* 0.648 0.625* 0.7* 0.709 0.741				12.96 12.92 16.3 12.22 13.12 13.35	1.31* 1.219 1.173 1.25* 1.258 1.270	0.53* 0.592 0.580 0.65* 0.594 0.587	7.5* 6.8* 7.5* 6.0* 6.85 6.95	1.25* 1.20* 1.25* 1.1* 1.149 1.158	0.7* 0.60* 0.625* 0.7* 0.604 0.590	1.3* 1.22* 1.25* 1.2* 1.22* 1.22*	649 1277	SI SI SI SP SP	10 10	DUR65 ARK 70 MAK67 MAK68 BOY 71 BOY 71
124 SN 124 SN 124 SN 124 SN 124 SN 124 SN	24.5 24.5 39.6 49.35 49.35	57.33 57.36 49.42 45.5 47.9	1.13* 1.13* 1.158 1.23 1.17*	0.787 0.761* 0.779 0.71 0.75*	4.40 2.5 5.5	1.359 1.15 1.32*	0.666 0.60 0.63*	11.53 12.21 4.43 11.4 4.8	1.33* 1.33* 1.359 1.15 1.32*	0.65* 0.65* 0.666 0.60 0.63*	6.1* 6.1* 6.94 7.8 7.4	1.13* 1.13* 1.002 1.16 1.01*	0.75* 0.75* 0.922 0.69 0.75*	1.20* 1.20* 1.2? 1.25* 1.25*	1695 1675 1590 1680	S S S 1 P 2 S S 1	6 6 1 1	BEE70 BEE70 LIE70 MAN714 MAN714
Protons

TABLE II. Optical-Model Parameters

NUCLIDE	EN ER GY (MEV)	R BA L V	POTENT R	IAL A	VOL.IN	NG. POT RW	ENTIAL AW	SORP.IN WD	AG. POT RD	ENTIAL AD	SPIN-C VSO	RBIT P	OTENTIAL ASO	RC	SR	PIT	NOTE	REF.
122 TE	51.9	45.77	1.16*	0.75*	5.33	1.37*	0.63*	3.22	1.37*	0.63*	6.04*	1.064*	0.74*	1.25*		S 1	1	MAT7 5
124 TE 124 TE 124 TE 124 TE	12. 12. 13. 51.9	54.83 54.79 51.61 46.51	1.207 1.25* 1.25* 1.16*	0.742 0.65* 0.7* 0.75*	4.97	1.37*	0.63*	11.18 15.46 10.60 2.61	1.265 1.25* 1.253 1.37*	0.663 0.47* 0.701 0.63*	6.0* 7.5 6.26 6.04*	1.207 1.25* 1.25* 1.064*	0.742 0.65* 0.7* 0.74*	1.25* 1.25* 1.25* 1.25*		S1 51 S1 51	1	RAO70 RAO70 LOV71 MAT75
126TB 126TE	16.0 51.9	55.41 47.27	1.2* 1.16*	0.75* 0.75*	6.14	1.37*	0.63*	13.28 2.87	1.25* 1.37*	0.625* 0.63*	6.0* 6.04*	1.1* 1.064*	0.7* 0.74*	1.2* 1.25*	1275	5 I 5 1	1	MAK 68 MAT 75
128TE 128TE	16.0 51.9	55.87 47.68	1.2* 1.16*	0.75* 0.75*	6.97	1.37*	0.63*	13.46 2.13	1.25* 1.37*	0.625* 0.63*	6.0* 6.04*	1.1* 1.064*	0.7* 0.74*	1.2* 1.25*	1291	51 51	1	NAK68 MAT75
130TE 130TE	16.0 51.9	56.14 47.81	1.2* 1.16*	0.75* 0.75*	5.82	1.37*	0.63*	14.49 3.39	1.25* 1.37*	0.625* 0.63*	6.0* 6.04*	1.1* 1.064*	0.7* 0.74*	1.2* 1.25*	13 1 5	51 51	1	MAK68 MAT75
136 XE	10.56	57.02	1.25*	0.65*				11.64	1.25*	0.47*	7.5*	1.25*	0.65*	1.25*		52		10068
138BA	17.	50.98	1.25*	0.741				16.44	1.257	0.557				1.3*		S 1		IPS73
LA 139LA	55. 29.3	41.0 50.41	1.25* 1.208	0.65* 0.658	1.81	1.274	0.712	19.56G 7.19	1.25* 1.274	1.09 0.712	2.0* 6.11	1.25* 1.208	0.65* 0.658	1.25* 1.20*		53 51	1 1,8	KAM67 HEL73
140CE 142CE	75. 12.0	27.37 53.8	1.23 1.25*	0.56 0.65*				11.98 10.7	1.22 1.25*	0.76 0.65*	1.03 6.25*	1.52 1.25*	0.45 0.65*	1.20 1.25*	4839	s2p2 S 1	22	ROL66 LES72
141PR	29.3	50.4	1.211	0.652	1.81	1.267	0.715	7.05	1.267	0.715	6.03	1.211	0.652	1.20*		S 1	1,8	HEL73
144 ND	12.0	53.5	1.25*	0.65*				10.0	1.25*	0.65	6.25*	1.25*	0.65*	1.25*		52		GAL73
144 SM 144 SM 144 SM 144 SM	30. 30.0 50.8 50.8	53.7 53.55 47.6 47.50	1.17* 1.147 1.16* 1.168	0.71 0.668 0.75* 0.785	2.13 3.51 7.66 8.68	1.27 1.372 1.37* 1.360	0.65 0.614 0.63* 0.648	7.5 4.16 1.80 0.93	1.27 1.372 1.37* 1.360	0.65* 0.614 0.63* 0.648	5.97 7.42 6.04* 5.61*	1.09 1.147 1.064* 1.075*	0.71 0.668 0.738* 0.816*	1.2* 1.25* 1.25* 1.25*	1747 1738	52 51 51 51	1 1,8 15	BAR71 HEL73 FUL70 W0072
148 SM 148 SM 148 SM 148 SM	24.5 49.5 50.8 50.8	54. 46.55 48.6 48.46	1.2* 1.168 1.16* 1.166	0.74* 0.816 0.75* 0.736	2.5 5.73 6.16 6.53	1.22 1.36* 1.37* 1.358	0.67* 0.63* 0.63* 0.661	8.5 3.45 3.10 2.80	1.22 1.36* 1.37* 1.358	0.67* 0.63* 0.63* 0.661	5.2 5.61 6.04* 5.61*	1.01 1.075 1.064* 1.075*	0.74* 0.816 0.738* 0.816*	1.21* 1.25* 1.25* 1.25*	1817 1814 1817	S 1 P 1 S 1 P 1 S 2 S 1	23 7 15	KUR71 W0070 FU170 W0072
1495M	55.	40.7	1.25*	0.65*				14.56G	1.25*	1.19	2.0*	1.25*	0.65*	1.25*		S 3	1	KAM 67
150 SM 150 SM	50.8 50.8	45.4 44.88	1.16* 1.168	0.75* 0.829	6.73 7.17	1.37* 1.360	0.63* 0.653	4.00 2.37	1.37* 1.360	0.63* 0.653	6.Q4* 5.61*	1.064* 1.075*	0.738* 0.816*	1.25* 1.25*	1897 1843	52 51	15	PUL70 W0072
15258 15258 15258 15258	24.5 24.5 50.8 50.8	50.* 48. 45.7 45.01	1.16 1.2* 1.16* 1.165	0.76 0.74* 0.75* 0.824	1.2 7.60 7.71	1.37 1.37* 1.364	0.67* 0.63* 0.715	10.0 8.5* 4.00 2.36	1.37 1.37 1.37* 1.364	0.63 0.67* 0.63* 0.715	6.0* 5.2* 6.04* 5.61*	1.06 1.01* 1.064* 1.075*	0.74* 0.74* 0.738* 0.816*	1.21* 1.21* 1.25* 1.25*	1938 1944	S 2 P 2 S 2 P 2 S 2 S 2 S 2 S 2	23 23 15	BAR71A KUR71 FUL70 W0072
15458 15458	50.8 50.8	44.3 43.94	1.16* 1.166	0.75* 0.874	11.2 6.30	1.37* 1.252	0.63* 0.776	2.06 5.30	1.37* 1.252	0.63* 0.776	6.04* 5.61*	1.064* 1.075*	0.738* 0.816*	1.25* 1.25*	1925 1968	52 52	15	PUL 70 W0072
GD	55.	36.5	1.25*	0.65*				12.3G	1.45*	1.41	2.0*	1, 25*	0.65*	1.25*		S3	1	KA 1167
D¥	55.	36.5	1.25*	0.65*				12.3G	1.45*	1.41	2.0*	1.25*	0.65*	1.25*		S 3	1	KAM67
TH	55.	36.5	1.25*	0,65*				13.3G	1.45*	1.41	2.0*	1.25*	0.65*	1.25*		53	۱	KAM67
176 ¥B	19.	54.27	1.231	0.661				12.51	1.025	1.021				1.27		s 1	8	00 T7 3
TA 181TA 181TA 181TA	22.2 10.71 13.72 40.	51.4 57.1 57.1 49.3	1.25* 1.23* 1.23* 1.18*	0.65* 0.72* 0.72* 0.7*	8.11	1.40*	0.7*	17.4 14.64 14.64	1.25* 1.30* 1.30*	0.47* 0.71 0.71	8.5* 5.7* 5.7* 7.5*	1.25* 0.95* 0.95* 1.18*	0.65* 0.92* 0.92* 0.7*	1.25* 1.19* 1.19* 1.2*	1352 1888	S 3 S2P2 S 2P 3 S	35	PER63 RAT72 RAT72 FRI65
W	17.	51.9	1.25*	0.65*				11.2	1.25*	0.76*				1.25*		51		SIE67A
PT PT	17.1 17.1	53.61 54.0	1.291 1.25*	0.522 0.65*				23.84 19.2	1.206 1.25*	0.389 0.47*	7.41 8.5*	1.291 1.25*	0.522 0.65*	1.25* 1.25*	918 1007	51 51	35	PER63 PER63
AU AU AU AU AU AU	9.4 17.1 17.1 22.2 28. 28.	58.8 58.78 54.1 51.7 50.0 50.0	1.25* 1.199 1.25* 1.25* 1.24 1.24	0.65* 0.654 0.65* 0.65* 0.547 0.545	5.30 2.83	1.52	0.91 1.60	5.0 9.92 16.4 15.7 0.36G 4.78G	1.25* 1.25* 1.25* 1.52 1.52	0.47* 0.704 0.47* 0.47* 1.32 2.32	7.5* 9.42 8.5* 8.5* 8.6 8.6 8.6	1.25* 1.199 1.25* 1.25* 1.24 1.24	0.65* 0.654 0.65* 0.65* 0.547 0.565	1.25* 1.25* 1.25* 1.25* 1.25? 1.25?	149 1051 986 1325 1926 1997	S S1 S1 S3 S2 S	35 35 35	PER63 PER63 PER63 PER63 DIT69 DIT69
AU AU AU	28. 28. 55.	49.4 47.9 43.6	1.22 1.20* 1.25*	0.608 0.70* 0.65*	7.13 7.42	1.14 1.20*	0.475 0.48*	6.68G 4.78G 18.3G	1.14 1.20* 1.25*	0.686 0.70* 1.19	13.9 15.2 2.0*	1.22 1.20* 1.25*	0.608 0.70* 0.65*	1.20* 1.20* 1.25*		S 1 S 3 S 3	1	SAN70 SAN70 KAM67

Protons

TABLE II. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	TAL A	VOL.IN W	AG. POI RW	ENTIAL AW	SURF.IM WD	RD RD	ENTIAL AD	SPIN- VSO	ORBIT P RSO	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
197 AU 197 AU 197 AU 197 AU 197 AU 197 AU	10.0 11.0 12.96 13.76 17. 17.	68.5 66.5 58.91 58.33 63.1 60.3	1.17* 1.17* 1.23* 1.23* 1.20* 1.23*	0.75* 0.75* 0.72* 0.72* 0.55 0.55	8.2 7.9	1.20* 1.23*	0.55 0.55	2.5 3.0 14.20 15.38	1.32* 1.32* 1.30* 1.30*	0.66* 0.66* 0.44* 0.44*	6.2* 6.2* 5.7* 5.7*	1.01* 1.01* 0.95* 0.95*	0.75* 0.75* 0.92* 0.92*	1.19* 1.19* 1.19* 1.19* 1.20* 1.23*	656	S2 S3 S1P2 S2P2 S S	W65 N65	ECK75 ECK75 BAT72 RAT72 GLA57 GLA57
PB	55.	43.4	1.25*	0.65*				18.3G	1.25*	1.21	2.0*	1.25*	0.65*	1.25*		53	1	KAM67
206 PB 206 PB	49.35 49.35	51.5 47.9	1.18 1.17*	0.78 0.75*	7.1 2.76	1.19 1.32*	0.65 0.63*	7.0 10.4	1.19 1.32*	0.65 0.63*	6.8 4.5	1.15 1.01*	0.80 0.75*	1.25* 1.20*	2015	S P S1P	1 1	MAN 714 MAN 714
207 PB 207 PB 207 PB 207 PB 207 PB	12.98 20.2 49.35 49.35	58.38 52.62 51.2 48.4	1.23* 1.25* 1.18 1.17*	0.72* 0.65* 0.78 0.75*	7.9 0.34	1.20 1.32*	0.65 0.63*	11.87 9.69 6.3 13.3	1.30* 1.25* 1.20 1.32*	0.44* 0.76 0.65 0.63*	5.7* 6.38 6.7 3.8	0.95* 1.25* 1.15 1.01*	0.92* 0.65* 0.83 0.75*	1.19* 1.25* 1.25* 1.20*	501 2020 2238	S1P2 S S P S P	1 1	RAT72 GLA68 MAN71A MAN71A
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	8.0 9.0 10.2 11.0 11.2	59.8 59.3 57.4 65.0 57.0	1.25* 1.25* 1.25* 1.17* 1.25*	0.65* 0.65* 0.65* 0.75* 0.65*	0.8 2.3 3.2 3.6	1.25* 1.25* 1.25* 1.25*	0.65* 0.65* 0.65* 0.65*	5.5	1.32*	0.66*	5.0* 5.0* 5.0* 6.2* 5.0*	1.25* 1.25* 1.25* 1.01* 1.25*	0.65* 0.65* 0.65* 0.75* 0.65*	1.25* 1.25* 1.25* 1.19* 1.25*		51 51 51 51 51		NO 72 NO 72 NO 72 ECK75 NO 72
208 PB 208 PB 208 PB 208 PB 208 PB	12.0 12.0 12.8 12.98	56.0 63.5 55.0 58.92	1.25* 1.17* 1.25* 1.23* 1.17*	0.65* 0.75* 0.65* 0.72* 0.75*	4.2 4.4	1.25* 1.25*	0.65* 0.65*	6.0 11.39	1.32*	0.66*	5.0* 6.2* 5.0* 5.7*	1.25* 1.01* 1.25* 0.95*	0.65* 0.75* 0.65* 0.92*	1.25* 1.19* 1.25* 1.19*	509	51 51 51 5121		HO 72 ECK75 HO 72 RAT72
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	14.0 14.0 16.0 16.0 16.	53.8 60.5 53.52 51.88 61.68	1.25* 1.17* 1.298 1.327 1.183*	0.65* 0.75* 0.612 0.537 0.724*	7.0	1.25*	0.65*	7.5 15.19 21.06 6.28	1.32* 1.188 1.191 1.273*	0.66* 0.541 0.421 0.699*	5.0* 6.2* 6.90* 6.04* 6.18*	1. 25* 1. 01* 1. 01* 1. 064* 1. 160*	0.65* 0.75* 0.75* 0.738* 0.677*	1.25* 1.19* 1.13* 1.18* 1.18*	983 944 967	51F2 52 51 51 5	2,4	HO 72 ECK75 MAK72 VOE74 VOE74
208 PB 208 PB 208 PB 208 PB 208 PB	17. 17.0 21.0 21.	53.5 66.26 53.75 57.30	1.25* 1.14 1.219 1.183*	0.65* 0.59 0.743 0.724*				7.5 4.6 10.93 10.42	1.25* 1.30 1.302 1.273*	0.76* 0.99 0.654 0.699*	2.8 6.04* 6.18*	1. 14 1.064* 1.160*	0.59 0.738* 0.677*	1.25* 1.14 1.18* 1.18*	1532 1489	S S3 S1 S	3,865	PER64 KIN70 VOE74 VOE74
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	24.1 24.1 26.3 26.3 26.3	55.12 56.84 57.29 55.97 59.91	1.191 1.183* 1.151 1.183* 1.12*	0.773 0.724* 0.757 0.724* 0.75*	5.66	1.33*	0.75*	10.30 9.65 8.64 8.92 4.81	1.283 1.273* 1.308 1.273* 1.33*	0.765 0.699* 0.838 0.699* 0.75*	6.04* 6.18* 6.04* 6.18* 4.50	1.064* 1.160* 1.064* 1.160* 0.80	0.738* 0.677* 0.738* 0.677* 0.75*	1.18* 1.18* 1.18* 1.18* 1.20*	1824 1635 1990 1700	S 1 S S2 S S2P 1	20	VOE74 VOE74 VOE74 VOE74 NAT67
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	30. 30.0 30.3 30.3 30.3 30.3 30.3	56.12 69.55 53.84 48.81 53.4 53.9	1.16* 1.03 1.192 1.25* 1.20* 1.173	0.75* 0.77 0.667 0.65* 0.7* 0.682	6.51 4.5 10.49 4.0 2.28	1.37* 1.58 1.25* 1.25* 1.325	0.63* 0.51 0.65* 0.7* 0.764	4.04 3.5 12.56 7.6 7.66	1.37* 1.58 1.192 1.25* 1.325	0.63* 0.51 0.752 0.7* 0.764	6.04* 6.1 10.26 12.* 5.1 5.11	1.064* 1.03 1.192 1.25* 1.20* 1.211	0.738* 0.77 0.667 0.65* 0.7* 0.519	1.25* 1.03 1.25* 1.25* 1.20* 1.20*	1920 1840 1793 2036	S2P1 S2P2 S1 S2 S1P1 S1P1	11 32 32 11 11	FRI67 KIN70 BAR65 BAR65 GRE66 SAT67
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	30.3 30.3 30.3 30.3 30.3 30.3 30.3	59.1 52.80 52.48 52.27 47.17 50.1	1.12* 1.184 1.190 1.202 1.225 1.197	0.75* 0.689 0.674 0.676 0.73 0.755	3.0* 2.29 2.63 1.90 2.14 2.15	1.33* 1.274 1.279 1.268 1.225 1.197	0.58* 0.746 0.703 0.752 0.73 0.75	8.12 7.92 7.59 8.58 8.53 9.42	1.33* 1.274 1.279 1.268 1.321 1.293	0.58* 0.746 0.703 0.752 0.70 0.733	5.20 5.96 5.71 5.71* 4.60 5.05	1.12* 1.159 1.147 1.147* 1.225 1.028	0.75* 0.599 0.585 0.585* 0.73 0.707	1.2* 1.13* 1.13* 1.13* 1.25* 1.25*	2066 1916 1857 1938	S 1P 1 S 1P 1 P 1 S 1 S P2 S P2	11 2 2 2	SAT67 GRE70 GRE70 GRE70 KAR70 KAR70
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	30.3 30.3 30.3 30.3 30.5 30.5	54.54 52.25 53.07 52.57 54.63 53.02	1.171 1.190 1.173 1.183* 1.160 1.183*	0.713 0.703 0.705 0.724* 0.749 0.724*	1.49 2.32 2.22 2.96 1.82 4.48	1.280 1.282 1.287 1.273* 1.273* 1.273*	0.767 0.743 0.750 0.699* 0.750 0.699*	8.78 8.08 7.82 8.09 8.98 6.95	1.280 1.282 1.287 1.273* 1.287 1.273*	0.767 0.743 0.750 0.699* 0.750 0.699*	6.02 6.02 6.00 5.84 6.45 5.97	1.111 1.18 1.172 1.160* 1.224 1.160*	1.241 0.602 0.603 0.677* 0.571 0.677*	1.25* 1.25* 1.18* 1.18* 1.18* 1.18*	1982 1943 1947 1898 1968 1968	S1 S1P1 S2P1 S P S1P2 S P		PER71 PER71 VOE74 VOE74 VOE74 VOE74
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	30.8 30.8 31. 31. 31. 31.	53.71 51.76 52.6 53.2 45.18 20.53	1.170 1.183* 1.20* 1.20* 1.20* 1.20* 1.17*	0.661 0.724* 0.64 0.647 0.70* 0.75*	2.47 3.17 2. 10.21 4.12*	1.252 1.273* 1.20* 1.20* 1.32*	0.773 0.699* 1.38 0.48* 0.342	8.65 9.12 8.2G 12.2 5.28G 2.07G	1.252 1.273* 1.20* 1.20* 1.20* 1.32*	0.773 0.699* 2.0 0.776 0.70* 0.496	5.84 4.95 5.4 4.2 17.03 6.2*	1.226 1.160* 1.20* 1.20* 1.20* 1.20*	0.514 0.677* 0.64 0.647 0.70* 0.75*	1.18* 1.20* 1.20* 1.20* 1.20* 1.20*	1930 1942 1571	S1P1 S P S S S3 S	₩65 ₩65	VOE74 VOE74 DEV62 SAT63 SAN70 SAN70
208 PB 208 PB 208 PB	35.0 35.0 39.7	53.84 51.70 51.	1.160 1.183* 1.20*	0.739 0.724* 0.65*	4.29 5.84 8.0	1.286 1.273* 1.428	0.702 0.699* 0.704	6.46 6.00	1.286 1.273*	0.702 0.699*	6.04* 6.18* 6.6	1.064* 1.160* 1.20*	0.738* 0.677* 0.65*	1.18* 1.18* 1.2*	1997 1980	S1 S S2		VOE74 Voe74 Sto64
208 PB 208 PB 208 PB 208 PB 208 PB	40. 40. 40. 40.	49.0 51.3 54.62 52.76	1.207 1.18* 1.125 1.16*	0.769 0.7* 0.873 0.75*	8.58 5.31 6.12	1.40* 1.386 1.37*	0.7* 0.624 0.63*	18.1 5.60 4.31	1.230 1.386 1.37*	0.551 0.624 0.63*	5.7 7.5* 5.84 6.04*	1.207 1.18* 1.026 1.064*	0.769 0.7* 0.794 0.738*	1.2* 1.2* 1.25* 1.25*	4975 2015 2217 2116	S1 S S1P1 S1P1	15 15	PRI65 PRI65 PRI67 PRI67
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	40. 40. 40.0 40.0 45.0 45.0	53.82 50.14 51.80 50.54 50.62 47.23	1.148 1.193 1.159 1.183* 1.156 1.183*	0.755 0.717 0.784 0.724* 0.750 0.724*	5.20 4.38 3.98 3.80 4.35 6.19	1.254 1.303 1.321 1.273* 1.300 1.273*	0.754 0.680 0.727 0.699* 0.662 0.699*	5.39 6.56 5.75 7.12 6.00 4.28	1.254 1.303 1.321 1.273* 1.300 1.273*	0.754 0.680 0.727 0.699* 0.662 0.699*	6.77 5.89 6.66 5.87 6.04* 6.18*	1.261 1.119 1.044 1.160* 1.064* 1.160*	1.093 0.741 0.905 0.677* 0.738* 0.677*	1.25* 1.25* 1.18* 1.18* 1.18* 1.18*	4051 4095 2169 4072 4086 2056	S1 S1P1 S1P2 SP S1 S		PER71 PBR71 VOE74 VOE74 VOE74 VOE74 VOE74
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	47.3 47.3 49.35 49.4 49.4	48.26 48.31 48.0 47.52 46.44	1. 183 1. 183* 1. 17* 1. 168 1. 183*	0.712 0.724* 0.75* 0.810 0.724*	4.31 5.90 0.69 4.09 7.76	1.275 1.273* 1.32* 1.233 1.273*	0.705 0.699* 0.63* 0.777 0.699*	5.74 4.72 12.8 5.51 3.20	1.275 1.273* 1.32* 1.233 1.273*	0.705 0.699* 0.63* 0.777 0.699*	6.04* 6.18* 4.1 5.93 6.50	1.064* 1.160* 1.01* 1.133 1.160*	0.738* 0.677* 0.75* 0.790 0.677*	1.18* 1.18* 1.20* 1.18* 1.18*	2095 2089 2242 2115 2067	S1 S S1P2 S2P1 S P	1 1	VOE74 VOE74 MAN71A VOE74 VOE74

Protons

TABLE II. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	IAL A	VOL.IMA W	RW	ENTIAL AW	SURF.IM WD	AG. POT RD	ENTIAL AD	SPIN- VSO	ORBIT P RSO	OTENTIAL A SO	RC	SR	FIT	NOTE	REF.
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	55. 61.4 61.4 61.4 61.4	43. 41.42 47.12 46.29 44.57	1.25* 1.220 1.16* 1.173 1.183*	0.65* 0.577 0.75* 0.682 0.724*	2.01 5.98 3.31 3.75	1.32 1.37* 1.263 1.273*	0.668 0.63* 0.555 0.699*	18.G 7.80 4.15 11.50 5.95	1.25* 1.32 1.37* 1.263 1.273*	1.2* 0.668 0.63* 0.555 0.699*	5.84* 6.04* 6.04* 6.18*	1.026* 1.064* 1.064* 1.160*	0.794* 0.738* 0.738* 0.677*	1.25* 1.25* 1.25* 1.18* 1.18*	2162 2136 2073 2109	52 52 52 51 51 5	1	YAG68 FUL69 FUL69 VOE74 VOE74
208 PB 208 PB 208 PB 208 PB 208 PB	155. 156. 156.0 156.0	18.1 26.5 18.84 17.03	1.12 1.12 1.211 1.183*	0.69 0.79 0.663 0.724*	16.9 16.2 8.78 12.06	1.29 1.31 1.374 1.273*	0.60 0.48 0.457 0.699*				4.87 1.23 0.94 3.58	1.10 1.15 1.200 1.160*	0.83 0.72 0.548 0.677*	1.20* 1.20 1.18* 1.18*	1808 1707 1793	S2P2 S2 S1P2 S P	12,22 12,22 22,12 22,12	₩1169 COM74 ¥0E74 ¥0E74
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	160. 160. 160.0 160.0 185.0 185.0	28.70 17.0 29.50 8.63 12.11 10.26	1.118 1.25 1.062 1.183* 1.238 1.183*	0.702 0.69 0.791 0.724* 0.836 0.724*	17.60 9.0 13.88 11.92 18.58 13.33	1.308 1.37 1.321 1.273* 1.232 1.273*	0.530 0.70 0.546 0.699* 0.642 0.699*				0.35 2.5* 2.14 3.90 2.70 3.04	1.118 1.25 1.143 1.160* 1.082 1.160*	0.702 0.69 0.605 0.677* 0.578 0.677*	1.20* 1.3* 1.18* 1.18* 1.18* 1.18* 1.18*	1866 1771 1890 1765 1828 1801	S1 S3 S1P2 S P S1P2 S P S1	33,19 12,19 19,12 19,12 22,12 22,12 22,12	R0065 R0065 V0E74 V0E74 V0E74 V0E74 V0E74
BI	55.	44.0	1.25*	0.65*	20100	••••	0.017	18.3G	1.25*	1.21	2.0*	1.25*	0.65*	1.25*	1045	53	1	KAM67
209 BI 209 BI 209 BI 209 BI 209 BI 209 BI	10.76 10.8 12.96 13.0 14.4 17.	58.76 62.25 58.76 62.75 56.72 53.5	1.23* 1.17* 1.23* 1.17* 1.25* 1.25*	0.72* 0.75* 0.72* 0.75* 0.65* 0.65*				11.24 4.5 11.64 6.25 11.26 7.5	1.30* 1.32* 1.30* 1.32* 1.25* 1.25*	0.44* 0.66* 0.44* 0.66* 0.47* 0.76*	5.7* 6.2* 5.7* 6.2* 7.5*	0.95* 1.01* 0.95* 1.01* 1.25*	0.92* 0.75* 0.92* 0.75* 0.65*	1.19* 1.19* 1.19* 1.19* 1.25* 1.25*	196 484 654	S2P2 S2P2 S1P1 S2P2 S1 S	3, w 65	RAT72 BCK75 RAT72 BCK75 BBR67 PER64
209 BI 209 BI 209 BI 209 BI 209 BI 209 BI	22.2 31. 31. 61.7 78.	52.2 50.14 25.03 40.2 26.87	1.25* 1.20* 1.17* 1.19 1.22	0.65* 0.70* 0.75* 0.76 0.58	8.4 6.77 4.12* 8.6	1.25* 1.20* 1.32* 1.37	0.65* 0.48* 1.43 0.65	5.G* 6.48G C.97G 13.12	1.25* 1,20* 1.32* 1.21	1.00* 0.70* 2.07 0.68	6.3 13.56 6.2* 6.3 0.89	1.25* 1.20* 1.01* 1.19 1.48	0.65* 0.70* 0.75* 0.76 0.43	1.25* 1.20* 1.20* 1.2* 1.20	1442 1543 2094	S2 S2 S S S2P2	22	PIC65 SAN70 SAN70 BER71 ROL66
209BI 209BI	153. 156.	22.50 34.3	1_11 1_07	0.73 0.77	19.8 17,6	1.29 1.31	0.59 0.53				1.70 1.14	1.10 1.15	0.75 0.72	1.20	1906 1886	51p2 52	12,13 12,19	ROL66 COM74
239 PU 239 PU	13.0 13.0	57. 57.*	1.42* 1.42*	0.44 0.46	5.99	1.25*	0.68	11.2	1.25*	0.67				1.25* 1.25*		S 2 S 2		WOL68 WOL68

NOTES

- 1. Data for angles smaller than 90°
- 2. The Coulomb potential has a Woods-Saxon form with r_{c} = (1.106 + 1.053 x 10^-^A) F and a_{c} = 0.502 F
- More than one angular distribution has been used to determine these parameters
- 4. Restricted values of σ_R
- Not strictly optical-model analysis performed. Other processes are involved
- 6. Data absolute normalization known to ±30%
- 7. Data for angles smaller than 100°
- 8. Arbitrary normalization of the cross-section data
- a) Calculations performed with doubled experimental errors on the differential cross sections and halved on the polarization data
 b) This paper contains a more complete analysis with
 - resonance parameters
- Nuclear Radii study.
 First set of parameters: 2% uncertainties on differ-ential cross sections.
 Second set of parameters: 10% uncertainties on dif-ferential cross sections, therefore gives a greater emphasis to polarization data
- Polarization data measured at a slightly different energy than the differential cross-section data. See publication.
- 12. See publication for the value of the imaginary part of the spin-orbit potential.
- 13. Data for angles smaller than 65°
- 14. Polarization data for angles smaller than 50°
- 15. See publication for other sets of parameters fitting the same data.
- 16. Polarization data for angles smaller than 90°
- A normalization factor of 0.316 was adopted for the differential cross-section data

- 18. The real well depth is a function of energy. See publication.
- 19. Data for angles smaller than 60°
- 20. Differential cross-section normalization adjusted by the code.
- 21. Both normalizations of the cross-section and polarization data are adjusted by the code.
- 22. Data for angles smaller than 45°
- 23. Coupled-channel calculations performed
- 24. Simultaneous fit to elastic cross-section polarization and triple-scattering data
- 25. Data for angles smaller than 30°
- 26. See publication for compound elastic contribution.
- 27. See publication for comparison of the curve obtained with these parameters and another set of data points.
- 28. Data renormalized. See publication.
- 29. Data for angles larger than 45°
- Fits to differential elastic cross-sections and polari-zation are better or equivalent to those obtained with parameters from reference KØS67
- 31. Data for angles smaller than 70°
- Polarization predictions compared with data at nearby energy. See publication.
- Incident energy corrected to give the correct relativistic center-of-mass momentum, and see note 12.
- 34. Back-angle data not included in the search. See publication
- The real well depth is a function of mass number and energy. See publication. 35.
- As reported in a previous compilation, "Phenomenological Optical Model Parameters," D. R. Winner and R. M. Drisko, Technical Report, Department of Physics, University of Pittsburgh, June 1965. ₩65.

TABLE II. Optical-Model Parameters

Protons

TABULAR I	BIBLIOGRAPHY	
Target <u>Nuclei</u>	Energy Range (MeV)	References
D to Zr (24 Nuclei) ^(*)	∿ 10	R0S61
"Не	E < 20	SAT68
"He to Zn (18 nuclei) ^(*)	~ 8	R0S61A
l p-shell	10 to 50	WAT69
¹² C ^(*)	5.4 to 20	R0562
^{1 8} 0	7.9 to 16.3	STE66
⁶ °Ca	9.8 to 21.7	DIC71
^{4 o} Ca	30 to 45.5	GR067
⁵ Fe to ¹² Sn (14 nuclei) ^(**)	14.5	PYL69
⁵⁹ Co to ⁶⁵ Cu	6	ANT70
^{se} Ni to ²⁰⁸ Pb (6 nuclei) ^(**)	14.5, 30.3, 40.0	GRE68
⁸⁸ Sr to ⁹² Mo	5 to 15	SCH75

*Calculations compared with $\sigma(\theta)$ and P(θ)

**Folding model

PROTONS REFERENCES

- AHN70 M. AHNEN, J. LOWE, P. M. ROLPH, AND O. KARBAN, NUCL. PHYS. A147, 273 (1970).
- ALT67 J. L. ALTY ET AL., NUCL. PHYS. 197, 541 (1967).
- ALT67A J. L. ALTY, L. L. GREEN, G. D. JONES AND J. P. SHARPEY-SCHAPER, NUCL. PHYS. A100, 191 (1967).
- AND64 P. T. ANDREWS, R. W. CLIPPT, L. L. GREEN AND J. F. SHARPEY-SCHAFER, NUCL. PHYS. 56, 449 (1964).
- ANT69 A. E. ANTROPOV ET AL., BULL. ACAD. SC. USSR 33, 1576 (1969).
- ANT70 A. E. ANTROPOV ET AL., BULL. ACAD. SC. USSR 34, 348 (1970).
- ARK70 R. ARKING, R. N. BOYD, J. C. LOMBARDI, A. B. ROBBINS AND B. GONSIOR, NUCL. PHYS. A155, 480 (1970).
- AR074 B. K. ARORA, D. K. OLSEN, P. J. RILEY AND C. P. BROWNE, PHYS. REV. 10, 2301 (1974).
- ASC70 R. J. ASCUITTO AND NORMAN K. GLENDENNING, PHYS. REV. C2, 1260 (1970).
- AWA69 YOHKO AWAYA ET AL., J. PHYS. SOC. JAPAN 27, 1087 (1969).
- ANA72 YOHKO AWAYA ET AL., J. PRYS. SOC. JAPAN 33, 881 (1972).
- BAL64 J. B. BALL, C. B. FULMER AND R. H. BASSEL, PHYS. REV. 135, B706 (1964).
- BANG8 J. C. BANE, J. J. KRAUSHAAR, B. W. RIDLEY AND N. H. STAUTBERG, NUCL. PHYS. A116, 580 (1968)
- BAR65 R. C. BARRETT, A. D. HILL AND P. E. HODGSON, NUCL. PHYS. 62, 133 (1965).
- BAR68 R. W. BARNARD AND G. D. JONES, NUCL. PHYS. A 108, 655 (1968)
- BAR68A R. W. BARNARD AND G. D. JONES, MUCL. PHYS. & 111, 17 (1968)
- BAR69 NORTON BARON, REGIS P. LEONARD, DAVID A. LIND, PHYS. REV. 180, 978 (1969).
- BAR71 J. H. BARKER AND J. C. HIEBERT, PHYS. REV. C4, 2256 (1971)
- BAR71A M. P. BARBIER, R. N. LONBARD, J. N. HOSS AND Y. D. TERRIEN, PHYS. LETT. 348, 386 (1971)

- BAU65 D. J. BAUGH, G. W. GREENLEES, J. S. LILLEY AND S. ROMAN, NUCL. PHYS. 65, 33 (1965).
- BAU66 D. J. BAUGH, J. A. R. GRIFFITH AND S. ROMAN, NUCL. PHYS. 83, 481 (1966).
- BAU67 D. J. BAUGH ET AL., NUCL. PHYS. A99, 203 (1967).
- BEE70 O. BEER, ET AL., NUCL. PHYS. A147, 326 (1970).
- BEN64 J. BENVENISTE, A. C. MITCHELL, B. BUCK AND C. B. PULMER, PHYS. REV. 133, B323 (1964).
- BEN68 W. BENENSON, S. M. AUSTIN, R. A. PADDOCK AND W. G. LOVE, PHYS. REV. 176, 1268 (1968)
- BER68 N. BEROVIC, P. M. ROLPH AND S. M. SCARROTT, PHYS. LETT. 27B, 477 (1968)
- BER71 F. E. BERTRAND AND M. B. LEWIS, NUCL. PHYS. A168, 259 (1971)
- BEU69 P. BEUZIT, J. DELAUNAY, J. P. FOUAN AND N. CINDRO, NUCL. PHYS. A128, 594 (1969).
- BLA70 A. G. BLAIR ET AL., PHYS. REV. C1, 444 (1970).
- BLO69 H. P. BLOK, G. D. THIJS, J. J. KRAUSHAAR, AND N. M. STAUTBERG, NUCL. PHYS. A127, 188 (1969).
- BOY71 R. N. BOYD, J. FENTON, N. WILLIAMS, T. KRUSE AND W. SAVIN, NUCL. PHYS. A162, 497 (1971)
- BOY72 R. N. BOYD ET AL., NUCL. PHYS. A182, 571 (1972)
- BRA67 F. P. BRADY, J. E. DRAPER AND J. A. MCCRAY, NUCL. PHYS. A94, 449 (1967).
- BRA69 RICHARD C. BRALEY AND WILLIAM F. PORD, PHYS. REV. 182, 1174 (1969).
- BRA71 K. H. BRAY ET AL., NUCL. PHYS. &167, 57 (1971)
- BRA72 K. H. BRAY ET AL., NUCL. PHYS. A189, 35 (1972)
- BUC63 B. BUCK, PHYS. REV. 130, 712 (1963).
- BUN64 S. M. BUNCH, H. H. PORSTER AND C. C. KIH, NUCL. PHYS. 53, 241 (1964).
- BUR75 S. J. BURGER AND G. HEYMANN, NUCL. PHYS. A243, 461 (1975)
- CAL67 M. CALDERBANK ET AL., NUCL. PHYS. A105, 601 (1967).

TABLE II. Optical-Model Parameters Protons

PROTONS REFERENCES

CLA70A	R. G. CLARKSON, W. R. COKER, AND C. F. MOORE, PHYS. REV. C2, 1097 (1970).	FU170	C. B. FULMER, F. G. KINGSTON, A. SCOTT, AND J. C. HAFELE, PHYS. LETTERS 328, 454 (1970).
CLA70E	R. G. CLARKSON AND W. R. COKER, PHYS. REV. C2, 1108	GAL66	A. GALLMANN ET AL., NUCL. PRIS. 88, 654 (1966).
CLA70C	(1970). N. M. CLARKE, E. J. BURGE, D. A. SMITH, AND J. C.	GAL73	S. GALES, L. LESSARD AND J. L. POSTER, JR., NUCL. PHTS. A202, 535 (1973)
CT 172	DURE, NUCL. PHIS. RIST, 145 (1970).	GE058	B. GEOFPRION ET AL., NUCL. PHYS. A116, 209 (1968)
CO 116 1	A. W. COHEN AND J. A. COOKSON, NUCL. PHYS. 24, 529	GE R66	D. G. GERKE, D. B. TILLEY, N. R. PLETCHER AND R. M. WILLIAMSON, NUCL. PHYS. 75, 609 (1966).
COL66	(1961). Robert K. Cole et al., NUCL. Phys. 75, 241 (1966).	GL 157	A. E. GLASSGOLD AND P. J. KELLOGG, PHYS. REV. 107, 1372 (1957).
C0174	V. COMPARAT ET AL., NUCL. PHYS. A221, 403 (1974).	GL 1571	A A. E. GLASSGOLD ET AL., PHYS. REV. 106, 1207 (1957).
CR 86 3	R. M. CRAIG ET AL., PHYS. LETTERS 3, 301 (1963).	GLA68	C. GLASHAUSER ET AL., PHYS. REV. LETT. 21, 918 (1968)
CRA66	R. M. CRAIG ET AL., NUCL. PHYS. 83, 493 (1966).	GL A 7 0	C. GLASHAUSSER ET AL., PHYS. REV. 184, 1217 (1969)
CR175	G. B. CRINEAU, L. W. J. WILD AND B. M. SPICER, NUCL. PHYS. A244, 67 (1975)	GRA65	W. S. GRAY, R. A. KENEPICK AND J. J. KRAUSHAAR, NCCL. PHYS. 67, 542 (1965).
CU R 7 0	T. H. CURTIS, H. F. LUTZ, AND W. BABTOLINI, PHYS. REV. C1, 1418 (1970).	GR A 6 5 A	N. S. GRAY, R. A. KENEPICK AND J. J. KRAUSHAAR, NUCL. PHYS. 67, 565 (1965).
CUR71	T. H. CURTIS, H. P. LUTZ, D. W. HEIKKINEN AND W. BARTOLINI, NUCL. PHYS. A165, 19 (1971)	GRA66	W. S. GRAY, R. A. KEWEPTCR, J. J. KRAUSHAAR AND G. R. SATCHLER, PHYS. REV. 142, 735 (1966).
DAL69	P. J. DALLTMORE, N. P. DAVIDSON, AND J. HELLSTROM, NUCL. PHYS. A132, 207 (1969).	GRE66	G. W. GREENLEES AND G. J. PYLE, PHYS. REV. 149, 836 (1966).
DE V 6 2	D. W. DEVINS, R. H. FORSTER AND G. G. GIGAS, NUCL. PHYS. 35, 617 (1962).	GR E6 8	G. W. GREENLEES, G. J. PYLE AND Y. C. TANG, PHYS. Rev. 171, 1115 (1968).
DE V6 9	D. W. DEVINS ET AL., NUCL. PHYS. A126, 261 (1969).	GR E7 0	G. W. GREENLEES, V. HNIZDO, O. KARBAN, J. LOWE, AND M.
DEY72	J. A. DEYE, R. L. ROBINSON AND J. L. C. PORD, JR., NUCL. PHYS. A180, 449 (1972)	GRE 71	G. W. GREENLEES, C. H. POPPE, J. A. SIEVERS AND
DIC63	J. K. DICKENS, D. A. HANER AND C. N. WADDELL, PHYS. REV. 129, 743 (1963).	GRE72	D. D. WATSON, PHYS. NEV. C., 1231 (1971) P. D. GREAVES, V. HWIZDO, J. LOWE AND O. KARBAN,
DIC68	J. K. DICKENS, E. EICHLER AND G. R. SATCHLER, Phys. Rev. 168, 1355 (1968)	GR067	E. E. GROSS ET AL., NOCL. PHYS. A102, 673 (1967).
DIC71	J. F. DICELLO, G. IGO, W. T. LELAND AND P. G.	GR 072	C. R. GROHN ET AL., PHYS. REV. C6, 915 (1972)
	PEREY, PHYS. REV. C 4, 1130 (1971).	GRU72A	C. R. GRUHN BT AL., PHYS. REV. C6, 944 (1972)
DIT69	ROGER DITTMAN, HARBHAJAN S. SANDHU, ROBERT K. COLE, AND CHARLES N. WADDELL, NUCL. PHYS. A126, 592 (1969).	GU R 6 9	H. GUPATZSCH, G. HOPMANN, H. MULLER, AND G. STILLER, NUCL. PHYS. A129, 405 (1969).
DS 1173 DU 1168	R. DE SWINIARSKI ET AL., PHYS. LETT. 43B, 27 (1973). H. H. DURM, NUCL. PHYS. A118, 563 (1968)	HAN73	L. F. HANSEN, S. H. GRIMES, J. L. KAMMERDIENER AND V. A. MADSEN, PHYS. REV. 38, 2072 (1973)
DUK63	C. B. DUKE, PHYS. REV. 129, 661 (1963).	HAR63	G. HARDIE, R. L. DANGLE AND L. D. OPPLIGER, PHYS.
DUR65	J. E. DURISCH AND P. GOULD. PHYS. REV. 137. B906		REV. 129, 353 (1963).
ECC66	(1965). S. P. RCCLES. H. P. LUTZ AND V. A. MADSEN. PHYS.	HA R 7 0	K. HARAWU, C. L. HOLLAS, P. J. RILEY, AND W. R. COKER, PHYS. REW. C1, 938 (1970).
20000	REV. 141, 1067 (1966).	HA Y 6 9	R. M. HAYBRON, NUCL. EHYS. A124, 662 (1969).
EC K75	J. S. ECK AND W. J. THOMPSON, NUCL PHYS. A237, 83 (1975).	HEL69	J. HELLSTROM, P. J. DALLIMORE AND W. F. DAVIDSON, NUCL. PHYS. A132, 581 (1969).
ED 46 7	V. R. W. EDWARDS, NUCL. PHYS. A101, 17 (1967).	HEL73	V. D. HELTON, J. C. HIEBERT AND J. B. BALL, NUCL. PRYS. A201, 225 (1973)
EEN74	J. EENMAA ET AL., NUCL PHYS. A218, 125 (1966).	HEN69	D. L. HENDRIE, C. GLASHAUSSER, J. M. MOSS AND J.
EL N6 7	N. EL-NADI AND O. ZOHNI, 2. PHYSIK 206, 18 (1967) AND Z. PHYSIK 206, 150 (1967).	HEN70	THIRION, PHYS. REV. 186, 1188 (1969). E. HENTSCHEL AND G. HEINRICH, PHYS. REV. A144, 92
ERR67	H. J. ERRAMUSPE, NUCL. PHYS. A105, 569 (1967).		(1970).
FAL70	W. R. PALK, R. J. KIDNEY, P. KULISIC, AND G. K. TANDON, NUCL. PHYS. A157, 241 (1970).	HE ¥69	G. HEYMANN, P. VAN DEB MERME, I. J. VAN HEERDEN, AND I. C. DORMEHL, Z. PHYSIK 218, 137 (1969).
FAN67	J. A. FANNON, E. J. BURGE, D. A. SMITH AND N. K. GANGULY, NUCL. PHYS. A97, 263 (1967).	HIN62	S. HINDS, R. HIDDLETON AND D. J. PULLEN, PHYS. LETTERS 1, 12 (1962).
PO R67	J. S. FORSTER ET AL., NUCL. PHYS. A101, 113 (1967).	HNI71	V. HNIZDO, O. KARBAN, J. LOWE, G. W. GREENLEES AND W. MAROFSRE, PHIS. REV. C3, 1560 (1971)
FOR67	J. L. C. PORD, JR. ET AL., PHYS. REV. 158, 1194 (1967)	HO & 6 1	D. HOARE, A. B. ROBBINS AND G. W. GREENLEES, PROC.
FOR70	J. L. C. FORD, JR. ET AL., NUCL. PHYS. A142, 525 (1970)		PHYS. SOC. (LONDON) 77, 830 (1961).
FR 165	M. P. PRICKE AND G. R. SATCHLER, PHTS. REV. 139, B567 (1965).	HO 06 2	P. E. HODGSON, PROC. PHYS. SOC. (LONDON) 80, 1161 (1962).
FR167	M. P. FRICKE, E. E. GROSS, B. J. HORTON AND A. ZUCKER, PHYS. REV. 156, 1207 (1967) AND L. N.	HO D6 3	P. E. HODGSON, PHYS. LETTERS 6, 75 (1963).
	BLUNBERG ET AL., PHYS. REV. 147, 812 (1966)	HOR72	Y. S. HOROWITZ, NUCL. PHYS. A193, 438 (1972)
FR 167A	M. P. FRICKE, E. E. GROSS AND A. ZUCKER, PHYS. REV. 163, 1153 (1967).	HU L 6 9	H. HULUBEI ET AL., NUCL. PHYS. & 123, 531 (1969).
FU 169	C. B. PULMER, J. B. BALL, A. SCOTT, AND M. L. WHITEN, PHTS. REV. 101, 1565 (1969).	ING73	A. INGEMARSSON, E. HAGBERG AND H. SHERIF, NUCL. PHYS. A216, 271 (1973)

TABLE II. Optical-Model Parameters

Protons

PROTONS REFERENCES

- IPS73 S. S. IPSON, W. BOOTH AND J. G. B. HAIGH, NUCL. PHTS. A206, 114 (1973)
- JAR67 O. N. JARVIS, B. G. HARVEY, D. L. HENDRIE AND JEANETTE NAHONEY, WUCL. PHYS. A102, 625 (1967).
- JOH68 R. R. JOHNSON AND R. J. GRIFFITHS, NUCL. PHYS. A117, 273 (1968)
- JOH68A R. R. JOHNSON AND G. D. JONES, NUCL. PHYS. & 122, 657 (1968)
- JON68 G. D. JONES, R. R. JOHNSON AND B. J. GRIPPITHS, NUCL. PHYS. A107, 659 (1968)
- JON68A G. D. JONES, R. R. JOHNSON AND J. H. JETT, NUCL. PHYS. A111, 449 (1968)
- KAM67 H. KAMITSUBO ET AL., J. PHYS. SOC. JAPAN 22, 19 (1967).
- KAR69 O. KARBAN, NUCL. PHTS. A132, 548 (1969).
- KAR69A O. KARBAN, J. LOWE, P. D. GREAVES AND V. HNIZDO, NUCL. PHYS. A133, 255 (1969).
- KAR70 O. KARBAN, P. D. GREAVES, V. HNIZDO, J. LOWE, AND G. W. GREENLEES, NUCL. PHYS. A147, 461 (1970).
- KIN64 C. C. KIN, S. M. BUNCH, D. W. DEVINS AND R. H. FORSTER, NUCL. PHYS. 58, 32 (1964).
- KIN70 K. KING AND BRUCE R. J. MCKELLAR, PHYS. REV. C1, 1538 (1970).
- KOI67 MASAHIRO KOIKE, NUCL. PHYS. A98, 209 (1967).
- KO168 M. KOIKE ET AL., PHYS. LETT. 268, 288 (1968)
- KOL69 W. A. KOLASINSKI, J. EENMAA, F. H. SCHWIDT, H. SHERIF, AND J. R. TESHER, PHYS. REV. 180, 1006 (1969).
- KOL69A J. J. KOLATA AND A. GALONSKY, PHYS. REV. 182, 1073 (1969).
- KOS67 P. KOSSANYI-DENAY, R. DE SWINIARSKI AND C. GLASHAUSSER, NUCL. PHYS. A94, 513 (1967).
- KOS68 P. KOSSANYI-DEMAY AND R. DE SWINIARSKI, NUCL. PHYS. A108, 577 (1968)
- KOS69 C. J. KOST AND B. HIRD, NUCL. PHYS. A132, 611 (1969).
- KOZ68 R. L. KOZUB, PHYS. REV. 172, 1078 (1968)
- KUL67 L. A. KULL, PHYS. REV. 163, 1066 (1967).
- KUL68 L. A. KULL AND E. KASHY, PHYS. REV. 167, 963 (1968)
- KUN69 P. D. KUNZ, E. ROST AND R. R. JOHNSON, PHTS. REV. 177, 1737 (1969).
- KUR71 A. B. KUREPIN AND R. M. LOMBARD, PHYS. LETT. 378, 55 (1971)
- LAN73 C. R. LAMONTAGE ET AL., PHYS. LETT. 45B, 465 (1973) AND PRIVATE COMMUNICATION.
- LEG66 J. C. LEGG, H. D. SCOTT AND M. K. HEHTA, NUCL. PHYS. 84, 398 (1966).
- LER72 GERALD M. LERNER AND JERRY B. MARION, NUCL. PHYS. A193, 593 (1972)
- LES72 L. LESSARD, S. GALES AND J. L. POSTER, JR., PHYS. REV. C6, 517 (1972)
- LEN67 V. B. LEWIS ET AL., NUCL. PHYS. A101, 589 (1967).
- LEW68 V. E. LEWIS, M. CALDERBANK, N. K. GANGULY AND N. P. FRICKE, NUCL. PHYS. A117, 673 (1968)
- LIE68 K. P. LIEB, JAMES J. KEWT AND C. PRED MOORE, PHYS. REV. 175, 1482 (1968)
- LIE70 H. S. LIERS, R. N. BOYD, C. H. POPPE, J. A. SIEVERS, AND D. L. WATSON, PHYS. REV. C2, 1399 (1970).
- LIE71 H. S. LIERS, NUCL. PHYS. &170, 616 (1971)
- LIN70 N. LINGAPPA AND G. W. GREENLEES, PRYS. REV. C2, 1329 (1970).
- LON72 J. C. LOMBARDI, R. W. BOYD, R. ARKING AND A. B. ROBBINS, NUCL. PHYS. A188, 103 (1972)
- LON72A J. C. LONBARDI, R. N. BOYD, R. ARKING AND A. B. ROBBINS, NUCL. PHYS. A192, 641 (1972)
- LOV71 G. LOVHOIDEN, B. SKAALI AND P. R. CHRISTENSEN, PHYS. LETT. 348, 125 (1971)

- LOYTO D. H. LOYD AND W. HAEBBRLI, NOCL. PHYS. A148, 236 (1970).
- LUT72 H. F. LUTZ, D. W. HEIKKINEN AND W. BARTOLINI, NUCL. PHYS. 8198, 257 (1972)
- LUT74 H. P. LUTZ, D. W. HEIKKINEN, W. BARTOLINI AND I. D. PROCTOR, NUCL. PHYS. A231, 365 (1974).
- MAK67 W. MAKOFSKE ET AL., PHYS. LETT. 258, 322 (1967).
- MAK67 W. MAKOFSKE ET AL., PHYS. LETT. 258, 322 (1967).
- MAK68 W. MAKOPSKE, W. SAVIN, H. OGATA AND T. H. KRUSE, PHYS. REV. 174, 1429 (1968)
- MAK72 W. MAKOPSKE, G. W. GREENLEES, H. S. LIERS AND G. J. PYLE, PHYS. REV. C5, 780 (1972)
- MAN71 G. S. MANI, D. JACQUES AND A. D. B. DII, NUCL. PHTS. A165, 145 (1971)
- NAN71A G. S. MANT, D. T. JONES AND D. JACQUES, NUCL. PRYS. 1155, 384 (1971)
- MAR66 A. MARIMOV, L. L. LEE, JR. AND J. P. SCHIFFER, PHYS. REV. 145, 852 (1966).
- NAT75 H. HATOBA, H. H. YAKUTAKE, K. YAGI AND Y. AOKI, NUCL. PHYS. A237, 260 (1975).
- NAT71 B. NAYER, J. GOSSET, J. L. ESCUDIE AND H. KAMITSUBO, NUCL. PHTS. A177, 205 (1971)
- MIC69 L. S. MICHELMAN, S. PIARMAN, E. J. LUDWIG, AND A. B. ROBBINS, PHYS. REV. 180, 1114 (1969).
- MO 72 T. MO AND R. H. DAVIS, PHYS. REV. C6, 231 (1972)
- MON73 D. G. MONTAGUE ET AL., NUCL. PHYS. A199, 433 (1973)
- NO068 P. A. NOORE ET AL., PHYS. REV. 175, 1516 (1968)
- NAQ68 I. M. NAQIB AND L. L. GREEN, NUCL. PHYS. A112, 76 (1968)
- NEL70 J. H. NELSON, N. S. CHANT AND P. S. FISHER, NUCL. PHYS. A156, 406 (1970).
- NOD60 J. S. NODVIK AND D. S. SAXON, PHYS. REV. 117, 1539 (1960).
- NOD62 J. S. NODVIK, C. B. DUKE AND N. A. MELKANOFF, PHYS. REV. 125, 975 (1962)
- OLK63 J. OLKOWSKY, N. A. MELKANOPP AND J. S. NODVIK, PROC. CONF. ON DIRECT INTERACTIONS AND MUCLEAR REACTION MECHANISMS, ED. BY B. CLEMEWTEL AND C. VILLI (GORDON AND BREACH, SCI. PUB., NEW YORK, 1963), P. 192.
- OOT73 MICHAEL R. OOTHOUDT AND NORTON M. HINTZ, NUCL. PHYS. A213, 221 (1973)
- PAL67 H. PALEVSKY ET AL., PHYS. REV. LETT. 18, 1260 (1967).
- PEA72 C. A. PEARSON BT AL., NUCL. PHYS. A191, 1 (1972)
- PER63 P. G. PEREY, PHTS. REV. 131, 745 (1963).
- PER64 P. G. PEREY, (AML-6848) NUCLEAR SPECTROSCOPY WITH DIRECT REACTIONS. I. CONTRIBUTED PAPERS, ED. BY P. E. THROW, (ARGONNE NATIONAL LAB., ARGONNE, 1964), P. 114.
- PER68 C. M. PEREY, F. G. PEREY, J. K. DICKENS AND R. J. SILVER, PHYS. REV. 175, 1460 (1968)
- PER71 P. G. PEREY, POLARIZATION PHENOMENA IN NUCLEAR REACTIONS (PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM, MADISON 1970), 131, EDITED BY H. H. BARSCHALL AND W. HABEBRIL, THE UNIVERSITY OF WISCONSIN PRESS, MADISON (1971)
- PET68 R. J. PETERSON, PRYS. REV. 170, 1003 (1968)
- PET68A R. J. PETERSON AND D. H. PERLMAN, NUCL. PHYS. A117, 185 (1968)
- PET72 R. J. PETERSON, E. W. STOUB AND R. A. RISTINEN, PHYS. REV. C6, 829 (1972)
- PIC65 J. PICARD, NUCL. PHYS. 68, 153 (1965).
- PIC69 J. PICARD ET AL., NUCL. PHYS. A128, 481 (1969).
- PRETOA B. M. PREEDOM, C. R. GRUHN, T. Y. T. KUO, AND C. J. MAGGIORE, PHYS. REV. C2, 166 (1970).
- PRO70 V. S. PROKOPENKO, A. S. KLIMENKO, N. N. PUCHEROV AND V. I. CHIRKO, BULL. ACAD. SC. USSR 34, 113 (1970).

TABLE II. Optical-Model Parameters Protons

PROTONS REFERENCES

- PROTOA V. S. PROKOPENKO, V. V. TOKAREVSKII AND V. N. SHCHERBIN, BULL. ACAD. SC. USSR 34, 116 (1970).
- PUG67 H. G. PUGH ET AL., PHYS. REV. 155, 1054 (1967)
- L. W. PUT, P. P. URONE AND A. M. J. PAANS, PHYS. LETT. 358, 311 (1971) PUT71 L.
- PYL69 G. J. PYLE AND G. W. GRPENLEES, PHYS. REV. 181, 1444 (1969)
- A. V. RAMAYYA, J. L. C. FORD, JR., B. L. ROBINSON AND J. H. HAMILTON, NUCL. PHYS. A193, 186 (1972) RAM72 A.
- RAO70 N. N. RAO, P. H. STELSON, R. L. ROBINSON, AND J. L. C. FORD, JR., NUCL. PHYS. A147, 1 (1970).
- RAT72 R. D. RATHMELL AND W. HAEBERLI, NUCL. PHYS. A178, 458 (1972)
- REI69 R. REIP AND J. HOHN, NUCL. PHYS. A137, 65 (1969).
- RIC68 A. RICHTER AND L. J. PARISH, PHYS. REV. LETT. 21, 1824 (1968)
- ROB66 R. L. ROBINSON, J. L. C. FORD, JR., P. H. STELSON AND G. R. SATCHLER, PHYS. REV. 146, 816 (1966).
- ROL66 C. ROLLAND ET AL., NUCL. PHYS. 80, 625 (1966).
- ROD65 PHILIP G. ROOS AND N. S. WALL, PHYS. REV. 140, B1237 (1965).
- ROS61 L. ROSEN, J. E. BROLLEY, JR., AND L. STEWART, PHYS. REV. 121, 1423 (1961)
- ROS61A L. ROSEN, J. E. BROLLEY, JR., M. L. GUE L. STEWART, PHYS. REV. 124, 199 (1961) GURSKY AND
- ROS62 L. ROSEN, P. DARRIULAT, H. PARAGGI AND A. GARIN, NUCL. PHIS. 33, 458 (1962)
- RUS67 A. A. ROSH ET AL., NUCL. PHYS. A104, 340 (1967).
- RUS71 A. A. RUSH, E. J. BURGE AND D. A. SMITH, NUCL. PHYS. A166, 378 (1971)
- SAN70 H. S. SANDHU, NUCL. PHYS. A146, 163 (1970).
- SAN71 H. S. SANDHU, J. M. CAMERON AND W. F. MCGILL, NUCL. PHYS. A169, 600 (1971)
- SAT63 G. R. SATCHLER, R. H. BASSEL AND R. M. DRISKO, PHTS. LETTERS 5, 256 (1963).
- SAT67 G. R. SATCHIER, NUCL. PHYS. A92, 273 (1967).
- SAT67A G. R. SATCHLER, NUCL. PHYS. A100, 497 (1967).
- SAT68 G. R. SATCHIER ET AL., NUCL. PHYS. A112, 1 (1968).
- SAW65 T. SAWADA, NUCL. PHYS. 74, 289 (1965).
- SAW70 TATSURO SAWADA, G. PAIE, N. B. EPSTEIN, AND J. G. ROGERS, NUCL. PHYS. A141, 169 (1970).
- SCH75 K. SCHULTE ET AL., NUCL. PHYS. 4241, 272 (1975)
- SEN71 S. SEN, C. L. HOLLAS AND P. J. BILEY, PHYS. REV. C3, 2314 (1971)
- SEN72 S. SEN, C. L. HOLLAS, C. W. BJORK AND P. J. RILEY, PHYS. REV. C5, 1278 (1972)
- SH061 B. W. SHORE, N. S. WALL AND J. W. IRVINE, JR., PHYS. REV. 123, 276 (1961).
- SIE67A R. H. SIEMSSEN AND J. R. ERSKINE, PHYS. REV. LETT. 19, 90 (1967).
- SIN72 B. C. SINHA, V. P. W. EDWARDS, E. J. BURGE AND W. H. TAIT, NUCL. PHYS. A183, 401 (1972)
- SMI62 W. R. SMITH AND E. V. IVASH, PHYS. REV. 128, 1175 (1962) .
- SNI64 W. R. SMITH, (AWL-6848) NUCLEAR SPECTROSCOPY WITH DIRECT REACTIONS. I. CONTRIBUTED PAPERS, ED. BY F. E. THROW, (ARGONNE NATIONAL LAB., ARGONNE, 1964), P. 30.
- SMI69 S. N. SMITH AND A. M. BERNSTEIN, NUCL. PHYS. A125, 339 (1969).
- SNE69 J. L. SNELGROVE AND E. KASHY, PHYS. REV. 187, 1246 (1969).
- SNE69A J. L. SNELGROVE AND E. KASHY, PHYS. REV. 187, 1259 (1969).

- SQU70 G. T. A. SQUIER ET AL., NUCL. PHYS. A141, 158 (1970).
- STA66 N. N. STAUTBERG AND J. J. KRAUSHAAR, PHYS. REV. 151. 969 (1966).
- STA67 M. M. STAUTBERG, J. J. KRAUSHAAR AND B. W. RIDLEY, PHYS. REV. 157, 977 (1967)
- STA67A N. M. STAUTBERG, R. R. JOHNSON, J. J. KRAUSHAAR AND B. W. RIDLEY, NUCL. PHYS. A104, 67 (1967).
- STE66 J. STEVENS, H. P. LUTZ AND S. F. ECCLES, NUCL. PHYS. 76, 129 (1966).
- STE68 P. H. STELSON ET AL., NUCL. PHYS. A119, 14 (1968)
- SIG64 TANNIE STOVALL AND NORTON M. HINTZ, PHYS. REV. 135, B330 (1964).
- TAI71 W. H. TAIT, E. J. BURGE AND V. R. W. EDWARDS, NUCL. PHYS. A176, 390 (1971)
- TAT60 B. TATISCHEFF AND A. WILLIS, NUCL. PHYS. A115, 593 (1968)
- TEL69 A. TELLEZ, R. BALLINI, J. DELAUNAY, AND J. P. FOUAN, NUCL. PHYS. & 127, 438 (1969).
- THO64 R. N. THOMAS, E. J. BORGE AND P. E. HODGSON, NUCL. PHYS. 52, 93 (1964).
- TH070 G. E. TROMPSON, N. B. EPSTEIN, AND TATSURO SAWADA, NUCL. PHYS. A142, 571 (1970).
- THO71 G. L. THOMAS, NUCL. PHYS. A171, 177 (1971)
- VAN61 R. A. VANETSIAN, A. P. KLYUCHAREV, G. P. TIMOSHEVSKII AND E. D. PEDCHENKO, SOV. PHYS., JETP 13, 842 (1961).
- VAS74 S. S. VASIL'EV BT AL., SOV. J. NUCL. PHYS. 19, 14 (1974)

. · ·

- VEL74 D. E. VELKLEY ET AL., PHYS. REV. C9, 2181 (1974).
- W. T. H. VAN GERS AND J. M. CAMERON, PHYS. REV. 184, 1061 (1969). ¥0 E6 9 #
- VOE71 W. T. H. VAN OERS, PHYS. REV. C3, 1550 (1971)
- VOE74 W. T. H. VAN DERS ET AL., PHYS. REV. C10, 307 (1974).
- VOS72 HENDRIK VOS, ON THE DETERMINATION OF OPTICAL MODEL PARAMETERS, UNIVERSITY OF AMSTERDAM, NETHERLANDS (DECEMBER 1972)
- VOT73 H. J. VOTAVA, T. B. CLEGG, E. J. LUDWIG AND W. J. THOMPSON, NUCL. PHYS. A204, 529 (1973)
- VDT74 L. G. VOTTA, P. G. ROOS, N. S. CHANT AND R. WOODY, III, PHYS. REV. C10, 520 (1974).
- WAIG7 D. L. WAISON ET AL., NUCL. PHYS. 492, 193 (1967).
- WAT69 B. A. WATSON, P. P. SINGH AND R. E. SEGEL, PHYS. REV. 182, 977 (1969).
- R. B. WEINBERG, G. E. MITCHELL AND L. J. LIDOFSKY, PHYS. REV. 133, B804 (1964). WE164
- WER71 MICHAEL P. WERBY, STEVE EDWARDS AND WILLIAM J. THOMPSON, NUCL. PHYS. A169, 81 (1971)
- WER73 HICHAEL P. WERBY AND STEVE EDWARDS, NUCL. PHYS. A213, 294 (1973)
- WIL63 B. D. WILKINS, R. H. DEHL AND N. K. GLENDENNING, (UCRL-10624) CHEMISTRY DIVISION ANNUAL REPORT, 1 ED. BY J. M. HOLLANDER, F. L. REINOLDS AND J. C. WALLMANN (UNIV. CAL. LAWRENCE RADIATION LAB., BERKELEY, 1963), P. 159. 1962,
- WIL68 A. WILLIS ET AL., NUCL. PHYS. A112, 417 (1968)
- WIL69 A. WILLIS ET AL., J. PHYSIQUE, 30, 13 (1969).
- WOL68 K. L. WOLP, R. VANDENBOSCH AND W. D. LOVELAND, PHYS. REV. 170, 1059 (1968)
- WOO70 P. B. WOOLLAM, R. J. GRIPPITHS, JOAN P. GRACE, AND V. B. LEWIS, NUCL. PHYS. &154, 513 (1970).
- W0072 P. B. WOOLLAM ET AL., NUCL. PHYS. A179, 657 (1972)
- YAG68 K. YAGI, T. ISHIMATSU, Y. ISHIZAKI AND Y. SAJI, NUCL. PHYS. A121, 161 (1968)
- ZWI73 B. ZWIEGLINSKI, J. PIOTROWSKI, A. SAGANEK AND I. SLEDZINSKA, NUCL. PHTS. A209, 348 (1973)

TABLE III. Optical-Model Parameters

NUCL ID B	ENERGY (MEV)	REAL V	POTENT. R	IAL A	VOL.INJ W	G. POT RW	BNTIAL AW	SURF.IM WD	AG. POT RD	ENTIAL AD	SPIN-C VSO	RBIT P RSO	OTENTIAL ASO	RC	SR	FIT	NOTE	R <i>EF</i> .
18 18	52. 52.	65.8 92.1	1.25* 1.05*	0.501 0.50				4.59 7.67	1.2 1.02	0.517 0.511				1.3* 1.3*		S S	3 3	HIN68 HIN68
3HE 3HE 3HE 3HE 3HE 3HE	24.0 24.0 24.7 25.5 26.2 26.2	80.2 86.6 102.7 121.9 92.5 92.3	2.36 2.2* 1.967 1.766 2.193 2.2*	0.502 0.55* 0.778 0.848 0.562 0.55*	3.7 3.7 5.44 7.1 3.3 3.3	2.36 2.2* 1.967 1.766 2.193 2.2*	0.502 0.55* 0.778 0.848 0.562 0.55*							1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	468 397 602 672 395 394	S S S S S	H66 H66 H66 H66 H66 H66	SAT65 SAT65 SAT65 SAT65 SAT65 SAT65 SAT65
3he 3he 3he 3he 3he	27.0 27. 52. 52.	93.0 40.4 61.4 67.0	2.190 1.90* 1.25* 1.25*	0.548 0.344 0.599 0.59	3.21	2.190	0.548	5.65 9.03 8.10	1.90* 1.01 1.25	0.350 0.598 0.630	6.*	1.25*	0.59	1.3* 1.3* 1.3* 1.3*	386	S S S S	Н66 З Э	SAT65 SAW70 HIN68 HIN68
4 HE 4 HE	52. 52.	73.2 70.0	1.25* 1.25*	0.614 0.592				11.15 8.2	1.01	0.647 0.634	6.*	1.25*	0.592	1.3* 1.3*		5 5	3 3	HIN68 HIN68
LI LI LI LI LI	2.0 2.5 2.5 3.0 3.5	41.78 33.18 50.25 34.07 34.91	2.1* 1.5* 2.1* 1.5* 1.5*	0.417 0.11 0.32 0.72 0.59	9.42 7.11 6.76 5.71 5.77	2.1* 1.5* 2.1* 1.5* 1.5*	0.417 0.32 0.11 0.72 0.59							1.3? 1.3? 1.3? 1.3? 1.3?	830 482 507 1025 815	5 5 5 5 5	H66 H66 H66 H66 H66	MAD62 MAD62 MAD62 MAD62 MAD62 MAD62
611 611 611 611 611 611	8. 8. 10. 10. 11.8 11.8	92.5 125.8 95.9 142.9 118.* 78.*	2.17* 0.870 2.17* 0.908 0.87 1.04	0.61* 1.00 0.61* 0.88 1.0 0.95	30.*	0.85	0.85	18.1 3.1 20.4 3.7 6.9	2.35* 2.17 2.35* 2.26 1.71	0.25* 0.73 0.25* 0.67 0.89	8.6 8.2 8.7 5.7 7.5 12.5	2.17* 0.870 2.17* 0.908 0.87 1.04	0.61* 1.00 0.61* 0.88 1.0 0.95	2.17* 1.30* 2.17* 1.38* 1.3* 1.3*		S2 S2 S1 S3 S2	10 10 10 10	BIN71 BIN71 BIN71 BIN71 LUD68 LUD68
611 611 611	12. 12. 14.7	100.6 138.7 153.4	2.17* 0.870 1.18	0.61* 1.00 0.489	3.45	2.97	0.489	23.9 5.8	2.35* 2.49	0.25* 0.57	7.5 6.1	2.17* 0.870	0.61* 1.00	2.17* 1.38* 1.30*		53 53 52	10 10	BIN71 BIN71 MAT69
7LI 7LI 7LI 7LI 7LI 7LI	11.8 11.8 12. 12. 14.7	118.* 78.* 101.3 77.0 127.0	1.00 1.05 1.71 1.05 0.60	0.94 0.95 0.64 0.95 1.04	30.* 29.6 16.78	0.84 0.878 1.19	0.85 0.81 1.04	6.87 23.8	1.98 2.0	0.59 0.23*	8.5 6.4 7.0 7.0	1.00 1.05 1.71 1.05	0.94 0.95 0.64 0.95	1.3* 1.3* 1.71 1.31* 1.30*		S3 S2 S2 S2 S2 S2	10 10	LUD68 LUD68 BIN71 BIN71 MAT69
711 711 711 711	28. 28. 28.	73.0 79.45 81.1	1.186 1.094 1.15*	0.836 0.769 0.81*	22.2	1.390	0.743	11.23 8.61	1.094 1.34*	0.769 0.873	-0.92 6.0*	1.186 1.15*	0.836 0.81*	1.3* 1.09 1.15*	789	5 5 5	H66	SAT65 KUL67 DEV69
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE	1.0 1.2 1.4 1.6 1.8 2.0	20.82 20.46 19.18 17.20 19.47 18.96	3.24 2.2 2.18 2.27 2.17 2.27	0.95 0.72 0.83 0.75 0.72 0.64	4.12 6.67 7.32 6.16 6.84 6.5	3.24 2.2 2.18 2.27 2.17 2.27	0.95 0.72 0.83 0.75 0.72 0.64							1.3* 1.3* 1.3* 1.3* 1.3* 1.3*		S 1 S 1 S 2 S 2 S 2 S 2	15 15 15 15 15 15	LON72 LON72 LON72 LON72 LON72 LON72 LON72
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE	2.2 6.3 6.3 7.7 7.8 7.8 7.8	23.12 103.2 102.0 40.34 89.6 58.5	2.06 1.15* 1.15* 1.48 1.162 0.8*	0.57 0.773 0.724 0.63 0.931 1.228	7.04 6.58 18.0	2.06 1.48 1.340	0.57 0.63 0.749	17.47 13.37 18.8	1.769 1.719 1.526	0.585 0.694 0.427	20.0* 15.22 16.0*	0.9* 1.162 0.8*	0.6 0.931 1.228	1.3* 1.3* 1.3* 1.3? 1.3? 1.3*	866 1160 1143	S 1 S S 1 S S S	15 9,8 9,8 H66 H66 H66	LON72 DJA71A DJA71A HAD62 SAT65 SAT65
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE	10.2 10.2 11.8 11.8 11.8 11.8	79.4 78.5 104.8 138.3 78.0* 50.0*	0.86 0.855 1.0* 0.713 0.967 1.51	1.15 1.101 1.024 1.083 1.04 0.89	17.1 40.0 30.*	1.51 0.704 1.07	0.84 1.028 0.870	9.1 9.1 20.39	1.921 1.921 1.10	0.564 0.555 0.59	16.2 12.0* 12.54 6.05 8.57	0.855 1.0* 0.713 0.967 1.63	1.101 1.024 1.083 1.04 0.72	1.3? 1.3* 1.3* 1.3* 1.3* 1.3*	1238 1255 1236	S S S S2 S3P2	Н66 Н66 Н66 Н66	WES63 SAT65 SAT65 SAT65 PIT67 GRI71
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE	12.6 12.8 12.8 13.6 15. 15.	149. 43.1 109.4 128.5 99.2 65.0	0.817 1.677 1.0* 0.945 0.727 1.27	0.744 0.758 0.970 0.805 1.043 0.89	19.4 11.4 45.6 56.1	1.806 1.824 0.727 2.15	0.279 0.492 1.043 0.38	16.6 16.0	1.96 1.84	0.52 0.45*	14.5 12.0* 6.0*	0.817 1.0* 0.90*	0.744 0.970 0.90*	1.2? 1.3* 1.3* 1.2? 1.3* 1.25?	1026 1121 1125	9 5 53 53 52	12 H66 H66 H66 10	ZAI71 SAT65 SAT65 MAT72 SAT65 PAR73
988 988 988 988 988 988 988	15. 15.8 15.8 24. 24. 27.7	83.1 134.9 65. 59.4 59.9 74.03	1.005 0.817 1.25* 1.447 1.363 1.239	0.992 1.045 0.79 0.776 0.783 0.736	33.3 26.0 42.3	1.106 1.447 0.831	0.827 0.776 1.052	11.1 7.2 11.67	2.078 1.25* 1.239	0.522 1.025 0.736	10.44	0.817	1.045	1.25? 1.3* 1.3* 1.3* 1.3* 1.3* 1.24	1263 1019 1087	S2 S S2 S S S	10 866 866 866	PAR73 SAT65 COW66 SAT65 SAT65 KUL67
10B 10B 10B 10B	2.5 3.0 3.0 3.5	26.94 77.0 34.42 28.0	1.5* 1.15 1.275 1.5*	0.77 0.81 0.80 0.48	16.14 7.70 4.6	1.5* 1.275 1.5*	0.77 0.80 0.48	29.8G	1.37	1.42				1.37 1.37 1.37 1.37	925 941	5 5 5 5	H66 H66 H66 H66	MAD62 GAL65 MAD62 PUL64
10B 10B 10B 10B	11.8 15.0 15.0 28.	78.0* 99.2 99.4 84.7	0.921 1.05* 1.05* 1.11*	0.943 0.79 0.81* 0.609	30.*	0.867	0.731	8.4 8.9 5.29	1.72 1.75* 1.37*	0.65 0.62 1.003	6.00 1.8 1.4	0.921 1.0* 1.0*	0.943 0.81* 0.81*	1.3* 1.3* 1.3* 1.3*		S2 S2P3 S2P3 S2	12	PIT67 BUS74 BUS74 GAI68

TABLE III. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	IAL A	VOL.INA W	AG. POT RW	ENTIAL AW	SURP.IM WD	AG. POT RD	ENTIAL AD	SPIN- VSO	ORBIT E RSO	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
11B 11B 11B 11B 11B	3.5 5.5 11.8 12.6 13.6	26. 109. 118.* 95.9 124.0	1.51 0.674 0.895 1.043 0.9*	0.43 1.225 0.902 1.003 0.78	5,3	1.51	0.43	39.51G 4.82 17.3 10.9	2.055 1.62 1.905 2.01	0.813 0.775 0.374 0.45*	5.8 7.3 6.0*	0.895 1.043 0.90*	0.902 1.003 0.90*	1.3? 1.3? 1.3* 1.2? 1.2?		S S S2 P S2	Н66 Н66 12	PUL64 GAL65 PIT67 ZAI71 MAT72
с	25.9	85.3	1.11	0.71				9.53	1.37	0.67				1.11	890	S2	10,27	TJ16 5
12C 12C	1.72	53.2 29.83	1.35	0.64	1.52 34.98	1.35 0.40	0.64							1.3?	170	5 52	H66	MAD62 GER66
12C 12C 12C	3.23 3.23	59.65 123.6	1.67 0.90*	0.57 0.90*	9.00	1.49	0.41	4.25 6.36	2.001	0.493				1.4*	954	53 52	22	GER66 SAT66
12C	3.5	30.0	1.70	0.10	4.5	1.70	0.10							1.3?		S	866	PUL64
12C 12C 12C 12C 12C 12C	3.70 3.7 4.66 4.66 4.97 4.97	55.68 126.9 70. 74.62 71.94 76.18	1.80 0.90* 1.5* 1.44 1.5* 1.44	0.53 0.90* 0.65 0.67 0.69 0.74	6.2 3.68 7.38 4.85	1.97 1.5* 1.76 1.5* 1.78	1.0 1.18 0.62 0.78	3.63	1.652	0.810				1.3* 1.3* 1.3* 1.3* 1.3*	1083 1184 1285 1159 1190	53 53 53 53 53 53	22	SAT66 COT68 COT68 COT68 COT68 COT68
12C 12C 12C 12C 12C 12C 12C	5.27 6. 6.5 7. 7.6 7.6	70.06 124.7 123.6 130.1 32. 70.	1.5* 0.90* 0.90* 1.5* 1.5*	0.72 0.90* 0.90* 0.90* 0.534 0.534	9.45 6.46 11.00	1.5* 1.5* 1.5*	0.41 0.534 0.60	4.38 4.18 4.85	2.452 2.519 2.105	0.264 0.341 0.498	8.*	1,5*	0.60	1.3* 1.3* 1.3* 1.3* 1.3? 1.5*	1220 1158 1277 1150 910 990	S3 S2 S3 S2 S S S	22 22 22 H66 H66	COT68 SAT66 SAT66 SAT66 NAD62 HEL62
12C	8.	132.0	0.90*	0.90*				7.73	1.665	0.569				1.3*	1099	53	22	SAT66
12C 12C 12C 12C	9. 9.0 10. 10.0	133.6 118.9 130.4 116.0	0.90* 1.0* 0.90* 1.0*	0.90* 0.8* 0.90* 0.8*	4.03 4.13	1.0* 1.0*	0.8* 0.8*	13.8 4.03 6.88 4.13	2.052 2.0* 1.899 2.0*	0.276 0.6* 0.562 0.6*	8.14 6.76	1.0* 1.0*	0.8* 0.8*	1.3* 1.5* 1.3* 1.5*	993 1152 1159 1146	S2 S2 S2 S2	22 10 22 10	SAT66 GUR70 SAT66 GUR70
12C 12C	10.0 10.0	83.1 128.	1.270 0.781	0.807				7.53 31.8	1.91	0.563 0.396	7.06 7.44	0.962 0.755	0.266 0.508	1.3* 1.3*		53P3 P2		WIL71 WIL71
12C 12C 12C 12C	10.6 10.6 11.0 11.	73.8 113.2 74.7 119.8	1.5* 1.0* 1.5* 0.90*	0.65* 0.8* 0.65* 0.90*	9.70 4.93 9.40	1.5* 1.0* 1.5*	0.65* 0.8* 0.65*	9.70G 4.93 9.40G 4.43	1.5* 2.0* 1.5* 1.585	0.8* 0.6* 0.8* 0.885	10.30	1.0*	0.8*	1.5? 1.5* 1.57 1.3*	1195 1215	S S 1 S 1 S 1	10,33 10 10,33 22	BAL66 GUR70 BAL66 SAT66
12C 12C	11.0	113.7	1.0*	0.8* 0.8*	4.75 3.16	1.0*	0.8* 0.8*	4.75 3.16	2.0*	0.6* 0.6*	7.02 6.44	1.0* 1.0*	0.8* 0.8*	1.5* 1.5*	1179 1050	S 2 S	10 10	GUR70 GUR70
12C 12C 12C	11.4	107.6	1.0* 0.90*	0.8* 0.90*	5.12	1.0*	0.8*	8.90G 5.12 5.63	1.5* 2.0* 1.588	0.8* 0.6* 0.770	6.90	1.0*	0.8*	1.57	1191 1155	5 52 51	10,33 10 22	BAL66 GUR70 SAT66
12C	11.8	118.*	0.887	0.928	5-01	1.0*	0.8 ★	6.11 5.01	1.52	0.790	5.0 7.15	0.887	0.928	1.3*	1187	51 52	10	F1167
12C 12C 12C	11.8 11.9 11.9	110.4 71.0 107.7	1.0* 1.5* 1.0*	0.8* 0.65* 0.8*	4.43 7.35 4.24	1.0* 1.5* 1.0*	0.8* 0.65* 0.8*	4.43 7.35G 4.24	2.0* 1.5* 2.0*	0.6* 0.8* 0.6*	7.26	1.0*	0.8*	1.5* 1.5? 1.5*	1156	52 5 52	10 10,33 10	GUR70 BAL66 GUR70
12C 12C	12.1 12.4	118.0* 69.8	0.97 1.5*	0.93 0.65*	7.10	1.5*	0.65*	9.44 7.10G	1.83 1.5*	0.47 0.8*	7.42	0.90	0.18	1.37		S2P2 S	10,33	GRI71 Bal66
12C 12C	12.4 12.8	104.6 83.46	1.0*	0.8* 0.67	5.00 14.94	1.0* 1.33	0.8* 0.67	5.00	2.0*	0.6*	4.85	1.0*	0.8*	1.5* 1.3?	1170 1005	52 S	10 Н66	GUR70 BUD63
12C 12C 12C 12C	12.8 12.8 12.8 13.2	69.6 114.2 105.6 71.2	1.5* 0.90* 1.0* 1.5*	0.65* 0.90* 0.8* 0.65*	6.65 4.93 7.15	1.5* 1.0* 1.5*	0.65* 0.8* 0.65*	6.65G 17.0 4.93 7.15G	1.5* 1.975 2.0* 1.5*	0.8* 0.388 0.6* 0.8*	4.64	1.0*	0.8*	1.5? 1.3* 1.5* 1.5?	1077 1166	S S 1 S 2 S	10,33 22 10 10,33	BAL66 SAT66 GUR70 BAL66
12C 12C	13.2 13.6	103.2 122.5	1.0* 0.9*	0.8* 0.815	5.25	1.0*	0.8*	5.25 10.9	2.0* 1.93	0.6* 0.45*	4.24 6.0*	1.0* 0.90*	0.8* 0.90*	1.5*	1178	52 52	10	GUR 70 NAT 72
12C 12C 12C 12C	13.7 13.9 13.9 14.7	103.8 73.1 101.6 114.3	1.0* 1.5* 1.0* 0.90*	0.8* 0.65* 0.8* 0.90*	5.94 8.65 6.07	1.0* 1.5* 1.0*	0.8* 0.65* 0.8*	5.94 8.65G 6.07 10.1	2.0* 1.5* 2.0* 1.956	0.6* 0.8* 0.6* 0.467	4.23 4.18	1.0* 1.0*	0.8* 0.8*	1.5* 1.5? 1.5* 1.3*	1211 1212 1117	51 5 51 51	10 10,33 10 22	GUR70 BAL66 GUR70 SAT66
12C 12C	15.0	117.1	0.900	0.982				14.0	1.800	0.405	25	1.0*	0.81±	1.3*		S F2D2		DEN66
12C 12C 12C 12C 12C	15.0 15.8 15.8 15.9	102.8 63. 111.3 111.7	1.05* 1.25* 0.90* 0.90*	0.81* 0.82 0.90* 0.90*				6.3 8.0 10.2 11.2	1.75* 1.25* 1.888 1.920	0.69 0.930 0.529 0.449	2.2	1.0*	0.81*	1.3* 1.3* 1.3* 1.3* 1.3*	1149 1080	52P2 53 52 52 52	22 22	BUS74 COW66 SAT66 SAT66
12C 12C	18.1 19.	111.4 106.5	0.90* 0.90*	0.90* 0.90*				16.5 8.13	1.816	0.396 0.714				1.3* 1.3*	994 1131	53 53	22 22	5AT66 SAT66
12C 12C 12C 12C	20.5 25.2 25.9 25.9	108.4 109.0 85.3 119.6	0.90* 0.90* 1.11 0.90*	0.840 0.822 0.71 0.90*				7.46 8.39 9.5 11.6	1.742 1.545 1.37 1.442	0.624 0.729 0.671 0.621	8.54 8.57	1.1 0.9	0.476 0.542	1.3* 1.3* 1.3? 1.3*	1034 1032 890 953	S2P2 S2P2 S S2 S2	19 20,19 H66 22	PER72 PER72 TJI65 SAT66
12C 12C	25.9 28.	109.2 111.9	1.00* 0.90*	0.90* 0.90*				14.3 10.5	1.52 0.846	0.50* 0.956				1.0?	944	52 5	22	HER70 SAT66
12C 12C 12C 12C	28. 28. 29.5 34.2	88.02 89.36 110.7 107.0	T.11* 1.11* 0.90* 0.90*	0.669 0.751 0.801 0.90*	12.61	1.37	1.108	12.34 9.20 11.3	1.37* 1.420 1.506	0.66 0.794 0.612	9.32	0.9	0.551	1.3* 1.3* 1.3* 1.3*	1020 924	S 2 S S 2 P 1 S 2	12 12 19 22,12	GAI68 GAI68 PER72 SAT66
12C 12C	34.4 34.4	92.41 92.47	1.038	0.788				9.75 9.70	1.426 1.445	0.693	6.76	1.023	0.806	1.3* 1.3*		s 1 5 1	12 12	NEW 67 NEW 67
12C 12C 12C	52. 80. 80.	71.8 61.53 60.67	1.25* 1.25* 1.25*	0.70 0.667 0.666				11.0 10.57 10.06	1.25 1.096 1.157	0.70 0.84 0.808	2.16	1.421	0.597	1.3* 1.3* 1.3*		5 1 5 52	3,10 10 10	HIN68 DUH71 DUH71

TABLE III. Optical-Model Parameters

NUCL ID E	ENERGY (MEV)	REAL V	POTENT R	IAL	VOL.IN W	AG. POT RW	ENTIAL AW	SURF.IM WD	AG. POT RD	ENTIAL AD	SPIN- VSO	ORBIT I RSO	OTENTIAL A SO	RC	SR	FIT	NOTE	REF.
13C 13C 13C 13C 13C 13C	4.66 4.66 4.97 4.97 5.27 5.27	71.7 67.39 72.0 74.4 70.4 67.6	1.5* 1.5* 1.5* 1.5* 1.5* 1.5*	0.53 0.68 0.6* 0.51 0.6* 0.70	5.47	1.5*	1.16	7.09 9.5 8.62 8.53 6.94	1.5* 1.5* 1.5* 1.5* 1.5*	0.66 0.6 0.63 0.6* 0.7				1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1142 1153 1014 916 1040 1182	52 53 52 53 53 53	10 10 10 10 10 10	COT68 COT68 COT68 COT68 COT68 COT68
13C 13C 13C 13C	13.7 15.0 15.0 15.0	100.5 114.9 98.9 98.4	1.0* 0.900 1.05* 1.05*	0.8* 0.964 0.88 0.81*	5.04	1.0*	0.8*	5.04 12.57 10.7 8.0	2.0* 1.800 1.76 1.75*	0.6* 0.393 0.44 0.54	5.32 4.0 1.8	1.0* 1.0* 1.0*	0.8* 0.81* 0.81*	1.5* 1.3* 1.3* 1.3*	1215	S2 S S1P3 S1P3	10	GUR70 DEN66 BUS74 BUS74
14C 14C 14C 14C 14C	4.2 4.9 5.5 6.0 6.5	121.3 126.1 127.5 129.1 127.1	0 . 8 1* 0 . 8 1* 0 . 8 1* 0 . 8 1* 0 . 8 1*	1.07* 1.07* 1.07* 1.07* 1.07*				15.1 16.0 13.2 17.1 17.6	2.07 2.08 2.13 2.03 2.03	0.36* 0.36* 0.36* 0.36* 0.36*				0.81* 0.81* 0.81* 0.81* 0.81*		S2 S2 S2 S2 S2 S2	15 15 15 15 15	COL73 COL73 COL73 COL73 COL73 COL73
14C 14C 14C	7.3 8.0 10.0	120.1 119.8 125.4	0.81* 0.81* 0.81*	1.07* 1.07* 1.07*				20.2 21.2 17.4	2.01 1.93 1.93	0.36* 0.36* 0.36*				0.81* 0.81* 0.81*		S 2 5 2 5 2	15 15 15	COL73 COL73 COL73
14 N 14 N 14 N 14 N 14 N 14 N	0.7 0.9 1.1 1.3 1.5 1.7	23.07 22.21 21.70 21.40 20.36 19.73	1.95* 1.95* 1.95* 1.95* 1.95* 1.95*	0.728* 0.728* 0.728* 0.728* 0.728* 0.728* 0.728*	1.83 2.54 3.44 3.69 4.54 5.46	1.95* 1.95* 1.95* 1.95* 1.95* 1.95*	0.728* 0.728* 0.728* 0.728* 0.728* 0.728*							1.95* 1.95* 1.95* 1.95* 1.95* 1.95*		S1 S1 S1 S1 S1 S1	H66 H66 H66 H66 H66 H66	SEI64 SEI64 SEI64 SEI64 SEI64 SEI64
14 N 14 N 14 N 14 N 14 N 14 N	1.9 2.1 3.5 3.5 3.5 5.0	19.65 20.13 128.0 120.0 106.9 110.9	1.95* 1.95* 0.92 1.50 1.61 1.56	0.728* 0.728* 0.83 0.64 0.60 0.61	4.18 4.01	t.95* 1.95*	0.728* 0.728*	3.9 19.2 30.0 13.13	1.23 1.73 1.61 1.28	1.05 0.35 0.28 0.54	9.0* 9.0* 9.0* 13.75	0.9* 0.9* 0.9* 1.00*	0.65* 0.65* 0.65* 0.80*	1.95* 1.95* 1.3* 1.3* 1.3* 1.3*		51 51 51 51 51 52	H66 H66 10,17 10,17 10,17 13,17	SEI64 SEI64 MEI70 MEI70 MEI70 POG72
14 N 14 N 14 N 14 N 14 N 14 N	10.5 11.6 11.6 11.8 11.8 11.8	117.9 104.3 108.7 103.7 118.* 95.6	0.81 1.00* 1.012* 1.0* 0.866 1.05*	1.07 0.946 0.599 0.880 0.893 0.85				19.61 9.31 4.31 16.1 5.59 6.5	1.84 1.785 1.975 1.938 1.42 1.76	0.35 0.396 0.621 0.298 0.727 0.50	7.09 7.89 12.0* 6.0 5.0	0.805 0.801 1.0* 0.866 1.0*	0.41 0.249 0.880 0.893 0.81*	0.81 1.3* 1.3* 1.3* 1.3* 1.3*	1011	S3 S2P3 S2P3 S S S S S S S 2 S 1P2	H66	CUR69 BR073 BR073 SAT65 FIT67 BUS74
14 N 14 N 14 N 14 N 14 N 14 N	15.0 21.0 27. 28. 28. 52.	96.0 82.8 87.8 81.37 116.4 68.9	1.05* 1.0* 1.051 1.128 0.8* 1.25*	0.81* 1.092 0.635 0.722 0.808 0.70				5.4 6.99 6.1 5.65 4.89 10.2	1.75* 1.935 0.935 1.261 1.5* 1.25	0.59 0.485 1.005 0.974 0.902 0.70	5.1	1.0*	0.81*	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1120 835	51P2 5 5 52 5 51	H66 H66 28 28 3,10	BUS74 SAT65 SAT65 GAI68 GAI68 HIN68
15 N 15 N 15 N	5.2 5.2 5.5	116.8 120.2 72.	0.90 1.46 1.40	0.90 0.61 0.70	8.0	1.35	0.80	3.12 18.8	1.81 1.04	0.88 0.49	9.10 8.64 10.	1.00 1.00 1.40	0.80 0.80 0.70	1.3* 1.3* 1.3*		S 1 S 2 S	18,17 18,17 21	FOG72A FOG72A BOH72
160 160 160 160 160 160	2.28 2.43 2.58 2.74 2.86 3.00	74.5 74.9 74.9 76.5 75.1 75.8	1。4* 1。4* 1。4* 1。4* 1。4* 1。4*	0.7* 0.7* 0.7* 0.7* 0.7* 0.7*				10.3 9.8 9.4 8.8 8.5 8.5	1.4* 1.4* 1.4* 1.4* 1.4* 1.4*	0.7* 0.7* 0.7* 0.7* 0.7* 0.7*				1.4* 1.4* 1.4* 1.4* 1.4* 1.4*		S1 S1 S1 S1 S1 S1	17 17 17 17 17 17	DIE68 DIE68 DIE68 DIE68 DIE68 DIE68
160 160 160 160 160 160	3.16 3.31 4.00 4.50 5.00 5.25	75.1 74.3 101. 101. 101. 102.	1.4* 1.4* 1.04 1.07 1.04 1.04	0.7* 0.7* 0.83 0.82 0.86 0.89				8.6 9.5 4.7 5.4 5.5 5.4	1.4* 1.4* 1.58 2.39 2.04 2.06	0.7* 0.7* 0.42 0.53 0.50 0.35	4.8 6.7 8.1 8.3	1.0* 1.0+ 1.0* 1.0*	0.8* 0.8* 0.8*	1.4* 1.4* 1.2* 1.2* 1.2* 1.2*		51 S S S S S	17 17 22,17 22,17 22,17 22,17 22,17	DIE68 DIE68 DAV70 DAV70 DAV70 DAV70 DAV70
160 160 160 160 160 160	5.50 6.00 7.85 8.0 8. 9.3	104. 100. 118. 124.2 112.1 113.8	1.04 1.01 1.0* 0.947 1.012 1.03	0.89 0.85 0.6* 0.719 0.713 0.56				5.9 6.1 4.9 5.8 5.71 5.3	1.96 1.72 1.9* 1.864 1.873 1.87	0.36 0.54 0.6* 0.470 0.618 0.48	8.9 12.3 7.5 12.0 8.26 16.4	1.0* 1.0* 1.1* 0.947 0.991 0.99	0.8* 0.8* 0.37 0.719 0.377 0.45	1.2* 1.2* 1.3* 1.3* 1.3? 1.3?	936	S S S2P3 S S1P2 S2P3	22,17 22,17 7 H66 14	DAV70 DAV70 TH069 SAT65 KOC71 COR72
160 160 160 160 160 160	11.6 11.6 11.8 11.8 12. 12.	104.6 108.7 149.2 118.* 81.34 106.1	1.00* 1.012* 0.746 0.934 1.25* 1.00*	0.830* 0.532 0.875 0.792 0.64 0.68	8.41	1.56	1.279	8.34 3.68 6.0 5.95 4.61	1.669 1.99 1.380 1.58 1.82	0.612 0.815 0.908 0.777 0.76	8.54 9.08 12.2 6.0 8.91 8.16	0.80* 0.991 0.746 0.934 1.25* 1.00*	0.40* 0.378 0.875 0.792 0.64 0.61	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1232	S2P3 S3P3 S S1 S2 S	H66 5 29	BR073 BR073 SAT65 FIT67 ALT67 NAQ68
160 160 160 160 160 160	13.3 13.6 15.0 15.0 15.0 15.8	109.5 156.5 107.5 92.5 92.6 100.	1.06 0.542 0.884 1.05* 1.05*	0.56 1.135 0.915 0.82 0.81* 0.705				2.8 11.0 6.55 4.3 4.3 15.0	1.87 1.13 1.593 1.71 1.75* 1.225	0.98 0.67 0.684 0.78 0.77 0.605	8.8 10.0 7.0 6.8	0.91 0.542 1.0* 1.0*	0.68 1.15 0.81* 0.81*	1.3? 1.2? 1.3* 1.3* 1.3* 1.3*		S2P3 S3 S1P2 S1P2 S3	14 3,28 3,28	COR72 MAT72 DEN66 BUS74 BUS74 COW66
160 160 160 160 160	16.3 25.4 28. 34.4 34.4	70.6 94.79 89.27 92.94 92.84	1.318 1.05* 1.053 1.036 1.028	0.586 0.843 0.752 0.787 0.796				9.6 8.58 6.52 8.91 8.84	1.523 1.573 1.361 1.355 1.409	0.577 0.573 0.812 0.727 0.697	9.22 6.98 7.57	1.318 1.05* 1.028	0.586 0.843 0.796	1.3* 1.3* 1.3* 1.3* 1.3*	947	S S1 S2 S1 S1	H66 12 12 12	SAT 65 COO74 GAI 68 NEW 67 NEW 67

TABLE III. Optical-Model Parameters

MUCLIDE	ENERGT (HEV)	REAL V	POTENT R	INL A	VOL.IN	NG. POT RW	ENTIAL AW	SURF.IN WD	NG. POT ED	BNTIAL AD	SPIN~(VSO	RBIT P RSO	OTENTIAL ASO	BC	SR	PIT	NOTE	REP.
160 160 160	52. 52. 63.2	76.8 68.2 83.13	1.25* 1.25* 1.05*	0.75 0.693 0.782				11.9 12.2 8.78	1.25 1.25 1.290	0.75 0.75 0.776	6. * 4.41	1.25* 1.05*	0.693 0.782	1.3* 1.3* 1.3*		52 52 51	3,10 3,10	HIN68 HIN68 COO74
170	15.0	85.3	1.100	0.902				9.0	1.600	0.509				1.3*		s		DEN 66
180 180 180 180	7.0 12.3 12.3 15.0	74.0 96.7 126.9 86.3	1.381 1.0* 0.789 1.105	0.670 0.835 0.920 0.939	14.6	1.381	0.670	5.8 7.2 9.92	1.53 1.59 1.608	0.928 0.762 0.598	10.6 17.78 20.0	1.381 1.0* 0.789	0.670 0.835 0.920	1.3* 1.3* 1.3* 1.3*	1167 1446 1337	s s s	866,5 866 866	SAT65 SAT65 SAT65 DEN66
19 P 19 P 19 P 19 P 19 P 19 P	2.6 3.0 3.2 3.6 3.8 3.95	80.1 76.3 81.1 80.2 84.0 81.6	1 . 1* 1 . 1* 7 . 1* 1 . 1* 1 . 1* 1 . 1*	0.972 0.896 0.943 0.90 0.886 0.884				14.8 15.0 15.1 15.1 15.0 15.4	1.6* 1.6* 1.6* 1.6* 1.6* 1.6*	0.652 0.504 0.620 0.503 0.511 0.469				1.3* 1.3* 1.3* 1.3* 1.3* 1.3*		S2 S2 S1 S2 S2 S2 S2		ZAB70 ZAB70 ZAB70 ZAB70 ZAB70 ZAB70 ZAB70
19F 19F 19P	15.0 15.0 15.0	92.2 79.6 94.3	0.965 1.164 1.027	0.888 0.821 0.806	7.49	2. 175	0.560	9.0 15.43	1.461 1.583	0.813 0.613				1.3* 1.3* 1.3*		S S3 S		DEN66 DEH70 DEH70
20 NE 20 NE 20 NE 20 NE	11.6 11.6 52. 52.	92.63 94.00 67.4 67.5	1.00* 1.00* 1.25* 1.25*	0.830* 0.830* 0.80 0.75				15.84 16.70 11.7 9.78	1.465 1.452 1.25 1.25*	0.591 0.582 0.80 0.825	4.83 5.37	0.80* 0.60*	0.40* 0.20*	1.3* 1.3* 1.3* 1.3*		S 2P 3 S 2P 3 S 2 S 2 S 2	28,3 24	BRO73 BRO73 HIN68 DUD71
22 NB 22 NB 22 NE 22 NE 22 NB	11.6 11.6 52. 52.	96.72 97.05 68.3 67.3	1.00* 1.00* 1.25* 1.25*	0.830* 0.830* 0.75 0.75				16.13 16.39 13.4 13.4	1.419 1.417 1.25 1.25	0.673 0.661 0.75 0.782	6.77 6.53 6.*	0.80* 0.60* 1.25*	0.40* 0.20* 0.75	1.3* 1.3* 1.3* 1.3*		S2P2 S2P2 S2 S2 S2	2,3 2,3	BRO73 BRO73 HIN68 HIN68
23 NA 23 NA 23 NA 23 NA 23 NA	2.6 3.0 3.6 4.0	86.0 84.6 77.8 77.0	1 . 1* 1 _ 1* 1 . 1* 1 . 1*	0.869 0.891 0.847 0.849				13.9 14.5 14.6 15.1	1.6* 1.6* 1.6* 1.6*	0.701 0.643 0.566 0.553				1.3* 1.3* 1.3* 1.3*		52 52 52 51		ZAB70 ZAB70 ZAB70 ZAB70 ZAB70
NG NG NG NG NG	3.32 3.73 4.07 4.07 4.07 7.0	60. 60. 50. 49.82 56.7 117.6	1.5* 1.5* 1.5* 1.5* 1.4 1.4	0.55 0.51 0.55 0.56 0.625 0.923	16. 14. 13. 13. 83 15. 4	1.5* 1.5* 1.5* 1.5* 1.4	0.55 0.51 0.55 0.56 0.625	15.0	1.696	0.552	4.* 4.* 4.* 25.0	1.5* 1.5* 1.5* 0.75	0.55 0.51 0.55 0.4	1.5* 1.5* 1.5* 1.3? 1.3? 1.3*	570 600	5 5 5 5 5 5	H66 H66 H66 H66 H66 H66 B	NBL62 NBL62 NBL62 NAD62 PUL64 DJA71
ng Ng Ng Ng Ng	8.65 9.97 10.1 10.87 11.15 11.8	71.0 71.8 83.5 73.6 60. 60.	1.177 1.110 1.5* 1.157 1.5* 1.5*	0.828 0.882 0.55 0.764 0.59 0.58	27.8 14. 17.	1.5* 1.5* 1.5*	0.55 0.59 0.58	16.8 19.9 20.4	1.468 1.490 1.397	0.697 0.610 0.658	8. 8.	1.5* 1.5*	0.59 0.58	1.3* 1.3* 1.3? 1.3* 1.5*	1180	S S S S S	H66 H66 H66 H66 H66 H66	SAT65 SAT65 NAD62 SAT65 NEL62 MEL62
NG NG NG NG NG	11,8 11,8 11,8 13,0 15,9 17,5	73.1 143.6 122.7 60. 50. 50.	1.187 1.083 1.219 1.5* 1.5* 1.5*	0.805 0.738 0.710 0.59 0.59 0.61	22. 16. 18.	1.5* 1.5* 1.5*	0.59 0.59 0.61	27.7 17.1 40.0	1.398 1.426 1.362	0.605 0.652 0.550	15.53 8. 4. 4.	1.083 1.5* 1.5* 1.5*	0.738 0.59 0.59 0.61	1.3* 1.3* 1.5* 1.5* 1.5*	1274 1301 1254	S2 S2 S2 S S S	10 Нбб Нбб Нбб	PER63 PER66 PER66 MEL62 MEL62 MEL62
MG MG MG MG MG	19,6 21,6 25,9 25,9 25,9 27,5	50. 73.98 80.3 79.94 76.63 78.70	1.5* 1.145 1.11 1.103 1.151 1.210	0.60 0.753 0.77 0.769 0.745 0.850	16.	1.5*	0.60	11.95 11.44 11.60 11.94 19.23g	1.227 1.15 1.203 1.156 1.027	0.861 0.97 0.897 0.930 2.076	4. 11.92 8.33	1.5* 1.145 1.103	0.60 0.753 0.769	1.5* 1.3* 1.11 1.3* 1.3* 1.3?	1344 1420 1341 1346 1275	S S2 S2 S2 S2 S2 S2	H66 10 10	HEL62 PEB66 TJI65 PER66 PER66 TES65
24 HG 24 HG 24 HG 24 HG 24 HG 24 HG 24 HG	10. 10. 10.1 10.95 11.8 71.8	183.8 158.8 83. 92.7 93.8 74.8	0.909 0.972* 1.5* 1.0* 1.0* 1.0*	0.719 0.697 0.55 0.920 0.866 0.807	27.8	1.5*	0.55	14.87 15.31 27.1 29.2 26.9	1.370 1.349 1.453 1.362 1.400	0.753 0.760 0.570 0.614 0.598	12.0* 12.24	1.0* 1.171	0.866 0.807	0.91 0.97* 1.5* 1.3* 1.3* 1.3*	1273 1259 1263	S2 S2 S2 S S S	866 866 866 866	SCH73 SCH73 BUC62 SAT65 SAT65 SAT65 SAT65
24 MG 24 MG 24 MG 24 MG 24 MG	11.8 12.1 12.1 12.1 26.	87.48 87.27 101.4 89.8 98.9	1.055 1.05 0.956 1.203 1.0*	0.85 0.86 0.812 0.698 0.90*	39.3	0.903	0.539	29.2 19.56 14.6 28.9	1.369 1.516 1.444 1.443	0.738 0.630 0.649 0.5*	9.75 10.1 11.21	0.84 0.893 1.00	0.46 0.46 0.585	1.25* 1.3* 1.3* 1.3* 1.3*	1200	S S3P3 S2 P3 S	10 10 10 166	KUN69 BRO72 BRO72 BRO72 SAT65
24 MG 24 MG 24 MG	40.0 40.0 52.	70.2 173.6 67.5	1.2* 1.0* 1.25*	0.75 0.70 0.71	12.3 12.0	1.7* 1.6*	0.80 0.98	14.8	1.15	0.775				1.3* 1.3* 1.3*		51 51 52	28 28 3	DUH68 DUH68 HIN68
26 NG 26 NG 26 NG	10.0 10. 10.	73.9 114.8 160.3	1.63 1.248 0.972*	0.52 0.612 0.727	23.8	1.63	0.52	27.47 23.55	1.148 1.277	0.782 0.739				1.3? 1.25 0.97*		s 52 52	H66	GLO65 SCH73 SCH73

TABLE III. Optical-Model Parameters

NUCLIDE	ENBRGY (MEV)	REAL V	POTENT R	IAL A	VCL.IM W	AG. POT BW	ENTIAL AW	SCRF.IM WC	AG. POT	ENTIAL AC	SPIN- VSO	ORBIT I RSO	OTENTIAL ASO	БС	SR	FIT	NOTE	RE F.
AL AL AL	11.8 11.8 15.	101.1 120.4 39.	1.115 0.955 1.30*	0.823 0.920 0.863				20.6 28.0 22.5	1.545 1.524 1.48	0.465 0.478 0.535	9.78	1.115	0.823	1.3* 1.3* 1.3+	1209 1241 1281	52 52 51	28	FER66 PER66 FER64
27 AL 27 AL 27 AL 27 AL 27 AL 27 AL	4.07 6.0 6.0 7.0 7.0	80. 97.06 98.30 112.0 110.6	1.5* 1.20* 1.20* 1.05* 1.05*	0.6C 0.79* 0.75* 0.86* 0.86*	15.	1.5*	0.60	24.24 24.20 14.68 14.20	1.53 1.54 1.573 1.58	0.46 0.448 0.625 0.64	12.8 9.0* 7.0*	1.20* 0.75* 0.75*	0.79* 0.40* 0.5*	1.3? 1.3* 1.3* 1.3* 1.3*	844	S S 1 S 1 S 1 P 1 S 1 P 2	H66	NAD62 CHE72 CHE72 SCH68 LOH74
27 AL 27 AL 27 AL 27 AL 27 AL 27 AL	9.0 9.0 10.1 11.0 11.0	110.4 108.7 63.2 106.9 106.1	1.05* 1.05* 1.547 1.05* 1.05*	0.86* 0.86* 0.563 0.86* 0.86*	12.2	1.547	0.563	17.58 18.80 19.35 19.72	1.567 1.55 1.516 1.52	0.577 0.57 0.580 0.57	7.0* 7.0* 23.6 5.5* 7.0*	0.75* C.75* 1.547 0.75* 0.75*	0.40* 0.5* 0.563 0.40* 0.5*	1.3* 1.3* 1.3* 1.3* 1.3*		S 1P2 S 1P2 S S2P2 S 1P2	R66	SCH68 LOH74 SAT65 SCH68 LOH74
27AL 27AL 27AL 27AL 27AL 27AL	11.8 11.8 11.8 12.8 13.0	91.08 90.99 104.4 131.5 107.3	1.20* 1.20* 1.07* 0.861 1.05*	0.78 0.79 0.850 0.933 0.86*				27.40 21.92 23.1 22.36 26.C4	1.51 1.55 1.54 1.405 1.46	0.48 0.46 0.483 0.601 0.50	9.90 6.0* 5.80 7.0*	1.20* 1.07* 0.861 0.75*	0.79 0.850 0.933 0.5*	1.3* 1.3* 1.3* 1.3* 1.3*	1260 1217	S S2 S2 S S2P2	26,10 10 3	JON 68 JON 68 FIT70 CHA 68 LOH74
27AL 27AL 27AL 27AL 27AL 27AL 27AL	15.0 15.0 15.8 17.0 17.0 20.	156.5 197.0 84. 112.5 92.0 103.6	0.738 0.580 1.25* 0.96 1.1 1.02	0.960 1.009 0.765 0.82 0.82 0.85				21.42 23.66 15.5 10.60 7.94 11.82	1.447 1.424 1.275 1.32 1.23 1.413	0.582 0.589 0.645 0.79 0.97 0.695	10.0 14.00 5.63* 8.19	0.738 0.82 0.98* 1.02	0.960 1.17 1.0* 0.856	1.3* 1.3* 1.3* 1.3* 1.3* 1.3* 1.25*	1340 1480	S S S S 1 S 2 S 2	34 37 37	CHA68 CHA68 COW66 CHI74 CHI74 DEL70
27AL 27AL 27AL 27AL	52. 52. 80. 80.	69.8 67.1 63.23 60.97	1.25* 1.25* 1.25* 1.25*	0.7(5 0.737 0.669 0.663				12.9 12.5 7.42 7.08	1.18 1.22 1.445 1.29	0.778 0.754 0.7 0.814	7. 3.06	1.25* 1.51	0.737 1.04	1.3* 1.3* 1.3* 1.3*		52 52 5 52	2,3 2,3 10 10	HIN68 HIN68 DUH71 DUH71
SI SI SI	9.0 9.0 11.0	117.0 115.6 112.7	1.05* 1.05* 1.05*	0.86* 0.86* 0.86*				18.E8 19.2 22.48	1.59 1.555 1.46	0.54 0.57 0.59	7.0* 7.0* 7.0*	0.75* 0.75* 0.75*	0.40* 0.5* 0.5*	1.3* 1.3* 1.3*		S1P3 S P S2P2	36	SCH68 LOH74 ICH74
SI SI SI SI	11.8 11.8 11.8 13.0	188.5 179.7 113.5 109.7	0.651 0.656 1.05* 1.05*	1.047 1.086 0.86* 0.86*				16.6 26.3 21.04 23.54	1.518 1.488 1.47 1.45	0.564 0.535 0.53 0.51	11.21 7.0* 7.0*	0.651 0.75* 0.75*	1.047 0.5* 0.5*	1.3* 1.3* 1.3* 1.3*	1331 1344	S2 S2 S2P2 S2P2	7	FER66 PER66 LOH74 LOH74
2851 2851 2851 2851 2851 2851	5.0 5.1 5.3 5.3 5.3	103.4 57.7 102.1 €1.2 102.1	1.29 1.34 1.21 1.21 1.23	0.56 0.256 0.684 0.642 0.7C5				11.28 4.35 11.0 5.12 11.7	0.75 1.65 1.41 1.69 1.51	1.16 0.785 0.741 0.790 0.614				1.3* 1.25* 1.25* 1.25* 1.25*		S S 1 S 2 S 2 S 2	32 6 6 6 6	GUR68 1AC70 LAC70 LAC70 LAC70 LAC70
2851 2851 2851 2851 2851 2851 2851	5.5 5.5 5.7 5.7 5.9 5.9	63.8 105.5 67.9 1c1.8 65.8 105.4	1.15 1.21 1.16 1.21 1.19 1.23	0.735 0.698 0.592 0.744 C.598 0.626				6.21 11.7 5.12 13.2 6.13 10.3	1.62 1.33 1.48 1.54 1.47 1.39	0.864 0.815 0.860 0.553 0.761 0.661				1.25* 1.25* 1.25* 1.25* 1.25* 1.25*		S1 S1 S2 S1 S2 S1 S2	6 6 6 6 6 5	LAC70 LAC70 LAC70 LAC70 LAC70 LAC70 LAC70
2051 2051 2051 2051 2051 2051 2051	6.5 6.5 7.0 7.0 8.0 8.0	57.4 97.2 65.5 116.3 66.3 117.4	1.27 1.29 1.05* 1.05* 1.05* 1.05*	0.522 0.6(6 0.877 0.811 1.013 0.912				6.73 11.2 10.6 14.4 15.7 19.7	1.81 1.63 1.539 1.465 1.701 1.688	0.628 0.625 0.758 0.739 0.485 0.463				1.25* 1.25* 1.3* 1.3* 1.3* 1.3*		\$1 51 53 53 52 52	6 6 8 8	LAC70 LAC70 DJA72 DJA72 DJA72 DJA72 DJA72
2851 2851 2851 2851 2851 2851 2851	9.0 9.0 9.0 9.0 10.0 10.0	57.8 100.0 62.0 112.9 54.8 98.1	1.13 1.16 1.05* 1.05* 1.14 1.17	0.932 0.838 0.970 C.870 0.929 0.809				17.0 23.6 15.2 19.1 17.6 26.8	1.61 1.60 1.638 1.615 1.49 1.49	0.564 0.510 0.555 0.531 0.527 0.469				1.25* 1.25* 1.3* 1.3* 1.25* 1.25*		S1 S1 S2 S2 S1 S1	6 6	LAC70 LAC70 DJA72 DJA72 LAC70 LAC70
2851 2851 2851 2851 2851 2851 2851	10.0 10.0 10. 10. 10.9 10.9	65.6 119.0 179.9 129.2 55.8 93.8	1.05* 1.05* 0.749 0.972* 1.12 1.20	0.932 0.832 0.927 0.863 0.983 0.983 0.823				18.6 23.5 19.31 20.31 18.5 29.0	1.565 1.555 1.586 1.580 1.50 1.50	0.484 0.455 0.533 0.515 0.511 0.448				1.3* 1.3* 0.75 C.97* 1.25* 1.25*		\$2 \$2 \$1 \$2 \$2 \$2 \$2 \$2	6 6	CJA72 DJA72 SCH73 SCH73 LAC70 LAC70
2851 2851 2851 2851 2851 2851 2851	11.0 11.0 11.8 11.8 11.8 11.8	61.8 114.6 51.2 96.6 108.2 101.2*	1.05* 1.05* 1.20 1.14 1.07* 1.05*	0.944 0.833 C.958 0.918 C.858 0.858				20.0 26.9 18.5 31.2 20.6 18.6	1.485 1.461 1.53 1.51 1.488 1.486*	0.511 0.512 0.492 0.515 0.535 0.647*	12.0* 12.0*	0.955 0.840*	0.5* 0.46*	1.3* 1.25* 1.25* 1.3* 1.3*		S3 S3 S2 S3 S2P2 S3P3	6 6	DJA72 DJA72 LAC70 IAC70 GRI70 GRI70
2851 2851 2851 2851 2851 2851	11.8 12.8 12.8 18.0 18.0	102.0 51.1 93.1 203.5 123.0	1.07* 1.18 1.13 0.602 0.890	0.9C3 0.972 0.9C4 0.980 0.945				22.6 18.6 22.4 24.35 27.31	1.59 1.55 1.58 1.330 1.385	0.489 0.480 0.523 0.600 0.539	6.0*	1.07*	0.903	1.3* 1.25* 1.25* 1.30* 1.30*		52 52 52 52 53	3 6 6	FIT70 LAC70 LAC70 MER69 MER69
2851 2851	52. 52.	73.0 69.3	1.25* 1.25*	0.75 0.78				12.3 13.1	1.25 1.24	0.75 0.75	6.6	1.25*	0.78	1.3* 1.3*		s 52	3 3	HIN68 BIN68
2951	11.8	102.8	1.07*	C.837				16.4	1.54	0.548	6.0*	1.07*	0.837	1.3*		\$2	3	FIT70

TABLE III. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	RËAL V	POTENT R	IAL A	VCL.INAG. PCTENIIAL W RW AW	SCRF.IM WC	AG. POT BC	ENTIAL AC	SPIN- VSO	ORBIT I BSO	OTENTIAL A SO	BC	SB	FIT	NOTE	RBF.
3051 3051 3051 3051 3051 3051	10.0 10. 10. 10. 10. 11.8	99.2 85. 124.0 124.0 102.7	1.149 1.23 0.972 0.972* 1.07*	0.659 0.73 0.868 0.868 0.852		17.35 14. 18.16 18.16 18.16	1.42 1.57 1.556 1.556 1.53	0.63 0.47 0.551 0.551 0.574	7.0* 3. 6.0*	1. 149 1. 20 1. 07*	0.699 0.70 0.852	1.2* 1.2? 0.97 C.97* 1.3*		52 51 51 51 52	23,12 3	WIL68 BER72 SCH73 SCH73 FIT70
315I 315I	8. 12.	1C8.5 105.3	1.05* 1.05*	0.86* 0.86*		14.9 16.7	1.55 1.51	0.61 0.57				1.3* 1.3*		51 51		WOL70 WO170
31P 31P 31P	9.8 9.8 10.5	68.71 113.7 106.4	1.488 1.450 0.62	0.5 0.456 1.61	14.09 1.488 0.5 18.44 1.45C 0.496	17.66	1.84	0.42				1.2* 1.2* 0.62		51 51 53		LUC66 LUC66 CUR69
s s	11.8 11.8	154.6 156.9	0.785 0.755	0.953 1.010		14.6 18.2	1.567 1.577	0.534 0.505	5.91	0.785	0.953	1.3* 1.3*	1281 1296	51 52		FER66 PER66
325 325 325 325 325 325	15.8 18.0 28. 52. 52.	9C. 110.9 95.38 73.4 70.2	1.25* 1.005 1.11* 1.25* 1.25*	0.62 0.874 0.658 C.75 0.75		20. 20.51 17.67 14.3 14.2	1.30 1.417 1.15 1.25 1.25	0.580 0.585 0.848 0.75 0.75	6.*	1.25*	0.75	1.3* 1.30* 1.3* 1.3* 1.3*		5 52 52 52 52 52	34 31 28,3 28,3	COW66 HER69 GAI68 HIN68 HIN68
CT CT	2.8 3.4 4.0	93.2 91.1 92.5	1.1* 1.1* 1.1*	1.24 0.956 0.886		5.42 5.82 10.1	1.6* 1.6* 1.6*	1.30 0.983 0.697				1.3* 1.3* 1.3*		51 52 52		ZAB70 ZAB70 ZAB70 ZAB70
36 AR 36 AR	8.68 18.0	111.5 86.41	1.04 1.215	0.9C 0.513		13.19 10.50	1.56 1.660	0.50 0.596	5.07	1.04	0.90	1.25* 1.30*		52 53		SEN71 Mer69
38AR 38AR	10.1 11.8	1C5.0 102.5	1.07 1.07*	0.82 0.813		5.54 9.9	1.56 1.54	0.63 0.635	8.00 6.0*	0.86 1.07*	0.57 0.813	1.29* 1.3*		51 51	3	SEN72 FIT70
40AR 40AR 40AR 40AR 40AR	10.95 11.8 52. 52. 52.	54.2 1C1.2 74.1 71.1 88.9	1.11 1.07* 1.25* 1.25* 1.05*	1.035 0.834 0.75 0.75 0.85		13.71 11.3 14.4 14.5 11.7	1.495 1.45 1.25 1.25 1.3	0.583 0.696 0.75 0.75 0.75 0.779	6.0* 7. 7.	1.07* 1.25* 1.05*	0.834 0.75 0.85	1.3* 1.3* 1.3* 1.3* 1.3*	1415	S2 S1 S2 S2 S2	10 3 2,3 2,3 2,3 2,3	HAL64 FIT70 HIN68 HIN68 HIN68
39 K 39 K	12.8 12.8	101.7 101.1	1.08	0.81 0.882		14.2 11.4	1.50 1.562	0.60 0.570	8.5	0.987	0.600	1.3* 1.3*		52 51		ELB72 ELB72
СА СА СА СА СА	11.15 11.15 11.15 11.15 11.8 11.8 11.8	65.6 1C9.1 67.5 7C.5 1C9.7 104.5	1.00 1.033 0.974 0.951 1.031 1.077	1.030 0.859 1.054 0.956 0.8C5 0.820		13.87 18.73 14.57 8.35 10.3 20.8	1.519 1.507 1.516 1.559 1.508 1.471	0.507 0.466 0.489 0.612 0.596 0.423	5.86 8.16	0.951 1.031	0.956 0.809	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1229 1221 1214 1278 1266 1124	52 52 52 51 51 52	10 10,27	PERE3 PERE3 HALE4 HALE4 PERE6 PERE6
CA CA	12.1 25.5	56.6 81.3	1.116 1.26	0.928 0.67		14.C5 6.68	1.494 1.34	0.499 1.07				1.3* 1.26	1208 1780	51 52	10 10	PER63 TJI65
40CA 40CA 40CA 40CA 40CA 40CA	5.0 5.0 5.0 5.0 6.0 6.0	78.* 125.* 112. 115.0 82.* 126.*	1.31 1.24 1.05* 1.05* 1.31 1.28	0.87 0.83 0.85* 0.86* 0.76 0.72		20.2 22.1 8.5 16.11 19.6 23.1	1.76 1.75 1.66 1.58 1.66 1.66	0.32 0.32 0.45 0.30 0.34 0.32	9.0 7.0*	0.9* 0.75*	0.6* 0.5*	1.3* 1.3* 1.30* 1.3* 1.3* 1.3*	700	S1 51 52P3 S1 51		LEI68 LEI68 SCH69 LOH74 LEI68 IEI68
40CA 40CA 40CA 40CA 40CA 40CA	6.0 6.5 6.5 7. 7.00	111.5 76.* 116.* 111. 145.1 119.9	1.05* 1.39 1.37 1.05* 0.803 1.0*	0.85* 0.67 0.63 0.85* 0.987 0.742		5.5 17.5 21.1 5.8 5.6 12.24	1.65 1.60 1.58 1.65 1.718 1.510	0.44 0.44 0.43 0.44 0.578 0.611	9.0 9.0	0.9* 0.9*	0.6* 0.6*	1.30* 1.3* 1.3* 1.30* 1.3* 1.3*	850 920 1165	51 52 51 51 53	10	SCH69 LEI68 IEI68 SCH69 BAS64 BEL68
40CA 40CA 40CA 40CA 40CA	7.0 7.0 7.0 7.0 7.20	110.5 102.9 104.5 109.4 119.3	1.05* 1.07* 1.07* 1.05* 1.0*	0.85* 0.879 0.925 0.86* 0.752		10.0 13.3 12.0 5.26 12.57	1.64 1.656 1.753 1.66 1.511	0.43 0.481 0.462 0.56 0.636	9.0 15.0 7.0*	0.9* 1.07* 0.75*	0.6* 0.925 0.5*	1.30* 1.3? 1.3? 1.3* 1.3*	1000	51 5 51P2 53	5	SCB69 POE70 POR70 LOH74 BEL68
40CA 40CA 40CA 40CA 40CA 40CA	7.5 7.5 8.0 8.0 8.0 8.0	92.6 124.2 1C9.4 109. 1C0.4 106.0	1.15* 1.0* 1.011 1.05* 1.07* 1.07*	0.81* 0.752 0.977 0.85* 0.975 0.930		14.42 11.76 24.4 10.3 25.1 20.6	1.702 1.557 1.658 1.63 1.689 1.684	0.550 0.538 0.343 0.42 0.345 0.303	9.0 16.3	0.9* 1.07*	0.6* 0.930	1.3* 1.3* 1.3* 1.30* 1.3? 1.3?	1027 1120	S S2 S2 S2 S S S	10 5	HANG8 HANG8 EAS64 SCH69 FOR70 FOR70
40CA 40CA 40CA 40CA 40CA 40CA	9. 9.0 9.0 9.0 9.0 10.	114.3 107.5 100.5 107.8 107.3 124.8	0.974 1.05* 1.07* 1.07* 1.05* 0.924	0.932 0.85* 0.919 0.830 0.86* 0.920		17.1 10.5 19.5 12.C 11.C8 15.4	1.611 1.62 1.638 1.603 1.65 1.559	0.453 0.42 0.418 0.533 0.53 0.498	8.5 12.3 7.0*	0.9* 1.07* 0.75*	0.6* 0.830 0.5*	1.3* 1.30* 1.3? 1.37 1.3* 1.3*	1143 1200 1189	S2 S2 S2 S2 S2P2 S2	10 5 10	BAS64 SCH69 FCB70 FOR70 LOH74 BAS64
40CA 40CA 40CA 40CA 40CA 40CA	10.0 10. 10.0 11. 11.0 11.0	106.5 89.2 112.0 120.7 106. 105.0	1.05* 1.175* 1.07* 0.966 1.05* 1.05*	0.85* C.83C 0.748 0.846 0.85* 0.85*		10.7 19.01 9.7 16.4 10.5 5.15	1.61 1.534 1.481 1.479 1.60 1.61	0.41 0.470 0.690 0.492 0.40 0.62	8.0 22.8 7.5 7.0*	0.9* 1.07* C.9* 0.75*	0.6* 0.748 0.6* 0.5*	1.30* 1.3* 1.3? 1.3* 1.30* 1.30*	1260 1133 1300	S2 S S2 S1 S2 S2P2	4 5,10 10	SCHE9 ERO70 POR70 BAS64 SCH69 10H74

TABLE III. Optical-Model Parameters

NUCLIDE	ENBRGY (BEV)	RBAL V	POTENT R	IAL A	VCL.IN W	AG. FC BB	TENTIAL AW	SURF.IM EC	AG. POT FD	ENTIAL AC	SPIN- VSO	ORBIT F RSC	OTENTIAL ASO	RC	SR	PIT	NOTE	REF.
40CA 40CA 40CA 40CA 40CA 40CA	11.8 12. 12. 12.0 12.0 12.0	103.1 112.8 118.1 106. 106.0 103.7	1.07* 1.021 0.997* 1.05* 1.07* 1.07*	0.799 0.846 0.787* 0.85* C.824 0.823				5.9 19.8 14-5 11.C 20.4 10.C	1.53 1.471 1.422* 1.59 1.479 1.562	0.611 0.444 0.579* 0.40 0.431 0.591	6.0* 7.0 9.04	1.07* 0.9* 1.07*	0.799 0.6* 0.823	1.3* 1.3* 1.3* 1.30* 1.3? 1.3?	1144 1176 1340	51 52 52 52 5 5	3 10 5	FIT70 BAS64 HAR66 SCH69 FOR70 FOR70
40CA 40CA 40CA 40CA 40CA	12.8 12.8 14.3 14.3 14.3	91.6 106. 71.2 83.6 106.	1.164 1.05* 1.411 1.251 1.05*	0.722 0.85* 0.7C5 0.7E5 0.85*				E. 8E 11.1 24.C4 13.60 11.2	1.374 1.58 1.582 1.560 1.57	0.773 0.39 0.387 0.505 0.38	9.60 6.5 8.0* 6.5	1.164 C.9* 1.251 C.9*	0.722 0.6* 0.785 0.6*	1.3* 1.30* 1.3* 1.3* 1.30*	1380 1400	s 1 s2 s s s2		NIE66 SCH69 CH168 CH168 SCH69
40CA 40CA 40CA 40CA 40CA	21.4 21.4 25.9 28. 28.	104.8 106. 105. 36.33 101.0	1.063 1.05* 1.05* 1.329 1.063	0.721 6.85+ 0.85* 0.777 0.928				7.81 11.7 12.0 11.85 19.41	1.416 1.50 1.45 0.757 1.416	0.857 0.33 0.30 1.281 0.529	6.51 6.5 6.5	1.063 0.9* C.9*	0.721 0.6* 0.6*	1.3* 1.30* 1.30* 1.3* 1.3*	1566 1480 1490	52 52 52 52 52 5	12 12	PER66 SCH69 SCH69 GAI68 GAI68
40CA 40CA 40CA 40CA	30. 34.4 34.4 34.4	93. 95.17 95.44 98.5	1.13* 1.081 1.075 1.05*	0.8 0.779 0.8C4 0.85*				10.23 13.CE 11.81 12.E	1.39 1.357 1.340 1.37	0.75 C.742 0.764 0.24	5.07 6.31 6.5	C.9 1.075 0.9*	0,56 0.804 0.6*	1.3* 1.3* 1.3* 1.30*	1500	5121 52 51 52 52	35 31 31	£0C74 NEW67 NEW67 SCH69
42CA 42CA 42CA 42CA	7.00 7.20 7.5 7.5	116.2 118.3 88.0 117.9	1.0* 1.0* 1.15* 1.0*	0.755 0.765 0.81* 0.756				12.87 12.72 14.57 12.74	1.513 1.476 1.623 1.508	0.655 0.656 0.639 0.646				1.3* 1.3* 1.3* 1.3*		52 52 5 52		BEL68 BEL68 BAN68 HAN68
42CA 42CA 42CA 42CA 42CA 42CA	9. 9. 9.0 9.0 10. 11.8	119.1 110.1 109.1 110.0 88.5 100.6	0.952 1.0* 1.00* 1.00* 1.175* 1.07*	0.855 0.9* 0.917 0.901 0.807 0.815				15.3 16.3 15.5 11.3 16.11 10.2	1.511 1.55* 1.563 1.598 1.498 1.498	0.537 0.47* 0.517 0.585 0.551 0.666	7.7 6.0*	1.00* 1.07*	0.901 0.815	1.3* 1.3* 1.3? 1.3? 1.3* 1.3*	1169 1138	51 5 5 5 5 51	5 4 3	MAR66 MAR66 FOR70 FOR70 BR070 FIT70
42CA 42CA 42CA 42CA 42CA	12. 12. 12.0 12.0 12.0	114.6 115.3 113.6 111.8 90.18	0.995 0.997* 1.00* 1.00* 1.175*	0.833 0.787* 0.831 0.835 0.764				16.2 13.5 16.3 10.2 16.87	1.410 1.422* 1.416 1.498 1.431	0.548 0.579* 0.552 0.672 0.548	8.7	1.00*	0.835	1.3* 1.3* 1.3? 1.3? 1.3?	1224 1191	51 52 5 5 5 5	5 4	MAR66 MAR66 FOR70 FOR70 BR070
43CA 43CA 43CA 43CA	7. 7. 8.5 8.5	110.6 129.0 115.5 109.3	1.C* 0.883 1.O* 0.991	0.9* 0.864 0.9* 0.986				20. E.3 17.5 13.3	1.55* 1.816 1.55* 1.686	0.47* 0.691 0.47* 0.535				1.3? 1.3? 1.3? 1.3?	981 1342 1116 1343	5 5 5	H66 H66 H66 H66	EJE64 EJE64 BJE64 EJE64
44CA 44CA 44CA 44CA 44CA 44CA	7.00 7.00 7.20 7.5 7.5 9.	114.1 117.4 117.4 87.4 114.6 170.7	1.0 1.0* 1.0* 1.15* 1.0* 0.739	0.764 0.750 0.729 0.81* 0.773 0.909				12.8 12.68 12.63 14.60 13.05 13.7	1.44 1.420 1.454 1.598 1.449 1.411	0.672 C.667 O.657 O.663 O.652 O.637				1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1158	S1 S2 S2 S1 S1		BAF67 BEL68 LEL68 HAN68 HAN68 BAR66
44CA 44CA 44CA 44CA 44CA 44CA	9. 10. 11.8 12. 12. 12.	108.9 86.8 99.4 122.8 113.9 89.34	1.0* 1.175* 1.07* 0.966 0.997* 1.175*	0.9* 0.819 0.832 0.719 0.787* 0.752				16.1 19.22 11.3 11.2 14.6 17.06	1.55* 1.456 1.41 1.449 1.422* 1.351	0.47* 0.523 0.730 0.732 0.579* 0.627	6.0*	1.07*	0.832	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1138 1385 1218	S S S S S S S	4 3 4	MAR66 BR070 FIT70 MAR66 MAR66 BR070
46CA 46CA 46CA	7.0 7.00 7.20	116.2 113.6 118.2	1.00* 1.0* 1.0*	0.7e2 0.748 0.774				13.2 12.9 12.59	1.47 1.480 1.485	0.662 0.620 0.607				1.3* 1.3* 1.3*		52 52 52		BEL66 BEL68 EEL68
48CA 48CA 48CA 48CA 48CA 48CA	2.5 3.0 3.5 4.0 4.5 5.0	95.0* 95.0* 95.0* 95.0* 95.0* 95.0*	1.11 1.18 1.16 1.19 1.18 1.22	0.74 0.66 0.71 0.67 C.71 0.64				6.47 7.21 6.05 6.37 5.10 13.6	1.54 1.60 1.68 1.46 1.48 1.26	0.66 0.66 0.67 0.66 0.66 0.65	10.0* 10.0* 10.0* 10.0* 10.0* 10.0*	0.91* 0.91* C.91* 0.91* 0.91* C.91*	0.60* 0.60* 0.60* 0.60* 0.60* 0.60*	1.307 1.307 1.307 1.307 1.307 1.307		51 51 51 51 51 51		BOY71 BOY71 FCY71 BOY71 BOY71 EOY71
48CA 48CA 48CA 48CA 48CA 48CA	5.5 7.00 7.20 9. 9. 10.	95.0* 116.3 116.5 127.6 112.4 90.8	1.14 1.0+ 1.0* 0.962 1.0* 1.175*	0.81 c.8C2 0.796 0.772 0.94 0.757				10.4 13.C 12.73 13.5 17.2 14.58	1.57 1.420 1.401 1.427 1.55* 1.361	0.66 0.659 0.639 0.564 0.47* 0.660	10.0*	0.91*	0.60*	1.30? 1.3* 1.3* 1.3* 1.3* 1.3*	1036 1138	S 1P 3 52 52 51 5 5 5	4	ROY71 EEL68 EEL68 MAR66 MAR66 BR070
48CA 48CA 48CA 48CA 48CA 48CA	11.8 12. 12. 12. 17.0 17.0	104.3 117.0 1C4.8 91.68 112.6 84.3	1.07* 1.00€ 0.997* 1.175* 0.91 1.1	0.820 0.745 0.767* 0.777 0.86 0.82				12.3 15.6 13.3 16.40 14.00 16.C4	1.36 1.356 1.422* 1.4C8 1.52 1.52	0.677 0.592 0.579* 0.579 0.53 0.53	6.0* 7.23 5.63*	1.07* 0.75 0.98*	0.820 0.98 1.0*	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1173 1244 1460 1460	52 52 53 5 51 52	3 4 37 37	FIT70 MAR66 MAR66 BR070 CHI74 CHI74
SC 45SC 45SC	13.6 7.5 7.5	72.0 88.3 113.7	1.35* 1.15* 1.0*	0.730 C.81+ 0.785				18.5G 16.60 12.56	1.27 1.515 1.418	1.9* 0.560 0.648				1.37 1.3* 1.3*	1597	52 51 51		KOR E 9 HAN 68 HAN 68
ti ti ti ti ti	4.07 11.8 11.8 11.8 11.8	55. 48.5 72.2 49.8 77.1	1.5 1.20¢ 1.335 1.183 1.278	0.6 0.815 0.691 0.817 0.707	15.	1.5	0.6	12.14 21.66 12.C6 20.14	1.443 1.403 1.434 1.379	0.668 0.552 0.671 0.584				1.5* 1.3* 1.3* 1.3* 1.3*	372 1380 1337 1364 1338	S S 1 S 2 S 1 S 2	H66 10 10 10 10	SLA59 PER63 FER63 BAL64 BAL64

TABLE III. Optical-Model Parameters

Deuterons

NUCLIDE	RNERGY (MBV)	REAL V	POTEST R	IAL A	VCL.IN N	AG. PCI RE	ENTIAL AW	SGRT.IM WE	AG. POT BC	ENTIAL AC	SPIN- VSO	CRBIT P RSO	OTENTIAL A SO	BC	SR	FIT	NOTE	REF.
ti Ti Ti Ti Ti	12.6 12.8 12.8 15. 15. 15.	114.2 46.7 77.6 35.84 74.0 52.4	1.005 1.240 1.283 1.453 1.329 1.158	0.753 0.797 C.7(6 0.721 0.71C C.854				5.38 12.24 18.95 13.66 20.23 11.56	1.292 1.369 1.324 1.414 1.333 1.448	0.681 0.673 0.622 0.609 0.645 0.687	9.36	1.005	0.753	1.2? 1.3* 1.3* 1.3* 1.3* 1.3*	1366 1377 1472 1514 1504	P2 52 51 52 52 51	12 10 10 10 10 10, 2	ZAI71 PER63 PER63 PER63 PER63 PER63 FER64
4611 4611 4611 4611 4611 4611	7.5 7.5 9.0 9.15 9.15 11.0	83.9 112.8 102.9 83.03 89.54 102.4	1.15* 1.0* 1.05* 1.175* 1.175* 1.05*	0.81* 0.781 C.86* 0.843 0.772 C.86*				14.90 12.57 17.48 16.56 12.28 14.65	1.495 1.405 1.39 1.501 1.442 1.43	0.694 0.648 0.62 0.595 0.702 0.60	7.0* 12.05 7.C*	0.75* 1.175* C.75*	0.5* 0.772 0.5*	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1281 1283	51 51 52P2 5 5 52P1	15 15 16 10 5 16	HAN68 HAN68 LOB74 ALT67A AL167A LCH74
46 TI 46 TI 46 TI	11.8 13.0 13.€	97.4 103.7 \$3.	1.07* 1.05* 1.15*	0.799 0.86* C.780				11.5 16.C3 18.5	1.37 1.38 1.32	0.728 0.66 0.68*	6.0* 7.0*	1.07* 0.75*	0.799 0.5*	1.3* 1.3* 1.3?		51 52P1 52	3 16	FIT70 Loh74 VER70
471I 47TI	6. 13.6	41. 93.	1.0* 1.15*	0.9C* 0.775	19.6	1.41*	0.65*	17.0	1.30	0.68*				1.3? 1.37		S 52	H66	EARE4 VER70
48TI 48TI 48TI 48TI 48TI 48TI 48TI	6. 6.0 7.0 7.5 7.5 8.0	55. 88.9 88.0 88.8 115.0 87.8	1.0* 1.15* 1.15* 1.15* 1.0* 1.15*	C.9C* O.81* O.81* O.81* O.81* C.81*	28.2	1.41*	0.65*	17.6 16.C 14.45 13.CC 17.6	1.44* 1.44* 1.494 1.410 1.44*	0.61* 0.61* 0.675 0.650 0.61*				1.3? 1.3* 1.3* 1.3* 1.3* 1.3*		S S1 S1 S1 S1 S1	H66	EAR64 SIE67 SIE67 HAN68 HAN68 SIE67
48TI 48TI 48TI 48TI 48TI 48TI	9.0 9.0 10.0 11.0 11.0 11.8	87.8 100.3 87.3 87.3 103.2 98.5	1.15* 1.05* 1.15* 1.15* 1.05* 1.07*	C.81* O.86* O.81* O.81* O.86* O.86*				17.4 12.22 15.7 16.2 15.27 12.3	1.44* 1.49 1.44* 1.44* 1.39 1.40	0.61* 0.77 0.61* 0.61* 0.70 0.717	7.0* 7.0* 6.0*	0.75* 0.75* 1.07*	0.5* 0.5* 0.802	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*		S1 S2P2 S2 S2 S2P1 S1	16 16 3	SIE67 LOH74 SIE67 SIE67 LOH74 FIT70
48TI 48TI 48TI 48TI 48TI 48TI	11.9 11.9 12.0 13.0 13.6 15.	104.8 81.4 8E.7 102.8 53. 96.9	1.049 1.273 1.15* 1.05* 1.15* 1.15*	0.805 0.647 0.81* 0.86* 0.770 0.65	10.88	1.516	0.542	11.78 16.8 14.05 18.5 12.6	1.444 1.44* 1.40 1.29 1.32	0.724 0.61* 0.75 0.68* 0.76	5.61 5.11 7.C* 5.13	0.70* 0.70* 0.75* 0.7*	0.4C* 0.40* 0.5* 0.4*	1.3* 1.3* 1.3* 1.3* 1.3? 1.3?		S1P2 S2P2 S2 S2P1 S2P1 S2 S1P1	16,15 15 16	HEI72 HEI72 SIE67 ICH74 VER70 BAK74
48TI 48TI 48TI 48TI 48TI 48TI 48TI	19.5 21.5 21.5 34.4 34.4 52.	101.0 65.6 106.0 95.63 95.36 72.5	1.06 0.909 0.997 1.071 1.068 1.25*	0.823 1.068 0.916 0.841 0.812 0.733				13.83 14.00 18.33 12.77 12.45 15.1	1.341 1.419 1.400 1.291 1.295 1.21	0.742 0.685 0.643 0.739 0.762 0.739	7,75	1.068	0.812	1.11* 1.3* 1.3* 1.3* 1.3* 1.3*	1613 1599	S S S S S S S S 2	10,2 10,2 12 12 12 2,3	SCU73 PER63 FER63 NEW67 NEW67 BIN68
48TI 48TI 48TI	52. 52. 52.0	70.0 50.0 74.6	1.25* 1.05* 1.25*	0.744 0.85 0.76				13.2 12.5 20.0	1.25 1.29 1.12	0.759 0.76 0.72	7.9 7.9	1.25* 1.05*	0.744 0.85	1.3* 1.3* 1.25?		51 51 51	2,3 2,3 2	HIN68 HIN68 HER70
49TI 49TI 49TI 49TI 49TI 49TI	6. 11.9 11.9 13.6 21.6 34.4	95. 105.8 80.9 91.5 50.9 96.89	1.0* 1.058 1.289 1.15* 1.131 1.056	0.9C* 0.772 0.6C9 0.785 0.868 0.840	29.5 5.87	1.41* 1.627	0.65* 0.557	10.50 17.C 10.3 12.C9	1.468 1.32 1.465 1.260	0.700 0.68* 0.69 0.774	5.06 4.37	0.70* 0.70*	0.40* 0.4C*	1.3? 1.3* 1.3* 1.3? 1.3* 1.3*		S S2P2 S2F2 S2 S S S S S	H66 16,15 15 H66,2 12	BAR64 HEI72 HEI72 VER70 HAL62 NEW67
49 T I	34.4 ć	95.59	1.087	0.800				11.89	1.280	0.771	7.37	1.087	0.800	1.3*		S 1	12	NE#67
5011 5011 5011 5011 5011 5011	11.8 11.9 11.9 13.6 15.	102.2 105.2 80.3 90. 108.0	1.07* 1.052 1.287 1.15* 1.05	0.781 0.816 C.553 0.8C5 0.77	21.2 8.94	1.654	0.737	12.7 10.57 17.C 5.0	1.31 1.475 1.33 1.34*	0.750 0.722 0.68* 0.62*	6.0* 5.06 4.36 4.27	1.07* 0.70* 0.70* 0.7*	0.781 0.40* 0.40* 0.44	1.3? 1.3* 1.3* 1.3* 1.37 1.3?		S S2 S2P2 S3P2 S2 S1P1	H66 3 16,15 15	BAR64 FIT70 HEI72 HEI72 VER70 EAK74
50TI 50TI 50TI 50TI	34.4 34.4 52. 52.	\$6.88 95.72 71.3 85.0	1.046 1.091 1.25* 1.05*	C.879 O.784 O.733 O.852				12.51 11.72 14.2 12.4	1.269 1.297 1.25 1.29	0.770 0.777 C.714 0.76	8.15 6.64 7.9	1.091 1.25* 1.05*	0.784 0.733 0.852	1.3* 1.3* 1.3* 1.3*		53 51 51 51	12 12 28,3 28,3	NEW67 NEW67 HIN68 HIN68
A A A A A A A	8.01 8.46 8.96 9.45 9.94 10.46	65.37 65.82 65.12 65.71 63.29 61.53	1.5* 1.5* 1.5* 1.5* 1.5* 1.5*	0.531 0.526 C.558 0.579 C.576 0.545	11.59 12.09 14.49 13.92 14.79 14.52	1.5* 1.5* 1.5* 1.5* 1.5* 1.5*	0.531 0.526 0.558 0.579 0.576 0.545							1.3* 1.3* 1.3* 1.3* 1.3* 1.3*		5 5 5 5 5 5 5	H66 H66 H66 E66 H66 H66	GAR63 GAR63 GAR63 GAR63 GAR63 GAR63
v	27.5	92.3	1.12	0.85	23.4	1.33	1.39							1.3?	1501	s	H66	BAY65
50¥ 50¥ 50¥	7.50 7.5 7.5	116.8 89.1 116.8	1.0* 1.15* 1.0*	0.78 0.81* 0.780				13.C7 14.60 13.C7	1.448 1.522 1.448	0.661 0.670 0.661				1.3* 1.3* 1.3*		51 51 51		DEL 67 HAN68 HAN68
51V 51V 51V 51V 51V 51V	7.5 7.5 11.9 11.9 17.0 17.0	87.1 114.4 103.7 79.86 94.6 97.1	1.15* 1.0* 1.063 1.285 1.13 1.1	0.81* 0.796 0.794 0.619 0.74 0.82	9.60	1.673	0.805	14.40 13.16 10.70 11.60 13.42	1.432 1.358 1.469 1.34 1.42	0.754 0.685 0.788 0.75 0.66	4.69 5.32 7.81 5.63*	0.70* 0.70* 0.76 0.98*	0.40* 0.40* 1.73 1.0*	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1550	S1 51 52P2 52P2 51 52	16,15 15 37 37	BAN68 BAN68 BEI72 BEI72 CHI74 CHI74
51V 51V 51V	27.5 34.4 34.4	81.80 56.64 95.71	1.225 1.061 1.067	0.790 0.810 0.823				21.5CG 17.14 13.54	1.342 1.280 1.306	1.375 0.751 0.771	7.30	1.067	0.823	1.3? 1.3* 1.3*	1487	53 5 51	10 31 31	IES65 NEW67 NEW67

TABLE III. Optical-Model Parameters

N UC LID B	ENERGY (NEV)	RE AL V	POTENTI R	AL A	VOL.IMA W	AG. POI RW	E NTI A L AW	SURP.IN WD	NG. POT RD	ENTIAL AD	SPIN- VSO	ORBIT P RSO	O TENTIAL ASO	RC	SR	FIT	NOTE	R EF .
CR CR	11.15 11.15	97.4 46.2	0.739 1.260	1.132 0.842				19.08 15.92	1.281 1.434	0.609 0.577				1.3* 1.3*	12 33 13 14	s s	10 10,27	HAL64 HAL64
5 0CR 5 0CR 5 0CR 5 0CR	7.5 7.5 7.5 9.0	83.7 110.4 102. 88.03	1.15* 1.0* 1.0C* 1.175*	0.81* 0.778 0.88 0.683	10.05	1.735*	0.683	19.0 13.09 24.3	1.469 1.400 1.41	0.605 0.659 0.64				1.3* 1.3* 1.30* 1.37	1185	S 1 S 1 S 1 S	15 15 15 10	HA NG 8 HA NG 8 RO BG 8 AN DG 4
5 CCR 5 OCR 5 OCR 5 OCR 5 OCR	10.0 10.0 10. 11.8 16.4	77.32 43.98 83.3 97.2 100.*	1.26 1.275 1.175* 1.07* 1.054	0.702 0.791 0.823 0.837 0.853				14.66G 9.97G 19.08 13.9 18.24	1.107 1.286 1.411 1.42 1.322	2.189 2.079 0.603 0.671 0.745	6.0*	1.07*	0.837	1.3? 1.3? 1.3* 1.3* 1.3*	1221 1268	5 5 5 5 1 5 2	10 10 4 3	AN D64 AN D64 BR 070 FIT 70 PE T72
5 2CR 5 2CR 5 2CR 5 2CR 5 2CR 5 2CR	4.39 4.53 4.69 4.93 5.41 5.72	89.9 89.8 88.6 90.1 90.3 87.8	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.158 0.546 0.489 0.518 0.546 0.430	15.05 15.04 15.10 15.06 15.01 15.66	1.25* 1.25* 1.25* 1.25* 1.25* 1.25*	0.158 0.546 0.489 0.518 0.546 0.430							1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.25*		51 51 51 51 51 51		LE G6 6 LE G6 6 LE G6 6 LE G6 6 LE G6 6 LE G6 6
5 2CR 5 2CR 5 2CR 5 2CR 5 2CR 5 2CR	6.02 6.33 7.0 7.5 7.5 7.50	98.9 90.2 90.99 89.5 113.1 114.2	1.25* 1.25* 1.175* 1.15* 1.0* 1.0*	0.434 0.518 0.714 0.81* 0.796 0.76	17.72 14.97 9.14	1.25* 1.25* 1.735*	0.434 0.518 0.714	14.57 13.07 13.2	1.456 1.356 1.37	0.698 0.676 0.693				1.25* 1.25* 1.3? 1.3* 1.3* 1.3*	1025	S 1 S 1 S 1 S 1 S 1 S 1 S 1	10	L E G66 L E G66 A N D64 HA N68 HA N68 RA 068
5 2CR 5 2CR 5 2CR 5 2CR 5 2CR 5 2CR	8.0 9.0 10.0 10.0 10.	91.01 91.29 90.76 45.54 87.2	1.175* 1.175* 1.175* 1.275* 1.175*	0.725 0.698 0.696 0.834 0.792	9.88 9.6 9.53	1.735* 1.735* 1.735*	0.725 0.698 0.696	9.10g 17.17	1.383 1.402	2.044 0.658				1.3? 1.3? 1.3? 1.3? 1.3?	1192 1242 1316 1392	5 5 5 5 5	10 10 10 10 4	AN D64 AND64 AND64 AND64 BRO70
5 2CR 5 2CR 5 2CR 5 2CR 5 2CR 5 2CR	11.0 11.0 11.0 11.0 11.0	79.90 91.97 105.7 86.9 106.5	1.35* 1.175* 1.05* 1.217 1.05*	0.695 0.633 0.85* 0.734 0.86*	11.85 9.61	1.664 1.735*	0.572 0.633	14.9 16.97 16.61	1.411 1.355 1.41	0.676 0.649 0.63	5.31 5.22 7.0*	0.75* 0.75* 0.75*	0.4* 0.4* 0.5*	1.3? 1.25* 1.25* 1.25* 1.3*	1299 1343 1403 1331	S S S P S P S 2P2	10 10 16	AN D64 AN D64 MAY71 MAY71 L0H74
5 2CR 5 2CR 5 2CR 5 2CR 5 2CR 5 2CR 5 2CR	11.8 11.8 11.8 11.8 11.9 11.9	106.3 55.1 106.2 101.2 104.3 80.06	1.05* 1.186 1.051 1.07* 1.058 1.275	0.86* 0.808 0.849 0.807 0.774 0.610	9.92	1.652	0.728	13.62 11.15 13.25 13.0 11.80	1.46 1.437 1.455 1.41 1.457	D.68 D.68 O.698 O.669 O.745	7.0* 7.53 11.65 6.0* 4.40 4.86	0.75* 0.99 0.74 1.07* 0.70* 0.70*	0.5* 0.514 0.461 0.807 0.40* 0.40*	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*		S2P1 S2P1 S2P1 S1 S2P2 S3P2	16,7 10 10 3 16,15 15	LOH74 GRI70 GRI70 PIT70 HE172 HE172
5 2CR 5 2CR 5 2CR 5 2CR 5 2CR 5 2CR	13.6 15. 15. 17.0 17.0	65. 90.6 103.6 92.6 95.9	1.48 1.17 1.05* 1.14 1.1	0.46 0.69 0.87 0.75 0.82	15.	1.48	0.46	11.6 13.99 13.30 14.89	1.34* 1.39 1.31 1.38	0.82* 0.74 0.74 0.68	6.18 11.88 6.59 5.63*	0.7* 0.62 1.03 0.98*	0.4* 0.41 1.46 1.0*	1.3? 1.3? 1.3* 1.3* 1.3*	1540 1570	S S 1P 1 S 2P 1 S 1 S 2	H66 14 37 37	MA N64 BA K74 IE S74 CH I74 CH I74
5 2CR 5 2CR	34.4 34.4	96.23 95.87	1.099 1.096	0.770 0.789				18.15 12.60	1.304 1.275	0.680 0.783	7.03	1.096	0.789	1.3* 1.3*		52 52	12 12	N E W 6 7 NE W 6 7
5 3CR 5 3CR 5 3CR 5 3CR 5 3CR 5 3CR	9.0 9.0 10.0 10.0 10.	90.76 107.2 90.88 46.00 87.2	1.175* 1.05* 1.175* 1.275* 1.175* 1.175*	0.710 0.86* 0.709 0.844 0.817 0.86*	9.67 9.63	1.735* 1.735*	0.710 0.709	17.17 9.11G 17.97	1.34 1.379 1.412	0.70 2.059 0.640 0.76	7.0*	0.75*	0.5*	1.3? 1.3* 1.3? 1.3? 1.3?	1281 1359 1420	S S 2 P 1 S S S S S 2 P 1	10 16 10 10 4	AND64 LOH74 AND64 AND64 BR070
5 3CR 5 3CR 5 3CR 5 3CR 5 3CR	11.0 11.8 13.0 13.5	104.7 101.7 103.0 90.8	1.05* 1.07* 1.05* 1.15*	0.86* 0.801 0.86* 0.81*				14.56 13.2 13.13 18.8	1.39 1.38 1.44 1.34*	0.75 0.685 0.77 0.68*	7.0* 6.0* 7.0*	0.75* 1.07* 0.75*	0.5* 0.801 0.5*	1.3* 1.3* 1.3* 1.3*		S2P1 S1 S2P2 S	16 3 16 R66	LO H7 4 FIT70 LOH74 SO R65
54CR 54CR 54CR 54CR 54CR	9.0 10.0 10.0 10. 11.8	87.36 87.56 42.27 85.5 98.9	1.175* 1.175* 1.275* 1.175* 1.07*	0.747 0.743 0.829 0.821 0.827	9.61 9.84	1.735* 1.735*	0.747 0.743	8.72G 17.84 13.4	1.323 1.366 1.41	2.267 0.688 0.696	6.0*	1.07*	0.827	1.3? 1.3? 1.3? 1.3* 1.3*	1362 1441 1468	S S S S 1	10 10 10 4 3	AN D64 AN D64 AN D64 BRO70 PI T70
PE FE FE FE	11.15 11.15 11.15 11.8 11.8 11.8	51.5 78.5 56.7 58.5 95.5	1.156 1.225 1.085 1.10 1.112	0.979 0.843 0.993 0.864 0.795				15.76 24.11 17.7 13.40 19.03	1.433 1.399 1.380 1.381 1.325	0.658 0.586 0.638 0.718 0.676				1.3* 1.3* 1.3* 1.3* 1.3*	1452 1410 1370 1385 1349	S1 S S2 S1 S	10 10 10,27 10 10	PE R63 PER63 Ha L64 PER63 PER63
pe Pe Pe Fe Fe	11.8 11.8 11.8 11.8 15.0 15.0	53.7 58.4 96.9 96.9 59.4 51.9	1.105 1.103 1.107 1.11 1.105 1.185	0.897 0.836 0.756 0.76 0.884 0.873				13.76 13.31 18.02 18.02 13.40 13.23	1.375 1.353 1.275 1.275 1.275 1.389 1.420	0.713 0.733 0.730 0.73 0.712 0.703	6.0*	1.25*	0.73	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	14 27 13 92 13 74 15 32 15 76	51 52 52 51P3 51 5	10,27 10 10 30 2 27	HA 164 HA 164 HA 164 BA X68 PER64 PER64
FE FE FE	25.9 25.9 25.9 27.5	103.9 97.90 99.26 82.00	1.06 1.096 1.088 1.230	0.82 0.795 0.796 0.796				11.0 10.95 10.82 22.106	1.23 1.223 1.215 1.270	0.96 0.957 0.971 1.488	5.58	1.096	0.795	1.06 1.3* 1.3* 1.3*	1850 1811 1816 1526	52 52 53 52	10,27 27 27	TJ165 PER66 PER66 TES65

TABLE III. Optical-Model Parameters

NUCLIDE	EN ERGY (MEV)	REAL V	POTENT R	IAL A	VOL. IN	AG. FOT RW	ENTIAL AW	SURF.INA WD	AG. POT RD	EN TIAL AD	SPIN- VSO	RBIT I	POTENTIAL ASO	RC	S R	FIL	NOFE	R EF.
5 4PE 5 4FE 5 4FE 5 4FE	7.5 7.5 8.0 10.0	94.5 117.0 105.0 106.5	1.15* 1.0* 1.05* 1.05*	0.81* 0.834 0.86* 0.86*				17.60 13.03 15.29 19.98	1.359 1.381 1.44 1.38	0.719 0.665 0.75 0.62	7.0* 7.0*	0.75* 0.75*	0.5* 0.5*	1.3* 1.3* 1.3* 1.3*		51 51 52P2 52P2	16 16	HA NG 8 HAN 6 8 LO H7 4 LO H7 4
54PE 54FE 54PE 54PE 54PE 54PE	12.0 12.3 12.3 12.3 14.5 15.	105.8 105.6 105.2 105.2 92.58 82.1	1.05* 1.05* 1.05* 1.05* 1.15* 1.26	0.86* 0.85* 0.85* 0.86* 0.81* 0.72				14.33 14.00 13.62 14.49 16.55 14.7	1.44 1.430 1.430 1.43 1.384 1.36	0.70 0.695 0.708 0.69 0.651 0.66	7.0* 6.8 5.1 7.0* 6.80	0.75* 0.90* 0.65* 0.75*	0.5* 0.60* 0.18* 0.5* 0.41	1.3* 1.3* 1.3* 1.3* 1.15* 1.3?	14 99	S2P1 S2P1 S2P2 S2P1 S2P1 S2 S1P1	16 16 2	LO H74 BR073A BR073A LO H74 HJ 068 BA K74
54PE 54FE 54FE 54PE 54FE 54FE	17.0 17.0 34.4 34.4 52. 52.	90.6 97.5 95.80 96.67 72.3 71.5	1.17 1.1 1.126 1.097 1.25* 1.25*	0.71 0.82 0.769 0.799 0.75 0.75				12.00 15.82 11.55 12.25 12.8 13.0	1.30 1.37 1.208 1.270 1.25 1.25	0.78 0.66 0.828 0.783 0.75 0.73	7.13 5.63* 7.07 6.*	0.64 0.98* 1.097 1.25*	0.71 1.0* 0.799 0.75	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1540 1530	51 52 52 52 53 51	37 37 12 12 28, 3 28, 3	CH 174 CH 174 NE W67 NEW67 HI N68 HI N68
56FE 56FE 56FE 56FE 56FE 56FE	11.8 11.8 12.0 12.3 12.3 12.3	60.0 105.7 102.7 103.6 103.9 104.3	1.098 1.031 1.05* 1.05* 1.05* 1.05*	0.86 0.858 0.85* 0.85* 0.85* 0.85*				12.72 15.42 16.07 14.39 14.01 15.18	1.388 1.391 1.38 1.390 1.383 1.383	0.726 0.707 0.695 0.759 0.766 0.74	6.36 8.1 5.07 6.5 4.8 7.0*	0.829 0.928 0.9* 0.90* 0.65* 0.75*	0.496 0.437 0.6* 0.60* 0.18* 0.5*	1.3* 1.3* 1.25* 1.3* 1.3* 1.3*	1464	S 1P2 S 1P2 S P S 1P1 S 1P2 S 2P	10 10 16	GR 170 GR 170 BA Y71 BR 073A BR 073A LOH74
56FE 56FE 56FE 56FE 56FE	14.5 15. 17.0 17.0 30.	93.18 82.8 94.8 96.3 92.4	1.15* 1.24 1.12 1.1 1.13*	0.81* 0.75 0.79 0.82 0.76				16.87 15.3 15.30 16.12 12.34	1.377 1.34 1.32 1.33 1.34	0.667 0.70 D.74 0.72 0.78	6.80 6.60 5.63* 5.33	0.85 0.90 0.98* 0.9	0.41* 1.16 1.0* 0.606	1.15* 1.3? 1.3* 1.3* 1.3*	1559 1610 1610	S2 S1P1 S1 S1 S1 S1P1	2 37 37 35	HJ 068 BAK74 CH 174 CH 174 RO C74
5 7FE	10.0	104.2	1.05*	0.86*				17.72	1.35	0.76	7.0*	0.75*	0.5*	1.3*		S 1 P 1	16	loh74
5 epe 58 pe 58 pe 5 epe	10. 12.3 12.3 12.3	86.55 103.0 103.6 103.3	1.175* 1.05* 1.05* 1.05*	0.80 0.85* 0.85* 0.86*				20.4 13.98 13.79 15.16	1.340 1.400 1.396 1.39	0.680 0.790 0.792 0.76	6.8 4.3 7.0*	0.90* 0.65* 0.75*	0.60* 0.18* 0.5*	1.2? 1.3* 1.3* 1.3*		52 52P1 52P2 52P1	15 16	NC L72 BRO73A BRO73A LOH74
C0 59C0 59C0 59C0 59C0 59C0	4.07 13.6 17.0 17.0 27.5 27.5	52.9 73. 104.6 98.7 73.35 82.00	1.5* 1.35* 1.05 1.1 0.87 1.225	0.682 0.685 0.86 0.82 1.10 0.780	17.4	1.5*	0.682	17.G* 16.10 16.94 17.03G 22.10G	1.22 1.36 1.35 1.28 1.275	1.9* 0.68 0.68 1.69 1.467	7.47 5.63*	0.93 0.98*	1.63 1.0*	1.5? 1.3* 1.3* 1.3* 1.3? 1.3?	1469 1620 1610 1551 1530	S S 2 S 1 S 2 S 2 S 2	866 37 37 10 10	SM 162 NEM 67 CH 174 CH 174 TE S65 TE S65
NI NI NI NI NI	3.32 4.07 11.15 11.15 11.15 11.15	60. 50.8 77.3 59.8 51.8	1.5* 1.5* 1.237 1.289 1.131 1.237	0.65 0.65 0.857 0.763 0.866 0.824	15. 15. 8.35	1.5* 1.5* 1.791	0.65 0.65 0.565	15.09 22.55 16.91	1.433 1.402 1.378	0.659 0.603 0.637				1.5* 1.5* 1.3* 1.3* 1.3* 1.3*	1380 1366 1320 1307	S S S 1 S 1 S S 1	H66 H66 10 10 10 10	ME 162 MEL62 PE R63 PE R63 HAL64 HA 164
NI NI NI NI NI	11.7 11.8 11.8 11.8 11.8 11.8 11.8	56.1 53.2 76.3 60.5 56.4 79.5	1.17 1.202 1.305 1.121 1.164 1.274	0.88 0.869 0.746 0.860 0.865 0.739	7.59	1.834	0.537	13.8 13.71 20.70 14.14 20.37	1.45 1.463 1.424 1.427 1.389	0.67 0.667 0.608 0.665 0.625				1.17 1.3* 1.3* 1.3* 1.3* 1.3*	14 30 14 32 14 14 13 57 13 96 13 96	51 51 51 51 51 51	10 10 10 10 10 10	TJ 165 PER63 PER63 HAL64 HAL64 HAL64
NI NI NI	11.8 13.5 13.5	95.0 44.8 70.0	1.14 1.322 1.378	0.80 0.816 0.714				19.58 15.65 25.79	1.37 1.409 1.403	0.64 0.652 0.543	6.0*	1.5	0.64	1.3* 1.3* 1.3*	1502 1472	5 1P 3 5 2 5 2	30 10,28 10,28	BA X68 PER63 PER63
NI RI NI NI NI	21.6 21.6 21.6 21.6 25.8 25.9	71.74 56.6 96.31 101.4 58.3 103.6	1.29 1.10 1.119 1.064 1.04 1.048	0.7 0.91 0.735 0.856 1.01 0.825				14.50 14.3 12.63 19.52 15.8 11.88	1.36 1.37 1.261 1.330 1.41 1.232	0.68 0.68 0.842 0.683 0.64 0.888	6.37 6.62	1.119	0.735 0.825	1,3? 1,10 1,3* 1,3* 1,04 1,3*	1620 1689 1640 1670 1749	S S 1 S 2 S 3 S 2	H66 10 10,27	BR 06 2 TJ 16 5 PE R6 6 PE R6 6 TJ 16 5 PE R6 6
5 8 NI 5 8 NI 5 8 NI 5 8 NI 5 8 NI	11.8 11.8 11.8 11.8 11.8	106.1 54.1 107.4 107.0	1.07* 1.210 1.051 1.05*	0.807 0.854 0.850 0.86*				16.6 12.83 15.1 15.10	1.35 1.462 1.437 1.44	0.629 0.665 0.730 0.73	6.0* 5.61 9.6 7.0*	1.07* 0.955 0.870 0.75*	0.807 0.529 0.480 0.5*	1.3* 1.3* 1.3* 1.3*		S1 5 1P2 S2P2 5 1P1	3 10 10 16,7	PI T7 0 GR 17 0 GR 17 0 LO H7 4
58NI 58NI 58NI 58NI 58NI 58NI	12. 12. 12.8 12.8 13.6	121.7 118.4 67.86 57.5 72.	0.928 0.931 1.44* 1.16 1.35*	1.004 1.046 0.562 0.82 0.730*	14.41	1.54*	0.562	19.1 20.5 16.0 17.G*	1.438 1.467* 1.35 1.22	0.584 0.582* 0.63 1.9*				1.3* 1.3* 1.4? 1.16 1.3*	1391 1453 1346 1300 1470	S S S 1 S 2	Я66 10	MAR66 MAR66 BUD63 TJ 165 NE M67
58NI 58NI 58NI 58NI 58NI 58NI	15.0 15.0 15.0 15.0 15.0 15.0	76.1 98.6 84.0 114.3 108.5	0.931 1.105 0.89 1.31 1.05*	0.840 0.709 0.85 0.53 0.85*	27.6	1.10	1.09	10.03 11.15 16.49 11.0	1.395 1.284 1.170 1.30	0.850 0.831 0.85 0.69*	4,88	0.7*	0_41*	1.3* 1.3* 0.89 1.3? 1.3?	15 32 14 84 14 36 15 40	52 52 52 52 52 51	2 10 10 10	NJ 06 8 PER63 PER63 TJ 165 HER70 BA 87%
5 ENI 5 8 NI 5 8 NI 5 8 NI 5 8 NI	17.0 17.0 21.6 21.6	96.5 99.0 103.5 102.0*	1.12 1.1 1.05* 1.05*	0.80 0.82 0.85* 0.85*				15.20 15.57 16.00 16.00*	1.34 1.37 1.357 1.32*	0.69 0.67 0.734 0.766*	6.67 5.63* 6.84 6.8*	0.87 0.98* 0.95 0.95*	1.62 1.0* 0.50 0.50 *	1.3* 1.3* 1.3* 1.3*	15 50 15 60	S 1 S 1 S 2P2 S 3P2	37 37	CH 174 CH 174 GR 170 GR 170

TABLE III. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	RE AL V	POTENT R	IAL A	VOL.IM	AG. POT RW	ENTIAL AN	SURP.IM WD	AG. POT RD	ENTIAL AD	SPIN- VSO	DRBIT H RSO	OTENTIAL ASO	RC	SR	FIT	NOTE	R BF .
58NI 58NI 58NI 58NI 58NI	25.9 27.5 27.5 27.5 27.5 27.5	51.2 53.9 81.6 60.69 82.27	1.14 1.101 1.234 1.027 1.227	0.83 0.978 0.776 1.039 0.780				13.6 16.51 23.49 16.07G 22.11G	1.39 1.437 1.404 1.33 1.309	0.68 0.600 0.559 1.539 1.394				1.14 1.3* 1.3* 1.3? 1.3?	16 20 16 54 16 4 1 15 12 14 94	S 3 S 2 S 2 S 2 S 2 S 2	10,27 10 10 10 10 10	TJ 165 PE R63 PE R63 TE S65 TE S65
58NI 58NI 58NI 56NI	52. 52. 80. 80.	70.4 93.1 66.5 81.42	1.25* 1.05* 1.25* 1.05*	0.742 0.845 0.731 0.85				14.0 12.2 15.26 13.41	1.24 1.33 1.09 1.026	0.714 0.735 D.862 0.972	7. 6.8 4.63 9.46	1.25* 1.05* 1.29 1.194	0.742 0.845 0.664 0.984	1.3* 1.3* 1.3* 1.3*		51 52 51 51	28,3 28,3 10 10	HIN68 HIN68 DUH71 DUH71 DUH71
6 ONI 6 ONI 6 ONI 6 ONI 6 ONI 6 ONI	6.87 7.5 7.88 8.9 8.9 9.89	83.78 104. 81.85 112.9 111.2 78.86	1.3* 1.00* 1.3* 1.05* 1.05* 1.3*	0.73* 0.959 0.73* 0.86* 0.86* 0.73*				21.95 24.7 22.00 16.14 16.26 21.28	1.34* 1.41 1.34* 1.37 1.37 1.34*	0.65* 0.655 0.65* 0.72 0.74 0.65*	7.0* 7.0*	0.75* 0.75*	0.40* 0.5*	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	9 13 10 78 130 1	S1 S2 S1 S1P1 S1P2 S2	16	EL N 6 7 CO S6 6 EL N 6 7 SC H 6 8 LOH 7 4 EL N 6 7
6 ONI 6 ONI 6 ONI 6 ONI	10.86 10.9 10.9 11.8	78.32 110.8 110.2 102.7	1.3* 1.05* 1.05* 1.07*	0.73* 0.86* 0.86* 0.866				21.91 19.21 18.66 15.7	1.34* 1.32 1.33 1.42	0.65* 0.69 0.70 0.644	5.5* 7.0* 6.0*	0.75* 0.75* 1.07*	0.40* 0.5* 0.866	1.3* 1.3* 1.3* 1.3*	1377 1356	52 51P2 52P2 51	16 3	EL N67 SC H68 LO H74 FIT70
60NI 6CNI 60NI 6CNI 6CNI 60NI	12.00 12. 12. 12.3 12.3 12.3	75.40 121.6 82.9 107.0 107.4 107.6	1.3* 0.931 1.217 1.05* 1.05* 1.05*	0.73* 1.046 0.855 0.85* 0.85* 0.85*				20.40 20.4 25.0 13.79 13.62 14.36	1.34* 1.467* 1.427 1.410 1.408 1.40	0.65* 0.582* 0.546 0.750 0.748 0.73	6.1 4.3 7.0*	0.90* 0.65* 0.75*	0.60* 0.18* 0.5*	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	14 37 14 80 14 27	S 2 S S 1 P 1 S 1 P 1 S 1 P 1 S 1 P 1	16,7	EL NG 7 MA BG 6 MA R5 6 BR 07 3 A BR 07 3 A BR 07 3 A LO H7 4
6 ONI 6 CNI 6 ONI 6 CNI 6 CNI 6 ONI	12.8 13.6 15. 18.1 18.1 18.1	73.8 72. 109.8 73.5 126.9 83.3	1.38 1.35* 1.05* 0.926 0.904 0.87	0.58 0.730* 0.85* 1.072 0.987 1.10	19.0	1.38	0.58	17.G* 15.8 14.51 18.09 14.9	1.27 1.34 1.451 1.383 1.41	1.9* 0.69 0.710 0.707 0.70	5.12	0.7*	0.41*	1.4? 1.3* 1.3? 1.3* 1.3* 1.3*	12 84 15 29 17 09 17 14 17 10	S S 2 S 1P 1 S 1 S 2 S 1	H66 10 10 10	BUD63 NEM67 BAK74 PER63 PER63 TJI65
6 CN1 6 CN1	34.4 34.4	96.15 96.63	1.098	0.839 0.816				12.35 13.47	1.274 1.282	0.781	6.45	1.079	0.816	1.3* 1.3*		52 51	12 12	NE W67 NEW67
6 1NI	14.5	94.57	1,15+	0.81*				18.68	1.343	0.661				1.15*	15 39	52	2	NJ 068
6 2NI 6 2NI 6 2NI 6 2NI 6 2NI 6 2NI	12. 12. 13.6 14.5 14.5	87.9 126.3 72. 93.26 93.00	1.162 0.931 1.35* 1.15* 1.15*	0.931 1.046 0.730* 0.81* 0.81*				21.0 20.5 17.G* 17.83 18.00	1.480 1.467* 1.27 1.383 1.34*	0.582 0.582* 1.9* 0.663 0.68*				1.3* 1.3* 1.3* 1.15* 1.15*	15 45 15 12 15 56 15 85 15 70	S S S 2 S 2 S 2 S 2	2 27	MAR66 MAR66 NEM67 HJ068 HJ068
6 2NI 6 2NI 6 2NI	15. 17.0 17.0	111.4 114.5 99.9	1.05* 0.90 1.1	0.85* 0.90 0.82				15.9 15.00 16.57	1.34 1.35 1.32	0.69* 0.72 0.70	5.97 8.88 5.63*	0.7* 0.62 0.98*	0.41* 1.72 1.0*	1.3? 1.3* 1.3*	1660 1610	S 1 P 1 S 1 S 1 S 1	37 37	BAK74 CHI74 CHI74
64NI 64NI 64NI 64NI 64NI 64NI	12. 12. 13.6 15. 17.0 17.0	126.0 124.0 72. 112.4 99.8 99.9	0.910 0.931 1.35* 1.05* 1.10 1.1	1.084 1.046 0.730* 0.85* 0.82 0.82				20.4 19.5 17.G* 14.9 14.10 16.03	1.482 1.467* 1.27 1.34* 1.36 1.34	0.575 0.582* 1.9* 0.69* 0.73 0.68	6.63 7.07 5.63*	0.7* 0.94 0.98*	0.41* 0.42 1.0*	1.3* 1.3* 1.3* 1.3? 1.3* 1.3*	1553 1525 1582 1700 1630	S S S 2 S 1P 1 S 1 S 2	37 37	MAR66 NAR66 NEM67 BAK74 CHI74 CHI74
6 4NI 6 4NI	52. 52.	71.5 93.5	1.25* 1.05*	0.783 0.898				14.1 13.1	1.25 1.33	0.774 0.864	6.74 6.7	1.25* 1.05*	0.783 0.898	1.3* 1.3*		52 53	28,3 28,3	HI N68 HIN68
CU CU CU CU	4.07 10.9 10.9 10.9 11.8 11.8	55. 60.6 89.5 64.7 58.5 90.7	1.5* 1.111 1.159 1.065 1.153 1.172	0.65 0.971 0.898 0.987 0.679 0.822	15,	1.5*	0.65	14.48 18.81 14.45 13.32 18.34	1.468 1.470 1.457 1.434 1.410	0.709 0.667 0.711 0.708 0.661				1.5* 1.3* 1.3* 1.3* 1.3* 1.3*	15 14 15 34 15 17 14 76 14 68	S S 1 S 1 S 1 S 1 S 1 S 1	H66 NG 10 10 10	SL A 59 PE R6 3 PE R6 3 HAL 64 PE R6 3 PE R6 3 PE R6 3
ດ ແ ເນ ເນ	11.8 11.8 15.0 15.0 15.0	60.6 95.1 73.3 64.9 83.5	1.133 1.142 0.982 1.080 0.918	0.868 0.809 1.118 0.976 0.952				13.16 17.58 14.70 13.52 13.73	1.414 1.377 1.409 1.459 1.336	0.716 0.686 0.710 0.702 0.730				1.3* 1.3* 1.3* 1.3* 1.3*	1476 1468 1722 1696 1503	S 1 S 1 S 2 S 1 S 1 S 1	10 10 10 27 2	HAL 64 HA L64 PER63 PER64 PER64
CU CU CU CU	21.6 21.6 21.6 27.5	68.3 107.8 102.8 83.0	0.984 1.039 1.055 1.23	1.049 0.819 0.892 0.76	22.6	1.27	1.61	17.15 13.00 21.06	1.373 1.321 1.348	0.668 0.799 0.676	7.25	1.039	0.819	1.3* 1.3* 1.3* 1.3?	1709 1770 1735 1642	52 51 52 5	10 Нбб	PER63 PER66 PER66 MAY65
6 3C0 6 3C 0	12. 12.	100.0	1.077	0.969	26.0	1 24	0.5#	19.2 20.7	1.483 1.467*	0.602 D.582*				1.3*	15 23 14 90	5 5		MA R66 MA R66
6 3CU 6 3CU	13.6 14.5	74. 95.23	1.35* 1.15*	0.735 0.81*	20.V	1.24	0.04	17.G* 17.49	1.27 1.364	1.9* 0.687				1.3r 1.3* 1.15*	1553 1590	5 52 52	2 2	NE M67 HJ 06 8
6 3C0 6 3C0	34.4 34.4	95.66 96.67	1.097 1.093	0.830 0.838				15.38 13.99	1.322 1.306	0.782 0.804	7.40	1.093	0.838	1.3* 1.3*		s s 1	31 31	NE#67 NE#67
6 5C 0 6 5C 0	12. 12.	118.5 124.6	0.954 0.931	1.049				19.8 19.8	1.480 1.467*	0.589 0.582*				1.3* 1.3*	1533 1505	s 5		MAR66 MAR66
6 5CU 6 5C U	13.6 13.6	64. 75.	1,49 1,35*	0.56 0.730	16.	1.49	0.56	17.G*	1.27	1.9*				1.3? 1.3*	1577	5 52	866	NA N64 NE 867
6 5C U 6 5C U 6 5C U	27.5 34.4 34.4	83.00 94.74 95.92	1.235 1.082 1.101	0.805 0.878 0.839				22.60G 16.98 15.17	1.290 1.333 1.293	1.569 0.767 0.802	7.35	1.101	0.839	1.37 1.3* 1.3*	1675	S 2 S S 1	31 31	TES65 NEW67 NEW67

TABLE III. Optical-Model Parameters

Deuterons

N UC LID E	ENERGY (MEV)	RE AL V	POTENT R	IAL A	VOL.INA W	G. POI	E NTI A L AW	SURF.IM WD	AG. POT RD	ENTIAL AD	SPIN-0 VSO	ORBIT P RSO	OTENTIAL ASO	RC	SR	PIT	NOTE	R EF .
ZN ZN ZN ZN ZN ZN ZN	11.8 11.8 11.8 11.8 11.9 15.0	65.1 103.3 65.9 103.6 58.4 95.1	1.097 1.083 1.095 1.096 1.5* 0.84	0.851 0.835 0.824 0.771 0.611 1.054	15.9	1.5*	0.611	14.29 19.17 13.98 18.10 13.86	1.371 1.354 1.348 1.297 1.371	0.761 0.715 0.774 0.767 0.714				1.3* 1.3* 1.3* 1.3* 1.5? 1.3*	1451 1444 1460 1460	S 1 S 1 S 1 S 1 S 1 S 1	10 10 10 10 10 166 2	PER63 PER63 HA 164 HAL64 SMI62 PER64
ZN ZN ZN ZN ZN	21.6 21.6 21.6 25.9 25.9	61.6 109.7 106.5 71.9 114.9	1.071 1.028 1.038 0.96 0.986	0.973 0.840 0.886 0.99 0.883				16.42 14.14 20.32 14.0 14.60	1.345 1.297 1.307 1.35 1.283	0.709 0.815 0.736 0.75 0.802	7.14 6.90	1.028 0.986	0.840 0.883	1.3* 1.3* 1.3* 0.96 1.3*	1732 1804 1765 1790 1805	52 51 52 53 52	10	PER63 PER66 PER66 TJ 165 PER66
6 6 Z N	14.5	96.23	1.15*	0.81*				19.25	1.273	0.719				1.15*	1581	s 2	27	HJ 06 8
6 82N 6 82N 6 82N 6 82N 6 82N 6 82N 6 82N	9.0 11.0 13.0 14.5 17.0 17.0	116.8 112.5 111.8 96.23 107.2 100.5	1.05* 1.05* 1.05* 1.15* 1.06 1.1	0.86* 0.86* 0.86* 0.81* 0.84 0.82				14.76 13.71 15.52 19.25 14.10 17.42	1.35 1.41 1.35 1.273 1.35 1.32	0.73 0.76 0.75 0.719 0.75 0.68	7.0* 7.0* 7.0* 7.20 5.63*	0.75* 0.75* 0.75* 0.92 0.98*	0.5* 0.5* 0.5* 0.28 1.0*	1.3* 1.3* 1.3* 1.15* 1.3* 1.3*	16 06 17 00 16 30	S P S 2P 1 S 2P 1 S 2 S 2 S 1 S 2 S 2	16 16 2 37 37	LO H74 LO H74 LOH74 HJ 068 CH I 74 CH I 74
6 E Z N 6 8 Z N	80. 80.	68.03 87.15	1.25* 1.05*	0.712 0.838				16.9 13.33	1.128 1.02	0.81 1.025	5.54 4.47	1.25 1.47	1.22 0.952	1.3* 1.3*		51 51	10 10	DU H71 DU H71
7 2GE 7 2GE 7 4GE	8.0 8.0 6.02	96.3 68.8 74.0	1.25 1.21 1.20*	0.70 0.73 0.70*				21.6 18.1 18.6	1.25 1.21 1.34*	0.70 0.73 0.65*				1.3* 1.3* 1.25*		51 51 52		HE ¥69 HE ¥69 KAT73
765E 765E 765E 825E	7.8 9.84 14.5 14.5	75.8 65.0 94.34 94.30	1.48 1.42 1.15* 1.15*	0.55 0.548 0.81* 0.81*	16. 15.98	1.48 1.42	0.55 0.548	23.96 19.52	1.276 1.320	0.720 0.692				1.5? 1.5? 1.15* 1.15*	867 1634 1663	S S S 2 S 2	н66 н66	HIN62 PUL64 HJ068 HJ068
KR KR KR	10.95 11.6 19.0 19.5	114.2 85.0 35. 35.	0.688 0.918 1.5* 1.6*	1.281 1.16 0.6 0.52	15. 9.5	1.5* 1.6*	0.6 0.52	11.01 12.56	1.501 1.45	0.794 0.75				1.3* 1.3? 1.5? 1.5?	17 19 19 16 17 86	S 2 S S S	27 H66 H66 H66	HAL64 JAH65 ENG60 HOD61
86KR	10.75	98.53	1.15*	0.81*				10.46	1.35	0.76	6.35	1.15*	0.81*	1.30*		\$ 2		HAR70
87RB 87RB	6. 6.	85.4 94.8	1.272 1.15*	0.679 0.87*				18.39 22.8	1.236 1.34*	0.677 0.68*				1.27 1.15*		52 52	10 10	TO 87 1 TO 87 1
865 R 885 R	13.6 7.0	76.5 96.05	1.35* 1.15*	0.700 0.792				15.5G 20.1	1.26 1.41	1.9* 0.699				1.3? 1.30*	15 2 1	52 51		KO 869 CO 568
Y Y Y	15.0 15.0 15.0	52.2 55. 80.	1.321 1.33* 1.33*	0.706 0.57 0.56	12. 12.	1.33* 1.33*	0.57 0.56	14.15	1.33	0.616				1.3* 1.3* 1.3*	14 52 12 45 13 15	51 52 52	2 2 2	PE R64 EL N65 EL N65
8 91 8 91 8 91	13.6 17.0 17.0	73.5 98.2 103.7	1.35* 1.14 1.1	0.685 0.81 0.82				15.0G 13.30 15.47	1.27 1.35 1.32	1.9* 0.69 0.66	7.28 5.63*	1.05 0.98*	0.51 1.0+	1.3? 1.3* 1.3*	14 90 16 70 16 00	53 51 52	37 37	KOR69 CH174 CH174
8 9 Y 8 9 Y 8 9 Y 8 9 Y 8 9 Y 8 9 Y	52. 60. 77. 80. 90.	97.0 96.1 85.1 71.58 85.73 80.6	1.05* 1.05* 1.25* 1.25* 1.05* 1.05*	0.924 0.86* 0.86* 0.796 0.952 0.86*				15.5 12.5 13.1 18.01 14.55 13.8	1.34 1.21 1.10 1.13 1.14 1.09	0.696 0.91 0.95 0.819 0.884 0.96	5.9 9.6 11.8 6.39 12.26 11.8	1.05* 0.90 1.10 1.34 1.18 1.11	0.924 0.87 0.97 0.55 0.844 0.96	1.3* 1.2? 1.2? 1.3* 1.3* 1.2?		S2 S2 S1 S1 S1 S1	3 28 28 10 10 28	HI N68 HR E73 HR E73 DUH71 DUH71 HR E73
ZR ZR ZR ZR ZR ZR	11.8 11.8 11.8 11.8 11.8 11.8 11.8	60.4 85.4 63.0 90.6 92.12 87.84	1.226 1.272 1.191 1.226 1.2* 1.27*	0.733 0.679 0.725 0.643 0.681 0.565	8.81	1.527	0.985	10.55 18.39 9.34 12.34 12.12	1.296 1.236 1.307 1.178 1.260	0.812 0.677 0.859 0.929 0.863				1.3* 1.3* 1.3* 1.3* 1.2* 1.3?	13 19 12 37 13 83 14 04 14 07	S1 51 51 51 51 51	10 10 10 10 10	PE 86 3 PER6 3 HAL64 HA L64 SH 165 FOR67
ZR ZR ZR ZR ZR	15.0 15.0 25.9 25.9 25.9	68.1 98.1 66.3 95.1 100.8	1.098 1.127 1.07 1.14 1.099	0.911 0.848 1.01 0.88 0.835				11.66 14.87 16.3 20.8 13.14	1.404 1.394 1.38 1.36 1.344	0.682 0.655 0.64 0.64 0.747	6.53	1.099	0.835	1.3* 1.3* 1.07 1.14 1.3*	1572 1595 1900 1900 1956	S1 51 52 52 51	10 10 10 10	PE R6 3 PER6 3 TJ 165 TJ 165 PER66
9 OZ R 9 OZR 9 CZR 9 OZ R 9 CZR 9 CZ R	5.5 6.25 7.4 9.0 9.0 9.11	94.80 88.0 85.6 89.41 102.6 83.5	1.20* 1.28 1.28 1.20* 1.05* 1.28	0.58 0.72 0.72 0.55 0.86* 0.72				6.54 15.95 15.95 5.28 6.66 15.95	1.774 1.39* 1.39* 1.919 1.91 1.39*	0.716 0.70* 0.70* 0.749 0.83 0.70*	7.0*	0.75*	0.5*	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*		S 1P 1 S3 S 2 S 1P 2 S 1P 2 S 2 S 2	33 1 1 33 16 1	KNU73 CLA70A CLA70A KNU73 LOH74 CLA70A
9 OZ R 9 OZ R 9 CZ R 9 OZ R 9 OZ R 9 CZ R	11. 11. 11.0 13.0 15.	81.13 94.71 112.4 108.7 112.9	1.327 1.235 1.05* 1.05* 1.05*	0.65* 0.65* 0.86* 0.86* 0.85				19.91 21.17 10.94 9.26 11.68	1.186 1.046 1.43 1.50 1.35	0.65* 0.65* 0.80 0.87 0.78	7.2 7.0* 7.0* 11.85	1.235 0.75* 0.75* 0.84	0.65* 0.5* 0.5* 0.46	1.33 1.23 1.3* 1.3* 1.3*		52 52 52P2 52P2 52P1 52P2	16 16 14	NI C69 MI C69 LO 874 LO 874 IR 574

TABLE III. Optical-Model Parameters

NUCL ID B	ENERGY (MEV)	REAL V	POTENT: R	IAL A	VOL.IM W	AG. PCT RW	BNIIAL AW	STRF.IN VE	NG. POT	BNTÍAL AC	SPIN-(VSO	RBIT : RSO	POTENTIAL ASO	RC	SR	FIT	NOTE	REF.
902R 902R 902R 902R 902R 902R	21.4 21.4 21.4 21.4 26. 28.8	58. 85. 95.82 91.98 99.8 96.4	1.18 1.25 1.15* 1.188 1.105 1.13*	0.90 0.76 0.81* 0.732 0.870 0.825				14.8 20.5 14.96 15.54 15.8 12.28	1.41 1.38 1.34* 1.315 1.357 1.3	0.59 0.54 0.68* 0.668 0.665 0.861	4.7 4.98 12.76 5.33	1.0* 1.0* 1.105 0.77	0.5* 0.5* 0870 0.435	1.3* 1.3* 1.25* 1.4* 1.3* 1.3*	1726 1706 1795 1718 1907	S S P S F S S 1P1	H66 H66 R66 35	SAT65 SAT65 MAY71 MAY71 SAT65 ROC74
902R 902R 902R	34.4 34.4 34.4	97.81 97.99 89.30	1.108 1.098 1.179	0.839 0.806 C.748				12.01 12.26 13.28	1.289 1.310 1.324	0.821 0.813 0.761	6.75 2.74	1.098 0.877	0.806 0.643	1.3* 1.3* 1.3*		52 51 5	12 12 23,12	NEW67 NEW67 Vos72
912R 912R 912R	34.4 34.4 34.4	57.42 98.53 97.57	1.119 1.093 1.113	0.747 0.8C0 0.775				12.88 13.52 13.10	1.263 1.287 1.304	0.862 0.817 0.796	6.53 3.59	1.093 0.399	0.800 0.662	1.3* 1.3* 1.3+		52 51 5	12 12 23,12	NEW67 NEW67 Vos72
9 22 R 9 2 Z R	6.25 6.25 7.5 11.0 21.4 21.4	88.61 99.0 87.08 82.77 61. 90.	1.278 1.15* 1.278 1.278 1.278 1.278 1.20	0.72* 0.61* 0.72* 0.72* 0.94 0.81				15.85 5.48 15.85 15.85 15.2 19.8	1.29* 1.68 1.29* 1.29* 1.40 1.37	0.747 0.849 0.747 0.747 0.61 0.57	4.78	1. 15*	0.61*	1.28 1.15* 1.28 1.28 1.3* 1.3*	1779 1760	52 52 52 52 52 5 5 5	1 1 1 166 166	CLA70B CLA70B CLA70B CLA70B SAT65 SAT65
922R 922R 922R	34.4 34.4 34.4	97.93 97.92 100.39	1.102 1.099 1.077	0.845 0.818 C.838				12.54 12.78 11.72	1.268 1.280 1.162	0.828 0.827 1.014	6.17 4.36	1.099 1.394	0.818 0.649	1.3* 1.3* 1.3*		S 2 S 1 S	12 12 23,12	NEN67 NEN67 VCS72
942R 942R 942R 942R	21.4 21.4 34.4 34.4	65. 99. 97.35 97.74	1.10 1.12 1.082 1.091	0.98 0.87 0.846 0.834				14.1 17.2 17.54 15.28	1.40 1.36 1.236 1.250	0.66 0.65 0.778 0.815	7.00	1.091	0.834	1.3* 1.3* 1.3* 1.3*	1863 1843	S S S2 S1	Н66 Н66 12 12	SAT65 SAT65 NEW67 NEW67
962R 962R	34.4 34.4	97.84 97.92	1.077	0.852 0.84C				17.91 15.19	1.281 1.245	0.778 0.820	7.50	1.088	0.840	1.3* 1.3*		S 2 S 1	12 12	NEW67 NEW67
NB NB NB NB	11.8 11.8 11.8 15.0 15.0	71.0 95.5 69.6 56.9 85.	1.129 1.201 1.150 1.271 1.30*	0.754 0.687 0.697 0.731 0.56	12.	1.30*	0.56	10.83 18.2 10.26 13.56	1.305 1.24 1.262 1.324	0.755 0.661 0.810 0.672				1.3* 1.3* 1.3* 1.3* 1.3*	1195 1135 1241 1467 1260	S1 51 51 51 52	10 10 2 2	FER63 FER63 HAL64 PER64 ELN65
93NB 93NB 93NB 93NB 93NB 93NB	11.8 11.8 11.8 11.8 11.8 13.6	64.1 112.5 113.5 110.8 73.5	1.165 1.060 1.05* 1.05* 1.35*	0.8C7 0.847 0.85* 0.86* 0.715				12.9 13.2 12.88 11.46 17.0G	1.366 1.391 1.393 1.45 1.27	0.804 0.719 0.735 0.74 1.9*	9.74 13.05 13.0* 7.0*	0.800 0.766 0.84* 0.75*	0.400 0.441 0.46* 0.5*	1.3* 1.3* 1.3* 1.3* 1.3?	1513	52P3 51F3 5 P 52P2 52	16,7	GRI70 GRI70 GRI70 LCH74 KOR69
93 NB 93 NB 93 NB 93 NB 93 NB 93 NB 93 NB	17.0 17.0 34.4 34.4 52. 52.	99.0 103.4 98.62 98.05 75.3 97.1	1.12 1.1 1.094 1.087 1.25* 1.05*	0.84 0.82 0.8C1 0.833 C.718 0.893				16.70 15.67 14.62 14.31 11.7 15.5	1.31 1.30 1.282 1.263 1.25 1.28	0.64 0.70 0.829 0.814 0.95 0.75	5.63 5.63* 6.71 6.* 6.*	1.42 0.98* 1.087 1.25* 1.05*	1.20 1.0* 0.833 0.718 0.893	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1600 1640	51 52 52 51 52 52	37 37 12 12 28,3 28,3	CHI74 CHI74 NEW67 NEW67 HIN68 HIN68
NO NO	15.0 15.0	68.1 85.	1.119 1.33*	0.927 0.6C	14.	1.33*	0.60	14.6*	1.359	0.688				1.3* 1.3*	1591 1399	51 53	2 2	PER64 ELN65
9210 9210 9610	14.5 21.14 13.6	95.40 87.1 72.0	1.15* 1.23 1.35*	0.81* 0.724 0.715				16.61 16.98 17.CG	1.333 1.30 1.27	0.684 0.667 1.9*				1.15* 1.20* 1.37	1523 1518	52 51 52	2	HJO68 TAK73 KOR69
100 NO 100 NO 100 NO	14.5 17.0 17.0	96.05 110.0 101.2	1.15* 1.04 1.1	0.81* 0.86 0.82				20.12 15.50 16.CE	1.242 1.27 1.25	0.778 0.85 0.84	5.64 5.63*	0.94 0.98*	1.00 1.0*	1.15* 1.3* 1.3*	1672 1880 1850	52 51 51	37 37	HJ068 CH174 CH174
RU	13.6	70.5	1.35*	0.735				17.5G	1.27	1.9*				1.37	1521	S 2		KCR69
RH RH RH RH RH	11.8 11.8 15.0 15.0 15.0	50.5 77.0 78.5 110.5 71.3	1.350 1.307 0.996 1.028 1.146	C.618 O.639 1.036 O.973 O.911				17.99 22.64 12.02 15.11 16.16	1.222 1.225 1.453 1.409 1.383	0.795 0.728 0.877 0.853 0.7				1.3* 1.3* 1.3* 1.3* 1.3*	1225 1199 2028 1981 1660	51 51 51 51 51 51	10 10 10 10 2,27	FER63 PER63 PER63 FER63 PER63 PER64
RH RH	21.6 21.6	63.6 94.2	1.130 1.160	0.8£2 0.778				18.26 25.20	1.283 1.230	0.705 0.676				1.3* 1.3*	1793 1747	52 52	10 10	FER63 FBR63
103 RH 103 RH	52. 52.	75.5 98.3	1.25* 1.05*	0.68 0.9C3				13.C 16.8	1.25 1.35	0.87 0.677	6.* 6.1	1.25* 1.05*	0.68 0.903	1.3* 1.3*		\$3 \$3	3 3	HIN68 HIN68
PD PD PD PD PD	11.8 11.8 15.0 15.0 15.0	66.2 77.7 68.1 103.2 71.3	1.128 1.322 1.114 1.093 1.146	0.843 0.654 0.864 C.85C 0.911				21.36 37.20 5.97 12.41 14.E0	1.245 1.213 1.47 1.409 1.353	0.745 0.617 0.908 0.904 0.771				1.3* 1.3* 1.3* 1.3* 1.3*	1218 1173 2035 1993 1678	51 52 52 52 51	10 10 10 10 2,27	FER63 PER63 PER63 FEB63 PER64
105PD 105PD 105PD	15.0 17.0 17.0	76.3 104.1 101.2	1.032 1.07 1.1	0.974 0.88 0.82				16.8 15.40 16.30	1.353 1.32 1.27	0.771 0.80 0.81	6.45 5.63*	1.06 0.98*	0.64 1.0*	1.37 1.3* 1.3*	1840 1780	S 51 51	H66 37 37	SOR 65 CH174 CH174
AG AG AG AG	11.8 11.8 11.8 11.8	47.1 79.6 90.5 114.2	1.324 1.297 0.94 1.035	0.716 0.664 0.889 0.791				21.96 30.46 16.38 21.30	1.271 1.206 1.229 1.186	0.691 0.661 0.830 0.817				1.3+ 1.3+ 1.3+ 1.3+	1186 1147 1243 1240	S 1 S 1 S 1 S 1	10 10 6,10 6,10	PER63 FER63 HAL64 HAL64

TABLE III. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	IAL A	VOL.IM W	AG. PCT BW	ENTIAL AW	SORF.IN WC	AG. POT BD	BRTIAL AC	SPIN- VSO	CEBIT P RSO	OTENTIAL A SO	RC	SR	FIT	NOTE	REF.
AG Ag Ag Ag Ag Ag	11.8 11.8 11.8 11.8 15.0 15.0	52.2 112.2 112.3 110.9 44.9 85.	1.246 1.052 1.05* 1.05* 1.471 1.33*	0.789 0.847 0.85* 0.86* 0.631 0.60	13.	1,33*	0.60	20.01 17.1 17.79 20.80 25.28	1.347 1.358 1.356 1.31 1.368	0.845 0.791 0.810 0.79 0.510	8.C 12.6 12.6* 7.0*	0.921 0.785 0.84* 0.75*	0.459 0.441 0.46* 0.5*	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1518 1306	S1F3 S1P3 S P S2F2 S1 S1	16 2 2	GR170 GR170 GR170 LOH74 PER64 ELN65
AG Ag Ag	21.6 21.6 21.6	67.8 97.8 74.0	1.095 1.133 1.05	0.91C 0.8C0 0.94				18.61 25.47 17.7	1.270 1.220 1.29	0.704 0.680 0.71				1.3* 1.3* 1.05	1785 1748 1830	52 52 52	10 10	FER63 PER63 TJI65
AG AG AG AG	25.3 25.3 25.3 27.5	61.3 109.9 111.3 86.10	1.13 1.011 1.002 1.250	0.94 0.953 0.961 0.776				19.8 21.8 25.4 24.80g	1.33 1.307 1.283 1.189	0.66 0.662 0.660 1.921	7.75	1.011	0.953	1.13 1.3* 1.3* 1.3?	1940 1943 1932 1976	\$3 \$3 \$3 \$3 \$2	10,27 27 27	TJI65 PER66 FER66 TES65
107AG 107AG 107AG	12. 12. 13.5	42.91 77.97 95.	1.5* 1.5* 1.27	0.66* 0.6C* 0.57	16.	1.27	0.57	11.62 15.12	1.5* 1.5*	0.66* 0.66*				1.5? 1.5? 1.3?		S 5 5	866 866 866	LUI64 LUI64 MANE4
109AG 109AG 109AG	12. 12. 13.5	42.91 77.97 56.	1.5* 1.5* 1.6	0.66* 0.66* 0.56	11.	1.6	0.56	11.62 15.12	1.5* 1.5*	0.66* 0.66*				1.57 1.57 1.37		S S S	н66 н66 н66	LUT64 LUT64 MAN64
CD CD CD	11.8 11.8 15.0	78.1 108.2 77.6	1.065 1.088 1.036	0.894 0.843 0.931				17.10 22.94 15.22	1.279 1.275 1.324	0.702 0.646 0.758				1.3* 1.3* 1.3*	1157 1149 1584	51 51 51	10 10 2	PER63 FER63 PER64
112CD 112CD	17.0 17.0	109.6 102.7	1.04 1.1	0.89 0.82				15.30 16.C8	1.31 1.26	0.80 0.82	6.15 5.63*	1.00 0.98*	0.76 1.0*	1.3* 1.3*	1840 1790	51 52	37 37	CHI74 CHI74
IN IN IN IN IN	11.8 11.8 11.8 11.8 11.8 11.8 11.8	78.2 113.6 59.6 114.1 113.5 112.2	1.019 1.003 1.242 1.045 1.05* 1.05*	1.021 0.996 0.851 0.853 0.85* 0.86*				10.74 13.11 10.8 11.36 11.2 11.70	1.324 1.488 1.480 1.383 1.388 1.38	0.781 0.752 0.777 0.821 0.815 0.81	9.47 12.19 12.2* 7.0*	0.962 0.800 0.84* 0.75*	0.514 0.441 0.46* 0.5*	1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	1515 1494	S1 S1 S1P3 S1P3 S P S2P2	10 10 16	PER63 PER63 GRI70 GRI70 GRI70 ICH74
IN	15.0	54.1	1.268	0.715				15.27	1.236	0.723				1.3*	1417	51	2	FER64
113IN 113IN 115IN 115IN	14.5 14.5 17.0 17.0	98.88 97.71 108.2 103.7	1.15* 1.15* 1.06 1.1	0.81* 0.81* 0.91 0.82				16.72 16.72 13.50 15.72	1.290 1.315 1.36 1.29	0.695 0.681 0.75 0.77	7.24 5.63*	0.96 0.98*	0.81 1.0*	1.15* 1.15* 1.3* 1.3*	1483 1484 1830 1740	52 52 51 52	27 37 37	HJ068 HJ068 CH174 CH174
SN SN SN SN SN	11.8 11.8 11.8 11.8 13.5 13.5	89.4 110.9 115.1 150.9 77.4 73.5	0.95* 1.0* 0.781 0.702 1.036 1.385	C.635 1.028 0.964 0.984 1.06 0.727				€.72 11.84 7.7C 7.98 11.C 22.11	1.889 1.56* 1.805 1.722 1.479 1.357	0.801 0.836 0.865 0.878 0.812 0.654				1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	2265 1817 2229 2079 1820 1614	52 52 52 52 52 52	10 10 6,10 10 10 10	PER63 FER63 HAL64 HAL64 PER63 PER63
SN SN	15. 15.	77.5 109.3	0.994 1.013	1.160				12.54 14.54	1.535 1.505	0.771 0.768				1.3* 1.3*	2061 2043	s2 52	10 10	FER63 PER63
1125N 1125N 1125N 1125N 1125N 1125N	14.5 17.0 17.0 20. 20.	99.00 105.5 105.4 102.3 136.1	1.15* 1.08 1.1 1.103 1.132	0.81* 0.88 0.82 0.853 0.819				17.50 15.20 16.54 18.43 22.97	1.34* 1.34 1.28 1.314 1.295	0.68* 0.73 0.75 0.674 0.643	6.56 5.63*	0.96 0.98*	0.64 1.0*	1.15* 1.3* 1.3* 1.12* 1.12*	1480 1740 1650 1806 1795	52 51 52 51 51	37 37 11,10 11,10	HJ068 CH174 CH174 WIN72 WIN72
1125N 1125N	27. 27.	97.25 137.4	1.134 1.136	0.775 0.712				14.42 17.14	1.228	0.829 0.887	4.02	1.134 1.136	0.775	1.12* 1.12*	2000 2021	51 52	11,10	WIN72 WIN72
1175N	12.0	116.1	1.05*	0.86*				10.38	1.41	0.84	7.0#	0.75*	0.5*	1.3*		5 1 P 1	16	LCE74
1 18 SN 1 18 SN 1 18 SN 1 18 SN 1 18 SN 1 18 SN 1 18 SN	13.6 14.5 20. 20. 27. 27.	58. 98.69 102.6 138.5 96.34 135.7	1.58 1.15* 1.080 1.099 1.137 1.138	0.5 0.81* 0.941 0.872 0.783 0.722	11.	1.58	0.5	15.59 16.79 20.30 14.55 17.41	1.325 1.347 1.328 1.253 1.176	0.681 0.699 0.674 0.807 0.854	3.96 5.45	1.137 1.138	0.783 0.722	1.5? 1.15* 1.12* 1.12* 1.12* 1.12*	1511 1950 1936 2066 2078	s s2 s1 s1 s2 s2	H66 11,10 11,10 11,10 11,10	HAN64 HJO68 WIN72 WIN72 WIN72 WIN72 WIN72
1195N 1195N 1195N	12.0 27. 27.	117.1 96.8 130.9	1.05* 1.129 1.169	0.86* 0.808 0.664				12.11 13.35 15.28	1.33 1.189 0.992	0.83 0.904 1.119	7.0* 4.29 5.39	0.75* 1.129 1.169	0.5* 0.808 0.684	1.3* 1.12* 1.12*	2127 2226	S1F1 S2 S2	16 11,10 11,10	LOH74 WIN72 WIN72
1205N 1205N 1205N 1205N 1205N	11.0 13.0 13.6 15.0 15.0	112.0 115.3 60. 75.3 99.7	1.05* 1.05* 1.59 1.104 1.168	0.86* 0.86* 0.53 0.668 0.611	11.	1.59	0.53	8.29 12.23 10.25 12.14	1.59 1.39 1.247 1.213	0.86 0.82 0.94 0.985	7.0* 7.0*	0.75* 0.75*	0.5* 0.5*	1.3* 1.3* 1.5? 1.3* 1.3*	1582 1680	S2P2 S2P1 S S2 S2 S2	16 16 H66 10 10	LOH74 LOH74 MAN64 PER63 PER63
1205N 1205N 1205N 1205N 1205N 1205N	17.0 17.0 28.6 80. 80.	105.7 104.6 97.19 72.17 90.13	1.07 1.1 1.146 1.25* 1.05*	0.9C 0.82 0.7E3 0.829 0.958				12.20 14.66 13.52 16.43 16.24	1.39 1.30 1.274 1.223 1.246	0.78 0.77 0.844 0.732 0.738	8.47 5.63* 4.95 11.1 12.34	1.16 0.98* 0.784 1.275 1.16	0.29 1.0* 0.363 0.66 0.895	1.3* 1.3* 1.3* 1.3* 1.3*	1910 1760	\$1 \$2 \$2P1 \$2 \$1	37 37 25 10 10	CHI74 CHI74 PER73 DUH71 DUB71
1225N	15.	113.4	1.05*	0.85				11.35	1.29	0.92	17.30	0.84	0.46	1.3*		52P2	14	IRS74

TABLE III. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	JAL A	VOL.IN W	IAG. PCI B%	IENTIAL AW	SCRF.IM WE	AG. POI BD	ENTIAL AC	SPIN- VSO	ESO	POTENTIAL A SO	RC	SR	FIT	NOTE	REF.
1245N 1245N 1245N 1245N 1245N	14.5 17.0 17.0 20. 20.	99.07 102.2 105.1 107.5 145.4	1.15* 1.11 1.1 1.062 1.071	0.81* 0.87 0.82 0.951 0.894				16.45 12.20 13.85 17.01 20.30	1.316 1.38 1.31 1.333 1.317	0.677 0.75 0.77 0.698 0.677	7.99 5.63*	0.89 0.98*	0.96 1.0*	1.15* 1.3* 1.3* 1.12* 1.12*	1541 1890 1800 1982 1978	52 51 52 51 51	37 37 11,10 11,10	HJ068 CHI74 CBI74 WIN72 WIN72
124 SN 124 SN	27. 27.	99.83 140.9	1.110 1.102	0.844 0.785				14.97 17.70	1.245 1.182	0.799 0.840	7.47 4.69	1.110 1.102	0.844 0.785	1.12* 1.12*	2126 2143	51 52	11,10 11,10	WIN72 WIN72
124TE 124TE	12.0 12.0	68.44 96.83	1.15* 1.15*	0.854 0.848				13.C1 16.32	1.37* 1.34*	0.770 0.752				1.3* 1.3*		51 51	10 10	CHR70 CHR70
126TE 126TE	7.5 7.5	98.0 126.3	1.15* 1.15*	0.81* 0.81*				15.2 18.5	1.34* 1.34*	0.68* 0.68*				1.3* 1.3*		52 51		GBA68 GRA68
XE Xe	10.95 19.5	44.7 4C.	1.55 1.55	0.557 0.6	10.1 13.	1.55 1.55	0.597 0.6							1.57 1.57		s s	H66 H66	SM162 ENG60
136 X E 136 X E	12.78 12.78	104.2 67.59	1.08 1.03	0.99 1.11				10.87 7.69	1.52 1.54	0.67 0.67	4.58 9.96	1.08 1.03	0.99 1.11	1.37 1.37		52 52		BC068 B0068
135 BA	15.	98.3	1.15	0.81				15.3	1.34	0.68				1.3?		s	H66	SOR65
1388A 1388A 1388A 1388A 1388A	7.5 11.8 15. 19.	95.4 100. 98.76 94.04	1.15* 1.18 1.15* 1.20*	0.847 0.8 C.828 C.5€4				17. 14. 17.5 11.24	1.332 1.34 1.327 1.339	0.692 0.68 0.644 0.819				1.3* 1.18 1.25* 1.3*		51 52 5 51		BAP68 WIE67 BAK73 IP573
CE CE CE	25.9 25.9 25.9	66.5 95.10 94.26	1.14 1.143 1.148	0.8€ 0.8C0 0.810				13.8 13.88 17.85	1.33 1.312 1.300	0.72 0.756 0.717	6.6	1.143	0.800	1.14 1.3* 1.3*	2070 2125 2106	52 51 52	10	IJI65 FER66 PER66
140CE 140CE 142CE	11.8 52. 12.6	98. 102.6 100.8	1.16 1.05* 1.15*	0.75 0.924 0.81*				13.5 15.5 16.2	1.28 1.27 1.34*	0.72 0.801 0.68*	6.8	1.05*	0.924	1.16 1.3* 1.25*		S S 1 S 1	3	WIE67 HIN68 LES72
141PR	22.7	96.15	1.158	0.755				13.68	1.30	0.706	6.00*	1.158	0.799	1.16		5 2	2	REL73
142ND	12.0	100.4	1.15*	0.842				19.35	1.39	0.537				1.25*		S 1		VBA 68
144ND 144ND 144ND	12.0 12.0 12.6	99.27 99.64 101.5	1.15* 1.15* 1.15*	0.887 0.875 0.81*				24.04 26.70 14.9	1.39* 1.370 1.34*	0.486 0.481 0.68*				1.25* 1.25* 1.25*	967	51 51 51		VEA68 CHR69 GAL73
146 ND 146 ND	12.0 12.0	96.45 96.54	1.15* 1.15*	0.855 C.861				22.73 26.73	1.39* 1.358	0.526 0.523				1.25* 1.25*	1014	51 51		VB168 CHR69
148 ND 148 ND	12.0 12.0	96.57 96.85	1.15* 1.15*	0.900 0.881				22.99 25.60	1.39* 1.369	0.517 0.511				1.25* 1.25*	1030	S1 51		VBA68 CHR69
150 ND 150 ND	12.0 12.0	91.14 90.98	1.15* 1.15*	C.935 0.930				19.34 21.85	1.39* 1.366	0.649 0.642				1.25* 1.25*	1227	51 51		VBA 68 CHB69
144 SM 144 SM 148 SM 149 SM 152 SM	11.8 12.0 12.0 15. 12.0	104. 99.72 96.15 104. 91.82	1.23 1.15* 1.15* 1.15 1.15 1.15*	0.85 0.850 0.904 0.81 0.938				14.5 20.76 25.81 17.C 21.C4	1.31 1.379 1.379* 1.34 1.379*	0.75 0.535 0.524 0.68 0.581				1.23 1.25* 1.25* 1.37 1.25*	915 993 1110	S S1 S1 S 51	866	WIE67 CHR69 CHR69 SOB65 CHR69
154GD 154GD	12.0 12.0	91.95 93.60	1.15* 1.15*	0.853 0.850				13.63 19.64	1.379* 1.249	0.724 0.742				1.25* 1.25*	1140 1039	52 51		CHR69 CHR69
158GD 158GD	12.0 12.0	91.23 92.82	1.15* 1.15*	0.928 0.883				13.43 18.60	1.379* 1.258	0.734 0.743				1.25* 1.25*	1217 1105	52 51		CHR69 CHR69
160GD 160GD	12.0 12.0	89.51 90.34	1.15* 1.15*	0.942 0.912				13.79 20.10	1.379* 1.275	0.750 C.730				1.25* 1.25*	1268 1151	52 51		CBB69 CBR69
160 DY 160 DY	12.0 12.0	81.42 92.06	1.15* 1.15*	0.939 C.915				14.57 17.67	1.379* 1.310	0.756 0.787				1.25* 1.25*	1206 1177	51 51		CHR69 CHR69
162 d y 162 d y	12.0 12.0	90.01 90.20	1.15* 1.15*	0.920 0.906				14.22 16.84	1.379* 1.327	0.757 0.773				1.25* 1.25*	1194 1168	51 51		CHR69 CHR69
164 dy 164 dy	12.0 12.0	89.84 90.04	1.15* 1.15*	0.938 0.910				13.93 18.62	1.379* 1.203	0.762 0.790				1.25* 1.25*	1231 1176	51 51		CBR 69 CBR 69
ER ER	15.0 15.0	83.5 79.	0.961 1.33*	1.159 0.64	11.	1.33*	0.64	17.78	1.363	0.66				1.3* 1.3*	1456 1302	51 52	2 2	PER64 BLN65
166 ER 166 ER	12.0 12.0	88.68 89.47	1.15* 1.15*	0.943 0.909				14.37 18.39	1.379* 1.284	0.726 0.776				1.25* 1.25*	1118 1087	51 51		CHR69 CHR69
168 ER 168 ER	12.0 12.0	90.31 91.13	1.15* 1.15*	0.933 C.85C				15.C2 17.14	1.379* 1.291	0.667 0.744				1.25* 1.25*	1051 1035	52 51		CHR69 CHR69
170 ER 170 ER	12.0 12.0	89.40 90.06	1.15* 1.15*	0.936 0.895				13.45 14.44	1.379* 1.310	0.767				1.25* 1.25*	1188 1203	51 51		CHR69 CHR69

TABLE III. Optical-Model Parameters

NUCLIDE	ENBRGY (MEV)	REAL V	POTENT B	IAL A	VOL.IM W	AG. PCI RW	ENTIAL AW	SURF.IM. WC	AG. FOT BD	ENTIAL AC	SPIN- VSO	OBBIT I BSO	OTENTIAL ASO	FC	SR	FIT	NOTE	REF.
YB	15.0	50.2	1.376	0.705				17.93	1.272	0.73				1.3*	1450	S 1	2	FEF64
172YB 172YB 172YB	12. 12.0 12.0	113. 89.26 89.87	1.15* 1.15* 1.15*	0.87 8 0.952 0.909				11.3 15.25 19.58	1.38 1.379* 1.267	0.912 0.692 0.780				1.3* 1.25* 1.25*	1050 1043	52 51 51		SIE67A CHR69 CHR69
174 IB	12.	118.1	1.177	0.842				13.44	1.362	0.940				1.15+		5 2		GA 569
180 HF 180 HF	12.0 12.0	89.60 89.52	1.15* 1.15*	0.959 C.953				19.10 19.5€	1.379* 1.365	0.607 0.620				1.25* 1.25*	939 941	51 51		CHB69 CBR69
ТА ТА ТА ТА	11,8 11,8 15,0 15,0 15,0	75.2 124.7 49.3 84.2 74.5	1.00* 1.018 1.469 1.303 1.283	1.066 1.002 0.669 0.733 0.756				16.00 21.58 24.69 26.41 18.64	1.361 1.364 1.437 1.343 1.350	0.777 0.701 0.540 0.653 0.744				1.3* 1.3* 1.3* 1.3* 1.3*	917 899 1473 1416 1527	51 52 52 52 51	10 10 10 10 2	PER63 FER63 PER63 FER63 FER63 FER64
ТА Та Та	25.9 25.9 25.9	57.7 85.83 110.4	1.24 1.194 1.254	0.89 0.858 0.758				22.1 21.4 36.6	1.31 1.304 1.259	0.73 0.721 0.678	10.72	1.194	0.858	1.24 1.3* 1.3*	2340 2302 2297	52 52 52	10	TJI65 PER66 PER66
181 TA	52.	106.0	1.05*	0.95				17.2	1.3	0.80	6.*	1.05*	0.95	1.3*		53	3	HIN68
W	15.0	114.5	0.936	1.112				25.67	1.33	0.593				1.3*	1268	S 1	2	PER64
182₩	12.	77.	1.3*	0.79*				20.4	1.37*	0.67*				1.3*		S 1		SIE67A
186 W 186 W	12.0 12.0	83.79 85.92	1.15* 1.15*	0.928 0.892				13.39 20.96	1.379* 1.258	0.688 0.756				1.25* 1.25*	916 901	52 51		CHR69 CHR69
PT PT	15.0 21.6	55.3 78.7	1.445 1.069	0.512 1.0C5				14.13 14.84	1.094 1.364	1.177 0.819				1.3* 1.3*	1608 2233	51 51	2 10	PER64 PER63
AU AU AU AU	11.8 11.8 13.5 13.5	58.9 89.5 87.9 114.7	1.430 1.272 1.019 1.024	0.577 0.723 1.170 1.135				10.39 12.22 11.84 13.78	1.146 1.301 1.502 1.502	1.058 0.877 0.747 0.718				1.3* 1.3* 1.3* 1.3*	808 808 1416 1415	51 51 51 51	10 10 10 10	FER63 PER63 PER63 PER63 PER63
AU AU AU AU	15.0 15.0 15.0 21.6 21.6	89.7 77.0 86.7 82.0 82.6	1.011 1.363 1.054 1.046 1.07	1.113 0.763 0.789 1.018 0.99				13.09 22.92 6.93 13.87 15.7	1.455 1.442 1.37= 1.360 1.32	0.693 0.561 1.032 0.804 0.74				1.3* 1.3* 1.3* 1.3* 1.07	1477 1435 1595 2161 2010	51 51 51 51 51	10 10 10,2 10	PER63 PER63 PER63 PER63 TJI65
AU Au Au	25.3 25.3 25.3 27.5	77.0 103.2 101.4 89.00	1.10 1.104 1.117 1.265	0.94 0.9C3 0.853 0.62C				14.3 14.40 16.42 27.40g	1.34 1.342 1.326 0.936	0.76 0.771 0.766 2.899	6.92	1.104	0.903	1.10 1.3* 1.3* 1.3?	2270 2324 2320 2252	51 51 51 52	10	1JI65 PEB66 PER66 1ES65
197AU 197AU	52. 52.	80.0 105.5	1.25* 1.05*	0.668 0.94				13.2 16.1	1.25 1.3	0.97 0.82	6.* 6.*	1.25* 1.05*	0.668 0.94	1.3* 1.3*		52 52	2,3 2,3	HIB68 BIN68
PB PB	15.0 15.0	93.4 133.4	0.986 0.930	1.184 1.175				12.43 12.80	1.484 1.500	0.621 0.623				1.3* 1.3*	1406 1445	51 51	10 10	PER63 PER63
206 PB 206 PB 206 PB 206 PB 206 PB 206 PB 206 PB	11.8 11.8 12.5 12.5 14.0 14.0	109.6 80.0 73.0 57.0 108.6 118.5	1.059 1.320 1.400 1.380 1.057 1.014	1.010 0.764 C.60C 0.69C 1.059 1.001	6.16	1.760	0.427	9.7 15.2 23.5 18.C 12.7	1.442 1.409 1.360 1.360 1.478	0.741 0.622 0.65 0.66 0.636				1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	811 752 917 875	51 51 51 51 5 5	H66 H66 H66 H66 H66 H66	SAT65 SAT65 SAT65 SAT65 SAT65 SAT65 SAT65
206 PB 206 PB	21.3 21.6	102.0 74.2	1.120* 1.137	0.91C* 0.852				15.2 11.84	1.32 1.334	0.76 0.796				1.3* 1.3*	2042 2015	51 51	866	SAT65 Per63
208PB 208PB 208PB 208PB 208PB 208PB 208PB	8.7 8.7 10.2 10.2 11.8 11.8	68.27 111.3 70.35 116.3 109. 78.3	1.25* 1.25* 1.25* 1.25* 1.063 1.336	C.849 0.777 0.879 0.811 1.038 0.794				11.55 13.28 11.55 13.28 5.8 16.6	1.441 1.426 1.415 1.399 1.501 1.470	0.849 0.853 0.812 0.794 0.728 0.598				1.3* 1.3* 1.3* 1.3* 1.3* 1.3*	898 823	S S S2 S1 S1	10 10 10 10 166 866	VNE69 VNE69 VNE69 VNE69 SAT65 SAT65
208PB 208PB 208PB 208PB 208PB	12.0 12.0 12.1 12.1	99.27 100.3 66.25 110.7	1.15* 1.15* 1.25* 1.25*	0.957 0.973 0.873 0.796				22.09 15.37 11.44 13.28	1.379* 1.450 1.441 1.433	0.628 0.559 0.700 0.706				1.25* 1.25* 1.3* 1.3*	761 740	51 51 5 5	10 10	CBR69 CBR69 VKE69 VKE69
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	12.3 12.3 12.3 14.0 14.0	114.0 132.8 119.2 64.73 109.2	1.063 1.302 1.05* 1.25* 1.25*	0.957 0.730 0.86* 0.874 0.872				8.35 15.48 6.02 12.03 13.56	1.501 1.352 1.50 1.451 1.458	0.728 0.828 0.93 0.708 0.717	5.42 6.12 7.0*	0.853 1.435 0.75*	0.60* 0.459 0.5*	1.25* 1.25* 1.3* 1.3* 1.3*		5 1 P 1 5 P 5 1 P 1 5 5 5	16,7 10 10	VIG73 VIG73 LOU74 VHE69 VHE69 VHE69
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	15.8 15.8 17.0 17.0 18.7	66.20 109.5 108.3 106.2 103.5	1.25* 1.25* 1.09 1.1 1.10	C.860 C.8CC O.93 O.82 O.91				12.08 13.34 8.69 7.56 11.44	1.417 1.450 1.45 1.51 1.39	0.719 0.768 0.71 0.82 0.81	10.59 5.63*	0.67 0.98*	1.85 1.0*	1.3* 1.3* 1.3* 1.3* 1.3*	1660 1890	5 52 51 52 52	10 10 37 37	VHE69 VHE69 CHI74 CHI74 JE469

TABLE III. Optical-Model Parameters

NUCLIDE ENERGY REAL POTENTIAL VCL.INAG. PCTENTIAL SURP.IMAG. FOTENTIAL SR FIT NOTE SPIN-ORBIT POTENTIAL EC. REP. (MEV) P **R 9** WC B D A D VS0 RSO A SO S 1 S S 208 PB 20.0 100.0 1.33 1.38 1.0 0.89 KOV74 1.14 13.8 0.75 1.34 1.3* 1.3* 1.3? 1.3? 21.3 102. 91.0 1.12* 0.91* 13.2 208 PB 0.75 2105 866 SAT65 208 PB 27.60 2.18 1979 866 **MAY65** 27.5 1.265 0.517 208 PB 91.00 27.60G 12.31 0.517 2144 52 4.032 **1ES65** 208PB 100. 1.37 0.815 5.71 1.0 0.45 S1P1 35 ROC74 208 PB 208 PB 52. 93. 1.15* 0.80 14.5 1.25 0.80 6.* 1.15* 0.80 1.34 S 1 3 3 HIN68 79.8 1.25* 1.16* 1.25* 0.66 0.83 0.818 1.25 1.25* 1.099 6.* 6.* 9.59 1.25* 1.16* 1.296 1.25 52. 12.0 1.0 0.66 1.3* BIN68 PAR69 208PB 91. 73.7 25 2932 52 80. 0.599 208PB 14.74 1.028 1.3* \$2 DUH71 208 PB 80. 94.73 1.054 0.983 1.076 6.42 s 2 DUE71 1.72* 1.06 1.1 1.05* 1.25* 12.8 209BI 32.48 0.40* 5.75 1.72* 0.40* 1.5? 1.3* 1.3* 1033 S 866 80063 209BT 112.2 0.73 0.73 0.98* 1.05* 1.78 1.0* 51 52 37 0.96 8.71 1.46 9.59 5.63 1700 CHI74 209 BI 17.0 0.82 1900 CHI74 17.0 209BI 106.3 0.96 1.3* 52. 0.9€ 1.3 6.* S2 3 HIN68 209 BI 52. 79.5 0.65 1.0 1.25* S 2 3 HIN68 232TH 17.0 1.08 104.0 0.95 10.20 1.37 0.86 0.44 1.3* 1.3* 1730 1900 51 51 C8174 13.47 1.08 37 23278 101.6 0.82 10.61 5.63* 0.98* 37 CHI74 0.793 2380 106.1 1.05* 52. 16.4 1.2 0.88 1.05* 7.6 0.793 1.3* S 2 2.3 HIN68 239PU 13.0 1.35* 0.74 1.50 15.0 50. 0.52 1.5 1.34 52 52 HOLES 239 PU 15.0 57. 1.34 0.66 11.19 1.30* 0.79 NOL68

NOTES

- 1. More than one angular distribution has been used to determine these parameters
- 2. Data for angles smaller than 90°
- 3. Calculations performed with spin $\frac{1}{2}$
- 4. Data for angles larger than 139° are not used in the search
- See publication for the imaginary part of the spin-orbit potential
- 6. The most forward data points were not used in the search. See publication.
- 7. The differential polarization has been measured at a slightly different energy $\label{eq:polarization}$
- This article contains an extensive study of tensor polarization data fitted with additional Hauser-Feshbach corrections and tensor interaction potentials
- 9. See publication for Hauser-Feshbach corrections
- 10. See publication for other sets of parameters fitting the same data $% \left({{{\left[{{{{\bf{n}}_{\rm{c}}}} \right]}_{\rm{c}}}} \right)$
- 11. The Coulomb potential has a Woods-Saxon form but radius and diffuseness are not specified. We assume that $r_c=(1,106\pm1,053\times10^{-8}A)$ and $a_c=0.502$ F as stated in other publications using the same code
- 12. Data for angles smaller than 80°
- 13. Energy-averaged data over 4.5, 5.0 and 5.5 MeV
- 14. See publication for other sets of parameters. More parameters are considered in order to get better agreement with tensors ${\rm T_{20}},~{\rm T_{21}},~{\rm T_{22}}$
- 15. No data for angles smaller than 45°
- See publication for an average parameter set which gives satisfactory fit to the data
- 17. Calculated compound elastic contribution subtracted from elastic-scattering data
- 18. Energy-averaged data over 5.0 and 5.5 MeV

- 19. See publication for average parameter sets fitting $^{12}\mathrm{C}$ data at 20.5, 25.2 and 29.5 MeV
- Elastic differential cross-section data measured at 25.9 MeV
- Compound elastic contribution added to the opticalmodel calculation
- 22. See publication for an average parameter set over the energy range
- 23. The normalization of the cross-section data is adjusted by the code
- 24. Coupled-channel calculation performed
- 25. See publication for the fits obtained for the tensor component T_{20} and the quantity $T_{22}-(\frac{3}{2})^{1/2}T_{20}$
- 26. Data for angles larger than 135° are not used in the search
- 27. Data renormalized. See publication.
- 28. Data for angles smaller than 100°
- 29. Arbitrary normalization of the cross-section data
- 30. Polarization measurements at 12 MeV from the most
- 31. Data for angles smaller than 60°

abundant isotope

- 32. See publication for parameters fitting the differential cross section of the same nucleus at nearby energies
- Folding-model spin-orbit potential included. See publication.
- 34. Satisfactory fit to the data up to 120°
- 35. See publication for the value of the tensor interaction potential necessary to fit the quantity $T_{22}-(\frac{3}{2})^{1/2}T_{20}$
- 36. Average between 2 sets of parameters at the same energy
- 37. See publication for an A-dependent parameter set
- H66. As reported in a previous review paper on deuterons by P. E. Hodgson, Adv. Phys. 15, 329 (1966)

TABLE III. Optical-Model Parameters Deuterons

TABULAR BIBLIDGRAPHY

Target Nuclei	Energy Range (MeV)	References
'Li	1.0 to 2.6	LOM74
⊺i Isotopes	2.5 to 10.0	WIL68A
⁶⁰ Ni, ¹¹⁴ Cd	5 to 15	D1C65
¹³⁸ Ba to ¹⁴⁴ Sm	19	80075

DEUTERONS REFERENCES

- ALT67 J. L. ALTY ET AL., NUCL. PHYS. A97, 541 (1967).
- ALT67A J. L. ALTY, L. L. GREEN, G. D. JONES AND J. F. SHARPEY-SCHAFER, NUCL. PHYS. A100, 191 (1967).
- AND64 P. T. ANDREWS ET AL., NOCL. PHYS. 56, 422 (1964).
- BAK73 P. T. BAKER, T. H. KRUSE, N. E. WILLIAMS AND W. SAVIN, PHYS. REV. LETT. 31, 721 (1973).
- BAK74 P. T. BAKER, S. DAVIS, C. GLASHAUSSER AND A. B. ROBBINS, NUCL. PHYS. A233, 409 (1974).
- BAL66 P. BALDEWEG ET AL., NUCL. PHYS. 84, 305 (1966).
- BAR64 P. D. BARNES, C. K. BOCKELMAN, O. HANSEN AND A. SPERDUTO, PHYS. REV. 136, B438 (1964).
- BAS64 R. H. BASSEL ET AL., PHYS. REV. 136, B960 (1964).
- BAX68 A. M. BAXTER, J. A. R. GRIPPITH, S. W. OH AND S. ROMAN, NUCL. PHYS. A112, 209 (1968)
- BELGG T. A. BELOTE, H. Y. CHEN, OLE HANSEN AND J. RAPAPORT, PHYS. REV. 142, 624 (1966).
- BEL66 T. A. BELOTE, W. E. DORENBUSCH AND J. RAPAPORT, NUCL. PHYS. A120, 401 (1968)
- BER72 M. BERG, ET AL., PHYS. LETT. 428, 211 (1972)
- BIN71 H. G. BINGHAM, A. R. ZANDER, K. W. KEMPER AND N. R. FLETCHER, NUCL. PHYS. A173, 265 (1971)
- BJE64 J. H. BJERREGAARD ET AL., PHYS. REV. 136, B1348 (1964).
- BOH72 W. BOHNE ET AL., NUCL. PRYS. A196, 41 (1972)
- BD075 W. B00TH, S. WILSON AND S. S. IPSON, NUCL. PHYS. A238, 301 (1975)
- BRO62 K. W. BROCKMAN, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DIRECT INTERACTIONS AND NUCLEAR REACTION RECHANISMS, PADUA, P. 159 (1962).
- BRO70 G. BROWN, A. DENNING AND A. E. MACGREGOR, NUCL. PHYS. A153, 145 (1970).
- BR072 R. C. BROWN ET AL., NUCL. PHYS. A191, 663 (1972)
- BR073 R. C. BROWN ET AL., NUCL. PHYS. A207, 456 (1973)
- BR073A R. C. BROWN ET AL., NUCL. PHYS. A208, 589 (1973)
- BUC62 B. BUCK AND P. E. HODGSON, NUCL. PHYS. 29, 296 (1962).
- BUD63 A. BUDZANOWSKI ET AL., NUCL. PHYS. 49, 144 (1963).
- BUS74 C. E. BUSCH, T. B. CLEGG, S. K. DATTA AND E. J. LUDWIG, NUCL. PHYS. A 223, 183 (1974).
- CHA68 N. S. CHANT AND J. N. NELSON, NUCL. PHYS. &117, 385 (1968)
- CHE72 S. CHEN, J. FAPAPORT, H. ENGE AND W. W. BUECHNER, NUCL. PHYS. A197, 97 (1972)
- CHI74 J. D. CHILDS, W. W. DAEHNICK AND M. J. SPISAK, PHYS. REV. C10, 217 (1974).
- CHR69 P. R. CHRISTENSEN, A. BERINDE, I. NBAMU, AND N. SCINTEI, NUCL. PHYS. A129, 337 (1969).
- CHR70 P. R. CHRISTENSEN, G. LOVHOIDEN AND J. RASHUSSEN, NUCL. PHYS. A149, 302 (1970).

- CLA70A R. G. CLARKSON, W. R. COKEB, AND C. F. MOORE, PHYS. REV. C2, 1097 (1970).
- CLA708 R. G. CLARKSON AND W. R. COKER, PHYS. REV. C2, 1108 (1970).
- COL73 W. S. COLE, T. NO, H. R. WELLER AND J. J. RAMIRE2, NUCL. PHYS. A213, 107 (1973)
- COO74 H. D. COOPER, W. F. HORNYAK AND P. G. ROOS, NUCL. PHYS. A218, 249 (1974).
- COR72 K. W. CORRIGAN, R. H. PRIOR, S. E. DARDEN AND B. A. ROBSON, NUCL. PHYS. A188, 164 (1972)
- COS66 E. R. COSMAN, C. H. PARIS, A. SPERDUTO AND H. A. ENGE, PHYS. REV. 142, 673 (1966).
- COS68 E. R. COSMAN, H. A. ENGE AND A. SPERDUTO, PHYS. REV. 165, 1175 (1968)
- COT68 R. L. A. COTTRELL, J. C. LISLE AND J. O. NEWTON, NUCL. PHYS. A109, 288 (1968)
- COW66 A. A. COWLEY, G. HEYMANN, R. L. KEIZER AND M. J. SCOTT, NUCL. PHYS. 86, 363 (1966).
- CUR69 J. R. CURRY, W. R. COKER, AND P. J. RILEY, PHYS. REV. 185, 1416 (1969).
- DAV70 N. E. DAVISON, W. K. DAWSON, G. ROY AND W. J. MCDONALD, CAN. J. PHYS. 48, 2235 (1970)
- DEH70 D. DEHNHARD AND NORTON H. HINTZ, PHYS. REV. C1, 460 (1970).
- DEL67 N. E. DE LOPEZ ET AL., NUCL. PHYS. A94, 673 (1967).
- DEL70 R. DELONG AND D. DEHNHARD, UNIVERSITY OF MINNESOTA, WILLIAMS LABORATORY ANNUAL REPORT, P. 54 (1970).
- DEN66 L. J. DENES, W. W. DAEHNICK AND R. M. DRISKO, PHYS. REV. 148, 1097 (1966).
- DEV69 D. W. DEVINS ET AL., NUCL. PHYS. A126, 261 (1969).
- DIC65 J. K. DICKENS AND P. G. PEREY, PHYS. REV. 138, B1083 (1965).
- DIE68 O. DIETZSCH ET AL., NUCL. PHYS. A114, 330 (1968)
- DJ&71 A. DJALOEIS AND J. NURZYNSKI, NUCL. PHYS. A163 113 (1971)
- DJA71A A. DJALOEIS, H. CORDS AND J. NURZYNSKI, NUCL. PHYS. A163, 131 (1971)
- DJA72 A. DJALOEIS AND J. NURZYNSKI, NUCL. PHYS. A181, 280 (1972)
- DUD71 A. DUDEK AND D. J. EDENS, PHYS. LETT. 36B, 309 (1971)
- DUH68 H. H. DUHH, NUCL. PHYS. A118, 563 (1968)
- DUH71 G. DUHAMEL ET AL., NUCL. PHYS. A174, 485 (1971)
- ELB72 B. ELBEK ET AL., NUCL. PHYS. A187, 355 (1972)
- ELN65 M. EL-NADI AND A. RABIE, NUCL. PHYS. 65, 90 (1965).
- ELN67 H. EL-NADI AND O. ZOHNI, Z. PHYSIK 206, 18 (1967) AND Z. PHYSIK 206, 150 (1967).
- ENGGO J.B.A. ENGLAND, R. MCKEAGUE AND P. E. HODGSON, NUCL. PHYS. 16, 52 (1960).

TABLE III. Optical-Model Parameters

DEUTZRONS REFERENCES

- PIT67 W. FIT2, F. JAHR AND R. SANTO, NUCL. PHYS. A101, 449 (1967).
- FIT70 H. FITZ, J. HEGER, R. SANTO, AND S. WENNEIS, NUCL. PHYS. A143, 113 (1970).
- FOG72 R. P. FOGEL AND S. T. THORNTON, NUCL. PHYS. A187, 624 (1972)
- FOG72A R. P. FOGEL AND S. T. THORNTON, NUCL. PHYS. A192, 391 (1972)
- POR67 J. S. PORSTER ET AL., NUCL. PHYS. A101, 113 (1967).
- FOR70 J. S. FORSTER, K. BEARPARK, J. L. HUTTON, AND J. F. SHARPET-SCHAFER, NUCL. PHYS. A150, 30 (1970).
- GAI68 M. GAILLARD BT AL., NUCL. PHYS. A119, 161 (1968)
- GAL65 A. GALLMANN ET AL., PHYS. REV. 138, 8560 (1965).
- GAL73 S. GALES, L. LESSARD AND J. L. POSTER, JR., NUCL. PHYS. A202, 535 (1973)
- GAR63 A. GARCIA AND A. E. FOREST, NUCL. PHYS. 43, 687 (1963).
- GAS69 J. GASTEBOIS, B. PERNANDEZ, AND J. M. LAGET, NUCL. PHTS. A125, 531 (1969).
- GER66 D. G. GERKE, D. R. TILLEY, N. R. FLETCHER AND R. M. WILLIAMSON, NUCL. PHYS. 75, 609 (1966).
- GLO65 R. N. GLOVER, A. D. W. JOHES AND J. B. ROOK, PHYS. LETTERS 19, 493 (1965).
- GRA68 A. GRAVE ET AL., NUCL. PHIS. & 120, 493 (1968)
- GRI70 J. A. R. GRIFFITH, M. IRSHAB, O. KARBAN, AND S. ROMAN, NUCL. PHYS. A146, 193 (1970).
- GRI71 J. A. R. GRIFPITH, M. IRSHAD, O. KARBAN, S. W. OH AND S. ROMAN, NUCL. PHYS. A167, 87 (1971)
- GUR68 D. P. GURD, G. ROY AND H. G. LEIGHTON, NUCL. PHIS. A120, 94 (1968)
- GURTO H. GURATZSCH, J. SLOTTA, AND G. STILLER, NUCL. PHYS. A140, 129 (1970).
- HAL62 E. C. HALBERT, R. H. BASSEL AND G. R. SATCHLER, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON DIRECT INTERNATION AND NUCLEAR REACTION MECHADISHS (PADUA), P. 167 (1962).
- HAL64 E. C. HALBERT, NOCL. PHYS. 50, 353 (1964).
- HAN68 OLE HANSEN, T. A. BELOTE AND N. E. DORENBUSCH, NUCL. PHYS. A118, 41 (1968)
- HAR70 K. HARAVU, C. L. HOLLAS, P. J. RILEY, AND W. R. COKER, PHYS. REV. C1, 938 (1970).
- HEI72 G. HEIL, G. KLIER AND H. WILSCH, NUCL. PHYS. A191, 489 (1972)
- HEL73 V. D. HELTON, J. C. HIEBERT AND J. B. BALL, NUCL. PHYS. A201, 225 (1973)
- HER70 W. C. HERMANS, H. R. E. TJIN A DJIE, L. D. TOLSMA, AND B. J. VERMAAR, NUCL. PHYS. A141, 431 (1970).
- HET69 G. HEYHANN, P. VAN DER HERNE, I. J. VAN HEERDEN, AND I. C. DORMEHL, Z. PHYSIK 218, 137 (1969).
- HIN62 S. HINDS, R. MIDDLETON AND D. J. PULLEN, PHYS. LETTERS 1, 12 (1962).
- HIN68 F. HINTERBERGER ET AL., NUCL. PHYS. A111, 265 (1968).
- HJO68 S. A. HJORTH, E. K. LIN AND A. JOHNSON, NUCL. PHYS. A116, 1 (1968)
- HOD61 P. E. HODGSON, J. AGUILAR, K. GARCIA AND J. B. A. ENGLAND, NUCL. PHYS. 22, 138 (1961).
- HRE73 G. HREHUSS ET AL., Z. PHYSIK 260, 179 (1973).
- IPS73 S. S. IPSON, W. BOOTH AND J. G. B. HAIGH, NUCL. PHYS. A206, 114 (1973)
- IR574 N. IRSHAD AND B. A. ROBSON, NUCL. PHYS. A218, 504 (1974).
- JAH65 R. JAHR AND G. MAIRLE, NUCL. PHYS. 70, 383 (1965).

- JEA69 A. F. JEANS, W. DARCEY, W. G. DAVIES, K. N. JONES, AND P. K. SMITH, NUCL. PHYS. A128, 224 (1969).
- JON68 G. D. JONES, R. R. JOHNSON AND R. J. GRIFFITHS, NUCL. PRTS. A107, 659 (1968)
- KAT73 NORIHISA KATO, NUCL. PHYS. A2D3, 97 (1973)
- KNU73 L. D. KNUTSON AND W. HAEBERLI, PHTS. REV. LETT. 30, 986 (1973).
- KOC71 D. C. KOCHER, P. J. BJORKHOLM AND W. HAEBERLI, NUCL. PHTS. A172, 663 (1971)
- KOR69 I. W. KOROSTOVA ET AL., SOV. J. MUCL. PHYS. 8, 6 (1969)
- KOW74 D. G. KOWAR, NELSON STEIN AND C. K. BOCKELMAN, NUCL. Phys. A231, 266 (1974).
- KUL67 L. A. KULL, PHYS. REV. 163, 1066 (1967).
- KUN69 P. D. KUNZ, E. ROST, AND R. R. JOHNSON, PHYS. REV. 177, 1737 (1969).
- LAC70 H. LACEK AND U. STROHBUSCH, Z. PHYSIK 233, 101 (1970)
- LEG66 J. C. LEGG, H. D. SCOTT AND N. K. MEHTA, NUCL. PHYS. 84, 398 (1966).
- LEI68 H. G. LEIGHTON, G. ROY, D. P. GURD AND T. B. GRANDY, NUCL. PHYS. & 109, 218 (1968)
- LES72 L. LESSARD, S. GALES AND J. L. FOSTER, JR., PHIS. REV. C6, 517 (1972)
- LOH74 J. M. LOHR AND B. HAEBERLI, NUCL. PHYS. A232, 361 (1974).
- LON72 J. N. LONBAARD AND E. FRIEDLAND, 2. PHYSIK 249, 349 (1972)
- LON74 J. N. LONBAARD AND E. FRIEDLAND, 2. PHYSIK 268, 413 (1974)
- LUC66 B. T. LUCAS AND D. E. JOHNSON, PHYS. REV. 145, 887 (1966).
- LUDG8 H. LUDECKE, TAN WAN-TJIN, H. WERNER AND J. ZIMMERER, NUCL. PHYS. A109, 676 (1968)
- LUT64 H. F. LUTZ, S. F. ECCLES AND J. B. MASON, NUCL. PHYS. 58, 673 (1964).
- HAD62 R. N. MADDISON, PROC. PHTS. SOC., LONDON 79, 264 (1962).
- MAN64 G. S. MANI AND P. PICARD, CONGRES INTERNATIONAL DE PHYSIQUE NUCLEAIRE (PARIS), 2, 902 (1964).
- MAR66 A. MARINOV, L. L. LEE, JR. AND J. P. SCHIPPER, PHYS. REV 145, 852 (1966).
- MAT69 S. MATSUKI ET AL., J. PHYS. SOC. JAPAN 26, 1344 (1969).
- NAT72 V. A. MATUSBVICH, V. A. SOLOV'EV AND I. P. CHERNOV, SOV. J. NUCL. PHYS. 15, 375 (1972).
- MAY65 S. MAYO, W. SCHIMMERLING, M. J. SAMETBAND AND R. M. EISBERG, NUCL. PHYS. 62, 393 (1965).
- MAY71 B. HAYER, J. GOSSET, J. L. ESCUDIE AND H. KAMITSUBO, NUCL. PHYS. A177, 205 (1971)
- MCL72 K. C. MCLEAN, S. M. DALGLIESH, S. S. IPSON AND G. BROWN, NUCL. PHYS. A191, 417 (1972)
- HEI70 H. H. HEIER ET AL., NUCL. PHYS. A159, 273 (1970)
- HEL62 H. A. MELKANOFF, T. SAWADA AND N. CINDRO, PHYS. LETTERS 2, 98 (1962).
- HER69 H. C. NERHAZ, C. A. WHITTEN, JR., AND D. A. BRONLEY, PRYS. REV. 187, 1466 (1969).
- MIC69 L. S. MICHELMAN, S. FIARMAN, E. J. LUDWIG, AND A. B. ROBBINS, PHYS. REV. 180, 1114 (1969).
- MO068 P. A. MOORE ET AL., PHYS. REV. 175, 1516 (1968)
- NAQ68 I. M. NAGIB AND L. L. GREEN, MUCL. PHYS. A112, 76 (1968)
- NEM67 O. P. NEMETS, L. S. SOKOLOV, I. P. CHERNOV AND V. V. TOKAREVSKII, SOVIET J. WUCL. PHYS. 4, 212 (1967).

See page 8 for Explanation of Tables

Deuterons

TABLE III. Optical-Model Parameters

DEUTERONS REFERENCES

- NEW67 E. NEWMAN, L. C. BECKER, B. M. PREEDOM AND J. C. HIEBERT, NUCL. PHYS. A100, 225 (1967).
- NIE66 H. NIERVODNICZANSKI, J. NURZYNSKI, A. STRZALKOWSKI AND G. R. SATCHLER, PHYS. REV. 146, 799 (1966).
- PAR69 W. C. PARKINSON ET AL., PHYS. REV. 178, 1976 (1969).
- PAR73 YONG SOOK PARK, A. WULER AND R. A. LINDGREN, PHYS. REV. C8, 1557 (1973)
- PER63 C. M. PEREY AND F. G. PEREY, PHYS. REV. 132, 755 (1963).
- PER64 C. M. PEREY AND F. G. PEREY, PHIS. REV. 134, B353 (1964).
- PER66 C. M. PEREY AND F. G. PEREY, PHYS. REV. 152, 923 (1966).
- PER72 G. PERRIN ET AL., NUCL. PHYS. A193, 215 (1972)
- PER73 G. PERRIN ET AL., NUCL. PHYS. A206, 623 (1973)
- PET72 R. J. PETERSON, E. W. STOUB AND R. A. RISTINEN, PHYS. REV. C6, 829 (1972)
- PUL64 D. J. PULLEN, THESIS, OXFORD, 1964.
- RAO68 M. N. RAO, J. RAPAPORT, A. SPERDUTO AND D. L. SMITH, NUCL. PHYS. A121, 1 (1968)
- RAP67 J. RAPAPORT, W. E. DORENBUSCH AND T. A. BELOTE, PHYS. REV. 156, 1255 (1967)
- RAP68 J. RAPAPORT AND A. K. KERMAN, NUCL. PHYS. A119, 641 (1968)
- ROB68 J. E. ROBERTSHAW, S. MECCA, A. SPERDUTO AND W. W. BUECHNER, PHYS. REV. 170, 1013 (1968)
- ROC74 R. ROCHE ET AL., WUCL. PHYS. A220, 381 (1974).
- ROY71 G. ROY AND J. J. W. BOGAARDS, MUCL. PHYS. A160, 289 (1971)
- SAT65 G. R. SATCHLER, PRIVATE COMMUNICATION TO P. E. HODGSON (1965).
- SAT66 G. R. SATCHLER, NUCL. PHYS. 85, 273 (1966).
- SAW70 TATSURO SAWADA, G. J. PAIE, M. B. EPSTEIN, AND J. G. ROGERS, NUCL. PHYS. A 141, 169 (1970).
- SCH68 P. SCHWANDT AND W. HAEBERLI, NUCL. PHYS. A110, 585 (1968)
- SCH69 P. SCHWANDT AND W. HAEBERLI, NUCL. PHYS. A123, 401 (1969).
- SCH73 B. SCHNECK AND A. HOPMAN, Z. PHYSIK 260, 35 (1973).
- SEI64 R. F. SEILER, D. F. HERRING AND K. W. JONES, PHYS. REW. 136, B994 (1964).
- SEN71 S. SEN, C. L. HOLLAS AND P. J. RILEY, PHYS. REV. C3, 2314 (1971)
- SEN72 S. SEN, C. L. HOLLAS, C. W. BJORK AND P. J. RILEY, PHIS. REV. C5, 1278 (1972)
- SIE67 R. H. SIEMSSEN AND C. MAYER-BORICKE, NUCL. PHYS. A96, 505 (1967).
- SIE67A R. H. SIEMSSEN AND J. R. ERSKIWE, PHYS. REV. LETT. 19, 90 (1967).

- SLA59 I. SLAUS AND W. P. ALFORD, PHYS. REV. 114, 1054 (1959).
- SMI62 W. B. SMITH AND E. V. IVASH, PHYS. REV. 128, 1175 (1962).
- SMI65 WILLIAM R. SMITH, PHYS. REV. 137, B913 (1965).
- SOR65 R. SORENSEN, E. K. LIN AND B. L. COHEN, CARNEGIE INSTITUTE OF TECHNOLOGY REPORT (1965).
- SOU73 ALLAN SOURKES, HAJIME OHNUMA AND NORTON M. HINTZ, NUCL. PHYS. A217, 438 (1973)
- TAK73 SHIGERU TAKEDA, J. PHYS. SOC. JAPAN 34, 304 (1973).
- TES65 J. TESTONI, J. ROSENBLATT AND S. MAYO, NUCL. PHYS. 74, 481 (1965).
- THO69 S. T. THORNTON, NUCL. PHYS. A137, 531 (1969).
- TJI65 H. R. E. TJIN, A. DJIE AND K. W. BROCKMAN, JR., NUCL. PHIS. 74, 417 (1965).
- TOR71 R. TORTI AND R. GRAETZER, NUCL. PHYS. A171, 305 (1971)
- VBA68 J. G. VAN DER BAAN, P. R. CHRISTENSEN, J. RASHUSSEN AND P. O. TJOH, NUCL. PHYS. A115, 265 (1968).
- VER70 A. N. VERESRCHAGIN, I. N. KOROSTOVA, I. P. CHERNOV AND B. A. SHILYABY, SOV. J. NUCL. PHYS. 10, 273 (1970)
- VIG73 S. E. VIGDOR, R. D. RATHMELL, H. S. LIERS AND W. HREBERLI, NUCL. PHYS. A210, 70 (1973)
- VME69 J. J. VAN DER MERWE AND G. HEYMANN, Z. PHYSIK 220, 130 (1969).
- VOS72 HENDRIK VOS, ON THE DETERMINATION OF OPTICAL MODEL PARAMETERS, UNIVERSITY OF ANSTERDAM, NETHERLANDS (DECEMBER 1972)
- WES63 J. WESOLOWSKI, THESIS WASHINGTON (1963).
- WIE67 C. A. WIEDNER, A. HEUSLER, J. SOLF AND J. P. WURH, NUCL. PHYS. A103, 433 (1967).
- WILGB B. H. WILDENTHAL AND P. W. M. GLAUDEMANS, NUCL. PHYS. A108, 49 (1968)
- WIL68& P. WILHJELM ET AL., PHYS. REV. 166, 1121 (1968).
- WIL71 H. WILSCH AND G. CLAUSNITZER, NUCL. PHYS. A160, 609 (1971)
- WIN72 LESLEY A. WINSBORROW ET AL., NUCL. PHYS. A180, 19 (1972)
- WOL68 K. L. WOLF, R. VANDENBOSCH AND W. D. LOVELAND, PHYS. REV. 170, 1059 (1968)
- WOL70 A. C. WOLPP AND R. G. LEIGHTON, NUCL. PHYS. A140, 319 (1970).
- ZAB70 V. H. ZABEGAI ET AL., SOV. J. NUCL. PHYS. 10, 129 (1970)
- ZAI71 K. I. ZAIKA ET AL., SOV. J. NUCL. PHYS. 13, 533 (1971).

Deuterons

Tritons

TABLE IV. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	. POTBNI R	TAL A	VOL.IN	AG. POT	'ENTIA L AV	SURF.I	MAG. PO	TENTIAL	SPIN- VSO	ORBIT I	POTENTIAL	RC	SR	FIT	NOTE	REF.
9 BE	2.10	145.	0.85*	- 0.704*	1.91	2.06*	0.722*			**	8,93	0.85*	0.704*	1.40*		51		HBR69
10B 11B 11B	1.50 1.75 2.10	138. 138. 145.	0.85* 0.85* 0.85*	0.704* 0.704* 0.704*	3.98 1.94 3.78	2.06* 2.06* 2.06*	0.722* 0.722* 0.722*				8.10 8.92 8.26	0.85* 0.85* 0.85*	0.704* 0.704* 0.704*	1.40* 1.40* 1.40*		51 51 51		HER69 HER69 HER69
12C 12C 12C 12C 12C 12C 12C	1.11 1.50 1.60 1.84 1.95 2.00	156.0 120. 150.6 145.7 164.8 160.2	1.4* 0.85* 1.4* 1.4* 1.4* 1.4*	0.7+ 0.704+ 0.7* 0.7* 0.7+ 0.7+	18.6 1.01 13.2 14.2 17.9 15.2	1.4* 2.06* 1.4* 1.4* 1.4* 1.4*	0.7* 0.722* 0.7* 0.7* 0.7* 0.7*				8.56	0.85*	0.704+	1.4* 1.40* 1.4* 1.4* 1.4* 1.4*		S2 51 S2 S3 S3 S3		eto69 Heb69 Eto69 Eto69 Eto69 Eto69 Eto69
12C 12C 12C 12C 12C 12C 12C	2.05 2.15 2.25 2.35 2.45 2.54	161.0 163.0 164.8 162.5 167.1 164.4	1.4* 7.4* 1.4* 1.4* 1.4* 1.4*	0.7* 0.7* 0.7* 0.7* 0.7* 0.7*	12.9 10.7 10.1 11.1 10.1 11.3	1.4* 1.4* 1.4* 1.4* 1.4* 1.4*	0.7* 0.7* 0.7* 0.7* 0.7* 0.7*							1.4* 1.4* 1.4* 1.4* 1.4* 1.4*		53 52 52 52 53 53		ETO69 ETO69 ETO69 ETO69 ETO69 ETO69 ETO69
12C 12C 12C 12C 12C 12C 12C	2.65 2.71 2.78 2.86 3.00 3.22	134.6 164.8 129.6 135.0 133.5 164.4	1.4* 1.4* 1.4* 1.4* 1.4*	0.7* 0.7* 0.7* 0.7* 0.7* 0.7*	15.5 18.0 17.2 18.0 17.9 22.2	1.4* 1.4* 1.4* 1.4* 1.4* 1.4*	0.7* 0.7* 0.7* 0.7* 0.7* 0.7*							1.4* 1.4* 1.4* 1.4* 1.4* 1.4*		S2 S2 S2 S2 S2 S2 S2		ET069 ET069 ET069 ET069 ET069 ET069 ET069
12C 12C 12C	3.40 6.4 6.8	135.6 49. 63.	1.4* 1.8* 1.8*	0.7* 0.37 0.58	17.0 19. 30.	1.4* 1.8* 1.8*	0.7* 0.37 0.58							1.4* 1.25? 1.25?		53 5 5	N68	ETO69 PUL64 PUL64
12C 12C 12C 12C	12. 12. 16. 20.	102.4 160.5 130. 133.3	1.4* 1.4* 1.29 1.13	0.688 0.626 0.58 0.686	13.9 17.6 18.9 15.6	1.4* 1.4* 1.37 1.75	0.688 0.626 0.96 0.76							1.25? 1.25? 1.29 1.13	1129 1144	5 5 53 52	нб 8 Нб 8 Нб 8	GL065 GL065 KEA72 KEA72
160 160 160 160 180 180	6.8 12. 12. 12. 5.4 7.2	68. 93.8 146.8 142.7 70. 30.	1.5 1.4* 1.4* 1.43 1.2 1.30	0.6 0.615 0.551 0.495 0.73 0.88	16. 14.7 18.4 17.3 21. 36.	1.5 1.4* 1.4* 1.46 1.2 1.30	0.6 0.615 0.551 0.370 0.73 0.88				4.15	1.43	0.469	1.25? 1.25? 1.25? 1.4* 1.25? 1.25?	1112 1100	5 5 5 5 5 5 5	H68 H68 H68 H68 H68 H68	PUL64 GL065 GL065 PIG73 PUL64 PUL64
19F 19F	2.00 6.8	150. 120.	0.99* 1.33	0.829* 0.70	16. 44.	1.81* 1.33	0.592* 0.70							1.40* 1.25?		ន1 ន	H6 8	HER69 ROO65
20 NE	2.00	150.	0.99*	0.829*	16.	1.81*	0.592*							1.40*		S 1		HER69
24 MG 24 MG 24 MG 24 MG 24 MG	10. 10. 12. 12. 15.	126. 172.6 82.6 141.3 165.4	1.4* 1.4* 1.4* 1.28 1.16*	0.640 0.603 0.66 0.65 0.75	34.6 33.6 20.0 29.8 16.4	1.4* 1.4* 1.4* 1.28 1.50*	0.640 0.603 0.66 0.65 0.82							1.25? 1.25? 1.25? 1.25? 1.25? 1.2?	1338 1334 1271 1262	S S S S2	868 868 868 868 868 4	GL065 GL065 GL066 GL066 GAR73
25 NG 25 NG 26 NG 26 NG 26 NG	12. 12. 10. 12. 12.	135.6 171.3 126.0 113.8 169.5	1.31 1.4* 1.4* 1.47 1.47	0.65 0.54 0.64 0.59 0.58	22.3 29.3 34.6 24.0 30.6	1.59 1.4* 1.4* 1.47 1.4*	0.64 0.56 0.64 0.59 0.58							1.257 1.257 1.257 1.257 1.257 1.257	1348 1296 1367 1359	S S S S	H68 H68 H68 H68 H68	GL066 GL066 GL065 GL066 GL066
27 AL 27 AL 27 AL 27 AL 27 AL	12. 12. 12. 12.	81.2 147.1 141.4 164.7	1.4* 1.4* 1.14* 1.14*	0.68 0.61 0.723 0.688	55.7 54.1 48.86 80.71	1.4+ 1.4* 1.374 1.142	0.68 0.61 0.716 0.779							1.25? 1.25? 1.4* 1.4*	1415 1393	s s s2 s2	н68 н68	GL066 GL066 GRA73 GRA73
35CL 35CL 37CL 37CL	12. 12. 12. 12.	142.1 143.3 98.3 136.8	1.4* 1.4* 1.4* 1.4*	0.61 0.59 0.67 0.63	53.3 17.5 20.6	1.4+ 1.4+ 1.4*	0.59 0.67 0.63	24.2	1.4*	0.61				1,25? 1,25? 1,25? 1,25?	1464 1410 1489 1490	5 5 5 5	Н68,5 Н68,5 Н68 Н68	GL066 GL066 GL066 GL066
40CA 40CA 40CA 40CA 40CA 40CA	2.0 2.0 2.5 2.5 3.0 3.0	150.* 150.* 150.* 150.* 150.* 150.*	1.10* 1.30* 1.10* 1.30* 1.10* 1.30*	0.80* 0.65* 0.80* 0.65* 0.80* 0.65*	12. 4. 18. 10. 17. 17.	1.60 1.30* 1.60 1.30* 1.60 1.30*	0.65* 0.65* 0.65* 0.65* 0.65* 0.65*							1.3* 1.3* 1.3* 1.3* 1.3* 1.3*		s s s2 s3 s3		GOL72 GOL72 GOL72 GOL72 GOL72 GOL72
40CA 40CA 40CA 40CA 40CA	3.5 3.5 6.8 7.2 7.2	150.* 150.* 153. 41. 107.	1.10* 1.30* 1.30 1.4* 1.07	0.80* 0.65* 0.65 0.71 0.854	23. 20. 46. 45. 12.	1.60 1.30* 1.30 1.4* 1.81	0.65* 0.65* 0.65 0.71 0.592							1.3* 1.3* 1.25? 1.25? 1.25?		5 52 5 5 5	Н68 Н68 Н68	GOL72 GOL72 ROO65 PUL64 BJE64
40CA 40CA 40CA 40CA 40CA	10. 12. 12. 12. 12.	152,9 125.0 133.4 139.4 157.0	1.24* 1.48 1.4* 1.37 1.24*	0.743 0.59 0.65 0.65 0.688	18.0 21.7 17.2 21.6	1.74 1.48 1.62 1.50	0.637 0.59 0.69 0.756	23.0	1_4*	0.65				1.25? 1.25? 1.25? 1.25? 1.25?	1489 1569 1534	S S S S	H68 H68 H68,5 H68,5 H68,5 H68	GL067 GL066 GL066 GL066 GL067

See page 8 for Explanation of Tables

Atomic Data and Nuclear Data Tables, Vol. 17, No. 1, January 1976

Tritons

TABLE IV. Optical-Model Parameters

NUCLIDE	ENERGY (HEV)	RBAL V	POTENI R	TAL A	VOL.IN W	AG. POT RW	ENTIAL AW	SORF.I WD	MAG. PO' RD	CENTIAL A D	SPIN- VSO	ORBIT I RSO	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
40CA 40CA 40CA 40CA 40CA	20. 20. 20. 20. 20. 20. 20.	156.8 172.7 215.3 156.2 153.1 176.0	1.24* 1.16* 1.003 1.0* 1.008 1.14*	0.656 0.700 0.766 0.8* 0.811 0.710	15.98 14.8 13.4 10.8 10.9 14.68	1.592 1.650 1.652 1.744 1.753 1.669	0.857 0.806 0.822 0.800 0.773 0.799				3.0* 3.0* 3.0*	1.003 1.0* 1.008	0.766 0.8* 0.811	1.25* 1.25* 1.4* 1.4* 1.4* 1.4*	1626 1628 1626	S2 S2 S1 S1 S1 S2	5 5 5 5 2	FLY69 FLY69 SAT69 SAT69 SAT69 UR071
44 CA 48 CA	12. 12.	157.0 151.2	1.24* 1.24*	0.696 0.748	23.9 13.8	1.46 1.71	0.802 0.58							1.257 1.257		S S	H68 H68	GL067 GL067
48TI	12.	154.8	1.24*	0.705	17.9	1.60	0.756							1.257		s	H68	GL067
52CR 52CR 52CR	12. 15.0 15.0	151.9 152. 144.	1.24* 1.24* 1.24*	0.692 0.651 0.678*	18.45 22.0 30.0	1.59 1.49 1.45*	0.722 0.808 0.841*							1.257 1.25* 1.25*	1680 1770	S S2 S2	H68	GL067 HAP67 HAP67
52CR 52CR 52CR 52CR 52CR	20.0 20.0 20. 20. 20.	149. 146. 149.4 150.7 169.4	1.24+ 1.24+ 1.24+ 1.24+ 1.24+ 1.14+	0.671 0.678* 0.671 0.685* 0.732	18.8 25.6 19.29 18.85 17.94	1.57 1.45* 1.562 1.432* 1.615	0.776 0.841* 0.772 0.870* 0.730							1.25* 1.25* 1.25* 1.25* 1.25*	1790 1820	51 52 51 53 51	5 5 2	HAP67 HAP67 PLY69 PLY69 UR071
53CR	12.	151.	1.24	0.66	21.5	1.47	0.79							1.25?		S2	3	NAC72
54FB 54FB 54FB 56FB 57FB	20. 20. 20. 12. 12.	147.1 142.4 167.1 147.4 145.8	1.24* 1.24* 1.14* 1.24* 1.24*	0.653 0.685* 0.717 0.681 0.635	21.62 26.77 19.96 16.2 22.6	1.494 1.432* 1.560 1.605 1.42	0.847 0.870* 0.787 0.76 0.88							1.25* 1.25* 1.4* 1.25? 1.25?		51 52 51 5 52	5 5 2 H68	PLY69 FLY69 URO71 GLO67 MCL72
62 NI 62NI	15.0 15.0	151. 155.	1.24* 1.24*	0.692 0.678*	29.0 21.9	1.36 1.45*	0.890 0.841*							1.25+ 1.25+	1810 1760	51 52		HAF67 HAF67
62NI 62NI 62NI 62NI 62NI 62NI	20.0 20.0 20. 20. 20. 20.0 20.0	152. 153. 148.8 154.3 149.0 172.9	1.24* 1.24* 1.24* 1.24* 1.24* 1.274 1.14*	0.680 0.678* 0.685* 0.677 0.656 0.746	26.7 24.7 26.52 26.11 27. 21.96	1.43 1.45* 1.432* 1.431 1.576 1.527	0.853 0.841* 0.870* 0.850 0.883 0.789	4.31	1.576	0.883				1.25* 1.25* 1.25* 1.25* 1.25* 1.25* 1.4*	1910 1900	S1 51 51 51 51 51	5 5 1 2	HAF67 HAF67 FLY69 FLY69 ASC70 UR071
64 NI 64 NI 64 NI 64 NI 64 NI	20.0 20.0 20. 20. 20.	154. 154. 155. 1 152. 1 173. 8	1.24* 1.24* 1.24* 1.24* 1.24* 1.14*	0.672 0.678* 0.673 0.685* 0.747	23.7 20.7 23.46 22.28 20.03	1.37 1.45* 1.385 1.432* 1.505	0.901 0.841* 0.886 0.870* 0.799							1.25* 1.25* 1.25* 1.25* 1.25* 1.4*	1920 1890	S1 S1 S1 S1 S1	5 5 2	HAP67 HAP67 PLY69 PLY69 UR071
87RB 87RB	15. 15.	162. 122.	1.19 1.23	0.75 0.76	13.4 12.0	1.60 1.63	0.69 0.68							1.25* 1.25*		51 51	1 1	TUC72 TUC72
86 SR 86 SR 86 SR	15.0 15.0 15.0	152 168 252	1.24* 1.16* 1.16*	0.674 0.726 0.684*	25.4 24.1 32.1	1.44 1.48 1.41*	0.820 0.794 0.806*							1.25* 1.25* 1.25*	1810 1810 1810	52 52 52	1	RAG70 RAG70 RAG70
90 ZR 90 ZR 90 ZR 90 ZR 90 ZR 90 ZR 90 ZR	20.0 20.0 20. 20. 20. 20.	152. 151. 150.4 152.9 151.1 173.2	1.24* 1.24* 1.24* 1.24* 1.24* 1.24*	0.684 0.678* 0.67 0.684 0.685* 0.751	19.6 21.5 20.5 20.04 24.06 18.62	1.48 1.45* 1.46 1.479 1.432* 1.526	0.771 0.841* 0.79 0.779 0.870* 0.746							1.25* 1.25* 1.40* 1.25* 1.25* 1.4*	1940 2000	S1 S1 S1 S1 S2 S2	5 5 5 2	HAF67 HAF67 BAL69 FLY69 FLY69 UR071
922R 922R 922R 942R 942R 942R	20. 20. 20. 20. 20. 20. 20.	159.1 154.4 182.6 153.4 150.8 175.0	1.24* 1.24* 1.14* 1.24* 1.24* 1.24*	0.670 0.685* 0.743 0.681 0.685* 0.754	25.00 22.90 21.60 18.75 22.69 16.81	1.401 1.432* 1.481 1.489 1.432* 1.553	0.809 0.870* 0.775 0.787 0.870* 0.870*							1.25* 1.25* 1.4* 1.25* 1.25* 1.25*		S2 S2 S2 S2 S2 S2 S2	5 2 5 5 2 5 2	FLY69 PLY69 UR071 FLY69 FLY69 UR071
96 ZR 96 ZR	20. 20.	154.0 153.9	1.24* 1.24*	0.672 0.685*	18.62 17.76	1.391 1.432*	0.990 0.870*							1.25* 1.25*		51 52	5 5	FLY69 Fly69
100M0 100M0	15.75 15.75	160.4 173.5	1.16 1.22	0.793 0.73	11.22	1.25*	0.812	30.45	1.22	0.868				1.25* 1.25*		s s		TAK73 TAK73
1 16 SN 1 16 SN 1 16 SN 1 16 SN	20.0 20.0 20. 20.	153. 156. 154.1 155.9	1.24* 1.24* 1.24* 1.24*	0.695 0.678* 0.698 0.685*	20.8 17.4 21.28 18.96	1.42 1.45* 1.419 1.432*	0.889 0.841* 0.881 0.870*							1.25* 1.25* 1.25* 1.25*	2120 2030	S1 52 51 52	5 5	HAP67 HAF67 FLY69 FLY69
1 185N 1 185N 1 185N 1 205N 1 205N	20. 20. 20. 20. 20.	148.2 148.7 168.5 147.0 148.9	1.24* 1.24* 1.14* 1.24* 1.24*	0.680 0.685* 0.764 0.688 0.685*	18.82 19.70 16.53 18.08 19.93	1.445 1.432* 1.525 1.475 1.432*	0.895 0.870* 0.823 0.890 0.870*							1.25* 1.25* 1.4* 1.25* 1.25*		S1 S1 S2 S1 S1	5 5 2 5 5	FLY69 FLY69 UR071 FLY69 FLY69
1225N 1225N 1245N 1245N	20. 20. 20. 20.	149.6 149.9 149.6 150.5	1.24* 1.24* 1.24* 1.24*	0.706 0.685* 0.715 0.685*	21.88 17.16 16.87 15.52	1.378 1.432* 1.445 1.432*	0.903 0.870* 0.809 0.870*							1.25* 1.25* 1.25* 1.25*		S1 S2 S1 S2	5 5 5	FL¥69 FL¥69 FL¥69 FL¥69 FL¥69

TABLE IV. Optical-Model Parameters Tritons

NUCLIDE	ENERGY (NEV)	RBAL V	POTENT: R ,	TAL A	VOL.IN W	AG. POTI	B NTIA L AW	SURF.INA WD	G. PO RD	TENTIAL AD	SPIN-(VSO	DRBIT RSO	POTENTIAL ASO	BC	SR	FIT	NOTE	REP.
182W 182W	20. 20.	162.7 162.4	1.24* 1.24*	0.705 0.685*	26.24 13.44	1.218 1.432*	1.035 0.870*							1.25* 1.25*		51 53	5 5	FLY69 FLY69
207 PB 207 PB	20. 20.	150.0 150.3	1.24* 1.24*	0.675 0.685*	13.51 11.99	1.405 1.432*	0.998 0.870*							1.25* 1.25*		S1 S2	5 5	FL¥69 FL¥69
208PB 208PB 208PB 208PB 208PB	20. 20. 20. 20.	148.7 149.8 150.3 169.6	1.24* 1.24* 1.24* 1.14*	0.697 0.685* 0.707 0.795	16.77 12.02 13.9 12.0	1.339 1.432* 1.42 1.48	0.917 0.870* 0.816 0.824							1.25* 1.25* 1.25* 1.40*		51 52 51 51	5 5	FLY69 FLY69 IG069 IG069

NOTES

- 1. Data for angles smaller than 100°
- 2. See publication for optical-model parameters fitting triton and ${}^3\mbox{He}$ data simultaneously
- a) Arbitrary normalization of the cross-section data
 b) Data for angles larger than 139° are not included in the search
- 4. Data for angles smaller than 80°
- 5. See publication for other sets of parameters fitting the same data $% \left({{{\left[{{{{\rm{s}}_{\rm{m}}}} \right]}_{\rm{m}}}} \right)$
- H68. As reported in a previous review paper by P. E. Hodgson, Adv. Phys. 17, 563 (1968)

TABULAR BIBLIOGRAPHY

Target <u>Nuclei</u>	Energy Range (Me¥)	References
A > 40	15 to 20	BEC71

TRITONS REFERENCES

- ASC70 R. J. ASCUITTO AND NORMAN K. GLENDENNING, PHYS. REV. C2, 1260 (1970).
- BAL69 J. B. BALL, R. L. AUBLE, R. M. DRISKO AND P. G. ROOS, PHYS. REV. 177, 1699 (1969).
- BEC71 P. D. BECCHETTI, JR. AND G. W. GREENLEES, POLARIZA-TION PHENOMENA IN NUCLEAR REACTIONS, EDITED BY H. H. BARSCHALL AND W. NAEBERLI, THE UNIVERSITY OF WISCONSIN PRESS, P. 682, MADISON (1971)
- BJE64 J. H. BJERREGAARD ET AL., PHYS. REV. 136, B1348 (1964)
- ETO69 KIICHI ETOH ET AL., J. PHYS. SOC. JAPAN 26, 1335 (1969)
- PLY69 E. R. FLYNN, D. D. ARMSTRONG, J. G. BEERY, AND A. G. BLAIR, PHYS. REV. 182, 1113 (1969).
- GAR73 J. D. GARRETT AND OLE HANSEN, NUCL. PHYS. &212, 600 (1973)
- GL065 R. N. GLOVER AND A. D. W. JONES, PHYSICS LETT. 16, 69 (1965), PHYSICS LETT. 18, 165 (1965), PHYSICS LETT. 19, 493 (1965)
- GLO66 R. N. GLOVER AND A. D. W. JONES, NUCL. PHYS. 81, 268 (1966) AND NUCL. PHYS. 81, 277 (1966)
- GLO67 R. N. GLOVER, PRIV. COMM. TO P. E. HODGSON (1967)
- GOL72 L. J. B. GOLDFARB, J. A. GONZALEZ, M. POSNER AND K. W. JONES, NUCL. PHYS. A185, 337 (1972)
- GRA73 R. GRAETZER, J. J. KRAUSHAAR AND J. R. SHEPARD, PHYS. REV. C7, 199 (1973)
- HAP67 J. C. HAFELE, E. R. FLYNN AND A. G. BLAIR, PHYS. REV. 155, 1238 (1967)

HER69 G. H. HERLING, L. COREN, AND J. D. SILVERSTEIN, PHYS. REV. 178, 1551 (1969).

- IGO69 G. J. IGO, P. D. BARNES, E. R. PLYNN, AND D. D. ARMSTRONG, PHYS. REV. 177, 1831 (1969).
- KEA72 P. W. KEATON, JR. ET AL., NUCL. PHYS. A179, 561 (1972)
- NAC72 A. E. MACGREGOR AND G. BROWN, NUCL. PHYS. A198, 237 (1972)
- HCL72 K. C. HCLEAN, S. H. DALGLIESH, S. S. IPSON AND G. BROWN, NUCL. PHYS. A191, 417 (1972)
- NUR75 J. NURZYNSKI, NUCL. PHYS. A246, 333 (1975)
- PIG73 M. PIGNANELLI ET AL., PHYS. REV. C8, 2120 (1973)
- PUL64 D. J. PULLEN, J. R. ROOK AND B. MIDDLETON, NUCL. PHYS. 51, 88 (1964)
- RAG70 R. C. RAGAINI, J. D. KNIGHT, AND W. T. LELAND, PHYS. REV. C2, 1020 (1970).
- R0065 J. R. ROOK, NUCL. PHYS. 61, 219 (1965)
- SAT69 G. R. SATCHLEP ET AL., PRYS. REV. 182, 1141 (1969).
- TAK73 SHIGERU TAKEDA, J. PHYS. SOC. JAPAN 34, 304 (1973)
- TUC72 A. B. TUCKER, K. E. APT, J. D. KNIGHT AND C. J. ORTH, PHYS. REV. C6, 2075 (1972)
- URO71 P. P. URONE, L. W. PUT, H. H. CHANG AND B. W. RIDLEY, NUCL. PHYS. & 163, 225 (1971)

TABLE V. Optical-Model Parameters

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	NUCLIDE	EN ER GY (ME V)	REAL V	POTENT R	IAL A	VOL.IM W	AG. PCT RW	ENTIAL AW	SURF.IM	RG. POT	TENTIAL AD	SPIN- Vso	ORBIT : RSO	POTENTIAL ASO	RC	SR	FIT	NOTE	REF.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 HE 4 HE	12.0	88.5	1.60*	0.30	6.20	1.60*	C.70				22.2	1.60*	0.70	1.60*		52 53		DUN67 DUN67
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 HE	13.5	86.9	1.60*	0.70	7.04	1.60*	0.70				22.2	1.60*	0.70	1.60*		52 52		DUN67 DUN67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 HE 4 HE	15.0 15.0	96.4 96.4	1.60* 1.60*	0.67 0.67	10.16	1.60* 1.60*	C.60 0.60				21.9	1.60*	0.67	1.60* 1.60*		53 53		DUN67 DUN67
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 HE 4 HE	16.5 16.5	96.4 96.4	1.63 1.63	0.66	10.16 10.16	1.68 1.68	0.53 C.53				21.3	1.63	0.66	1.60* 1.60*		53 53		DUN67 DUN67
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 HP 4 HP	18.0	102.1	1.70	0.72	9.49	1.60*	0.60				20.2	1 60	0 72	1.60*		S 3		DUN67
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	4 HE	19.0	106.6	1.57	0.70	10.65	1.52	0.70				20.2		0.72	1.60*		53		DUN67
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	465	17.0	100.0	••) /	0.70	10.05	1.52	0.70				21.0	1.57	0.70	1.60#		53		DUN67
$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c}$	6 LI 6 LI 6 LI	8. 8.	105.1 140.* 140.*	1.70 1.2* 1.2*	0.28 0.60	90.2 30.*	1.70 2.42	0.84 0.72	7 54	2 69	0.36	6.*	1.2*	0.7*	1.3* 1.3*	1211	s s3		10D68 L0D68
$ \begin{array}{c} \hline c \\ c$	6LI	9.	103.1	1.88	0.34	97.0	1.88	0.65	/ . 5 ·	2.07	0.30	<i>.</i> .			1.3*	991	52		LUD68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6LI	9.	140.*	1.2*	0.42	30.*	2.40	1.60	7.5*	2.67	0.45	b.Ŧ	1.2*	0.74	1.3*	1052 997	52 52		LUD68 LUD68
$ \begin{array}{c} 6.1 & 10. & 12. & 12. & 0.76 \\ 6.1 & 11. & 10. & 1.28 \\ 6.1 & 11. & 10. & 1.28 \\ 6.1 & 11. & 10. & 1.28 \\ 6.1 & 11. & 10. & 1.28 \\ 6.1 & 11. & 10. & 1.28 \\ 6.1 & 11. & 10. & 1.28 \\ 6.1 & 11. & 10. & 1.28 \\ 6.2 & 10. & 1.28 \\ 6.1 & 11. & 10. & 1.28 \\ 6.2 & 10. & 1.28 \\ 6.2 & 11. & 10. & 1.28 \\ 6.2 & 11. & 10. & 1.28 \\ 6.2 & 12. & 7.9 \\ 7.5 & 2.19 \\ 7.5 & 2.19 \\ 7.5 & 2.19 \\ 7.5 & 2.19 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.33 \\ 7.5 & 1.33 \\ 7.5 & 1.33 \\ 7.5 & 1.32 \\ 7.5 & 1.33 \\ 7.5 & 1.32 \\ 7.5 & 1.33 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.32 \\ 7.5 & 1.39 \\ 7.5 & 1.29 \\ 7.5 &$	6 LI	10.	103.3	1.66	0.50	59.9	1.66	0.76							1.3*	1037	s		LUD68
6LT 11. 91.9 1.33 0.26 75.2 1.68 0.65 7.5* 2.26 0.55 6.* 1.2* 0.7* 1.3* 956 1.1 1.3* 956 1.1 1.3* 956 1.1 1.3* 956 1.1 1.3*<	6LI 6LI	10. 10.	140.* 140.*	1.2* 1.2*	0.58 0.29	30.*	2.00	0.74	7.5 ±	2.31	0.57	6.*	1.2*	0.7*	1.3*	1032	53 52		
$ \begin{array}{c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	6 LI 61 T	11.	91.9	1.83	0.29	75.2	1.83	0.65				د ب	1 34	0.7*	1.3*	950	S		LUD68
	6LI	11.	140.*	1.2*	0.43	10.4	2.53	0.33	7.5*	2.26	0.55	0.+	1.2*	0.74	1.3*	892	53		LUD68
$ \begin{array}{c} 611 & 12, & 160, & 1, 2* & 0, 7* & 1, 2* & 0, 7* & 1, 2* & 0, 7* & 1, 2* & 1015 & 52 & 10066 \\ 611 & 14, & 104, & 1, 2* & 0, 76 & 30, * & 2, 10 & 0, 55 & 7, 5* & 1, 2* & 0, 62 & 1, 5* & 0, 7* & 1, 3* & 934 & 52 & 10066 \\ 611 & 14, & 104, & 1, 2* & 0, 76 & 30, * & 2, 10 & 0, 55 & 7, 5* & 1, 32 & 1, 12 & 6* & 1, 2* & 0, 7* & 1, 3* & 934 & 52 & 10066 \\ 611 & 16, & 106, * & 1, 2* & 0, 73 & 30, * & 2, 20 & 0, 55 & 7, 5* & 1, 32 & 1, 12 & 6* & 1, 2* & 0, 7* & 1, 3* & 934 & 52 & 10066 \\ 611 & 16, & 160, * & 1, 2* & 0, 73 & 30, * & 1, 53 & 0, 24 & 7, 5* & 1, 32 & 1, 12 & 6* & 1, 2* & 0, 7* & 1, 3* & 1011 & 52 & 10066 \\ 611 & 16, & 160, * & 1, 2* & 0, 73 & 30, * & 1, 53 & 0, 44 & 1, 5* & 0, 7* & 1, 3* & 1011 & 52 & 10066 \\ 611 & 106, & 1, 2* & 0, 73 & 30, * & 1, 53 & 0, 44 & 7, 5* & 1, 13 & 1, 19 & 6* & 1, 2* & 0, 7* & 1, 3* & 1019 & 52 & 10066 \\ 611 & 20, & 160, * & 1, 2* & 0, 73 & 30, * & 1, 50 & 0, 46 & 7, 5* & 1, 13 & 1, 19 & 6* & 1, 2* & 0, 7* & 1, 3* & 1019 & 52 & 10066 \\ 611 & 20, & 160, * & 1, 2* & 0, 76 & 30, * & 1, 50 & 0, 46 & 7, 5* & 1, 13 & 1, 19 & 103 & 35 & 10066 \\ 611 & 20, & 160, * & 1, 2* & 0, 76 & 1, 31 & 0, 766 & 1, 31 & 0, 766 & 1, 13 & 0, 766 & 1, 13* & 0, 57 & 1, 13* & 1, 10* & 1, 17* & 0, 654 & 1, 17* & 0, 654 & 1, 17* & 52 & 2 & 101706 \\ 611 & 20, & 160, * & 1, 2* & 0, 76 & 1, 2* & 0, 78 & 1, 10* & 0, 55 & 1, 20* & 0, 44 & 1, 12* & 53 & 10776 & 53 & 1006 & 1, 12* & 52 & 10066 \\ 711 & 1, 0 & 716 & 1, 17* & 0, 654 & 1, 2* & 0, 78 & 1, 12* & 127 & 53 & 1, 12* & 127 & 53 & 1177 & 128 & 1277 & 1177 & 1177 & 118 & 0, 67 & 1, 12* & 127 & 128 & 1277 & 118 & 1177 & 128 & 1177$	6 LI	12.	97.9	1.66	0.54	66.7	1.66	0.69							1.3*	1050	s		LUD68
$ \begin{array}{c} 611 & 161 & 93.1 & 167 & 0.253 & 95.6 & 1.67 & 0.61 \\ 611 & 16. & 12.2 & 0.75 & 0.76 & 30.2 & 2.11 & 0.54 \\ 611 & 16. & 12.2 & 0.75 & 1.22 & 0.75 & 1.33 & 122 & 11008 \\ 611 & 16. & 12.2 & 0.75 & 1.22 & 0.75 & 1.22 & 11008 \\ 611 & 16. & 12.2 & 0.75 & 1.22 & 0.75 & 1.22 & 11008 \\ 611 & 16. & 12.2 & 0.75 & 1.33 & 0.71 & 10.5 & 1.54 & 0.55 \\ 611 & 16. & 10.2 & 0.76 & 30.4 & 1.54 & 0.42 \\ 611 & 10.1 & 12.2 & 0.33 & 30.4 & 1.53 & 0.42 \\ 611 & 10.1 & 12.2 & 0.33 & 30.4 & 1.53 & 0.42 \\ 611 & 10.1 & 12.2 & 0.33 & 30.4 & 1.53 & 0.42 \\ 611 & 10.1 & 12.2 & 0.76 & 30.4 & 1.50 & 0.46 \\ 611 & 10.1 & 12.2 & 0.76 & 30.4 & 1.50 & 0.46 \\ 611 & 10.1 & 10.4 & 1.2 & 0.76 & 1.50 & 0.71 & 1.00 & 1.55 & 1.41 \\ 611 & 10.1 & 12.2 & 0.76 & 30.4 & 1.50 & 0.46 \\ 611 & 20. & 60.7 & 10.0 & 0.76 & 6.76 & 1.31 & 0.76 \\ 611 & 20. & 60.7 & 10.0 & 0.76 & 6.76 & 1.31 & 0.76 \\ 611 & 20. & 100.4 & 1.2 & 0.76 & 1.50 & 0.71 & 1.00 & 1.86 & 0.25 \\ 611 & 10.1 & 10.4 & 1.2 & 0.76 & 1.31 & 0.76 \\ 611 & 10.1 & 10.4 & 1.2 & 0.76 & 1.31 & 0.76 \\ 612 & 20. & 10.4 & 1.2 & 0.76 & 1.31 & 0.76 \\ 612 & 10.1 & 10.5 & 0.77 & 10.6 & 1.48 & 0.25 \\ 711 & 9.7 & 130.5 & 1.10 & 0.76 & 6.76 & 1.31 & 0.76 \\ 711 & 9.7 & 130.5 & 1.10 & 0.76 & 6.75 & 10.0 & 1.86 & 0.25 \\ 711 & 10.1 & 12.4 & 1.15 & 0.76 & 1.20 & 0.48 & 1.27 & 5.3 & 1.27 & 5.3 \\ 711 & 10.1 & 12.4 & 1.15 & 0.76 & 1.22 & 0.64 & 5.5 & 1.120 & 0.66 & 1.120 & 1.27 & 5.3 & $	6LI 6LI	12.	140.* 140.*	1.2* 1.2*	0.75	30.*	2.30	0.52	7.5*	2 27	0.62	6.*	1.2*	0.7*	1.3*	1015	52		LUD68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61I	14.	93.4	1.67	0.55	59.6	1.67	0.61		2.2.	0.02	<i>.</i> .	4 74	0 7+	1.3*	930	S		LUD68
$ \begin{array}{c} 611 & 66 & 69.5 & 1.58 & 0.73 \\ 611 & 16 & 100 & 1.28 & 0.73 \\ 611 & 16 & 100 & 1.28 & 0.73 \\ 611 & 16 & 100 & 1.28 & 0.72 \\ 611 & 16 & 100 & 1.28 & 0.72 \\ 611 & 16 & 100 & 1.28 & 0.72 \\ 611 & 100 & 1.28 & 0.72 \\ 711 & 9.7 & 15.6 & 1.70 & 0.675 \\ 611 & 100 & 1.28 & 0.72 \\ 711 & 9.7 & 15.6 & 1.70 & 0.675 \\ 711 & 9.7 & 15.6 & 1.70 & 0.675 \\ 711 & 9.7 & 15.6 & 1.70 & 0.675 \\ 711 & 9.7 & 15.6 & 0.71 & 10.0 & 1.88 & 0.25 \\ 711 & 9.7 & 15.6 & 0.71 & 10.0 & 1.88 & 0.25 \\ 711 & 9.7 & 15.6 & 0.71 & 10.0 & 1.88 & 0.25 \\ 711 & 9.7 & 15.6 & 0.71 & 10.0 & 1.88 & 0.25 \\ 711 & 9.7 & 15.6 & 0.71 & 10.0 & 1.88 & 0.25 \\ 711 & 9.7 & 15.6 & 0.71 & 10.0 & 1.88 & 0.25 \\ 711 & 9.7 & 15.6 & 0.71 & 10.0 & 1.88 & 0.25 \\ 711 & 1.0 & 12.2 & 1.16 & 0.78 \\ 711 & 1.0 & 12.2 & 1.16 & 0.78 \\ 711 & 1.0 & 12.2 & 1.16 & 0.78 \\ 711 & 1.0 & 12.2 & 1.16 & 0.78 \\ 711 & 1.0 & 13.5 & 1.07 & 0.48 \\ 711 & 1.0 & 13.5 & 1.07 & 0.685 \\ 711 & 1.0 & 1.18 & 0.67 \\ 712 & 1.0 & 1.28 & 0.68 \\ 712 & 1.0 & 1.28 & 0.78 \\ 712 & 1.0 & 1.28 & 0.78 \\ 713 & 1.0 & 1.18 & 0.77 \\ 712 & 1.0 & 0.48 \\ 712 & 1.0 & 0.78 \\ 713 & 1.0 & 0.78 \\ 713 & 1.0 & 0.78 \\ 714 & 1.18 & 0.77 \\ 714 & 1.18 & 0.68 \\ 714 & 1.18 & 0.77 \\ 714 & 1.48 & 20.8 \\ 715 & 1.28 & 0.77 \\ 714 & 1.48 & 0.88 \\ 715 & 1.28 & 0.77 \\ 714 & 1.48 & 0.88 \\ 715 & 1.28 & 0.77 \\ 714 & 1.48 & 0.88 \\ 715 & 1.28 & 0.77 \\ 715 & 1.28 & 0.77 \\ 715 & 1.28 & 0.77 \\ 715 & 1.28 & 0.77 \\ 715 & 1.28 & 0.77 \\ 715 & 1.28 & 0.77 \\ 715 & 1.28 & 0.77 \\ 715 & 1.28 & 0.77 \\ 715 & 1.28 & 0.77 \\ 715 & 1.28 & 0.77 \\ 715 & 1.28 & 0.77 \\ 715 & 1.28 & 0.$	6LI	14.	140.*	1.2*	0.15	30	2.11	0.54	7.5*	2.19	0.65	6.*	1.2*	0.7*	1.3* 1.3*	944 1008	52 53		LUD68 LUD68
$ \begin{array}{c} 61.2 & 126. & 126. & 1.22 & 0.73 \\ 61.1 & 16. & 165. & 1.26 & 0.73 \\ 61.1 & 16. & 165. & 1.26 & 0.73 \\ 61.1 & 16. & 165. & 1.26 & 0.73 \\ 61.1 & 16. & 165. & 1.26 & 0.73 \\ 61.1 & 16. & 165. & 1.26 & 0.73 \\ 61.1 & 16. & 166. & 1.26 & 0.78 \\ 61.1 & 10.4 & 1.22 & 0.38 \\ 61.1 & 10.4 & 1.22 & 0.38 \\ 61.1 & 10.4 & 1.22 & 0.38 \\ 61.1 & 20. & 69.7 & 1.55 & 0.71 \\ 71.6 & 1.26 & 0.76 \\ 61.1 & 20. & 160.6 & 1.26 \\ 61.1 & 20. & 160.7 & 1.26 \\ 61.1 & 20. & 160.7 & 1.26 \\ 61.1 & 20. & 160.7 & 1.26 \\ 61.1 & 20. & 160.7 & 1.26 \\ 61.1 & 20. & 160.7 & 1.26 \\ 61.1 & 20. & 160.7 & 1.26 \\ 61.1 & 20. & 160.7 & 1.26 \\ 61.1 & 20. & 160.7 & 1.26 \\ 61.1 & 20. & 160.7 & 1.26 \\ 61.1 & 20. & 160.7 & 1.26 \\ 61.1 & 20. & 160.7 & 1.26 \\ 71.1 & 97 & 131.6 & 1.26 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 97 & 131.5 & 1.07 \\ 71.1 & 71.1 & 1.28 & 0.76 \\ 71.1 & 71.1 & 71.1 & 1.28 \\ 71.1 & 71.1 & 71.1 & 71.1 \\ 71.1 & 71.1 & 71$	6 L I	16.	68.5	1.58	0.76	67.9	1.58	C.45							1.3*		s		LUD68
$ \begin{array}{c} 611 & 18. & 65.5 & 1.58 & 0.72 & 70.4 & 1.54 & 0.41 & 1.00 & 1.0$	6LI 6LI	16. 16.	140.* 140.*	1.2*	0.73	30.*	2.20	0.55	7.5*	1.32	1, 12	6.*	1.2*	0.7*	1.3*	1011	S2		LUD68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6LI	18.	65.5	1.54	0.72	70.4	1.54	C.41				<.		0 7 +	1.3*		S		LUD68
	611	18.	140.*	1.2*	0.38	30.4	1.93	0.42	7.5*	1.13	1.19	5.Ŧ	1. 24	U. <i>1</i> #	1.3*	1119	52 52		LUD68 LUD68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6LI	20.	69.7	1.55	0.71	71.0	1.55	C.41							1.3*		s		LUD68
6.II 217. 80.7 1.0 0.77 27.7 1.46 0.83 1.11 1.12 1.13 52 2 1177 71.1 9.7 150.6 1.77 0.655 1.30 0.769 1.30 5.03 1.20 0.708 1.38 5 0.177 71.1 10.5 1.75 0.655 10.0 1.88 0.25 12.61 1.17 0.455 1.20 0.48 1.27 5.3 1.28 5.5 1.20 0.44 1.48 336 52 1.28 5.5 1.20 0.44 1.48 336 52 1.28 5.5 1.20 0.44 1.48 336 52 1.28 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 1.47 6.55 <td>6LI 6 LI</td> <td>20.</td> <td>140.* 140.*</td> <td>1.2*</td> <td>0.75 0.4C</td> <td>30.*</td> <td>1.90</td> <td>0.46</td> <td>7.5*</td> <td>0.74</td> <td>1.46</td> <td>6.*</td> <td>1.2*</td> <td>0.7*</td> <td>1.3*</td> <td>905</td> <td>53</td> <td></td> <td>LUD68</td>	6LI 6 LI	20.	140.* 140.*	1.2*	0.75 0.4C	30.*	1.90	0.46	7.5*	0.74	1.46	6.*	1.2*	0.7*	1.3*	905	53		LUD68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6LI	217.	80.7	1.0	0.77	27.7	1.46	0.83							1.37		S 2	2	WIL73
$\begin{array}{c} 1.1 & 3.7 & 131.5 & 1.19 & 0.623 \\ 71I & 11.0 & 124 & 1.15 & 0.71 & 10.0 & 1.84 & 0.25 \\ 71I & 11.0 & 124 & 1.15 & 0.71 & 10.0 & 1.84 & 0.25 \\ \hline 12.6 & 1.17 & 0.455 & 1.20 & 0.44 & 1.48 & 314 & 52 & 18273 \\ 98E & 4.0 & 142.2 & 1.16 & 0.76 & 28.2 & 1.88 & 0.61 & 13.6 & 1.20 & 0.96 & 5.5 & 1.20 & 0.44 & 1.48 & 314 & 52 & 18467 \\ 98E & 6. & 154.2 & 1.16 & 0.76 & 28.2 & 1.88 & 0.61 & 13.6 & 1.15 & 1.85 & 1.55 & 5.5 & 1.15 & 0.59 & 1.47 & 65.5 & 5.6 & 1.26 & 1.47 & 65.5 & 5.5 & 1.48 & 0.59 & 1.47 & 65.5 & 5.5 & 1.15 & 0.59 & 1.47 & 65.5 & 5.6 & 1.26 & 0.84 & 1.48 & 741 & 5 & 16.6 & 746.6 &$	711	9.7	150.8	1.20	0.708				8.26	1.37	0.527	3.03	1.20	0.708	1.3*		5		DIX70
7.11 11.0 124 1.15* 0.71 10.0 1.88 0.25 1.4* 51 SCRTO 982 4.0 185. 1.20* 0.44 14.66 1.20* 0.96 5.5 1.20* 0.44 1.4* 314 52 PAR691 982 6.0 145.0 1.25* 0.65* 5.25 2.23 0.43 14.66 1.15* 1.55 5.5 1.15* 0.59 1.40* 52 TBOT TBOT 100 715 1.40* 52 TBOT TBOT 100* 52 TBOT 100* 1.20* 1.40* 52 TBOT 1.50* 1.20* 1.40* 52<	711	9.7	131.5	1.07	0.675	6.70	1.31	0.769	12.61	1.17	0.455	2.70	1.1/	0.654	1.3*		s 53		DIX70 WER73
9BE 4.0 185. 1.20* 0.44 1.20* 0.44 1.4* 334 52 PAR69 9BE 6.0 142.2 1.16 0.76 28.2 1.88 0.61 13.6 1.15* 0.55 1.15* 0.55 1.15* 0.55 1.15* 0.55 1.15* 0.55 1.47 653 1.47 653 1.46 6.0* 1.20* 0.55 1.47 653 1.46 6.0* 1.40* 52 746	711	11.0	124	1.15*	0.71	10.0	1.84	0.25							1.4*		51		SCH70
9 BE6.0142.21.160.7628.21.880.611.151.651.151.651.171.4774116B68PAR689 BE6.0145.01.25*0.65*9.252.230.431.15*1.855.51.15*0.551.476535B60PAR609 BE6.0165.01.100.738.922.240.461.15*1.855.51.100.671.40*52TH0719 BE6.0165.01.100.734.092.680.5013.71.860.486.0*1.100.731.40*52TH0719 BE6.1165.01.060.460.651.670.611.20*1.201.20*1.204.001.20*1.44*47252TH0719 BE6.1160.11.20*0.460.6530.*2.120.451.20*1.204.011.20*0.461.44*47252TH0719 BE1.61.11.15*1.371.20*0.451.20*1.20*1.20*0.461.44*47252TH0719 BE1.621.15*1.371.20*0.671.20*0.671.20*0.671.20*1.20*1.20*1.40*52TH0719 BE1.621.20*0.661.20*1.307.5*1.980.721.44*80.88.68PA8689 BE <th>9BE</th> <th>4.0</th> <th>185.</th> <th>1.20*</th> <th>0.44</th> <th></th> <th></th> <th></th> <th>14.6G</th> <th>1.20*</th> <th>0.96</th> <th>5.5</th> <th>1.20*</th> <th>0.44</th> <th>1.4*</th> <th>374</th> <th>¢2</th> <th></th> <th>DIRAGI</th>	9BE	4.0	185.	1.20*	0.44				14.6G	1.20*	0.96	5.5	1.20*	0.44	1.4*	374	¢2		DIRAGI
SEE 6. 172. 1.15* 0.59 1.15* 1.10* <th1< td=""><td>9 BE 9 BE</td><td>6.0</td><td>142.2</td><td>1.16 1.15#</td><td>0.78</td><td>28.2</td><td>1.88</td><td>0.61</td><td>13 6</td><td>1 15*</td><td>1 95</td><td></td><td></td><td></td><td>1.3*</td><td>741</td><td></td><td>16</td><td>EAR67</td></th1<>	9 BE 9 BE	6.0	142.2	1.16 1.15#	0.78	28.2	1.88	0.61	13 6	1 15*	1 95				1.3*	741		1 6	EAR67
3925 6.0 1.23* 0.65* 9.25 2.23 0.43 6.0* 1.25* 0.65* 1.40* S2 TH071 985 6.0 155.0 1.16 0.67 8.92 2.24 0.43 6.0* 1.25* 0.65* 1.40* S2 TH071 985 6.0 135.0 1.25* 0.46 5.0 1.80 6.0* 1.80 6.0* 1.40* S2 TH071 985 6.0 135.0 1.30 0.77 28.0 1.87 1.88 0.48 6.0* 1.10 0.73 1.40* S2 TH071 985 8.0 140.* 1.2* 0.65 1.87 1.20* 0.46 1.40* 1.40* S2 TH071 985 8.0 140.* 1.2* 0.65 1.80 1.20* 0.46 1.47 808 H68 PH68 985 8.0 158.2 1.07 0.728 5.96 2.54 0.508	9BE	6.	174.	1.15#	0.59				14.G	1.15*	1.55	5.5	1.15*	0.59	1.4?	653	s	H68	PAR68
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9BE	6.0	156.0	1.18	0.65	8.92	2.24	0.43				6.0* 6.0*	1.25* 1.18	0.65* 0.67	1.40* 1.40*		52 52		THO 71 THO 71
9 BE6.0133.00.660.704.092.68C.505.061.20*0.860.701.40* $$22$ TBO9 BE8.0139.61.12*0.7628.01.6728.01.6728.01.6728.01.6728.01.6728.01.671.3*1.3*16EAR679 BE8.0140.*1.2*0.7630.*2.120.4515.061.20*1.200.461.4*47252FAR69A9 BE8.0163.1.15*0.660.701.40* $$22$ 1.071.3*521.071.3*521.0069 BE8.0155.21.070.725.962.540.50814.61.15*1.373.51.15*0.671.4*8088 68PAR699 BE10.0175.1.20*0.671.4*0.671.4*8088 68PAR699 BE10.11.20*0.511.6*0.641.5*1.373.51.15*0.671.4*8088 68PAR699 BE13.214.1.21.560.75816.41.5350.99018.561.20*1.20*0.601.4*104*22*314CR679 BE13.01.32*1.20*0.661.20*1.20*1.20*1.20*1.20*1.20*1.20*1.20*1.20*1.20*1.20*1.20*1.20*1.4*892 <t< td=""><td>9BE</td><td>6.0</td><td>165.0</td><td>1.10</td><td>0.73</td><td></td><td></td><td></td><td>13.7</td><td>1.88</td><td>0.48</td><td>6.0*</td><td>1.10</td><td>0.73</td><td>1.40*</td><td></td><td>52</td><td></td><td>TH071</td></t<>	9BE	6.0	165.0	1.10	0.73				13.7	1.88	0.48	6.0*	1.10	0.73	1.40*		52		TH071
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 B2 9 B2	6.0	133.0	0.86 1.20≭	0.70	4.09	2.68	C.50	15. OG	1.20=	1.20	6.0* 4 0	0.86 1.20*	0.70	1.40*	472	S2		THO71
$3 BE 8 .0 \\ 9 BE 8 .0 \\ 9 BE 8 .0 \\ 162 .1 \\ 154 \\ 0.65 \\ 9 BE 8 .0 \\ 162 .1 \\ 1.54 \\ 1.26 \\ 0.64 \\ 9 BE 8 .0 \\ 158 .2 \\ 1.20 \\ 0.64 \\ 9 BE 8 .0 \\ 158 .2 \\ 1.20 \\ 0.64 \\ 9 BE 8 \\ 0.0 \\ 178 .2 \\ 1.20 \\ 0.75 \\ 1.20 \\ 1.30 \\ 0.75 \\ 1.20 \\ 1.30 \\ 1.20 \\ 1.20 \\ 1.30 \\ 1.20 \\ 1.30 \\ 1.20 \\ 1.30 \\ 1.20 \\ 1.20 \\ 1.30 \\ 1.20 \\ 1.20 \\ 1.31 \\ 1.30 \\ 1.20 \\ $	9BE	8.0	139.6	1.13	0.77	28.0	1.87	0.61	13100		1.20	4.0	1.20+	0.40	1.3*	472	32	16	EAR67
9BE 9. 163. 1.15* 0.66 14.6 1.15* 1.37 3.5 1.15* 0.67 1.47 808 5 H68 PAR68 9BE 8.0 158.2 1.07 0.728 5.96 2.54 0.508 1.6* 0.647 1.47 808 5 H68 PAR69 9BE 10.0 171. 1.20* 0.64 1.6* 0.508 22. 1.6* 0.64 1.30 1.30 1.30 5.5 1.20* 0.67 1.47 808 5 H68 PAR69 9BE 10.0 171. 1.20* 0.51 1.20* 0.64 1.6* 0.64 1.6* 1.99 5.5 1.20* 0.51 1.4* 808 5 14 5.8 1.20* 0.51 1.4* 1046 2.2 9 PAR69A 9BE 13.0 1.20* 0.66 1.4* 10.55 1.20* 0.66 1.4* 1058 2.20 2.17 5.0 1.20* 0.60 1.4* 1046 2.29 PAR69A 10.55	9BE	8.0	140.*	1.2*	0.65	30.*	2.12	0.43	7.5*	1.98	0.72				1.3*		53 52		LUD68
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE 9 BE 9 BE 9 BE 9 BE 10.016.2 1.07 1.20*1.67 0.67 0.728 0.511.68 2.96 2.541.15* 0.67 1.07 0.728 2.21.15* 0.67 1.4* 1.20*0.67 1.4* 1.07 1.4* 1.20*1.68 0.4*7 1.4* 1.07 1.20*1.68 0.4*7 1.4* 1.07 1.20*1.68 0.4*7 1.4* 1.07 1.4* 1.20*1.64 0.511.50* 1.20* 1.20*1.4* 0.4*7 1.4* 1.07 1.4* 1.07* 1.25*1.68 5.7 1.20*1.4* 0.4*7 1.07* 1.4* 1.07* 1.07* 1.20*1.68 0.64 1.07* 1.20*1.64 0.511.5* 1.20* 1.20*1.4* 0.4*7 1.07* 1.4* 1.07* 1.07* 1.4* 1.07* 1.07* 1.4* 1.07* 1.07* 1.4* 1.07* 1.07* 1.07* 1.4* 1.07* <br< th=""><th>9BE</th><th>8.</th><th>163.</th><th>1.15#</th><th>0.66</th><th></th><th></th><th></th><th>14.G</th><th>1.15*</th><th>1.37</th><th></th><th></th><th></th><th>1.4?</th><th>808</th><th>5</th><th>H68</th><th>PAR68</th></br<>	9BE	8.	163.	1.15#	0.66				14.G	1.15*	1.37				1.4?	808	5	H68	PAR68
9 BE8.0158.21.07 0.728 5.962.54 0.508 7.34 1.07 0.728 1.07 52 1072 9 BE10.0171 $1.20*$ 0.51 $1.6*$ 0.64 $22.$ $1.6*$ 0.64 7.34 1.07 0.728 1.07 52 1072 9 BE10.0171 $1.20*$ 0.51 $1.6*$ 0.64 $22.$ $1.6*$ 0.64 $1.20*$ 0.51 $1.4*$ 858 52 9 $PAR69A$ 9 BE13.2 $14.1.2$ 1.56 0.758 16.4 1.535 $C.990$ 18.56 $1.20*$ 2.17 5.0 $1.20*$ 0.61 $1.4*$ 858 52 9 $PAR69A$ 9 BE15.0 $1.20*$ 0.66 16.5 1.51 1.00 16.5 $1.20*$ 2.17 5.0 $1.20*$ 0.61 $1.4*$ 1046 52 $PAR69A$ 9 BE 20.4 152.8 1.202 0.695 29.7 1.202 1.67 5.5 $1.20*$ 0.66 $1.4*$ 1046 52 $PAR69A$ 9 BE 21.6 10.65 1.167 5.5 $1.20*$ 0.66 $1.4*$ 1046 52 $PAR69A$ 9 BE 21.6 10.67 $1.22*$ 1.66 0.76 21.7 1.636 0.893 20.3 1.14 0.63 $1.4*$ 1046 52 $1.07*$ 52 16 $BBP72$ 9 BE 21.6 $1.22*$ 0.76 21.7 <td>9 BE 9 BE</td> <td>8. 8.0</td> <td>162. 178.</td> <td>1.15* 1.20*</td> <td>0.67 0.47</td> <td></td> <td></td> <td></td> <td>14.G 13.GG</td> <td>1.15# 1.20*</td> <td>1.37 1.30</td> <td>3.5 5.5</td> <td>1.15*</td> <td>0.67 0.47</td> <td>1.4?</td> <td>820 547</td> <td>S S2</td> <td>H68</td> <td>PAR68 PAR69A</td>	9 BE 9 BE	8. 8.0	162. 178.	1.15* 1.20*	0.67 0.47				14.G 13.GG	1.15# 1.20*	1.37 1.30	3.5 5.5	1.15*	0.67 0.47	1.4?	820 547	S S2	H68	PAR68 PAR69A
9BE 10.0 171. 1.20* 0.51 11.0 0.00 18.0 1.20* 1.20* 0.51 1.20* 0.51 1.20* 0.51 1.20* 0.51 1.20* 0.51 1.20* 0.51 1.20* 0.51 1.20* 0.51 1.20* 0.51 1.20* 0.51 1.20* 0.51 1.4* 858 25 9 P.R69A 9BE 15.0 15.5 1.20* 0.66 18.56 1.20* 2.17 5.0 1.20* 0.66 1.4* 1058 33 9 BUF72 9BE 10.4 1.20* 0.66 16.5 1.51 1.00 10.56 1.20* 2.05 5.5 1.20* 0.66 1.4* 1058 53 PAR69A 9BE 20.4 152.9 1.202 0.695 29.7 1.200 1.167 1.00* 5.0 1.14* 1058 53 1.07* 52 16 BUF72 9BE 27.0 108.1 1.080 0.857 21.7 1.636 C.893 20.3 1.18 0.76 </td <td>9 B B 9 B B</td> <td>8.0</td> <td>158.2</td> <td>1.07</td> <td>0.728</td> <td>5.96</td> <td>2.54</td> <td>0.508</td> <td></td> <td></td> <td></td> <td>7.34</td> <td>1.07</td> <td>0.728</td> <td>1.07</td> <td>• • •</td> <td>\$2</td> <td>4.0</td> <td>10072</td>	9 B B 9 B B	8.0	158.2	1.07	0.728	5.96	2.54	0.508				7.34	1.07	0.728	1.07	• • •	\$2	4.0	10072
9BE13.2141.21.1560.75816.41.535C.99018.561.20*2.175.01.20*0.661.4*104652PAR69A9BE15.015.01.20*0.6616.51.511.041.5201.651.20*0.631.4*104652PAR69A9BE20.4152.81.2020.69529.71.2201.1671.0551.20*2.305.01.14*105833PAR69A9BE22.262.71.4320.74621.81.5251.0551.20*2.305.01.14*0.631.3* $32P2$ 20.220.24PAR69A9BE27.0108.11.0800.85721.71.636C.89320.31.180.768.821.180.761.4*10585216BUF729BE21.669.51.180.7620.31.180.768.821.180.761.4*10585216BUF729BE21.01.20*0.631.20*1.905.51.20*0.731.4*10585216BUF729BE21.01.20*0.631.16720.31.180.768.821.180.761.4*10585216BUF729BE21.01.20*0.781.800.631.180.765.01.20*0.781.4*1058501210B	9BE	10.0	171.	1.20*	0.51			0104	18.CG	1.20*	1.99	5.5	1.20*	0.51	1.4*	858	5 52	9	PAR69A
9 BE15.015.01.20*0.6C18.5G1.20*2.175.01.20*0.6G1.4*1046 52PAR69A9 BE18.140.*1.270.6316.51.511.0410.5G1.20*2.305.51.20*0.631.4*1046 52PAR69A9 BE20.4152.81.2020.69529.71.2201.1675.51.20*0.631.4*1058 53PAR69A9 BE22.262.71.4320.74621.81.5251.0555.01.140.631.3* $322220,24$ HCE729 BE27.0108.11.0800.85721.71.636C.89320.31.180.761.07*S216BUF729 BE31.669.51.180.7620.31.180.768.821.180.761.47SB68WIL679 BE21.735.01.520.715.651.800.6320.31.180.761.47SB68WIL679 BE21.01.60*0.631.20*1.00*1.40*6555.61.47SB68WIL679 BE21.01.60*0.781.40*0.631.47SB68WIL671.47SB68WIL679 BE21.01.20*0.631.20*1.20*1.20*0.781.40*5055.51.20*0.751.47SSD0	9BE	13.2	141.2	1.156	0.758	16.4	1.535	C.990							1.07*		53	9	BUF72
9 BE18.140.*1.27 0.63 16.51.511.04 5.0 1.14 0.63 $1.3*$ $s222$ 20.24 $tCE72$ 9 BE20.415.281.2020.69529.71.2201.167 $1.07*$ $S2$ 16 $BUP72$ 9 BE22.262.71.432 0.746 21.8 1.525 1.055 1.18 0.76 $1.07*$ $S2$ 16 $BUP72$ 9 BE21.669.5 1.18 0.76 20.3 1.18 0.76 20.3 1.18 0.76 1.47 S $H68$ $WIL67$ 9 BE31.669.5 1.18 0.76 20.3 1.18 0.76 8.82 1.18 0.76 1.47 S $H68$ $WIL67$ 9 BE21.7 3.50 1.52 0.71 5.65 1.80 0.63 $1.20*$ 1.90 5.5 $1.20*$ 0.78 $1.40*$ 740 1.5 $DUG70$ 1084.0168.0 $1.20*$ 0.78 1.60 $1.20*$ 1.90 5.5 $1.20*$ 0.73 $1.40*$ 740 1.5 $DUG70$ 108 4.0 163.0 $1.20*$ 0.71 1.63 $1.20*$ $1.20*$ $1.20*$ 0.73 $1.40*$ 948 5.6 $DUG70$ 108 8.0 189.0 $1.20*$ 0.71 $1.40*$ $1.20*$ 0.73 $1.40*$ 948 5.6 $DUG70$ 108 8.0 189.0 $1.20*$ 0.78 $1.20*$ <td>98E 98E</td> <td>15.0</td> <td>155.</td> <td>1.20* 1.20*</td> <td>0.66</td> <td></td> <td></td> <td></td> <td>18.5G 10.5G</td> <td>1.20* 1.20*</td> <td>2.17</td> <td>5.0 5.5</td> <td>1.20*</td> <td>0.60 0.66</td> <td>1.4* 1.4*</td> <td>1046</td> <td>S2 S3</td> <td></td> <td>PAR69A PAR69A</td>	98E 98E	15.0	155.	1.20* 1.20*	0.66				18.5G 10.5G	1.20* 1.20*	2.17	5.0 5.5	1.20*	0.60 0.66	1.4* 1.4*	1046	S2 S3		PAR69A PAR69A
9BE22.262.71.432 0.746 21.8 1.525 1.055 $1.07*$ 52 16 $B0P72$ 9BE27.0108.11.080 0.857 21.7 1.636 $C.893$ 20.3 1.18 0.76 $1.07*$ 52 16 $B0P72$ 9BE31.6 69.5 1.18 0.76 20.3 1.18 0.76 20.3 1.18 0.76 1.47 5 $H68$ $WIL67$ 9BE31.6 69.5 1.18 0.76 20.3 1.18 0.76 8.82 1.18 0.76 1.47 5 $H68$ $WIL67$ 9BE21.7 35.0 1.52 0.71 5.65 1.80 0.63 21.06 $1.20*$ 1.90 5.5 $1.20*$ 0.78 $1.40*$ 740 5 5 $D070$ 108 4.0 168.0 $1.20*$ 0.78 $1.20*$ 1.90 5.5 $1.20*$ 0.78 $1.40*$ 740 5 5 $D070$ 108 4.0 163.0 $1.20*$ 0.78 $1.20*$ 0.78 $1.40*$ 740 5 5 $D070$ 108 8.0 185.0 $1.20*$ 0.71 2.16 0.78 $1.40*$ 740 5 5 500 108 9.8 $140.4*$ $1.2*$ 0.78 $30.4*$ 2.15 0.30 $7.5*$ 1.85 0.55 $1.20*$ 0.78 $1.40*$ 740 5.5 500 $1.20*$ 0.72 1.40	9 B B 9 B B	18. 20.4	140.* 152.8	1.27	0.63	16.5 29.7	1.51	1.04				5.0	1.14	0.63	1.3*		\$2P2	20,24	HCE72
9BE 27.0 108.1 1.080 0.857 21.7 1.636 C.893 9BE 31.6 69.5 1.18 0.76 20.3 1.18 0.76 1.47 S H68 WIL67 9BE 21.7 35.0 1.52 0.71 5.65 1.80 0.63 20.3 1.18 0.76 8.82 1.18 0.76 1.47 S H68 WIL67 9BE 21.7 35.0 1.52 0.71 5.65 1.80 0.63 21.01 1.09 5.5 1.20* 0.76 1.47 S H68 WIL67 9BE 21.0 1.20* 0.78 1.66 1.20* 1.90 5.5 1.20* 0.78 1.40* 740 S B670 10B 4.0 163.0 1.20* 0.78 1.40* 740 S 5 DUG70 10B 4.0 163.0 1.20* 0.72 1.40* 740 S 5 DUG70 10B 8.0 180.0 1.20* 0.71 1.40*	9BE	22.2	62.7	1.432	0.746	21.8	1.525	1.055							1.07*		52 52	16	BUF72
9B2 31.0 69.5 1.18 0.76 1.47 S H68 WIL67 9B2 31.6 69.5 1.18 0.76 20.3 1.18 0.76 1.47 S H68 WIL67 9B2 31.6 69.5 1.18 0.76 20.3 1.18 0.76 8.82 1.80 0.76 1.47 S H68 WIL67 9B2 217. 35.0 1.52 0.71 5.65 1.80 0.63 1.18 0.76 8.82 1.18 0.76 1.47 S H68 WIL73 10B 4.0 163.0 1.20* 0.78 1.40* 740 S1 5 DU670 10B 4.0 163.0 1.20* 0.73 1.40* 740 S1 5 DU670 10B 8.0 185.0 1.20* 0.72 1.40* 740 S1 5 DU670 10B 8.0 185.0 1.20* 0.71 1.40* 940 S2 5 DU670 10B 9.8 140.* 1.24* 0.78	9 BB	27.0	108.1	1.080	0.857	21.7	1.636	C.893							1.07*		52	16	BUF72
9BE 217. 35.0 1.52 0.71 5.65 1.80 0.63 1.37 S2 2 WIL73 10B 4.0 168.0 1.20* 0.78 1.40* 740 S1 5 DUG70 10B 4.0 172.0 1.20* 0.73 16.6G 1.20* 1.90 5.5 1.20* 0.78 1.40* 740 S1 5 DUG70 10B 4.0 163.0 1.20* 0.73 16.6G 1.20* 1.90 5.5 1.20* 0.73 1.40* 740 S1 5 DUG70 10B 0.1 1.20* 0.71 16.6G 1.20* 1.90 5.5 1.20* 0.73 1.40* 740 S1 5 DUG70 10B 9.1 163.0 1.20* 0.71 140* 948 5,6 DUG70 10B 8.0 189.0 1.20* 0.71 1.40* 948 5,6 DUG70 10B 9.8 140.* 1.2* 0.78 30.* 2.15 0.30 7.5* 1.85 0.55	9BE 9BE	31.6	69.5	1.18	0.76				20.3	1.18	0.76	8.82	1.18	0.76	1.4?		s s	H68 E68	WIL67 WIL67
108 4.0 168.0 1.20* 0.78 1.20* 0.78 1.40* 740 51 5 DUG70 108 4.0 172.0 1.20* 0.73 1.40* 740 51 5 DUG70 108 4.0 172.0 1.20* 0.69* 16.G 1.20* 1.80 5.0 1.20* 0.73 1.40* 740 51 5 DUG70 108 4.0 153.0 1.20* 0.69* 12.0G 1.20* 1.90 5.5 1.20* 0.73 1.40* 740 51 5 DUG70 108 0.1 1.20* 0.71 1.20G 1.20* 1.90 5.5 1.20* 0.73 1.40* 740 51 5 DUG70 108 8.0 185.0 1.20* 0.71 1.40* 948 5 6 DUG70 108 9.8 140.4* 1.2* 0.78 30.4 2.15 0.30 7.5* 1.85 0.55 1.20* 0.69* 1.40* 929 5 DU670	9 E E	217.	35.0	1.52	0.71	5.65	1.80	0.63							1.3?		S 2	2	WIL73
10B 4.0 172.0 1.20* 0.73 16.00 1.20* 0.73 1.40* 740 s1 s 5 p00g70 10E 4.0 163.0 1.20* 0.73 16.00 1.20* 1.20* 1.40* 665 s 5,6 p00g70 10E 4.0 163.0 1.20* 0.72 1.40* 593 s 5 p00g70 10B 8.0 185.0 1.20* 0.71 1.40* 940 s2 5 5 p0g70 10B 8.0 185.0 1.20* 0.71 16.56 1.20* 1.75 5.5 1.20* 0.71 1.40* 948 s 5,6 p0g70 10B 8.0 189.0 1.20* 0.65* 16.56 1.20* 1.85 5.5 1.20* 0.71 1.40* 948 s 5,6 p0g70 10B 9.8 140.4* 1.2* 0.78 30.* 2.15 0.30 1.55 1.20* 0.69* 1.40* 929 s 5 p0g70 10B 9.8 140.4* 1.2* 0.78 30.* 2.15	10B	4.0	168.0	1.20*	0.78				21_00	1.20*	1, 90	5.5	1.20*	0.78	1.00+	700	\$1	5	n#c70
108 9.0 10.0.* 1.2.* 0.6.9* 1.2.0* 1.2.0* 1.90 1.2.0* 0.72 1.40* 59.3 5 <	10B	4.0	172.0	1.20*	0.73				16.CG	1.20*	1.80	5.0	1.20*	0.73	1.40*	665	Š	5,6	DUG70
105 0.0 1.20* 0.71 1.40* 948 5,6 D0670 108 8.0 189.0 1.20* 0.65* 16.56 1.20* 1.90 5.5 1.20* 0.69* 1.40* 948 5,6 D0670 108 9.8 140.* 1.2* 0.78 30.* 2.15 0.30 1.3* S2 LDD68 108 9.8 140.* 1.2* 0.83 7.5* 1.85 0.55 1.3* S3 LDD68 108 9.8 85. 1.63 0.6 25. 1.63 0.6 1.47 S H68 P2f57	10B	8.0	180.0	1.20*	0.72				24.0G	1.20*	1.75	5.5	1.20*	0.72	1.40*	940	5 52	5	DUG70
10B 9.8 140.* 1.2* 0.78 30.* 2.15 0.30 1.3* S2 LUD68 10B 9.8 140.* 1.2* 0.83 .105 1.3* S3 LUD68 10B 9.8 140.* 1.63 0.6 1.47 S H68 PAT67	10B	8.0	189.0	1.20*	0.69*				16.5G	1.20*	1.90	5.5	1.20#	0.69*	1.40*	948 929	5 5	5,6	DUG70 DUG70
TUB 9.8 740.* 1.2* 0.83 7.5* 1.85 0.55 1.3* S3 LUD68 TOB 9.8 85. 1.63 0.6 25. 1.63 0.6 1.4? S H68 PAT67	10 B	9.8	140.*	1.2*	0.78	30.*	2.15	0.30							1.3*		s 2		LUD68
	10B	9.8	140.≢ 85.	1.63	0.83	25.	1.63	0.6	7.5*	1.85	0.55				1.3* 1.4?		53 5	H68	LUD68 PAT67

TABLE V. Optical-Model Parameters

NUCLIDE	EN ER GY (ME V)	REAL V	POTENT R	IAL A	VOL.IN: W	AG. POT RW	ENTIAL AW	SORF.IM WC	AG. POT RD	ENTIAL AC	SPIN- VSO	ORBIT 1 RSO	POTENTIAL ASO	RC	SR	FIT	NOTE	REF.
10B 10B 10B 10B 10B 10B	10.0 10.0 12.0 12.0 12.0 12.0	194.0 193.0 192.5 201.5 200.0 200.0	1.20* 1.20* 1.20* 1.20* 1.20* 1.20* 1.20*	0.71 0.74 0.69* 0.69 0.71 0.69*				12.5G 11.0G 13.0G 14.3G 12.0G 16.0G	1.20* 1.20* 1.20* 1.20* 1.20* 1.20*	1.90 2.10 1.90 2.00 1.82 1.90	5.5 5.5 5.5 5.5 3.5	1.20* 1.20* 1.20* 1.20* 1.20*	0.71 0.74 0.69* 0.71 0.69*	1.40* 1.40* 1.40* 1.40* 1.40* 1.40*	992 1070 964 1030 998 1006	52 5 52 52 52 52 5	5,6 5 5 5,6 5	DUG70 DUG70 DUG70 DUG70 DUG70 DUG70 DUG70
10B 10E 10B 10B 10B 10B	13.2 14. 14. 15.0 15.0 15.0	83.7 140.0 134.1 213.0 211.0 206.0	0.950 1.1* 1.1* 1.20* 1.20* 1.20*	0.917 0.80 0.83 0.59 0.61 0.69*	23.7 12.5	1.072 2.33	0.650 0.26	33.4 5.CG 10.OG 10.OG	1.84 1.20* 1.20* 1.20*	0.38 1.85 1.80 1.90	3.0 2.5 2.3	1.20* 1.20* 1.20*	0.59 0.61 0.69*	1.07* 1.25* 1.25* 1.40* 1.40* 1.40*	846 868 980	S2 S2 S3 S S	9 5,6 5	BUP72 NUS70 NUS70 DUG70 DUG70 DUG70 DUG70
10B 10B 10B 10B 10B 10B	17.2 18.0 18.0 18.0 24.3 24.3	151.3 195.0 221.0 188.5 102.2 103.3	1.067 1.20* 1.20* 1.20* 1.064 1.079	0.858 0.57 0.48 0.69# 0.879 0.815	15.4 11.1	1.894 1.862	0.470 0.606	9.0G 10.5G 11.8G 7.9	1.20* 1.20* 1.20* 1.20*	2.10 1.80 1.90 0.726	5.5 5.0 5.5	1.20* 1.20* 1.20*	0.57 0.48 0.69*	1.07* 1.40* 1.40* 1.40* 1.07* 1.07*	900 758 981	51 53 5 52 52	5 5,6 5	BUF72 DUG70 DUG70 DUG70 BUF72 EUF72
10B 10B 10B	32.46 32.46 32.46	104.4 132.9 171.0	1.15 1.54 1.25	0.78 0.57 0.58	26.6 19.5 12.8	1.14 1.82 1.78	0.91 0.22 0.94							0.53 0.81 0.86	928 869 1104	S2 51 S	23 23 23	SQU68 SQU68 SQU68
118 118 118 118 118 118 118	8.0 10.0 10.0 10.0 12.0 12.0	195. 145. 127. 195. 152. 194.	1.20* 1.16 1.25* 1.20* 1.018 1.20*	0.65 0.595 0.573 0.69 0.75* 0.67	9.13 3.68 10.16	0.95 2.25 1.54	1.83 1.53 0.965	16.5G 11.0G 14.5G	1.20* 1.20* 1.20*	1.90 1.90 1.60	5.5 4.75* 4.75* 5.5 4.0* 5.5	1.20* 1.16 1.25* 1.20* 1.018 1.20*	0.65 0.595 0.573 0.69 0.75* 0.67	1.4* 1.16* 1.25* 1.4* 1.02* 1.4*	911 993 945	S2 S1 S2 S2 S1 S2		PAR69A MIL69 MIL69 PAR69A MIL69 PAR69A
118 118 118 118 118 118 118	14. 14. 15.0 18.0 18.0 18.3	143.9 139.0 195. 140. 190. 71.6	1.1* 1.1* 1.20* 1.018 1.20* 1.055	0.80 0.83 0.64 0.754 0.66 0.893	12.2 10.5	2.25	0.20	32.C 11.5G 8.14 13.5G	1.81 1.20* 1.34 1.20*	0.36 1.80 0.804 1.65	3.0 4.0* 4.0	1.20* 1.018 1.20*	0.64 0.754 0.66	1.25* 1.25* 1.4* 1.02* 1.4* 1.07*	936 930	S2 S2 S3 S3 S2 S2	16	NUS70 NUS70 PAR694 MIL69 PAR694 BUF72
11B 11B 11B 11B 11B	20.6 20.6 27.2 74. 74.	74.1 70.5 115.3 98.9 100.5	1.064 1.057 1.071 1.16 1.11	0.871 0.887 0.856 0.73 0.71	11.2 11.1 13.3 30.48	1.787 1.794 1.794 1.29	0.783 0.787 0.719 0.88	12.09	1.24	0.87				1.07* 1.07* 1.07* 1.3* 1.3*		\$2 \$1 \$2 \$2 \$2 \$2	16 17 9 9	BUP72 BUP72 BUP72 ASP74 ASP74
c c	29. 29.	76.64 78.3*	1.057 0.92*	0.881 0.881*	16.66 8.24	1.777 2.15	0.744 0.774*							1.07 * 1.25*	1070	S S	8	BAU67 SC070
12C 12C 12C 12C 12C 12C 12C	3.70 3.70 3.70 3.70 5.03 5.03	149.7 110.0 112.0 110.0 133.0 133.0	1.29 1.20* 1.20* 1.20* 1.20* 1.20*	0.62 0.60 0.58 0.61 0.67 0.68	14.9 24.0 16.0	2.04 1.20* 1.20*	0.20 0.60 0.67	26.0G 20.CG 12.0G	1.20* 1.20* 1.20*	0.92 1.15 1.43	5.0	1.20*	0.61	1.4* 1.4* 1.4* 1.4* 1.4* 1.4*	290 237 255 614 580	S 2 S S 1 S 1 S 1 S 1 S 1	14	SCH67 PAR68 PAR68 PAR68 PAR68 PAR68 PAR68
12C 12C 12C 12C 12C 12C 12C	5.03 5.5 5.57 5.57 5.57 5.57 6.0	132.0 100.* 130.5 126.5 131.0 139.5	1.20* 1.06 1.20* 1.20* 1.20* 0.93*	0.67 0.72 0.62 0.67 0.64 0.81*	30.0 21.0 5.50	1.77 1.20* 2.25	0.64 0.62 C.65*	12.CG 15.CG 16.5G	1.20* 1.20* 1.20*	1.32 1.50 1.35	4.0 3.0	1.20* 1.20*	0.67 0.64	1.4* 1.06 1.4* 1.4* 1.4* 1.4*	556 584 604 561	S1 S1 S1 S1 S1 S2	25	PAR68 LAM68 PAR68 PAR68 PAR68 WEL68
12C 12C 12C 12C 12C 12C 12C	6.00 6.00 6.00 7.00 7.00 7.00	121.0 128.0 125.0 128.0 128.0 146.0	1.20* 1.20* 1.20* 1.20* 1.20* 1.20*	0.589 0.555 0.57 0.66 0.49 0.60	20.0 11.0	1.20 * 1.20 *	0.589	22.5G 18.CG 8.5G 7.56	1.20* 1.20* 1.20*	0.98 1.05 1.55 1.32	5.0	1.20*	0.57	7.4* 1.4* 1.4* 1.4* 1.4* 1.4*	545 460 477 724 494 544	5 51 52 5 5 5		PAR68 PAR68 PAR68 PAR68 PAR68 PAR68 PAR68
12C 12C 12C 12C 12C 12C 12C	7.0 8.00 8.00 8.0 8.5 8.5 8.50	165.2 125.4 127.5 165. 60.47 135.0	0.93* 1.20* 1.20* 0.93* 1.97 1.20*	0.81* 0.685 0.67 0.81* 0.51 0.73	4.43 12.5 4.43 10.26 9.0	1.90 1.20* 2.05 1.97 1.20*	0.65* 0.685 0.65* 0.51 0.73	15.0G	1.20*	1.02				1.4* 1.4* 1.4* 1.4* 1.4* 1.4*	769 735 938 811	S 3 S S 2 S 2 S 2 S 5	H68 21	WEL68 PAR68 PAR68 WEL68 SCH66 PAR68
12C 12C 12C 12C 12C 12C 12C	8.50 8.50 10, 10,0 10,0 10,0	137.0 136.0 71.21 136.0 126.0 132.0	1.20* 1.20* 1.78 1.20* 1.20* 1.20*	0.71 0.70 0.533 0.58 0.67 0.63	13.12 31.0	1.78 1.20#	0.533 0.58	13.0G 14.CG 17.CG 16.0G	1.20* 1.20* 1.20* 1.20*	0.92 0.95 1.60 1.35	2.0 9.0	1.20* 1.20*	0.70 0.63	1.4* 1.4* 1.4? 1.4* 1.4* 1.4*	757 758 983 719 806 733	\$1 51 5 52 52 52	21 21 H68	PAR68 PAR68 SCH66 PAR68 PAR68 PAR68 PAR68
12C 12C 12C 12C 12C 12C 12C	11.0 12.0 12.0 12.0 13.9 13.9	130 147.5 147.0 149.0 50.35 108.2	1.15* 1.20* 1.20* 1.20* 1.442 1.301	0.70 0.575 0.58 0.55 0.776 0.7C3	4.2 17.5	2.61 1.20*	0.36 0.575	19.06 17.06 6.16 10.25	1.20* 1.20* 1.442 1.301	1.00 1.00 0.776 0.703	4.5	1. 20*	0.55	1.4* 1.4* 1.4* 1.4* 1.2* 1.2*	734 695 646	s1 s s3 s3 s3 s s		SCH70 PAR68 PAR68 PAR68 OBE68 OBE68
12C 12C 12C 12C 12C 12C 12C	13.9 15.0 15.0 15.0 15. 16.	189.1 172.0 171.5 166.0 155.0 165.	1.212 1.20* 1.20* 7.20* 0.93 1.26	0.663 0.71 0.74 0.78 0.84 0.8	25.0 5.73 9.96	1.20* 2.30 2.16	0.71 0.41 0.8	14.41 14.7G 16.CG	1.212 1.20* 1.20*	0.663 1.67 1.55	9.5	1.20*	0.78	1.2* 1.4* 1.4* 1.4* 1.4* 1.4*	1013 1014 1052	S S2 S2 S3 S3 S	H68	OBE68 PAR68 PAR68 PAR68 ZUR69 FOR67

TABLE V. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	R BAL V	POTENT R	IAL A	VOL.IN W	AG. FCT RW	EBTIAI AW	SURF.IM WD	AG. POT RD	ENTIAL AC	SPIN- VSC	ORBIT I BSO	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
12C 12C 12C 12C 12C 12C	16. 16. 16. 16. 17. 18.	125.8 127.9 187.7 184.5 165. 165.	1.58 1.58 1.55 1.58 1.26 1.26	0.635 0.684 0.603 0.636 0.8 0.8	9.41 11.90 9.96 9.96	2.12 2.04 2.16 2.16	0.831 0.872 0.8 0.8	13.49 19.31	1.55 1.46	0.684 0.636	15.37 15.88 18.87 19.49	1.58 1.58 1.55 1.58	0.635 0.684 0.603 0.636	1.58 1.58 1.55 1.58 1.4? 1.4?		53 53 53 53 5 5 5	H68 H68	FOR68 FOR68 FOR68 FOR68 FOR67 FOR67
12C 12C 12C 12C 12C 12C 12C	18. 18. 20.0 20.0 20.0	129.2 150.* 130.* 71.04 207.7 131.0	1.205 1.07 1.20 1.156 1.200 1.205	0.667 0.69 0.67 0.761 0.614 0.683	12.95 19.63	1.733 1.656	0.727 C.624	7.0* 6.65 7.0	1.35* 1.40 1.35 1.35*	1.026 1.02 1.03 0.78*	4.0* 4.0* 4.0	1.0* 0.96 1.08	0.5* 0.69 0.67 0.5*	1.3* 1.3* 1.3* 1.07* 1.07* 1.3*	967 964	S2 S3P3 S2P3 S3 S3 S3 S2	8 18 20,24 24,14 24,14 8	HCE70 HCE71 HCE72 WAR68 WAR68 MCE70
12C 12C 12C 12C 12C 12C 12C	20. 20. 22.2 22.2 23.9 23.9	150.* 130.* 72.33 128.4 79.9 134.1	1.07 1.21 1.048 1.125 1.080 1.184	0.74 0.68 0.926 0.771 0.853 0.693	14.72 17.36 11.86 17.70	1.621 1.508 1.927 1.634	0.922 0.938 0.677 0.804	13.7 13.6	1.50 1.35	0.70 0.78	5.0* 4.5	0.96 1.09	0.74 0.68	1.3* 1.3* 1.07* 1.07* 1.07* 1.07*	1147 1163 1043 1078	S3P3 S2P2 S2 S2 S2 S2 S2 S2	18 20,24 24,14 24,14 24,14 24,14	HCE71 NCE72 WAR68 WAR68 WAR68 WAR68 WAR68
12C 12C 12C 12C 12C 12C 12C	24.0 24.5 25.3 25.3 26.8	141.2 139.9 62.* 62.* 59.2 62.*	1.1* 1.1* 1.31 1.50 1.50# 1.34	0.656 0.601 0.89 0.75 0.75 0.82	37.9 39.0 26.7 43.9	1.31 1.50 1.50* 1.34	0.89 0.75 0.75≠ 0.82	11.1 11.0	1.299 1.298	0.911 .921	3.61	1.1*	0.681	1.4* 1.4* 1.4? 1.4? 1.4? 1.4? 1.4?	1192 1202 1200 1158 1074 1130	S2 S2 S S S S	16 16 168 168 168 168 168	PUJ73 PUJ73 SEN64 SEN64 SEN64 SEN64 SEN64
12C 12C 12C 12C 12C 12C 12C	29.0 29.0 29.1 29.2 29.2 34.7	63.47 76.48 66.7 135.1 134.0 126.5	1.100 1.070 1.60 1.1* 1.1* 1.1*	0.833 0.862 0.588 0.652 0.66C 0.784	22.65 15.79 52.4	1.832 1.774 1.60	0.664 C.751 0.588	5.47 10.7 15.3	1.175 1.323 1.543	1.054 .882 .615	7.70	1.1*	0.660	1.07* 1.07* 1.4? 1.4* 1.4* 1.4*	1062 1055 1032 1237 1131 1033	S S S 2 S 2 S 2 S 2	24,14 24,14 H68 16 16 16	WAR68 WAR68 GAR62 FUJ73 FUJ73 FUJ73
12C 12C 12C 12C 12C 12C 12C	34.7 36. 39.6 39.6 42. 42.	124.6 127.1 121.2 124.2 115.2 115.2	1.1* 1.03 1.1* 1.1* 1.13 1.13	0.793 0.87 0.80 0.808 0.75 0.75	2.34 5.84 5.8	1.38 1.55 1.55	0.85 0.70 0.7	15.1 11.5 14.1 14.7 9.62 38.5	1.566 1.38 1.268 1.661 1.55 1.55	.605 0.85 .787 .611 0.70 0.7	4.75 1.70* 4.48 1.70* 1.7*	1.1* 1.14* 1.1* 1.14* 1.14*	0.793 0.69* 0.808 0.69* 0.69*	1.4* 1.4* 1.4* 1.4* 1.4* 1.4*	1034 1056 1027	S 2 S 2 S 2 S 2 S 2 S 2 S 2 S 2	16	FUJ73 HUT68 FUJ73 FUJ73 HUT68 SIN73
12C 12C 12C 12C	42. 49.8 49.8 217.	152. 160.* 160.* 68.0	1.40 1.40 1.39 1.22	0.50 0.572 0.542 0.77	23.0 20.31 12.58 20.7	1.36 1.70 1.96 1.58	1.04 0.537 0.571 0.67				1.7*	1. 14*	0.69*	1.4* 1.3* 1.3* 1.3?		S2 S2 S2 S1	4 4 2	SIN73 BAL69 BAL69 WIL73
13C 13C 13C 13C 13C 13C 13C	6.0 7.0 8.0 12.0 14. 14.	173.9 156.5 161.4 161. 140.9 139.5	0.93* 0.93* 0.93* 0.93* 1.1* 1.1*	0.81* 0.81* 0.81* 0.81 0.81 0.75 0.83	4.55 2.45 4.73 5.37 8.7	2.26 2.75 2.56 2.25* 2.24	0.65* 0.65* 0.65* 0.65* 0.65*	24.3	1.84	0.34	6.*	0.93*	0.81*	1.4* 1.4* 1.4* 1.4* 1.25* 1.25*		S 2 S 3 S 1 S 2 S 2 S 2	3 3 7,9	WEL68 WEL68 WEL68 KEL66 NUS70 NUS70
13C 13C 13C	15.0 18.0 39.6	158. 156. 160.*	0.93# 0.93# 1.31	0.81 0.81 0.565	6.75 6.8 14.86	2.25* 2.25* 1.73	C.65* 0.65* C.826				6.* 6.*	0.93* 0.93*	0.81* 0.81*	1.4* 1.4* 1.3*		S 2 S 2 S	7 7 4	KELGG KELGG BALG9
14C 14C 14C 14C 14C 14C	4.5 5.1 5.8 10.0 10.0 10.0	165.8 169.1 172.5 156.0 196.0 133.0	0.928 0.928* 0.928* 1.20* 1.20* 1.20*	0.789 0.798 0.780 0.70 0.63 0.65*				3.97 6.25 8.54 39.0G 16.5G 13.7G	2.218 2.099 1.980 1.20* 1.20* 1.20*	0.609 0.465 0.321 1.60 1.15 1.10	2.5 2.0	1.20* 1.20*	0.70 0.63	1.4* 1.4* 1.4* 1.40* 1.40* 1.40*	943 863 807	S S S3 S2 S	15 15 15 5 5,6 5	KEY72 KEY72 KEY72 DUG70 DUG70 DUG70
14C 14C 14C 14C 14C 14C	12.0 12.0 12.0 15.0 15.0 15.0	160.0 190.0 143.0 167.0 181.5 168.0	1.20# 1.20# 1.20# 1.20# 1.20# 1.20#	0.67 0.62 0.65* 0.65 0.69 0.65*				37.0G 21.0G 13.CG 34.0G 25.0G 31.CG	1.20* 1.20* 1.20* 1.20* 1.20* 1.20*	1.60 1.65 1.10 1.05 1.45 1.10	5.5 5.5 5.5 4.0 5.5	1.20* 1.20* 1.20* 1.20* 1.20* 1.20*	0.67 0.62 0.65 0.69 0.65*	1.40* 1.40* 1.40* 1.40* 1.40* 1.40*	945 921 800 896 999 898	S2 S2 S3 S3 S2 S	4,5 4,5,6 4,5 5 5,6 5	DUG70 DUG70 DUG70 DUG70 DUG70 DUG70 DUG70
14C 14C 14C 14C	18.0 18.0 18.0 44.8	175.0 182.0 175.5 160.*	1.20* 1.20* 1.20* 1.31	0.69 0.71 0.65* 0.569	12.58	1.82	0.795	31.5G 39.CG 31.5G	1.20* 1.20* 1.20*	1.20 1.25 1.10	2.0 5.5	1.20* 1.20*	0.69 0.71	1.40* 1.40* 1.40* 1.3*	966 1004 906	53 52 5 52	5 5,6 5 4	DUG70 DUG70 DUG70 BAL69
14N 14N 14N 14N 14N	4.5 7.0 7.0 13.9 13.9 13.9	175.8 63.01 162.3 39.02 74.09 126.9	0.921* 1.335 0.921 1.672 1.726 1.616	0.807* 0.725 0.8C7 0.662 0.538 0.527	7.56 6.11 7.40 16.05 22.14	2.20* 2.20 1.672 1.726 1.616	0.804* 0.804 0.662 0.538 0.527	10.87	1.254	0.744	6.41 6.08	0.921* 0.921	0.807 * 0.807	1.20* 1.33* 1.20* 1.2* 1.2* 1.2*		S2 S2 S3 S S S S	3	KNU70 KNU70 KNU70 LUC68 LUC68 LUC68
14N 14N 14N 14N	25.7 29.0 29. 44.6	51.5 61.9 169. 160.*	1.65 1.62 1.14 1.29	0.52 0.57 0.675 0.565	56.2 60.0 32.1 11.37	1.65 1.62 1.82 1.78	0.52 0.57 0.566 0.811							1.4? 1.4? 1.2? 1.3*	1073 1088	s s s s2	н68 н68 4	SEN64 SEN62 HIE67 BAL69
15 N 15 N 15 N 15 N 15 N 15 N	11.0 11.0 18. 18. 39.8	168.55 168.55 103.0 177.3 273.1 160.*	1.25* 1.250 1.272 1.194 1.137 1.23	0.6C9 0.6C9 0.649 0.640 0.692 0.595	12.96 12.96 8.89 12.59 16.69 12.44	1.718 1.718 1.863 1.671 1.541 1.80	0.626 0.929 0.936 0.924 0.858				7.45* 7.45*	1.25* 1.3*	0.609 0.6*	1.30* 1.3* 1.25* 1.25* 1.25* 1.25* 1.3*		S 2 S 2 S 2 S 2 S 2 S 2 S 2 S 2	4	BOH70 BOH70A LEM72 LEM72 LEM72 BAL69

TABLE V. Optical-Model Parameters

NUCLIDE	FN ER GY (MEV)	R BA L V	POT ENT R	IAL A	VOL.IMJ W	G. POT	BNTIAL AW	SORF.IN	AG. POT	ENTIAL AC	SPIN-C VSO	RBIT P	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
160 160 160 160 160 160	8.0 8.5 9.0 9.42 9.80 9.95	104. 104.2 104.5 104.9 175. 171.	1.5 1.513 1.525 1.568 1.07* 1.07*	0.7 0.681 0.65 0.64 0.854* 0.854*	21.5 21.5 21.35 21.2 38. 48.	1.5 1.513 1.525 1.568 1.81* 1.81*	0.7 0.681 0.65 0.64 0.65* 0.65*							1.47 1.47 1.47 1.47 1.40* 1.40*		S S S S S 3 S 3	H68 H68 H68 B68	ALF65 ALF65 ALF65 ALF65 BRA69 BRA69 BRA69
160 160 160 160 160 160	10. 10.21 10.25 10.25 10.25 10.25	105.0 94. 147.5 152.1 149.1 177.5	1.575 1.07* 1.619 1.576 1.609 1.403	0.636 0.854* 0.526 0.570 0.533 0.628	20.5 33. 21.69 17.36 22.79	1.575 1.81# 1.619 1.576 1.544	0.636 0.65* 0.526 0.570 0.553	23.27	1.487	0.598	9.1	1.576	0.570	1.4? 1.40* 1.4* 1.4* 1.4* 1.4*		S S3 S1 S2 S1 S2 S2	H68 11,14 14 12,14 12,14	ALF65 BRA69 NUR69 NUR69 NUR69 NUR69
160 160 160 160 160 160	10.31 10.46 10.5 10.72 11.0 11.0	111. 129. 170. 155. 168.50 517.3	1.07* 1.07* 1.03 1.07* 1.117 0.417	0.854* 0.854* 0.893 0.854* 0.746 0.768	31. 31. 20.0 33. 8.45 4.91	1.81* 1.81* 2.06 1.81* 1.948 2.21	0.65* 0.65* 0.510 0.65* 0.926 C.853				7.45* 7.45*	1.3* 1.3*	0.6* 0.6*	1.40* 1.40* 1.2? 1.40* 1.3* 1.3*		S3 S3 S3 S3 S3 S3 S2		BRA69 BRA69 HIE67 BRA69 BOH70A BOH70A
160 160 160 160 160 160	11.23 11.74 15. 16.6 16.6 17.3	117. 123. 158.0 122.8 220.* 145.1	1.07* 1.07* 0.96 1.546 1.01 1.383	0.854* 0.854* 0.80 0.568 0.663 0.631	9.4 10.6 6.75 5.3	1.81* 1.81* 2.25 2.21	0.65* 0.65* 0.65 0.803	18.9 18.73	1.546	0.55 0.631	4.53	1.383	0.631	1.40* 1.40* 1.4* 1.4* 1.40* 1.25*		53 53 52 52 53 53	4	ERA69 BRA69 ZUR69 LUT67 MAN68 HAN68
160 160 160 160 160 160	17.3 18. 18. 25.8 28.9 29.	159.7 130.* 130.* 220.* 64.8 190.	1.302 1.07 1.07 1.29 1.60 1.14	0.615 0.79 0.79 0.633 0.58 0.675	19.76 10.4 65.6 11.2	1.383 1.93 1.60 2.17	C.929 0.837 0.58 0.426	9.17 5.17	1.67 1.67	0.72 0.72	4.10 4.0 * 2.0	1.302 0.96 0.96	0.615 0.79 0.79	1.25* 1.3* 1.3* 1.40* 1.4? 1.2?	1143	S3 S2P2 S2P3 S S S S	19 20,24 H68	HAN68 MCE71 MCE72 MAN68 SEN62 HIE67
170 170 170	11.0 17.3 17.3	166.30 146.1 158.3	1.153 1.378 1.307	0.694 0.638 0.635	14.71 21.72	1.675 1.351	0.562 0.928	22.08	1.361	0.636	7.45* 5.37	1.3* 1.307	0.6* 0.635	1.3* 1.25* 1.25*		51 51 51		BOH70A HAN68 HAN68
180 180 180 180 180 180	10. 11.0 11.0 11.0 11.0 11.0	170. 164.87 163.0 145.4 131.77 179.0	1.03 1.156 1.10* 1.20* 1.30* 1.14*	0.893 0.694 0.80 0.77 0.73 0.66	20.13 16.76	1.711	0.634 C.91	17.5 44.60 49.30 51.67	2.06 1.44 1.44 1.47	0.51 0.525 0.510 0.480	7.45*	1. 3*	0.6*	1.4? 1.3* 1.2? 1.2? 1.2? 1.4*		S S1 S2 S2 S2 S2	H68 14 14 14	ERS65 BOH70A GRE70 GRE70 GRE70 ZUR69
180 180	17.3 17.3	144.7 156.3	1.362 1.298	0.639 0.618	25.54	1.308	0.910	28.08	1.363	0.596	7.39	1.298	0.618	1.25* 1.25*		52 52		HAN68 HAN68
19P 19P 19P 19P	6. 6. 8. 8.	153.2 201.5 141.0 183.3	1.05* 1.05* 1.05* 1.05*	0.829* 0.829* 0.829* 0.829*	15.95 25.9 16.0 23.23	1.61* 1.81* 1.81* 1.81*	C.592* C.592* C.592* C.592*							1.4? 1.4? 1.4? 1.4?		s s s s	н68 Н68 Н68 Н68	MAT66 MAT66 MAT66 MAT66
19 F 19F 19F 19F 19F 19F	11.0 11.0 11.0 11.0 11.0 27.3	56 101 155 223 148 56.0	1.15* 1.15* 1.15* 1.15* 1.15* 1.15*	0.85 0.77 0.73 0.69 0.77 0.53	10.5 15.5 18.9 25.9 54.5	1.76 1.56 1.55 1.40 1.6	0.83 0.81 0.70 0.68 0.53	25.8	1.44	0.54				1.4* 1.4* 1.4* 1.4* 1.4* 1.4*	1095	S1 S1 S1 S1 S1 S1 S	R6 8	SCH70 SCH70 SCH70 SCH70 SCH70 SCH70 GAR62
20 N B 20 N B 20 N B 20 N B 20 N B	15. 18.8 18.8 28.5 28.5	177.0 186. 230. 147.4 50.0	1.14* 1.07* 1.07* 1.225 1.6*	0.74 0.72* 0.72* 0.745 0.60*	13.05 18. 18. 22.02 55.0	1.86 1.60 1.40 1.225 1.6	0.75 1.04* 1.04* 0.745 0.60							1.4* 1.4* 1.4* 1.25* 1.25*		S 3 S 2 S 3 S 3 S 2	4	ZUR 69 KEN71 KEN71 HAN 67 HAN 67
22 NE 22 NE 22 NE	9.74 15. 15.	115.7 165.2 165.0	1.07* 1.14 1.14+	0.854* 0.723 0.72	17.2 13.2 13.19	1.81* 1.860 1.86	0.65* 0.707 0.71							1.4* 1.4* 1.4*		52 52 52	14	BRA68 Joy69 Zur69
23 NA 23 NA 23 NA	11.0 11. 11.	159 121. 167.7	1.15* 1.14* 1.14*	0.74 0.723* 0.723*	20.2 15.5 19.	1.64 1.64* 1.64*	0.63 0.66* 0.66*							1.4* 1.4* 1.4*		51 52 52		SC 870 RON 73 RON 73
HG HG HG	29. 29. 29. 29.	108.6 50.98 98.31 155.7	1.069 1.15* 1.15* 1.15*	0.853 0.959 0.8CC 0.711	15.35 11.18 11.22 15.90	1.798 1.962 1.912 1.714	0.758 0.691 0.771 0.856							1.07* 1.3* 1.3* 1.3*	1392 1385 1428 1436	s 52 52 52	8 10 10 10	BAU67 BAU69 BAU69 BAU69 BAU69
24 NG 24 NG 24 NG 24 NG 24 NG 24 NG 24 NG	5.5 8.0 12. 12. 12. 15.	33. 177.0 95.7 94.6 96.4 144.1	1.6 1.114 1.07* 1.07* 1.07* 1.55	0.7 0.686 0.854* 0.854* 0.854* 0.854*	38. 28.8 14.5 14.6 14.5 25.9	1.6 1.224 1.81* 1.81* 1.81* 1.81*	0.7* 0.675 0.592 0.592* 0.592* 1.40				4.0 8.0	1.07* 1.07*	0.854* 0.854*	1.4? 1.20? 1.4? 1.4? 1.4? 1.4?	401 988 985 985	S S2 S S S2 S2	H68 7 H68 H68 H68	HOD61 HCQ70 BAS64 INT64 INT64 JOY69
2411G 2411G 2411G 2411G 2411G 2411G	15. 15. 18. 20. 21.4 26.7	164.0 164.0 150.* 150.* 109.0 166.1	1.14* 1.44* 1.26 1.18 1.048 1.075	0.69 0.49 0.63 0.69 0.905 0.833	14.7 25.9 26. 23.2 14.0 19.3	1.60 1.20 1.38 1.50 1.849 1.728	1.08 1.40 1.10 1.08 0.876 0.869							1.4* 1.4* 1.4* 1.4* 1.07* 1.07*		S 2 S 2 S 2 S 2 S 2 S 2 S 2	9	ZUB69 ZUR69 KAT68 KAT68 BUF72 BUF72

TABLE V. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	IAL A	VOL.INJ W	NG. POT RW	E NTIA L AW	SURF.I! WD	NAG. PO: RD	TENTIAL AD	SPIN- VSO	ORBIT RSO	POTENTIAL ASO	RC	SR	PIT	NOTE	RE F.
24 NG 24 NG 24 NG 24 NG 24 NG 24 NG	29. 35.0 35.0 35.7 47.5 47.5	107.1 94.9 120.7 150.0 95.5 119.9	1.15 1.20* 1.00* 1.15* 1.20* 1.00*	0.78 0.75 0.85 0.695 0.77 0.88	14.29 17.0 14.8 25.2 18.4 15.9	1.81 1.7* 1.8* 1.505 1.7* 1.8*	0.736 0.84* 0.79 0.977 0.84* 0.76							1.15 1.4? 1.4? 1.3* 1.4? 1.4?	1342 1522	S2 S2 S2 S2 S2 S2 S	21 9 9 9 9	GRI67 DUH68 DUH68 ART71 DUH68 DUH68
25 MG 25 MG 25 MG	20.5 23.8 33.0	109.0 161.3 167.1	1.051 1.087 1.10*	0.886 0.798 0.688	15.0 17.4 20.5	1.851 1.776 1.668	0.731 0.751 0.75*							1.07* 1.07* 1.4*		52 52 52	4	BUP72 BUP72 DEH67
26 MG 26 MG 26 MG 26 MG 26 MG	8.0 8.0 15. 15. 16.	155.6 170.3 173.0 155.0 98.7	1.113 1.113 1.113 1.14* 1.14*	0.755 0.741 0.742 0.75 0.75	32.0 32.7 36.4 20.1 27.98	1.431 1.430 1.431 1.60 1.508	0.685 0.680 0.748 0.71 0.812							1.207 1.207 1.4* 1.4* 1.3*		52 52 53 53 52	7 7	HCQ70 NCQ70 JOY69 ZUR69 DUH70
26 NG 26 NG 26 NG 26 NG 26 NG	17.67 17.67 20.6 24.2 30.	159.3 145.2 163.7 105.8 102.6	1.149 1.23 1.069 1.028 1.174	0.683 0.646 0.854 0.911 0.748	17.86 19.9 16.9 15.9 27.96	1.567 1.468 1.767 1.794 1.505	0.878 0.931 0.835 0.830 0.890							1.25* 1.25* 1.07* 1.07* 1.3*		51 52 52 52 52 52	9 9	DEL70 DEL70 BUF72 BUF72 DUF70
AL Al	29. 29.	99.60 146.7	1.070 1.15*	0.852 0.705	14.53 31.13	1.811 1.473	0.692 0.844							1.07 * 1.3*	1360 1415	52 5	10	BAU67 BAU69
27 AL 27 AL 27 AL 27 AL 27 AL 27 AL	5.5 5.5 5.5 7. 7.	82. 91.9 122.0 110.1 119.1	1.6 1.07* 1.364 0.903 1.07*	0.7 0.854* 0.481 0.802 0.854*	30. 21.8 17.36 4.17 16.4	1.6 1.8* 1.286 2.242 1.8*	0.7 0.65* 1.109 0.776 0.65*							1.47 1.47 1.47 1.47 1.47	471 334 386 735 637	S S S S	H68 H68 H68 H68 H68	HOD61 BRA65 BRA65 BRA65 BRA65 BRA65
27 AL 27 AL 27 AL 27 AL 27 AL 27 AL 27 AL	8. 8. 9. 9. 9.	122.8 132.8 110.4 149.6 154.8 204.2	1.07* 0.698 1.07* 0.862 1.14* 1.14*	0.854* 0.986 0.854* 0.920 0.723* 0.723*	15,5 9,31 13,2 21,9 15,23 19,8	1.8* 1.987 1.8* 1.789 1.64* 1.64*	0.65* 0.787 0.65* 0.580 0.72* 0.72*							1.4? 1.4? 1.4? 1.4? 1.4* 1.4*	779 905 855 787	S S S S S S	H68 H68 H68 H68	BRA65 BRA65 BRA65 BRA65 RON73 RON73
27 AL 27 AL 27 AL 27 AL 27 AL 27 AL 27 AL	10. 10. 10. 10. 10. 10.	103.7 155. 151.8 197.6 147.2 195.9	1.07* 1.08 1.08* 1.08* 1.14* 1.14*	0.854* 0.80* 0.80* 0.80* 0.723* 0.723*	13.1 15. 14.6 21.8 16. 22.6	1.8* 1.78 1.78* 1.78* 1.64* 1.64*	0.65* 0.60* 0.60 0.60 0.72* 0.72*							1.4? 1.40* 1.08? 1.08? 1.4* 1.4*	925	S S2 S S S S	H68 14 14	BRA65 NUR68 NUR70 NUR70 RON73 RON73
27 AL 27 AL 27 AL 27 AL 27 AL	21. 21. 21.8 23.5	130.* 170.* 94.5 147.4	1.17 0.97 1.061 1.078	0.71 0.80 0.876 0.823	21.2 19.5 14.6 16.7	1.59 1.676 1.843 1.782	0.85 0.788 0.718 0.730				4.0* 4.0*	0.9* 0.9*	0.71 0.80	1.3* 1.3* 1.07* 1.07*	1354	S2 S2 S2 S2	9 9	LUD73 LUD73 BUP72 BUF72
27AL 27AL 27AL 27AL 27AL 27AL 27AL	29. 29. 29. 29.3 29.6 29.6	143.4 164.8 158.9 45. 104.2 163.2	1.14 1.03 1.01 1.57 1.43 1.37	0.723 0.76 0.78 0.63 0.593 0.560	23.8 29.77 19.31 30. 28.1 35.8	1.60* 1.52 1.56 1.57 1.35 1.21	0.81* 0.81 0.79 0.63 0.976 1.06				10.0* 10.3 12.7	1.01 1.43 1.37	0.78 0.593 0.560	1.4* 1.3* 1.3* 1.4? 1.25* 1.25*	1258 1500 1510	S S S S2 S2	14 14 168 14 14	WIL68 NEL70 NEL70 GRE61 LUE69 LUE69
27AL 27AL 27AL 27AL 27AL 27AL	35.7 37.7 37.7 37.7 59.8	163.2 110.4 179.1 171.1 114.	1.15* 1.140 1.113 1.137 1.15	0.686 0.805 0.716 0.689 0.826	22.4 20.4 28.9 22.9	1.60* 1.494 1.312 1.408	0.829 0.903 0.969 0.995	18.8	1.18	0.820	16.4 2.29	1.137 1.15	0.689 0.826	1.3* 1.40* 1.40* 1.40* 1.3*	1443	S2 52 52 52 52 51	9 9 9	ABT71 BAR68A BAR68A BAR68A FUL72
SI SI SI SI	12. 12. 12. 29.	108.0 145.3 155.9 101.8	1.07* 1.07* 1.08* 1.070	0.854* 0.854* 0.800* 0.854	16.3 23.3 18.3 14.22	1.81* 1.81* 1.78* 1.812	0.65* 0.65* 0.60* 0.702							1.4? 1.4? 1.4? 1.07*	1375	53 53 53 52	23	BRA69A BRA69A BRA69A BAU67
2851 2851 2851 2851 2851 2851	8.0 10. 10. 15. 18.	165.5 106.5 150.5 152. 150.*	1.178 1.07* 1.14* 1.44 1.18	0.690 0.854* 0.723* 0.723 0.705	37.4 11.8 13.08 12.77 14.5	1.100* 1.8* 1.64* 1.718 1.70	1.080 0.65* 0.73* 0.782 0.906							1.20? 1.4? 1.4* 1.4* 1.4*		S2 S2 S2 S2 S2 S2	7 9	MCQ70 WIL67A RON73 SWE67 KAT68
2851 2851 2851 2851 2851 2851 2851	20. 20. 21. 21. 21. 35.7	150.* 150.* 130.* 150.* 170.* 178.0	1.12 1.45 1.28 1.146 1.03 1.15*	0.73 0.51 0.61 0.70 0.76 0.694	18.2 58.8 20.42 17.55 16.53 23.1	1.69 0.78 1.42 1.60 1.68 1.60*	0.84 1.29 1.08 0.946 0.87 0.800				4.0* 4.0* 4.0*	0.9* 0.9* 0.9*	0.61 0.70 0.76	1.4* 1.4* 1.3* 1.3* 1.3*	1500 1443 1414 1430	52 52 52 52 52 52 52	9 9 9 9	KAT68 KAT68 LUD73 LUD73 LUD73 ART71
28 SI 28 SI 28 SI	37.7 37.7 217.	115.9 181.8 84.5	1.14 1.11 1.14	0.84 0.76 0.86	14.37 17.04 23.7	1.78 1.68 1.46	0.59 0.65 0.73							1.47 1.47 1.37		s s s1	H68 H68 2	JON68 JON68 WIL73
29 SI 29 SI	15. 15.	152.0 145.5	1.14* 1.44*	0.71 0.61	14.0 17.05	1.67 1.82	0.78 0.38							1.4+ 1.4+		S 1 S 2		ZUB69 ZUR69
3051 3051 3051 3051 3051 3051 3051	7.0 8.0 12. 15. 18. 20.	170.0 145.0 144.8 173.0* 150.* 150.*	1.178 1.300* 1.14* 1.07 1.14 1.08	0.722 0.670 0.72* 0.795 0.69 0.76	34.4 18.0 16.7 18.6 20.5 17.8	1.549 1.630 1.65 1.657 1.48 1.70	0.668 0.480 0.76 0.762 0.97 0.77							1.20? 1.20? 1.4* 1.4* 1.4* 1.4*		S S1 S2 S2 S1	7 7,14 9 9	MC070 MC070 W0L70 M0R70 KAT68 KAT68

TABLE V. Optical-Model Parameters

NUCLIDE	ENERGY (NEV)	REAL V	POTENT R	IAL A	VOL.INA W	AG. POT	ENTIAL AW	SURP.IM WD	AG. POT RD	ENTIAL AD	SPIN-C VSO	RBIT P RSO	OTENTIAL ASO	₿C	SR	f It	NOTE	REF.
31P 31P 31P 31P 31P 31P 31P	6.0 6.0 8. 8. 12.0 15.	76.87 116.1 146.2 197. 154.9 133.	1.588 1.530 1.14* 1.14* 1.07* 1.40	0.589 0.582 0.723* 0.723* 0.843 0.60	15.08 19.47 18.04 24.80 17.4 24.2	1.541 1.502 1.64* 1.64* 1.721 1.47	0.611 0.597 0.77* 0.77* 0.609 1.03				10.0*	1.40	0.60	1.3* 1.3* 1.4* 1.4* 1.4* 1.4*		S2 S2 S S2 S2 S2	3,9 3,9	COX68 COX68 RON73 RON73 GBA68 VGA74A
325 325 325 325 325 325	7.6 7.6 8.0 11. 11.	142.8 184.5 165.5 133.5 180.	1.14* 1.14* 1.178 1.14* 1.14*	0.723* 0.723* 0.704 0.723* 0.723*	9.65 13.7 33.4 12.7 15.1	1.64* 1.64* 1.100* 1.64* 1.64*	0.79* 0.79* 1.020 0.79* 0.79*							1.4* 1.4* 1.20? 1.4* 1.4*		S S S2 S2 S2	7	BON73 RON73 MCQ70 BON73 RON73
325 325 325 325 325 325 325	15. 15. 18. 18. 18. 28.5	145.7 199.2 150.* 144.2 190. 50.8	1.14* 1.14* 1.12 1.14* 1.14* 1.46	0.69 0.67 0.66 0.723* 0.723* 0.753	12.7 15.5 10.7 16.9 25. 32.3	1.69 1.62 1.76 1.64* 1.64* 1.46	0.78 0.78 0.91 0.79* 0.79* 0.753							1.4* 1.4* 1.4* 1.4* 1.4* 1.4*	1383	51 52 5 5 5 5	21 Н68	ZUR69 ZUR69 KAT68 RON73 RON73 GAR62
CL CL 35CL 37CL 37CL	11.0 29.1 15. 11. 11.	177 30. 133.5 132. 175.5	1.15* 1.60 1.34 1.14* 1.14*	0.78 0.65 0.70 0.723* 0.723*	17.2 25. 26.7 11.5 13.6	1.68 1.60 1.47 1.64* 1.64*	0.74 0.65 0.88 0.86* 0.86*				10.0*	1.34	0.70	1.4* 1.4? 1.4* 1.4* 1.4*	1354	S1 S S2 S2 S2	868	SCH70 AGU61 VGA74 RON73 RON73
36 AR 40 AR 40 AR	15. 15. 26.4	173.0 173.0 60.	1.14* 1.14* 1.20	0.75 0.68 0.79	27.2 21.85 74.4	1.57 1.57 1.20	0.95 0.79 0.79							1.4* 1.4* 1.4?	1364	52 51 5	H68	ZUR69 ZUR69 SEN64
39K 39K 39K 39K 39K 39K	9. 11.0 11.0 11. 11. 12.	181. 137.2 142.6 133. 173.8 268.8	1.07* 1.20* 1.07* 1.14* 1.14* 0.617	0.854* 0.729 0.882 0.723* 0.723* 0.723*	16.12 20.1 10.60 13.33 8.9	1.81 1.502 1.64* 1.64* 1.880	0.592* 0.873 0.89* 0.89* 0.771	24.3	1.382	0.809				1.4? 1.20? 1.20? 1.4* 1.4* 1.4*	1036	S S S2 S2 S1	H68	BLA66 FOR70 FOR70 RON73 RON73 SET67
39K 39K 39K 39K 39K 39K	14. 14. 16. 16. 29.3 29.3	173.4 160.6 184.0 160.3 180.0 129.0	0.937 1.0* 0.902 1.0* 1.145 1.140	0.859 0.8* 0.847 0.8* 0.721 0.755	12.2 8.2 12.6 8.6 13.00 22.18	1.694 1.801 1.684 1.778 1.580 1.624	0.725 0.792 0.751 0.779 0.755 0.689	3.68 0.18	1.580 1.624	0.755 0.689	7.* 7.*	1.0* 1.0*	0.8* 0.8*	1.4* 1.4* 1.4* 1.4* 1.40* 1.40*	1046 1102 1144 1176	S1 S2 S1 S2 S3	9 9	SET67 SET67 SET67 SET67 CAG71 CAG71
CA CA CA CA CA	18.8 18.8 18.8 18.8 18.8 18.8 18.8	181.86 181.9* 92.01 93.36 181.48 182.46	1.145 1.145* 1.149* 1.149* 1.145* 1.145*	0.709 0.709* 0.794 0.800 0.713 0.705	15.05 7.60 14.55	1.644 1.857 1.611	0.785 0.717 0.764	19.82 10.73 19.41	1.214 1.380 1.207	0.817 0.789 0.822	4.55 4.37 6.97 3.98	1.149* 1.149* 1.145* 1.145*	0.794 0.800 0.713 0.705	1.30* 1.30* 1.30* 1.30* 1.30* 1.30*		S1 S1 S1 S1 S1 S2	1, 14 1, 14 14 14 14 14 14	NAK70 NAK70 NAK70 NAK70 NAK70 NAK70 NAK70
CA CA CA CA CA	24.9 24.9 24.9 24.9 24.9 24.9 24.9	182.69 182.7* 86.00 87.84 180.88 181.15	1.145* 1.145* 1.149* 1.149* 1.145* 1.145*	0.700 0.700* 0.840 0.848 0.691 0.705	16.77 8.10 14.02	1.633 1.843 1.633	0.669 0.609 0.748	24.57 11.96 18.67	1.257 1.423 1.235	0.698 0.704 0.751	2.83 3.00 4.17 4.29	1.149* 1.149* 1.145* 1.145*	0.840 0.848 0.691 0.705	1.30* 1.30* 1.30* 1.30* 1.30* 1.30*		S2 S2 S2 S2 S1 S2	1,14 1,14 14 14 14 14 14	NAK70 NAK70 NAK70 NAK70 NAK70 NAK70
CA CA CA CA	25. 25. 25. 29.	100.2 157.2 178.4 98.47	1.47 1.31 1.19 1.053	0.60 0.65 0.72 0.905	13.2 14.2 10.3 10.50	1.32 1.56 1.77 1.835	1.12 0.95 0.83 0.693							1.30* 1.30* 1.30* 1.07*	1465	51 51 51 52	2 2 2 23	YOU70A YOU70A YOU70A BAU67
CA CA CA CA CA	31.0 31.0 31.0 31.0 31.0 31.0 31.0	177.27 177.3* 84.43 90.14 179.74 190.98	1.145* 1.145* 1.149* 1.149* 1.145* 1.145*	0.702 0.702* 0.770 0.777 0.674 0.656	13.92 8.68 13.56	1.692 1.848 1.714	0.778 0.662 0.769	16.48 11.25 17.01	1.249 1.399 1.218	0.871 0.761 0.856	2.62 2.67 4.05 4.10	1.149* 1.149* 1.145* 1.145*	0.770 0.777 0.674 0.656	1.30* 1.30* 1.30* 1.30* 1.30* 1.30*		S2 S2 S3 S3 S2 S2	1, 14 1, 14 14 14 14 14 14	NAK70 NAK70 NAK70 NAK70 NAK70 NAK70
CA CA CA CA CA	34.4 34.4 34.4 34.4 34.4 34.4 34.4	179.29 179.3* 81.33 84.46 180.09 180.82	1.145* 1.145* 1.149* 1.149* 1.145* 1.145*	0.696 0.696* 0.776 0.708 0.653 0.678	12.69 8.16 13.19	1.744 1.919 1.750	0.826 0.702 0.843	15.11 9.13 16.04	1.272 1.400 1.277	0.920 0.971 0.883	2.04 1.71 5.39 3.48	1.149* 1.149* 1.145* 1.145*	0.776 0.708 0.653 0.678	1.30* 1.30* 1.30* 1.30* 1.30* 1.30*		S1 S2 S3 S3 S2	1,14 1,14 14 14 14 14	NAK70 NAK70 NAK70 NAK70 NAK70 NAK70 NAK70
CA CA CA CA CA	39.3 39.3 39.3 39.3 39.3 39.3 39.3	177.63 177.6* 92.05 86.00 183.53 177.46	1.145* 1.145* 1.149* 1.149* 1.145* 1.145*	0.698 0.698* 0.863 0.708 0.645 0.700	13.37 11.44 17.31	1.714 1.794 1.582	0.900 0.758 0.969	14.91 10.24 17.71	1.224 1.228 1.271	0.991 1.076 0.864	7.49 2.24 3.86 3.84	1.149* 1.149* 1.145* 1.145*	0.863 0.708 0.645 0.700	1.30* 1.30* 1.30* 1.30* 1.30* 1.30*		\$2 \$2 \$3 \$3 \$3 \$3 \$3	1,14 1,14 14 14 14 14 14	NAK70 NAK70 NAK70 NAK70 NAK70 NAK70
40CA 40CA 40CA 40CA 40CA	8.0 8.5 9.0 9.5 10.0 11.	186. 184. 181. 177.6 174.5 160.	1.07* 1.07* 1.07* 1.07* 1.07* 1.14*	0.854* 0.854* 0.854* 0.854* 0.854* 0.854*	10. 11. 11.5 12.3 13.5 11.	1.81* 1.81* 1.81* 1.81* 1.81* 1.64*	0.592* 0.592* 0.592* 0.592* 0.592* 0.91*							1.4? 1.4? 1.4? 1.4? 1.4? 1.4?		S S S S S2	H68 H68 H68 H68 H68	CL165 CL165 CL165 CL165 CL165 RON73
40 CA 40 CA	12.0 12.0	106.3 181.0	1.07* 1.07*	0.854* 0.854*	7.43 11.5	1.81* 1.81*	0.592* 0.592*				8.0	1.07*	0.854	1.4? 1.4?		s s	#68 E68	YNT64 ZUR66
TABLE V. Optical-Model Parameters Helium-3

NUCLIDE	ENERGY (MEV)	REAL V	POTENT: R	IAL A	VOL.IN W	NG. POT	ENTIAL AV	SURP.IM WD	AG. POT RD	ENTIAL AD	SPIN- VSO	ORBIT I RSO	OTENTIAL A SO	R C	SR	FIT	NOTE	REF.
40CA 40CA 40CA 40CA	13.0 13.0 15. 21.0	161.6 184.3 171.0 181.3	1.244* 1.14* 1.14* 1.14*	0.686* 0.723* 0.81 0.757	23.44 16.36 18.38 17.92	1.401 1.469 1.72 1.639	0.662 0.862 0.80 0.677							1.4+ 1.4+ 1.4+ 1.4+		52 52 52 52	13	RAP71 RAP71 ZUB69 URO71
40CA 40CA 40CA 40CA 40CA 40CA	22. 22. 22. 37.7 37.7 37.7	98.7 100.5 157. 177. 176.9 176.9	1.07* 1.076 1.18 1.14 1.14* 1.164	0.854* 0.822 0.707 0.723 0.723* 0.654	8. 7.57 11.5 14.5 14.5 15.47	1.944 1.945 1.96 1.64 1.64* 1.617	0.692 0.704 0.830 0.910 0.91* 0.975							1.4? 1.4? 1.2? 1.2? 1.4* 1.4*	1410	S S S S2 S2	Н68 Н68 9 9	BAS64 ARN65 HIE67 HIE67 GIB67 GIB67
40CA 40CA 40CA 40CA 40CA	40. 51.4 73.2 81.5 217.	177.0 176. 176. 176. 64.8	1.14 1.14 1.14 1.14 1.30	0.72 0.72 0.72 0.72 0.79	14.5 16. 16. 16. 19.0	1.64 1.60 1.60 1.60 1.52	0.91 0.81 0.81 0.81 0.81							1.30* 1.4? 1.4? 1.4? 1.3?		S S S S 1	H68 H68 H68 2	TOU70 RID68 RID68 RID68 WIL73
42CA 42CA 44CA 44CA 46CA 46CA	13.0 13.0 13.0 13.0 13.0 13.0	144.9 176.5 144.6 168.2 142.9 163.0	1.244* 1.14* 1.244* 1.14* 1.244* 1.14*	0.686* 0.723* 0.686* 0.723* 0.686* 0.723*	23.23 16.68 23.05 16.31 22.95 16.23	1.482 1.597 1.554 1.653 1.525 1.648	0.665 0.814 0.663 0.744 0.673 0.761							1.4* 1.4* 1.4* 1.4* 1.4* 1.4*		S2 S2 S2 S2 S2 S2 S2		RAP71 RAP71 RAP71 RAP71 RAP71 RAP71 RAP71
48CA 48CA 48CA 48CA 48CA 48CA	13.0 13.0 15.0 15.0 22. 22.	146.9 166.2 130.4 170.2 97.3 100.2	1.244* 1.14* 1.362* 1.14* 1.07* 1.061	0.686* 0.723* 0.65 0.78 0.854* 0.830	23.46 16.23 16.4 13.1 9. 9.15	1.601 1.746 1.47 1.69 1.86 1.856	0.676 0.744 0.75 0.65 0.692* 0.705				8.05 8.0*	1.3624 1.14*	0.65 0.78	1.4* 1.4* 1.40* 1.40* 1.4? 1.4?	1507	S2 S2 S1 S1 S S	н68 н68	RAP71 RAP71 POU69 POU69 BAS64 ARM65
45SC 45SC 45SC	12. 13.0 37.7	96.4* 173.8 152.6	1.07* 1.14* 1.12	0.854* 0.734 0.762	10. 16.21 20.8	1.81* 1.604 1.68	0.592* 0.753 0.804							1.4? 1.40* 1.4*	812	s s s2	#68 21	YNT64 RAO70 BAR681
46TI 46TI 46TI 46TI	12. 12. 12.0 37.7	96.4* 96.4* 167.9 128.9	1.07* 1.07* 1.07* 1.102	0.854* 0.854* 0.775 0.768	10. 8.23 16.79	1.81* 1.81* 1.611	0.592* 0.592* 0.600	22.97	1.187	0.846	2.0*	1.14*	0.69*	1.4? 1.4? 1.40* 1.4*	767 750	S S S 2 S 1	н68 н68 7 9	YNT64 BAS64 DOR67 UR072
48TI 48TI 48TI 48TI 48TI 48TI 48TI	12. 12. 13.0 19.47 24.6 24.6	96.4* 96.4* 169.9 164.5 161.8 161.8	1.07* 1.07* 1.14* 1.148 1.22* 1.142	0.854* 0.854* 0.723 0.752 0.695 0.781	10. 9.4 16.03 23.10 20.9	1.81* 1.81* 1.59 1.567 1.506	0.592* 0.592* 0.751 0.686 0.80*	35.0	1.284	0.662				1.4? 1.4? 1.40* 1.4? 1.4* 1.4*	789	S 5 52 5 52 52	H68 H68 H68 21 21	YNT64 BAS64 RAO70 HAP67 WES68 WES68
48TI 48TI 48TI 48TI 48TI 48TI	24.7 25. 37.7 37.7 37.7 37.7 37.7	149.4 148.9 195.8 196.2 141.3 126.5	1.22* 1.01 1.05* 1.05* 1.05* 1.121	0.695* 0.811 0.743 0.739 0.819 0.769	23.5 18.25 21.61 21.58	1.506* 1.62 1.590 1.582	0.80* 0.792 0.814 0.826	0.67* 23.45 20.91	1.506* 1.252 1.244	0.80* 0.805 0.848	2.0* 2.0*	1.14* 1.14*	0.69* 0.69*	1.4* 1.4* 1.40* 1.40* 1.40* 1.40*		S S2 S2 S2 S2 S1	14 14 14	DR168 SOU73 URO712 URO712 URO712 URO712
50TI 50TI 50TI 50TI 50TI	10. 12. 12. 37.7	168.0 96.4* 96.4* 131.9	1.07* 1.07* 1.07* 1.07*	0.835 0.854* 0.854* 0.776	16.9 10. 8.38	1.734 1.81* 1.81*	0.596 0.592* 0.592*	19.16	1.266	0.829	2.0*	1.14*	0.69*	1.40* 1.47 1.47 1.47	810	51 5 5 51	H68 H68	OBR67 YNT64 BAS64 UR072
₹ 507	20. 7.5	54.8 171.9	1.48 1.07*	0.62* 0.933	11.9 16.89	1.48 1.763	0.62* 0.614				8.0*	1.48	0.62*	1.4? 1.4*		s \$2	H68	KLI64 DOR69
51V 51V 51V 51V 51V 51V	12. 12. 20. 22. 22. 29.	96.4* 96.4* 99.1 93.8 99.6 93.1	1.07* 1.07* 1.07* 1.07* 1.069 1.07*	0.854* 0.854* 0.854* 0.854* 0.795 0.854*	10. 9.72 9.22 10.55 10.8 9.87	1.81* 1.81* 1.815* 1.815* 1.815* 1.775 1.815*	0.592* 0.592* 0.692* 0.692* 0.711 0.692*							1.4? 1.4? 1.4? 1.4? 1.4? 1.4?	780 1326 1447 1561	5 5 5 5 5 5	868 868 868 868 868 868 868	YNT64 BAS64 BAS64 BAS64 ARM65 BAS64
51V 51V 51V	29.6 29.6 29.6	112.8 156.4 158.1	1.24* 1.24* 1.24*	0.693 0.580 0.560	15.6 20.8 24.5	1.59 1.44 1.35	0.903 1.03 1.07				3.1 3.8	1.24* 1.24*	0.693 0.580	1.25* 1.25* 1.25*	1640 1720 1710	52 52 53	14 14 14	LUE69 LUE69 LUE69
51V 51V	3 7.7 59.8	150.3 140.	1.021	0.834 0.872				21.37 19.8	1.272	0.785 0.802	2.0* 3.2	1.14* 1.00	0.69* 0.872	1.4* 1.3*		51 52		URO72 PUL73
CR CR	22. 22.	133. 165.	1.08 1.14	0.8 0.723	18.2 20.2	1.63 1.6	0.754 0.81				2.9* 2.9*	1.08 1.14	0.8 0.723	1.47 1.4?		S S	H68 B68	BAS67 BAS67
50CR 50CR	12.0 41.3	168.4 170.4	1.07 1.16*	0.825 0.683	16.83 19.17	1.675 1.589	0.602 0.827							1.40* 1.3*		52 52	4	RAP67 PET72
52CR 52CR 52CR 52CR 52CR 52CR	11. 19.47 19.5 19.5 21.0 22.	167.2 164.7 142.4 165. 163.0 98.8	1.07* 1.122 1.362 1.14 1.14* 1.069	0.804 0.755 0.65 0.723 0.710 0.814	16.92 23.35 12.67 20.2 16.88 13.5	1.730 1.554 1.755 1.6 1.689 1.705	0.597 0.730 0.781 0.81 0.782 0.726				8.05 6.*	1.362 1.14	0.65 0.723	1.40* 1.4? 1.4* 1.4* 1.4* 1.4*		52 5 52 52 51 5	Н68 13 Н68	OBR67 HAP67 ST067 ST067 UR071 ARM65
52CR 52CR	59.8 59.8	130. 132.	1.07 1.06	0.833 0.847				20.3 20.5	1.23 1.23	0.818 0.804	3.0* 2.5	1.07 1.06	0.833 0.847	1.3* 1.3*		52 52		FUL72 FUL73
53CR 53CR	10.0 59.8	167.8 130.	1.07* 1.09	0.807 0.830	16.81	1.663	0.606	20.2	1.27	0.770	3.3	1.09	0.830	1.4* 1.3*		\$2 52		LYN69 PUL73

TABLE V. Optical-Model Parameters Helium-3

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	TAL A	VOL.IN: W	NG. POT RW	ENTIAL AW	SURP.IM WD	RD RD	ENTIAL AD	SPIN- Vso	ORBIT BSO	POTENTIAL ASO	RC	SR	FIT	ROTE	REF.
54CR	10.0	165.36	1.07	0.757	16.84	1.59	0.586							1.40*		S 2		RAP69
55 M.N	19.47	163.1	1.116	0.775	27.4	1.533	0.667							1.4?		s	H68	BAP67
54 PB 54 PB 54 PB 54 PB 54 PB 54 PB	12. 12. 13.0 13.0 21.0 22.	96.4* 167.8 142.4 167.8 168.4 96.8	1.07* 1.07* 1.36 1.069 1.14* 1.069	0.854* 0.827 0.619 0.845 0.711 0.873	10. 16.93 12.52 16.82 19.30 16.5	1.81* 1.740 1.64 1.659 1.581 1.705	0.596* 0.596 0.774 0.603 0.825 0.726							1.4? 1.40* 1.4* 1.4* 1.4* 1.4*	630	S S1 S2 S2 S1 S	13 13 168	YNT64 OBR67 TRI68 TRI68 UR071 ARM65
56 PB 56 PB 56 PB 56 PB 56 PB 56 PB	12. 22. 22. 29. 29. 29.	168.7 95.6 128.3 97.17 123.3 167.8	1.07 1.069 1.08* 1.059 1.15* 1.15*	0.820 0.821 0.816 0.909 0.778 0.724	16.88 13.6 21.37 10.31 16.44 20.14	1.694 1.705 1.56 1.838 1.637 1.552	0.602 0.736 0.734 0.710 0.778 0.828							1.4* 1.4? 1.25* 1.07* 1.3* 1.3*	1340 1663 1599 1614	S2 5 51 51 51 51	H68 10,14 10,14	LYN72 ARA65 FLY67 BAU67 BAU69 BAU69
56 PE 56 PE 56 PE 56 PE 56 PE	33.45 33.45 33.45 33.45 33.45 35.7	143.7 202.5 137.7 200.8 163.4	1.034 1.007 1.067 1.075 1.15*	0.862 0.824 0.836 0.814 0.695	20.4	1.60*	0.910	24.9 29.6 22.6 27.0	1.244 1.194 1.251 1.202	0.812 0.821 0.825 0.835	2.9 3.4	1.0* 1.0*	0.45* 0.45*	1.25* 1.25* 1.25* 1.25* 1.25* 1.3*	1872	S S S2 S2 S1		MAR73 MAR73 MAR73 MAR73 MAR73 ART71
56 PB 56 PB 56 PB 56 PB 56 PB 56 PB	37.7 37.7 53.4 53.4 53.4 53.4	174.2 174.2 185.4 186.7 134.0 186.0	1.14* 1.146 1.095 1.090 1.090 1.09*	0.723* 0.689 0.745 0.739 0.815 0.745*	16.8 20.36	1.60* 1.488	0.81* 0.928	27.1 25.9 22.4 24.2	1.210 1.194 1.281 1.161*	0.790 0.821 0.766 0.891*	2.5 1.8 3.1	1.097 1.075 1.09*	0.45* 0.45* 0.45*	1.4* 1.4* 1.25* 1.25* 1.25* 1.25*	1731 1752 1730 1826	S2 S1 S2 S2 S1 S2	4 4 14 14 14	GIB67 GIB67 MAR72 MAR72 MAR72 MAR72
57 FE	10.5	167.	1.07	0.798	16.88	1.701	0.597							1.4*		S 1		TRI69
58FE 58FE 58FE 58FE	22. 22. 37.7 37.7	138.4 130.1 141.3 190.7	1.08 1.08* 1.045 1.05*	0.781 0.770 0.833 0.767	23.1 18.78 25.70	1.54 1.56 1.522	0.801 0.787 0.834	24.35	1.219	0.851	2.0*	1.14+	0.69*	1.4? 1.25* 1_4* 1.40*	1380	5 51 51 52	R68	BL 165 FL 167 UR072 UR0711
58 FB 58 FB	37.7 37.7	189.5 140.2	1.05* 1.05*	0.769 0.841	23.56	1.547	0.836	26.45	1.209	0.826	2.0*	1.14*	0.69*	1.40*		52 52	14 14	URO71A
59C0 59C0 59C0	29.5 29.5 29.5	110.3 150.7 153.2	1.24* 1.24* 1.24*	0.713 0.656 0.643	15.1 20.1 29.5	1.65 1.54 1.41	0.817 0.906 0.945				4.3 5.1	1.24* 1.24*	0.713 0.656	1.25* 1.25* 1.25*	1660 1720 1720	51 51 52	14 14 14	LUE69 LUE69 LUE69
59CO 59CO 59CO	34.8 34.8 34.8	111.3 152.8 156.4	1.24* 1.24* 1.24*	0.682 0.628 0.625	17.9 23.7 32.3	1.58 1.46 1.36	0.899 0.994 1.01				4.3 5.4	1.24* 1.24*	0.682 0.628	1.25* 1.25* 1.25*	1780 1840 1850	52 52 53	14 14 14	LUE69 LUE69 LUE69
59C0	34.8	128.*	1.14	0.772	22 04	1 500	0 730	20.5*	1.24	0.877	4.5	1.14	0.772	1.3*		52	22	PUL73
59C0 59C0	37.7 37.7	124.2	1.145	0.714	16.42 28.18	1.636	0.802				3.7	1.145	0.714	1.40*		52 S S2	22 22 22	BAR68 BAR68
59C0 59C0	37.7 49.7	169.4 126.*	1.150 1.12	0.668 0.848	20.72	1.557	0.858	20.5*	1.28	0.803	4.4 4.1	1.150 1.12	0.668 0.848	1.40* 1.3*		S 2 S 2	22	BAR68 Ful73
59C0 59C0 59C0	50. 50.1 59.8	140 187.4 125.*	1.01* 1.09* 1.13	0.905* 0.745* 0.792	14.6	1.72*	0.700*	23.9 20.5*	1.161* 1.28	0.891* 0.754	4.26 4.3 3.6	1.06* 1.09* 1.13	0.255* 0.45* 0.792	1.25* 1.25* 1.3*	1839	52 51 52		HAP70 MAR72 FUL73
NI	20.	60.1	1.60	0.60	23.5	1.60	0.60				8.	1.60	0,60	1.4?		s	H68	KLI64
58 NI 58 NI 58 NI 58 NI 58 NI 58 NI 58 NI	12. 15. 15. 18. 18. 19.47	96.4* 107.5 180.0 106.1 180.0 164.8	1.07* 1.07* 0.73 1.07* 1.06 1.204	0.854* 0.854* 0.96 0.854* 0.733 0.667	10. 15.1 30.0 19.2 35.0 38.52	1.81* 1.70 1.56 1.70 1.50 1.291	0.592* 0.754 0.864 0.754 0.835 0.784							1.4? 1.4? 1.4? 1.4? 1.4? 1.4?	558	S S S S S	Н 68 Н 68 Н 68 Н 68 Н 68 Н 68 Н 68	YNT64 FOU65 FOU65 FOU65 FOU65 HAF67
58 NI 58 NI 58 NI 58 NI 58 NI 58 NI 58 NI	22. 24.15 24.15 27.64 27.64 29.	149.4 88.5 140. 118. 168. 68.1	1.08* 1.408 1.290 1.188 1.145 1.508	0.767 0.646 0.676 0.778 0.756 0.611	18.18 14.45	1.63 1.508	0.765	24.1 31.2 25.2 30.4	1.271 1.224 1.285 1.238	0.806 0.795 0.752 0.755				1.25* 1.4* 1.4* 1.4* 1.4* 1.4*	1370 1546 1529 1542 1537	51 51 51 51 51 51 5	14 14 14 14 868	PLY67 PUJ69 PUJ69 PUJ69 PUJ69 BAS62
58 NI 58 NI 58 NI 58 NI	33. 33. 33.	137.0 174.1 158.4	1.08* 1.11* 1.20*	0.814 0.765 0.709	14.0	1.715	0.757	25.32 29.06	1.218 1.162	0.833 0.853	4.25*	1.11*	0.45*	1.4? 1.4* 1.4*		S S2 S2	H68	SIE65 CAG72 CAG72
58 NI 58 NI	34.1 34.14	174.1	1.14	0.723	19.2	1.60	0.810	23.6	1.275	0.781	4.75	1.14	0.723	1.4*	1664	53 52 52	14	KA1169 FUJ69
58NI 58NI 58NI 58NI 58NI	34.14 36.8 36.8 37.4	170. 191.5 191.6 193.0	1.158 1.05* 1.05* 1.05*	0.737 0.825 0.822 0.809	19.05 18.85 19.74	1.635 1.634 1.618	0.745 0.753 0.756	28.4	1.215	0.802	2.0*	1. 14*	0.69*	1.4* 1.40* 1.40* 1.40*	1677	S2 S S S2 S2	14 14	FUJ69 URO71A URO71A URO71A
58NI	37.4	144.5	1.05*	0.871	19.49		1.103	24.10	1.278	0.773	2.UŦ	1. 14*	V. DYT	1.40*		52 52	14	URO71A
58NI 58NI 58NI 58NI 58NI	37.7 37.7 37.7 38.1 38.1	172.6 172.6 134.2 193.3 193.0	1.14* 7.747 1.100 1.05* 1.05*	0.723* 0.712 0.835 0.789 0.790	16.2 20.16 20.19 20.15	1.60* 1.562 1.595 1.592	0.81* 0.802 0.792 0.794	22.30	1.276	0.797	2.0* 2.0*	1. 14*	0.69* 0.69*	1.4* 1.4* 1.4* 1.40* 1.40*		51 51 52 5 5	21 21	GIB67 GIB67 UR072 UR071A UR071A

Helium-3

TABLE V. Optical-Model Parameters

NUCLIDE	ENERGY (MEV)	R BAL V	POT ENT R	IAL A	VOL.IMA W	G. POT RW	ENTIAL AW	SURF.IN. WC	AG. POT RD	ENTIAL A C	SPIN-(VSC	BSO	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
58NI 58NI 58NI 58NI 58NI 58NI	43.7 43.7 51.3 51.3 51.3 51.4	171.7 171.8 170.8 209.1 190.8 170.	1.14* 1.152 1.14* 0.992 1.06 1.14	0.723* 0.703 0.723* 0.828 0.775 0.72	17.2 18.00 17.0 16.58 15.88 17.	1.60* 1.574 1.60* 1.66 1.64 1.60	0.81* 0.918 C.810* 0.700 0.764 0.81				2.93 2.92	1.14* 1.06	0.723* 0.775	1.4* 1.4* 1.4* 1.4* 1.4* 1.4*	1763 1703 1746	S2 S1 S2 S2 S1 S	9 4,14 4,14 4,14 868	GIB67 GIB67 BIN68 BIN68 BIN68 RID68
58NI 58NI 58NI	73.2 81.5 217.	170. 170. 74.1	1.14 1.14 1.24	0.72 0.72 0.85	17. 17. 25.3	1.60 1.60 1.42	0.81 C.81 0.79							1.47 1.47 1.37		s s s 1	H68 H68 2	RID68 RID68 WIL73
6001 6001 6001 6001 6001 6001	29.5 29.5 29.5 29.6 33. 33.	109.5 149.6 150.9 130.* 136.9 179.0	1.24* 1.24* 1.24* 1.13 1.082* 1.11*	0.706 0.665 0.663 0.783 0.796 0.756	15.2 19.0 25.8 16.4	1.63 1.54 1.46 1.654	0.807 C.854 C.845 O.845	20,5* 25.91	1.25 1.195	0.885 0.856	4.1 4.9 3.0* 4.00*	1.24* 1.24* 1.13 1.11*	0.706 0.665 0.783 0.45*	1.25* 1.25* 1.25* 1.3* 1.47 1.47	1620 1590 1580	52 51 52 5 5 52	14 14 14 H68	LUB69 LUE69 LUE69 PUL73A SIE65 CAG72
60NI 60NI 60NI 60NI 60NI 60NI	33. 35.1 35.1 35.1 35.1 35.1 35.1	178.8 110.6 150.6 149.5 128.* 130.*	1.11* 1.24* 1.24* 1.24* 1.14 1.13	0.768 0.664 0.621 0.635 0.768 0.769	18.4 22.9 24.8	1.57 1.50 1.49	0.871 0.938 C.928	30.80 20.5 20.5*	1.184 1.21 1.22	0.823 0.882 0.884	2.2 2.4 2.7 3.0*	1.24* 1.24* 1.14 1.13	0.664 0.621 0.768 0.769	1.4* 1.25* 1.25* 1.25* 1.3* 1.3*	1740 1800 1800	S2 S2 S2 S2 S2 S2 S2	14 14 14	CAG72 LUE69 LUE69 LUE69 PUL73 FUL73A
60NI 60NI 60NI 60NI 60NI 60NI	49.7 49.7 50. 59.8 59.8	126.* 130.* 143 188.3 125.* 130.*	1.13 1.11 1.01* 1.09* 1.12 1.10	0.842 0.854 C.905* 0.745* 0.816 0.832	15_0	1.72*	0.700*	20.5 20.5* 24.6 20.5* 20.5*	1.26 1.26 1.161* 1.24 1.23	0.835 0.840 0.891* 0.828 0.834	2.7 3.0* 3.24 4.0 2.8 3.0*	1.13 1.11 1.06* 1.09* 1.12 1.10	0.842 0.854 0.255* 0.45* 0.816 0.832	1.3* 1.25* 1.25* 1.25* 1.3* 1.3*	1848	S2 S2 S1 S2 S1 S2 S		PUL73 PUL73A HAP70 MAB72 PUL73 PUL73 PUL73A
60NI 60NI	71.1 71.1	123.* 130.*	1.12 1.08	0.837 0.864				20.5* 20.5*	1.24 1.24	0.828 0.830	3.0 3.0*	1.12 1.08	0.837 0.864	1.3* 1.3*		52 5		PUL73 PUL73A
61NI	25.	178,5	1.14*	0.71*	19.52	1.54*	0.78*							1.4*		51	9	RUN68
62NI 62NI 62NI 62NI 62NI 62NI	11. 21.0 25. 30. 33. 33.	164.7 180.9 192.5 176.6 138.9 181.3	1.07 1.14* 1.14* 1.142 1.082* 1.11*	0.727 0.747 0.71* 0.744 0.816 0.736	16.86 20.92 19.42 17.2	1.63 1.560 1.54* 1.635	C.57 C.790 C.78* C.815	26.4 26.47	1.178 1.147	0.790 0.916	3.00*	1.11*	0.45*	1.40* 1.4* 1.4* 1.4* 1.4? 1.4?		S2 S1 S1 S2 S S1	13 9 9 868	SNI68 URO71 RUN68 KUN69 SIB65 CAG72
62NI 62NI 62NI 62NI	33. 33. 37.7 37.7	186.6 188.7 177.0 119.2	1.08+ 1.08* 1.14 1.200	C.763 O.770 O.712 O.725	22.66 19.9	1.567 1.54	0.844 C.967	29.08 24.13	1.161 1.169	0.812 0.888	2.0*	1.14*	0.69*	1.4* 1.4* 1.4? 1.4*		52 52 5 5 1	н68 9	CAG72 CAG72 JON68 URO72
64 NI 64 NI 64 NI 64 NI 64 NI 64 NI	21.0 24.9 25. 33. 33. 33.	180.0 166.8 187.4 140.6 181.6 182.7	1.14* 1.22* 1.14* 1.082* 1.11* 1.10*	0.741 0.695* 0.71* 0.797 0.760 0.758	24.06 20.9 18.60 17.0 20.90	1.530 1.506 1.54* 1.632 1.542	C.798 C.800 C.78* C.817 O.905	1.1* 25.36	1.506 1.139	0.800 0.926	3.50* 3.50*	1.11* 1.11*	0.45* 0.45*	1.4* 1.4* 1.4* 1.4? 1.4* 1.4*		51 51 51 51 51 51	13 26,9 9 868	URO71 DRI68 RUN68 SIE65 CAG72 CAG72
CU CU	20. 29.1	55.2 20.	1.48 1.60	C.63 0.73	16.4 30.	1.48 1.60	C.63 0.73				1.49	1.48	0.63	1.4? 1.4?	1739	s s	H68 H68	KLI64 GRE61
63CU 63CU 63CU 63CU 63CU 65CU 65CU	29. 29. 33. 33. 35.7	104.6 130.1 173.8 181.9 197.2 169.1	1.059 1.15* 1.15* 1.11* 1.05* 1.15*	0.911 0.784 0.733 0.760 0.819 0.740	9.46 18.61 22.63 20.2	1.909 1.629 1.550 1.60*	0.730 C.821 O.856 C.868	27.84 25.69	1.149 1.199	0.890 0.871	3.50* 4.00*	1.11* 1.05*	0.45* 0.49*	1.07* 1.3* 1.3* 1.4* 1.4* 1.3*	1825 1724 1738 1917	S1 S1 S2 S2 S1	9 10,14 10,14 14	BAU67 BAU69 BAU69 CAG72 CAG72 ART71
20 6420 6420 6420 6420 6420 6420	29. 12. 18. 19.47 19.5 24.	108.2 96.4* 43.16 163.9 165. 156.5	1.033 1.07# 1.67# 1.216 1.3# 1.22#	0.955 0.854* 0.58* 0.690 0.723 0.695*	10.39 10. 15.33 27.37 24. 24.6	1.896 1.81* 1.67* 1.418 1.6* 1.50*	0.732 0.592* 0.58* C.820 0.81 0.80*				8.0*	1.3*	0.723	1.07* 1.4? 1.4* 1.4? 1.40* 1.3*	1864 506	5 1 5 52 5 5 1 5 1	н68 н68 14	BAU67 YNT64 FOU67 HAF67 BET67 HAN71
64 2 N 64 2 N	33. 33.	182.4 180.3	1.11* 1.11*	0.765 0.766	28.62	1.469	C.933	32.27	1.071	0.962	1.00*	1.11*	0.48*	1.4* 1.4*		51 51		CAG72 CAG72
66 ZN 66 ZN 66 ZN	24. 33. 33.	142.6 182.9 189.7	1.22* 1.11* 1.08*	0.695* 0.759 0.733	22.7 24.49	1.50* 1.510	0.80* 0.927	29.18	1.089	0.972				1.3* 1.4* 1.4*		5 5 1 52	14	HAN 71 CAG72 CAG72
682N 682N 682N	24. 33. 33.	149.3 182.2 181.4	1.22* 1.11* 1.107*	0.695* 0.780 0.772	27.0 21.72	1.50* 1.538	0.80* 0.889	27.67	1.147	0.909	2.00* 2.00*	1.11* 1.107*	0.48* 0.48*	1.3* 1.4* 1.4*		S 51 52	14	HAN71 CAG72 CAG72
702 N	24.	149.3	1.22*	0.655*	25.6	1.50*	0.80*							1.3*		s	14	HAN71
Y Y	20.0 29.	141.6 114.8	1.235 1.064	0.692 0.876	22.2 8.70	1.536 1.856	C.795 0.692							1.4* 1.07*	1799	5 1 51		PAR71 BAU67
89 Y 89 Y 89 Y 89 Y 89 Y	24.7 24.7 24.7 29.6 29.6	116. 157. 208. 122.6 149.8	1.243 1.198 1.153 1.24* 1.24*	0.7* 0.7* C.7* 0.530 0.651	15.0* 15.0* 15.5* 15.1 18.5	1.55* 1.55* 1.55* 1.53 1.54	0.8* C.8* C.8* 1,03 C.891							1.4* 1.4* 1.4* 1.25* 1.25*	1426 1428 1435 1830 1770	S S S1 S1	14 14	VOU69 VOU69 LUE69 LUE69

Helium-3

TABLE V. Optical-Model Parameters

REAL POTENTIAL VOL.IMAG. POTENTIAL SPIN-ORBIT POTENTIAL SR FIT NOTE NUCLIDE ENERGY SURF.IMAG. POTENTIAL RC REF. A D (NEV) RW ¥. WD RD ¥50 RSO ASO 1.14* 1.145 1.25 0.723* 0.784 0.83 14.88 1.60* 13.96 1.587 28.4 1.40 51 51 51 21 21 2 1.4* GIB67 891 43.7 175.1 0.81* 89Y 89Y 43.7 175.2 0.633 1.4* GIB67 WIL73 1.07* 1.14* 1.22* 1.14* 1.24* 1.24* 0.854* 0.740 0.695* 0.71* 0.571 96.4* 170.6 163.9 168.4 123.6 1.81* 1.602 1.500 1.54* 1.27 1.38 1.4? 1.4* 1.4* S S 1 S 1 YNT64 URO71 DRI68 12. 21.0 24. 25. 29.6 0.592* 0.718 0.790 200 H68 13 26,9 90 Z R 10 10. 15.17 21.4 16.88 22.5 21.6 90 ZR 90 ZR 0.97* 1.500 0.790 90ZR 90ZR 0.78* 1.4* **S** 1 9 RUN68 1670 S2 1730 S1 14 14 1.25* LUE69 1.25* 29.6 LUE 69 90 Z R 154.0 0.587 1.04 151.1 174.7 203.7 203.1 157.8 161.1 0.69* 0.72* 0.766 0.766 0.813 0.816 22.0 1.54 17.6 1.56 21.78 1.466 19.65 1.497 0.69* 0.80* 1.4* CAT 69 90 Z R 30.9 9 9 14 14 14 1.05* 1.05* 1.05* 1.05* 1.4* 1.40* 1.40* 1.40* 90 ZR 90 ZR 90 ZR 30.9 37.7 37.7 37.7 37.7 37.7 CAT69 UR071A 51 51 0.801 51 51 51 0.806 2 0# 1 14* 0.69* UR0711 URO71A URO72 23.70 21.34 1.191 0.845 90 Z B 1.14# 0.69 0.876 2.0* 90Z8 1.4* 17.42 1.60* 18.32 1.537 26.1 1.39 1.4* 1.4* 170.0 1.14* 1.156 1.24 **s**2 GIB67 90 Z R 43.7 0.723 0.81* 0.876 90 Z R 43.7 170.1 0.689 51 51 GIB67 1.37 2 WIL73 90 Z R 217. 76.2 0.71* 0.69* 0.72* 0.425 0.705 1.14* 1.24* 1.14* 1.19 1.146 15.50 1.54* 20.8 1.56 17.8 1.56 14.67 1.60 1.4* 177.3 0.78* **S1** 9 RUN68 91 Z R 25. 25. 30.9 30.9 37.7 37.7 151.1 174.6 171.7 0.69* 0.80* 0.92 9 9 H68 CAT69 CAT69 JON68 UR072 912R 912R 1.4* s 1.4* 1.4? 1.4* 51 5 51 91 Z R 1.14* 0.694 91ZR 133.4 21.60 1.132 0.946 2.0. 0.728 0.71* 0.69* 0.72* 0.811 0.735 17.27 14.95 20.9 18.2 17.37 171.5 179.4 151.7 173.8 1.495 1.54* 1.55 1.55 1.60 1.56 1.4* 1.4* 1.4* URO71 RUN68 CAT69 0.741 0.78* 0.69* 922R 922R 21.0 25. 51 51 13 9 9 9 1.14* 1.24* 1.14* 1.14* 1.04 1.13 30.9 30.9 51.3 51.3 922R 922R s 0.80* CAT69 BIN67 BIN67 51 51 1.4* 1.4* 9,14 92 Z R 197. 175.* 52 927.R 18.89 0.768 0.78* 0.69* 13 9 9 9 0.731 17.87 14.5 19.5 1.522 1.54* 1.57 1.54 1.4* 51 51 URO71 94 ZR 94 ZR 21.0 1.14* 1.14* 1.4* RUN68 176.4 30.9 94ZR 94ZR 151.2 174.8 1.24* 0.69* s 5 1 CAT69 17.6 0.80* 1.4* CAT69 96 Z R 30.9 30.9 1.24* 0.69* 1.55 0.694 1.4* s 51 9 9 CAT69 151.7 19.4 96ZR 174.3 0.72* 17.2 1.55 0.80* 1.4* CAT69 RĦ 20. 67.8 1.54 0.55 14.2 1.54 0.55 8.0* 1.54 0.55 1.47 s **H68** KLT64 1.063 1.902 1.60* 0.671 AG 29. 35.7 112.3 162.0 0.897 7.55 17.1 1.07* 1845 51 BAU67 1.3* 2075 51 107 AG 0.735 ART71 114CD 114CD 120.3 1.24* 1.24* 0.677 29.6 32.0 1.26 0.887 1.25* 1470 S1 1.25* 1460 S1 LUE 69 29.7 29.7 14 14 LUE69 1.07# 1684 S1 BAU67 29. 92.26 1.067 0.863 7.84 1.805 0.692 IN 1.25* 1480 S1 1.25* 1640 S1 1.25* 1750 S2 1.25* 1880 S1 1.25* 1890 S1 1.24* 1.24* 1.24* 1.24* 1.24* 0.709 0.661 0.761 0.718 0.685 29.8 29.8 35.3 35.3 35.3 25.2 22.8 17.8 0.750 0.891 0.762 0.850 115IN 115IN 115IN 121.1 150.5 91.6 1.41 1.41 1.52 1.47 1.45 LUE 69 14 14 14 14 14 LUE69 LUE69 LUE69 115IN 115IN 114.8 23.6 24.2 0.873 LUE69 13.8 9.01 1.51 1.4? S 1.07* 1645 S1 KLI64 BAU67 SN SN 20. 29. 67.6 1.51 100.3 1.070 0.55 1.51 1.749 0.55 8.0* 0.55 868 1.14 1.24* 1.24* 1.24* 1.24* 1165N 1165N 1165N 18. 29.5 29.5 35.2 0.723 0.708 0.673 0.747 0.81 0.81 1.14* CON68 170. * 20.* 1.6* 20.* 1.6* 51 118.1 149.9 114.4 17.4 21.4 18.5 1.51 1.46 1.55 1.40 0.728 0.756 0.771 1.25* 1480 S1 1.25* 1480 S1 1.25* 1800 S2 1.25* 1780 S2 14 14 14 14 1.0269 LUE69 LUE69 116SN 116SN 35.2 148 9 ŏ 668 26.1 0.877 LUE69 1.4* 1.37 1.14* 13 2 URO71 21.0 217. 18. 0.513 118 SN 184.3 1.144 0.719 15.67 1.587 1205N 1245N 70.9 1.27 0.86 1.40 0.69 \$1 \$1 28.9 20.* WIL73 CON68 20.* 1.6* 0.81 1.47 868 138 BA 19.47 165.0 1.361 0.507 41.7 0.828 1.360 s HAP67 H68 14 14 47.6 8.0* 1.51 0.55 **KLI** 64 SB 20. 74.4 1.51 0.55 1.51 0.55 1.4? 14455 14455 53.4 53.4 59.8 140.9 177.5 1.13* 1.13* 1.10 0.802 0.761 0.960 28.3 32.5 22.0 1.185 0.832 **S**2 10072 1.144 0.855 1.25* \$2 52 10072 2.5 1.10 0.960 FUL73 144SN 110. 20. 77.1 1.50 0.51 10.0 1.50 0.51 8.0* 1.50 0.51 1.47 s H6 8 KL164 ¥Β 1.4? 1.4* 1.3* 1.3? 5 51 52 51 20. 47.5 71.1 80.5 159.9 123. 1.50 1.14* 1.11 1.25 0.51 0.723* 0.736 0.51 0.927= 868 14 PB 208PB 1.50 8.0* 1.50 0.51 KLI64 22.3 PAR69 PUL73 WIL73 2844 24.4 1.07 0.972 2.6 1.11 0.736 208 PB 2 217 78.0 0.86 24.1 1.43 0.81 208PF 1.06 0.776 1.3* **S**2 FUL73 25.1 1.06 0.949 3.1 0.776 209BT 71.1 132. 1.06

Helium-3

NOTES

- 1. Fitting procedure truncated at 120°
- 2. Data for angles smaller than 45°
- 3. Absolute normalization of the data is unknown
- 4. Data for angles smaller than 80°
- 5. Data absolute normalization known to $\pm 30\%$
- 6. A uniform 10% experimental error is used
- 7. Data absolute normalization known to $\pm 20\%$
- 8. Fitting procedure truncated at 80°
- 9. Data for angles smaller than 100°
- Differential elastic-scattering cross sections and total cross sections are fitted simultaneously
- 11. Our evaluation of goodness-of-fit does not take in account the unsatisfactory fit of the data at angles larger than 135°
- 12. Fitting procedure truncated at 135°
- 13. See publication for optical-model parameters corresponding to simultaneous fits of $^3{\rm He}$ and triton data
- 14. See publication for other sets of parameters fitting the same data $% \left({{{\left[{{{\left[{{{\left[{{{c}} \right]}} \right]}_{t}}} \right]}_{t}}} \right)$

- 15. No cross section data at angles smaller than 60°
- Unsatisfactory fit of the data at backward angles. See publication
- 17. Fitting procedure truncated at 110°
- 18. Polarization data for angles smaller than 80°
- 19. Polarization data for angles smaller than 60°
- Differential cross section and polarization data are not fitted simultaneously
- 21. Data for angles smaller than 90°
- 22. See publication for other sets of parameters fitting the same data up to $90\,^{\circ}$ only
- 23. Normalization of cross section data adjusted by the code
- 24. Fitting procedure truncated at 90°
- 25. See publication for compound elastic contribution
- 26. Simultaneous fit to 20-MeV tritons elastic scattering data $% \left({{{\left({{{{\rm{S}}}} \right)}_{\rm{cl}}}} \right)$
- H68. As reported in a previous review paper by P. E. Hodgson, Adv. Phys. <u>17</u>, 563 (1968)

TABULAR BIBLIOGRAPHY

Target <u>Nuclei</u>	Energy Range (MeV)	References
¹² C	28	BON75
¹⁵ N	16.5 to 37.7	PIG73
°℃a to ⁵³ Cr	29	MOR72
^{∗®} Ti to ^{⊥38} Ba	19.5	B0C67
^{6 o} Ni	30 to 71	FUL73B
Sm Isotopes	40.9	PAL74

HELIUM-3 REPERENCES

- AGU61 J. AGUILAR ET AL., NUCL. PHYS. 25, 259 (1961)
- ALF65 W. P. ALFORD, L. M. BLAU AND D. CLINE, NUCL. PHYS. 61, 368 (1965)
- ARM65 D. D. ARMSTRONG AND A. G. BLAIR, PHYS. REV. 140, B1226 (1965)
- ART71 K. P. ARTENOV, V. Z. GOLD'BERG, V. P. RUDAKOV AND I. N. SERIKOV, SOV. J. NUCL. PHYS. 13, 149 (1971)
- ASP74 O. ASPELUND ET AL., NUCL. PHIS. 13, 149 (1971)
- BAL69 GORDON C. BALL AND JOSEPH CERNY, PHYS. REV. 177, 1466
- (1969).
- BAR68 R. W. BARNARD AND G. D. JONES, NUCL. PHYS. & 106, 497 (1968)
- BAR68A R. W. BARNARD AND G. D. JONES, NUCL. PHYS. 1108, 641 (1968)
- BAR68B R. W. BARWARD AND G. D. JONES, NUCL. PHYS. A111, 17 (1968)
- BAS62 R. H. BASSEL ET AL., ORNL REPORT 3432 (1962)
- BAS64 R. H. BASSEL, QUOTED BY P. E. HODGSON, PROC. INT. CONG. NUCL. PHYS. (PABIS), I, P. 257 (1964)
- BAS67 R. H. BASSEL AND R. H. DRISKO, PROCEE. SIMP. DIR. REACT. WITH 3HE, JAPAN (1967)
- BAUG7 D. J. BAUGH, G. J. B. PYLE, P. H. ROLPH AND S. M. SCARROTT, NUCL. PHYS. N95, 115 (1967)

- BAU69 D. J. BAUGH, NUCL. PHYS. A131, 417 (1969).
- BET67 M. G. BETIGERI ET AL., NUCL. PHYS. A100, 416 (1967)
- BIN68 C. R. BINGHAN AND M. L. HALBERT, PHYS. REV. 169, 933 (1968)
- BLA62 A. G. BLAIR AND H. E. WEGNER, PHYS. REV. 127, 1233 (1962)
- BLA65 A. G. BLAIR AND D. D. ARNSTRONG, PHYS. REV. 140, B1567 (1965)
- BLA66 L. H. BLAU, W. P. ALFORD, D. CLINE AND H. E. GOVE, NUCL. PHYS. 76, 45 (1966)
- BOC67 R. BOCK ET AL., NUCL. PHYS. 892, 539 (1967).
- BOH70 W. BOHNE ET AL., NUCL. PHYS. A154, 105 (1970).
- BOH70A W. BOHNE, H. HOMEYER, H. LETTAU, H. MORGENSTERN, AND J. SCHEER, NUCL. PHYS. A156, 93 (1970).
- BON75 C. D. BOND, L. S. AUGUST, P. SHAPIRO AND W. I. NCGARRY, NUCL. PHYS. A241, 29 (1975)
- BRA65 K. H. BRAT, J. NURZYNSKI AND G. R. SATCHLER, NUCL. PHTS. 67, 417 (1965)
- BRA68 K. H. BRAY, J. NURZYNSKI AND W. P. BOURKE, NUCL. PHTS. A114, 309 (1968)
- BRA69 K. H. BRAY AND J. NURZYNSKI, NUCL. PHYS. A127, 622 (1969).

HELIUM-3 REFERENCES

- BRA69A K. H. BRAY AND J. NURZYNSKI, NUCL. PHYS. A130, 41 (1969).
- BUF72 A. J. BUFFA, JR. AND M. K. BRUSSEL, NUCL. PHYS. A195, 545 (1972)
- BUR75 W. E. BURCHAM ET AL., NUCL. PHYS. A246, 269 (1975)
- CAG71 N. E. CAGE, R. R. JOHNSON, P. D. KUNZ AND D. A. LIND, NUCL. PHYS. A162, 657 (1971)
- CAG72 N. E. CAGE ET AL., NUCL. PHYS. A183, 449 (1972)
- CAT69 MICHAEL REID CATES, ORNL-TH-2426 (1969)
- CLI65 D. CLINE, W. P. ALFORD AND L. H. BLAU, NUCL. PHYS. 73, 33 (1965)
- CON68 M. CONJEAUD, S. HARAR AND Y. CASSAGNOU, NUCL. PHYS. A117, 449 (1968)
- R. S. COI, R. W. WEST AND R. J. ASCUITTO, PHYS. REV. 175, 1419 (1968) COX68 R
- CR067 N. A. CROSBY AND J. C. LEGG, NUCL. PHYS. A95, 639 (1967)
- DEH67 D. DEHNHART AND C. MAYER-BORICKE, NUCL. PHYS. A97, 164 (1967)
- DEL70 R. DELONG AND D. DEHNHARD, UNIVERSITY OF MINNESOTA, WILLIAMS LABORATORY ANNUAL REPORT, P. 54 (1970) DIX70 R. L. DIXON AND R. D. PDGE, NUCL. PHYS. A 156, 33
- (1970). DOR67 W. E. DORENBUSCH, J. RAPAPORT AND T. A. BELOTA, NUCL. PHYS. A102, 681 (1967)
- DOR69 W. E. DORENBUSCH, T. A. BELOTE AND J. RAPAPORT, NUCL. PHYS. A133, 146 (1969).
- R. M. DRISCO, P. G. ROOS AND R. H. BASSEL, J. PHTS. SOC. JAPAN, SUPPL. 24, 347 (1968) DRI68
- DUG70 J. L. DUGGAN ET AL., NUCL. PHYS. A151, 107 (1970).
- DUH68 H. H. DUHN, NUCL. PHYS. & 118, 563 (1968)
- DUH70 H. H. DUHM, K. PETERSEIM, R. SEEHARS, R. FINLAY AND C. DETRAZ, NUCL. PHYS. A151, 579 (1970).
- DUN67 F. DUNNILL, T. J. GRAY, H. T. PORTUNE AND N. R. FLETCHER, NUCL. PHYS. A93, 201 (1967)
- EAR67 L. G. EARWAKER, NUCL. PHYS. A90, 56 (1967)
- ERS65 J. R. ERSKINE ET AL., PHYS. REV. LETT. 14, 915 (1965)
- FLY67 EDWARD R. FLYNN AND LOUIS ROSEN, PHYS. REV. 153, 1228 (1967)
- FOR67 H. T. FORTUNE, T. J. GRAY, W. TROST AND N. R. FLETCHER, BULL. AM. PHYS. SOC. 12, 1197 (1967)
- FOR68 H. T. FORTUNE, T. J. GRAY, W. TROST AND N. R. PLETCHER, PHYS. REV. 173, 1002 (1968)
- FORTO J. S. PORSTER, K. BEARPARK, J. L. HUTTON, AND J. F. SHARPEY-SCHAPER, NUCL. PHYS. A150, 30 (1970).
- FOU65 C. H. FOU AND R. W. ZURNUHLE, PHYS. REV. 140, 81283 (1965)
- C. M. FOU, R. W. ZURNUHLE AND J. M. JOYCE, NUCL. PHYS. A97, 458 (1967) F0U67
- POU69 C. M. FOU AND R. W. ZURMUHLE, NUCL. PHYS. A129, 138 (1969).
- PUJ69 T. PUJISAWA, H. KAHITSUBO, T. WADA AND M. IGARASHI, J. PHYS. SOC. JAPAN 27, 278 (1969)
- FUJ73 TAKASHI PUJISAWA ET AL., J. PHYS. SOC. JAPAN 34, 5 (1973)
- FUL72 C. B. FULMER AND J. C. HAFELE, PHYS. REV. C5, 1969 (1972)
- FUL73 C. B. FULMER AND J. C. HAFELE, PHYS. REV. C7, 631 (1973), AND PRIVATE COMMUNICATION
- FUL73A C. B. FULMER AND J. C. HAFELE, PHYS. REV. C8, 172 (1973)
- FUL73B C. B. FULMER, J. C. HAFFLE AND C. C. FOSTER, PHYS. REV. C8, 200 (1973).
- GAR62 A. GARCIA, J. KIRK, J. B. ENGLAND AND P. E. HODGSON, NUCL. PHYS. 38, 372 (1962)

See page 8 for Explanation of Tables

- GIB67 E. F. GIBSON ET AL., PHYS. REV. 155, 1194 (1967)
- GRA68 A. GRAVE ET AL., NUCL. PHYS. A120, 513 (1968)
- GRE61 G. W. GREEWLEES, J. S. LILLEY, P. C. ROWE AND P. E. HODGSON, NUCL. PHYS. 24, 334 (1961)
- GRE70 L. L. GREEN, C. O. LENNON, AND I. M. NAQIB, NUCL. PHTS. A142, 137 (1970).
- GR167 R. J. GRIPFITHS, NUCL. PHYS. A102, 329 (1967)
- HAF67 H. HAFELE, DIPLONARBEIT, HEIDELBERG (1967)
- HAF70 J. C. HAFELE, C. B. FULMER, AND F. G. KINGSTON, PHYS. LETT. 31B, 17 (1970).
- HAN67 LUISA F. HANSEN ET AL., PHYS. BEV. 158, 917 (1967)
- HAN68 LUISA P. HANSEN ET AL., PHYS. REV. 174, 1155 (1968)
- HAN71 LUISA P. HANSEN, JOHN L. KAMMERDIENER AND MORTON S. WEISS, PHYS. REV. C4, 1189 (1971)
- HIE67 J. C. HIEBERT, E. NEWMAN AND R. H. BASSEL, PHYS. REV. 154, 898 (1967)
- HOD61 P. B. HODGSON, PROC. PHYS. SOC. 77, 997 (1961)
- HUT68 R. L. HUTSON ET AL., PHYS. LETT. 278, 153 (1968)
- JON68 C. D. JONES, PRIV. COM. TO P. E. HODGSON (1968)
- JOI69 J. H. JOICE, R. W. ZURMUHLE, AND C. H. POU, NUCL. PHYS. &132, 629 (1969).
- KAN69 H. KAMITSUBO, T. WADA, T. FUJISAWA, AND M. IGARASHI, PHYS. LETT. 26B, 408 (1969).
- KAT68 H. KATTENBORN, C. MAYER-BORICKE AND B. MERTENS, NUCL. PHYS. A119, 559 (1968)
- E. N. KELLOGG AND R. W. ZURNUHLE, PHYS. REV. 152, 890 (1966) KEL66 E
- KEN71 K. W. KEMPER, D. S. HAYNES AND N. R. FLETCHER, PHYS. REV. C4, 108 (1971)
- R. M. KEYSER, R. A. BLUE AND H. R. WELLER, WUCL. PHYS. A186, 528 (1972) KEY72 R
- R. W. KLINGENSMITH, H. J. HAUSMAN AND W. D. PLOUGHE, PHYS. REV. 134, B1220 (1964) KLI64 R
- KNU70 A. R. KNUDSON AND F. C. YOUNG, NUCL. PHYS. A149, 323 (1970).
- KUN69 P. D. KUNZ, E. ROST, R. R. JOHNSON, G. D. JONES, AND S. I. HAYAKAWA, PHYS. REV. 185, 1528 (1969).
- LANGS C. M. LAMBA, N. SARMA AND N. S. THAMPI, NUCL. PHYS. A122, 390 (1968)
- LEN72 H.-C. LEMAIRE, N. C. MERMAZ AND KAMAL K. SETE, PHYS. REV. C5, 328 (1972)
- LUC68 B. T. LUCAS, D. R. OBER AND O. E. JOHNSON, PHYS. REV. 167, 990 (1968)
- LUD68 H. LUDECKE, TAN WAN-TJIN, H. WERNER AND J. ZIMMERER, NUCL. PHYS. A109, 676 (1968)
- LUD73 E. J. LUDWIG, T. B. CLEGG AND R. L. WALTER, NUCL. PHYS. A211, 559 (1973), AND PRIVATE COMMUNICATION FROM E. J. LUDWIG
- J. W. LUETZELSCHWAB AND J. C. HAFELE, PHYS. BEV. 180, 1023 (1969). LU E6 9
- H. F. LUTZ, J. J. WESOLOWSKI, S. F. ECCLES AND L. F. HANSEN, NUCL. PHYS. A101, 241 (1967) LUT67
- L. L. LYNN, W. E. DORENBUSCH, T. A. BELOTE, AND J. RAPAPORT, NUCL. PHYS. A135, 97 (1969). LYNG9 L.
- LYN72 L. L. LYNN ET AL., NUCL. PHYS. 4182, 272 (1972)
- N. F. MANGELSON, B. G. HARVEY AND N. K. GLENDENNING, NUCL. PHYS. A119, 79 (1968) MAN68 N
- MAR72 C. J. MARCHESE ET AL., NUCL. PHYS. A191, 627 (1972)
- MAR73 C. J. MARCHESE, N. M. CLARKE AND R. J. GRIFFITHS, NUCL. PHTS. A202, 421 (1973)
- HAT66 G. H. MATOUS, G. H. HERLING AND E. A. WOLICHKI, PHYS. REV. 152, 908 (1966)
- HCE70 W. S. HCEVER, T. B. CLEGG, J. H. JOYCE, E. J. LUDWIG, AND R. L. WALTER, PHYS. REV. LETT. 24, 1123 (1970).

Helium-3

Helium-3

HELIUM-3 REPERENCES

- HCE71 W. S. HCEVER, T. B. CLEGG, J. H. JOYCE AND E. J. LUDWIG, POLARIZATION PHEMOMENA IN NUCLEAR REACTIONS (PROCEEDINGS OF THE THIRD INTERNATIONAL SYMPOSIUM, MADISON 1970), 603, EDITED BY H. H. BARSCHALL AND W. HAEBERLI, THE UNIVERSITY OF WISCONSIN PRESS, HADISON (1971)
- MCE72 W. S. MCEVER ET AL., NUCL. PHYS. A178, 529 (1972)
- HCQ70 J. E. NCQUEEN, JR., J. H. JOYCE, AND E. J. LUDWIG, NUCL. PHYS. A151, 295 (1970) AND NUCL. PHYS. A147, 81 (1970).
- MIL69 P. D. MILLER ET AL., NUCL. PHYS. A136, 229 (1969).
- MOR70 R. A. HORRISON, NUCL. PHYS. &140, 97 (1970).
- MOR72 H. P. MORSCH AND R. SANTO, NUCL PHYS. A179, 401 (1972).
- NAK70 N. NAKANISHI, T. CHIBA, T. AWAYA, AND K. MATSUDA, NUCL. PHYS. 1140, 417 (1970).
- NELTO J. H. NELSON, N. S. CHANT, AND P. S. PISHER, NUCL. PHYS. &156, 406 (1970).
- NUR68 J. NURZYNSKI, K. H. BRAY AND B. A. ROBSON, NUCL. PHYS. A107, 581 (1968)
- NUR69 J. NURZYNSKI, NUCL. PHYS. &133, 23 (1969).
- NUR70 J. NURZYNSKI, NUCL. PHYS. A141, 257 (1970).
- NUS70 F. NUSSLIN AND P. BRAUN-MUNZINGER, Z. PHISIK 240, 217 (1970).
- OBE68 D. R. OBER AND O. E. JOHNSON, PHYS. REV. 170, 924 (1968)
- OBR67 B. J. O'BRIEN, W. E. DORENBUSCH, T. A. BELOTE AND J. RAPAPORT, NUCL. PHYS. A104, 609 (1967) PAL74 G. PALLA AND C. PEGEL, Z. PHYSIK 268, 51 (1974)
- PAR68 J. Y. PARK, NUCL. PHYS. A111, 433 (1968), AND PRIV. COM. TO P. E. HODGSON
- PAR69 W. C. PARKINSON ET AL., PHYS. REV. 178, 1976 (1969).
- PAR69A J. Y. PARK ET AL., NUCL. PHYS. A134, 277 (1969).
- PAR71 YONG SOOK PARK, H. D. JONES AND D. E. BAINUN, PHYS. REV. C4, 778 (1971)
- PAT67 J. R. PATTERSON, J. M. POATE, B. A. ROBSON AND E. W. TITTERTON, PROC. PHYS. SOC. 90, 577 (1967)
- PET72 R. J. PETERSON, E. W. STOUB AND R. A. RISTINEN, PHYS. REW. C6, 829 (1972)
- PIG73 M. PIGWANELLI, F. G. RESMINI AND J. L. ESCUDIE, COMPTE RENOU D'ACTIVITE DU DEPARTEMENT DE PHYSIQUE NUCLEAIRE 1972-73, NOTE CEA N-1700, P. 118, SACLAY 1973.
- RAO70 M. N. RAO, J. BAPAPORT, T. A. BELOTE, AND W. E. DORENBUSCH, NUCL. PRYS. A151, 351 (1970).
- RAP67 J. RAPAPORT, T. A. BELOTE AND W. E. DORENBUSCH, NUCL. PHYS. A100, 280 (1967)
- RAP69 J. RAPAPORT, T. A. BELOTE, W. E. DORENBUSCH, AND R. R. DOERING, NUCL. PHYS. A123, 627 (1969).
- RAP71 J. RAPAPORT, W. E. DORENBUSCH AND T. A. BELOTE, NUCL. PHTS. & 177, 307 (1971)
- RID68 B. W. RIDLEY, T. W. CONLON AND T. H. BRAID, BULL. AM. PHYS. SOC. 13, 117 (1968)
- RON73 G. RONSIN, M. VERGNES, G. ROTBARD AND J. KALIPA, NUCL. PHTS. λ207, 353 (1973)
- RUN68 D. E. RUNDQUIST, M. K. BRUSSEL AND A. I. YAVIN, PHYS. REV. 168, 1287 (1968)
- SCH66 J. J. SCHWARTZ, W. P. ALPORD, L. M. BLAU AND D. CLINE, NUCL. PHYS. 88, 565 (1966)
- SCH67 L. A. SCHALLER ET AL., PHYS. REV. 163, 1034 (1967)
- SCH70 G. SCHEKLINSKI, U. STROHBUSCH, AND B. GOEL, NUCL. PHYS. A153, 97 (1970).
- SCO70 D. K. SCOTT ET AL., NUCL. PHYS. A141, 497 (1970).
- SEN62 H. M. SEN GUPTA, J. ROTBLAT, P. E. HODGSON AND J. B. ENGLAND, NUCL. PHYS. 38, 361 (1962)

- SEN64 H. M. SEN GUPTA, J. ROTBLAT, E. A. KING AND J. B. ENGLAND, NUCL. PHYS. 50, 549 (1964)
- SET67 KAMAL K. SETH, J. A. BIGGERSTAFF, P. D. MILLER AND G. R. SATCHLER, PHYS. REV. 164, 1450 (1967)
- SIE65 R. H. SIEMSSON, T. H. BRAID, D. DENHARD AND B. ZEIDNAN, PHYS. LETT. 18, 155 (1965)
- SIN73 R. N. SINGH FT AL., NUCL. PHYS. A205, 97 (1973)
- SHI68 D. L. SMITH, H. Y. CHEN AND H. A. ENGE, NUCL. PHYS. A107, 639 (1968)
- SOU73 ALLAN SOURKES, HAJIME OHNUMA AND NOBTON M. HINTZ, NUCL. PHTS. A217, 438 (1973)
- SQU68 G. T. A. SQUIER ET AL., NUCL. PHYS. A119, 369 (1968)
- ST067 R. STOCK ET AL., NUCL. PHYS. A104, 136 (1967)
- SWE67 L. W. SWENSON, R. W. ZURMUHLE AND C. M. POU, NUCL. PHYS. A90, 232 (1967)
- THO71 R. S. THOMASON, L. A. SCHALLER, G. SPALEK AND R. L. WALTER, NUCL. PHYS. &176, 535 (1971)
- TRI68 A. TFIER ET AL., NUCL. PHYS. A111, 241 (1968)
- TRI69 A. TRIER, J. RAPAPORT, T. A. BELOTE, AND W. E. DORENBUSCH, NUCL. PHYS. A134, 396 (1969).
- URO71 P. P. URONE, L. W. PUT, H. H. CHANG AND B. W. RIDLEY, WUCL. PHYS. A163, 225 (1971)
- URO71A P. P. URONE, L. W. PUT, B. W. RIDLEY AND G. D. JONES, NUCL. PHYS. A167, 383 (1971)
- UR072 P. P. URONE, L. W. PUT AND B. W. RIDLEY, NUCL. PHYS. A186, 344 (1972)
- VGA74 J. J. N. VAN GASTEREN, B. SIKORA AND A. VAN DER STELD, NUCL. PHYS. A231, 411 (1974)
- VGA74A J. J. H. VAN GASTEREN, A. J. L. VERHAGE AND A. VAN DER STELD, NUCL. PHYS. A231, 425 (1974)
- VOU69 GEORGE VOURVOPOULOS AND J. D. POX, PHYS. REV. 177, 1558 (1969).
- WAR66 S. I. WARSHAW, A. J. BUFFA, J. B. BARENGOLTZ AND M. K. BRUSSEL, NUCL. PHYS. A121, 350 (1968)
- WEL68 H. R. WELLER, N. R. ROBERSON AND D. R. TILLEY, NUCL. PHIS. A122, 529 (1968)
- WER73 MICHAEL P. WERBY AND STEVE EDWARDS, NUCL. PHYS. A 213, 294 (1973)
- WES68 J. J. WESOLOWSKI ET AL., PHYS. REV. 169, 878 (1968) WIL67 C. E. WILNE AND J. B. ENGLAND, PRIV. COM. TO P. E.
- HODGSON (1967)
- WIL67A B. H. WILDENTHAL AND P. W. GLAUDEMANS, NUCL. PHYS. A92, 353 (1967)
- WIL68 B. H. WILDENTHAL AND E. NEWHAN, PHYS. REV. 167, 1027 (1968)
- WIL73 N. WILLIS, T. BRISSAUD, Y. LEBORNEC, B. TATISCHEFF AND G. DUHAMEL, NUCL. PHYS. A204, 454 (1973)
- WOL70 A. C. WOLPP AND H. G. LEIGHTON, NUCL. PHYS. A140, 319 (1970).
- WOO72 P. B. WOOLLAM, R. J. GRIPPITHS AND N. M. CLARKE, NUCL. PHYS. A189, 321 (1972)
- YNT64 J. L. YNTENA, B. ZEIDMAN AND R. H. BASSEL, PHYS. LETT. 11, 302 (1964)
- YOU70 D. H. YOUNGBLOOD, R. L. KOZUB, R. A. KENEFICK, AND J. C. HIEBERT, PHYS. REV. C2, 477 (1970).
- YOU70A D. H. YOUNGBLOOD, R. L. KOZUB, J. C. HIEBERT, AND R. A. KENEFICK, NUCL. PHYS. A143, 512 (1970).
- YOU72 F. C. YOUNG AND A. R. KNUDSON, NUCL. PHYS. A184, 563 (1972)
- ZUR66 R. W. ZURMUHLE, C. M. FOU AND L. W. SWENSON, NUCL. PHYS. 80, 259 (1966)
- ZUR69 R. W. ZURMUHLE AND C. M. POU, NUCL. PHYS. A129, 502 (1969).

Alphas

TABLE VI. Optical-Model Parameters

NUCLIDE	ENERGY (NEV)	REAL V	POTENT R	IAL	VOL.IM W	AG. POT RW	BNTIAL AW	SURP.IN WD	RD RD	ENTIAL AD	SPIN- VSO	ORBIT P RSO	OTENTIAL ASO	RC	SR	FIT	NOTE	REF.
2 H	166.	32.4	1.73	0.59	67.4	0.93	0.43							1.4*		S 2	5	TAT 70
3 HE 3he	42. 42.	65.7 173.0	1.54 1.58	0.27 0.145	0.75	3.81 3.67	1.68				0.5 1.00	1.54 1.58	0.27 0.145	1.5?		S 2 S 3		VIN70 VIN70
4 HB 4 HE 4 HE 4 HE 4 HE 4 HE	23,1 34.2 34.2 36.85 38.83 39.5	117. 117. 122. 125. 122. 92.	1.14* 1.14* 1.14* 1.14* 1.14* 1.14* 1.14*	0.6* 0.6* 0.5 0.6* 0.6*	1.* 1.* 1.* 1.* 1.*	1.14* 1.14* 1.14* 1.14* 1.14* 1.14*	0.6* 0.6* 0.6* 0.5 0.6* 0.6*							1.14* 1.14* 1.14* 1.14* 1.14* 1.14*		S2 S2 S2 S2 S3 S3	5,26 5,26 3,26 3,26 3,26 5,26	IG060 IG060 IG060 IG060 IG060 IG060
4 HB 4 HE 4 HE	40.1 40.77 47.10	92. 92. 107.	1.14* 1.14* 1.14*	0.6* 0.6* 0.7	1.* 1.* 1.*	1.14* 1.14* 1.14*	0.6* 0.6* 0.7							1.14* 1.14* 1.14*		53 51 51	5,26 5,26 26	IG060 IG060 IG060
6 LI 6 LI 6 LI 6 LI 6 LI 6 LI	12.54 12.54 14.04 14.04 15.54 15.54	189.5 189.4 195.5 195.6 196.1 196.6	1.93 1.94 1.95 1.95 1.976 1.98	0.60 0.59 0.54 0.53 0.49 0.48	7.7 8.7 9.2	1.94 1.95 1.98	0.59 0.53 0.48	7.1 8.1 10.1	1.93 1.95 1.976	0.60 0.54 0.49	10.8 11.1 12.0 10.5 8.8 8.9	1.93 1.94 1.95 1.95 1.976 1.98	0.60 0.59 0.54 0.53 0.49 0.48	1.93 1.94 1.95 1.95 1.98 1.98		S2 S2 S2 S2 S2 S2 S2	9 9 9 9 9 9	BIN71 BIN71 BIN71 BIN71 BIN71 BIN71
6 LI 6 LI 6 LI 6 LI 6 LI 6 LI	17.04 17.04 18.54 18.54 29.4 29.4	193.4 194.9 194.2 195.8 72.63 149.5	1.99 2.00 2.00 2.02 1.36 1.37	0.47 0.44 0.43 0.40 0.765 0.637	10.2 13.5 23.8 41.8	2.00 2.02 1.34 1.06	0.44 0.40 0.765 0.637	12.5 18.2	1.99 2.00	0.47 0.43	10.7 8.3 10.2 8.6	1.99 2.00 2.00 2.02	0.47 0.44 0.43 0.40	1.99 2.00 2.00 2.02 1.3* 1.3*		S3 S3 S3 S3 S2 S2 S2	9 9 9 3 3	BIN71 BIN71 BIN71 BIN71 MAT69 MAT69
6 LI 6 LI 6 LI	104. 166. 166.	88.86 103.9 102.5	0.991 0.974 0.979	0.807 0.76 0.82	4.94 26.64 11.77	3.006 1.69 2.26	0.577 0.87 0.95							1.2* 1.3? 1.3?		52 5 5	5 13 13	DEV72 BAC72 BAC72
7LI 7LI 7LI 7LI 7LI 7LI 7LI	12.0 12.0 14.0 14.0 16.0 16.0	143.6 144.0 148.9 154.9 150.4 142.3	1.68 1.69 1.71 1.69 1.68 1.66	0.73 0.72 0.63 0.64 0.60 0.61	6.6 9.8 6.8	1.69 1.69 1.66	0.72 0.64 0.61	4.5 7.3 8.0	1.68 1.71 1.68	0.73 0.63 0.60	5.1 5.4 8.8 16.8 17.8 19.6	1.68 1.69 1.71 1.69 1.68 1.68	0.73 0.72 0.63 0.64 0.60 0.61	1.68 1.69 1.71 1.69 1.68 1.66		S2 S2 S3 S2 S2 S2 S3	9 9 9 9 9 9	BIN71 BIN71 BIN71 BIN71 BIN71 BIN71
7 LI 7 LI 7 LI 7 LI 7 LI	18.0 18.0 29.4 29.4	151.1 150.2 68.20 275.2	1.725 1.73 1.62 1.21	0.57 0.56 0.657 0.645	9.9 19.8 8.16	1.73 1.17 1.81	0.56 0.657 0.645	8.6	1.725	0.57	3.0 7.5	1.725 1.73	0.57 0.56	1.72 1.73 1.3* 1.3*		53 52 53 53	9 9 5 5	BIN71 BIN71 MAT69 MAT69
7LI 7LI 7LI 7LI	42. 42. 42.	98.34 122.4 53.13	0.948 0.768 1.586	0.660 0.756 0.444	2.17 5.44	2.365 2.412	0.383 0.576	4.61 7.39	2.365 2.125	0.383 0.496				1.2* 1.2* 1.2*		53 53 53		DEV72 DEV72 DEV72
9 8E 9 8E 9 8E 9 8E 9 8E 9 8E	8.76 8.76 9.27 9.27 9.5	128.4 50.85 38.5 54.0 45.0	1.72 1.72* 0.915 1.72* 1.846*	0.50 0.50* 1.29 0.50* 0.52	3.35 1.42 9.07 2.13 2.0	1.72 1.72* 0.915 1.72* 1.846*	0.50 0.50* 1.29 0.50* 0.52				1.5	1.846*	0.52	1.7? 1.7? 1.7? 1.7? 1.4*		S 3 S 3 S 3 S 3 S 3 S 2		BRA67 BRA67 BRA67 BRA67 TAY65
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE	10.0 10.13 10.13 10.5 11.0 11.5	46.5 154.0 52.9 50.7 50.0 51.2	1.846* 1.618 1.72* 1.846* 1.846* 1.846*	0.61 0.428 0.50* 0.63 0.55 0.58	2.2 2.97 1.96 2.4 2.5 2.6	1.846* 1.618 1.72* 1.846* 1.846* 1.846*	0.61 0.428 0.50* 0.63 0.55 0.58				1.8 1.8 1.8 1.8	1.846* 1.846* 1.846* 1.846*	0.61 0.63 0.55 0.58	1.4* 1.7? 1.4* 1.4* 1.4*		53 53 53 53 53 53 53		TAY65 BRA67 BRA67 TAY65 TAY65 TAY65 TAY65
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE	12.0 12.5 13.0 14.05 14.86 15.7	52.0 54.0 54.1 57.0 58.0 60.0	1.846* 1.846* 1.846* 1.846* 1.846* 1.846*	0.55 0.55 0.58 0.58 0.60 0.59	2.7 3.3 4.2 4.8 4.8 4.8 4.2	1.846* 1.846* 1.846* 1.846* 1.846* 1.846* 1.846*	0.55 0.55 0.58 0.58 0.60 0.60 0.59				2.0 2.7 2.6 2.4 2.2 1.5	1.846* 1.846* 1.846* 1.846* 1.846* 1.846*	0.55 0.55 0.58 0.58 0.60 0.59	1.4* 1.4* 1.4* 1.4* 1.4* 1.4*		S3 S3 S2 S3 S3 S3		TAY65 TAY65 TAY65 TAY65 TAY65 TAY65
9 BE 9 BE 9 BE 9 BE 9 BE	16.55 17.5 18.4 19.47 20.0	60.1 60.7 61.0 60.9 61.0	1.846* 1.846* 1.846* 1.846* 1.846*	0.58 0.54 0.56 0.53 0.58	5.0 4.7 5.0 4.5 4.6	1.846* 1.846* 1.846* 1.846* 1.846*	0.58 0.54 0.56 0.53 0.58				1.6 1.6 2.1 2.4 1.9	1.846* 1.846* 1.846* 1.846* 1.846*	0.58 0.54 0.56 0.53 0.58	1.4* 1.4* 1.4* 1.4* 1.4*		S3 S3 S3 S2 S3		TAY65 TAY65 TAY65 TAY65 TAY65 TAY65
9 BE 9 BE 9 BE 9 BE 9 BE 9 BE	48. 48. 48. 48. 48. 104.	70.9 148.9 207.1 71.77 67.15 65.87	1.550 1.491 1.545 1.544 1.669 1.483	0.660 0.587 0.475 0.691 0.653 0.655	23.87 29.52 26.98 50.8 34.9	1.550 1.491 1.545 0.953 1.057	0.660 0.587 0.475 0.918 1.054	22.44	1.066	0.720				1.25* 1.25* 1.25* 1.2* 1.2* 1.2*		S2 S2 S3 S2 S2 S1	5	LI 68 LI 68 LI 68 DEV72 DEV72 DEV72 DEV72
10 B	22.5	2 12. 1	1.373	0.520	4.83	1.699	0.563							1.34		\$ 3		DAV72
с с	24.7 40.	251.8 30.	1.444 1.92*	0.484 0.5*	12.56 10.	1.444 1.92*	0.484 0.5*							1.34* 1.22*	859	53 52	5,26	MAK70 IGO57
12C 12C 12C 12C	8.76 8.76 9.33 9.33	66.0 144.5 88.6 148.8	1.80 1.74* 1.42 1.74*	0.353 0.38* 0.39 0.38*	0.00 0.03 0.22 0.68	1.80 1.74* 1.42 1.74*	0.353 0.38* 0.39 0.38*							1.7? 1.7? 1.7? 1.7?		51 51 51 52		BRA67 BRA67 BRA67 BRA67 BRA67

See page 8 for Explanation of Tables

Atomic Data and Nuclear Data Tables, Vol. 17, No. 1, January 1976

Alphas

NUCLIDE	ENERGY (MEV)	R BAL V	POTENT R	IAL A	VOL.IMA W	G. POT RW	ENTIAL AW	SURP.IM WD	AG. POT RD	ENTIAL AD	SPIN-0 VSO	RBIT RSO	POTENTIAL ASO	RC	SR	FIT	NOTE	REF.
12C 12C 12C 12C 12C 12C 12C	11.00 11.00 12.10 12.10 14.00 14.00	80. 125. 150. 200. 100. 110.	2.07 1.87 2.07 1.97 1.77 1.97	0.55 0.5 0.6 0.6 0.6	1.5	2.07	0.5	4.0 3.0 4.0 4.0 4.0	2.07 1.87 1.87 1.77 1.97	0.3 0.3 0.6 0.3				1.4? 1.4? 1.4? 1.4? 1.4? 1.4?	599 613 558 491 897 647	\$3 \$3 \$3 \$3 \$3 \$3 \$3 \$3		CAR64 CAR64 CAR64 CAR64 CAR64 CAR64
12C 12C 12C 12C 12C 12C	16.00 17.00 17.00 18.00 18.0 18.0	125. 75. 110. 200. 105.4 159.0	1.97 1.77 1.87 1.97 1.598 1.540	0.5 0.6 0.5 0.5 0.736 0.709	5.74 6.16	1.598 1.540	0.736 0.709	1.5 4.0 4.0 4.0	1.97 1.77 1.87 1.87	0.5 0.6 0.3 0.3				1.4? 1.4? 1.4? 1.4? 1.2* 1.2*	620 928 483 414	\$3 \$3 \$3 \$3 \$3 \$ \$ \$		CAR64 CAR64 CAR64 CAR64 OBE68 OBE68
12C 12C 12C 12C 12C	27.2 27.2 32.5 41. 41.	52.5 52.5 11.18 37.16 199.1	1.90* 1.90* 2.46 1.846 1.262	0.60* 0.60* 0.022 0.452 0.650	6.0 3.73 13.27 42.17	1.9 2.55 1.846 1.262	0.6* 0.002 0.452 0.650	6.53	1.5	0.593				1.22* 1.22* 2.4? 1.25* 1.25*	961 891 963	53 53 53 53 53	10 10	NEM67 NEM67 BUR72 BAR71 BAR71
12C 12C 12C 12C 12C	42. 56. 56. 56.	24. 38. 115.8 151.9 216.8	1.99 1.84 1.5* 1.24* 1.3*	0.42 0.41 0.555 0.665 0.58	13. 21. 24.0 28.05 28.05	1.99 1.84 1.5* 1.24* 1.5*	0.42 0.41 0.4 0.64 0.32							1.4? 1.4? 1.4? 1.4? 1.4?	819 816 798	S S S 2 S 2 S 2	₩65 ₩65 5 5 5	NCD62 MCD62 GAI69 GAI69 GAI69
12C 12C 12C 12C 12C	104. 104. 139. 166. 166.	74.21 114.0 108.1 85.0 100.9	1.433 1.22 1.22 1.34 1.21	0.692 0.80 0.76 0.70 0.76	30.23 13.8 16.9 17.7 14.7	1.433 1.91 1.85 1.77 1.86	0.692 0.50 0.47 0.52 0.48							1.43? 1.26* 1.26* 1.3* 1.3*		53 51 52 52	18 5 5 5	HAU69 SMI73 SMI73 TAT70 TAT70
13C 13C 13C 13C	15. 18. 20. 28.4	213.8 226.0 209.7 199.3	1.2* 1.33 1.05 1.2*	0.56 0.49 0.49 0.56	2.5 8.76	1.16 1.4	0.9* 0.9*							1.2* 1.3* 1.4* 1.2*		S2 S3 S2 S3	8 8 8 8	COK71 COK71 COK71 COK71
14 N 14 N 14 R 14 N 14 N 14 N	19.2 19.2 19.2 19.2 29.98 29.98	54.87 94.55 149.8 154.1 130.0 187.4	1.748 1.649 1.537 1.43 1.369 1.268	0.569 0.579 0.572 0.56 0.625* 0.625*	5.17 5.88 7.03 44.92 28.76	1.748 1.649 1.537 1.364 1.539	0.569 0.579 0.572 0.350 0.145	4.74	1.81	0.65				1.2* 1.2* 1.2* 1.43 1.30* 1.30*		S S S S3 S2	5 5	LUC68 LUC68 LUC68 JOH70 LOW72 LOW72
14N 14N 14N 14N	40.5 56. 56. 56.	195.* 104.7 160.8 196.3	1.28 1.5* 1.5* 1.3*	0.654 0.605 0.535 0.635	21.00 23.0 27.55 27.0	1.28 1.5* 1.5* 1.5*	0.654 0.555 0.39 0.52							1.3* 1.4? 1.4? 1.4? 1.4?	934 922 932	S 2 S S S	5	BAL69 GAI69 GAI69 GAI69 GAI69
0	24.7	43.9	1.912	0.451	3.85	1.912	0.451							1.3*	959	S 3		NCF66
160 160 160 160	10.05 11.97 13.37 15.20	150.* 135. 150.* 135.	1.93 1.87 1.97 1.87	0.5* 0.5* 0.5* 0.5*				3.0 3.0 5.0 5.0	1.93 1.87 1.97 1.87	0.5* 0.5* 0.5* 0.5*				1.4? 1.4? 1.4? 1.4?		S3 S3 S3 S3	W65 W65 W65 W65	DAV63 DAV63 DAV63 DAV63 DAV63
160 160 160	17.22 18.30 19.90	150.* 125. 125.	1.93 1.97 1.97	0.5* 0,5* 0.5*				7.5 5.0 5.0	1.93 1.97 1.97	0.5* 0.5* 0.5*				1.47 1.47 1.47		53 53 53	₩65 ₩65 ₩65	DAV63 DAV63 DAV63
180	21.4	53 . 1	1.64	0.76				32.9	1.77	0.37				1.4?		S 2		LUT66
19F 19F 19F	25.0 25.0 25.0	100.6 144.7 204.3	1.48 1.47 1.42	0.683 0.606 0.596	9.65 16.53 17.06	1.95 1.46 1.57	0.543 0.806 0.688							1.4? 1.4? 1.4?		5 1 5 5	5,21 5,21 5,21	KRI73 KRI73 KRI73
N E N E	50.9 50.9	140. 202.	1.50 1.47	0.58	32. 32.	1.46 1.38	0.35							1.4? 1.4?		S S	6,10 6,10	KO 569 KOS 69
20 NE 20 NE 20 NE 20 NE 20 NE 20 NE	16.8 16.8 16.8 16.8 18.0 18.0	56.90 82.63 48.68 73.54 52.74 81.93	1.73* 1.73* 1.81* 1.81* 1.735 1.698	0.584 0.565 0.587 0.536 0.556 0.540	5.18 6.34 9.18 10.26 7.04 8.31	1.73* 1.73* 1.81* 1.81* 1.735 1.698	0.464 0.523 0.464 0.521 0.556 0.540							1.73* 1.73* 1.81* 1.81* 1.2* 1.2*	1102 1126	53 53 52 52 52 5 5	11 11 13 13	FRI71 FRI71 FRI71 FRI71 LUC66 LUC66
20 NE 20 NE 20 NE 20 NE 20 NE 20 NE	22.0 27.4 27.4 28. 104.	57.55 47. 191.2 57.5 110.6	1.649 1.806 1.525 1.750 1.22	0.694 0.592 0.541 0.560 0.82	3.61 7.4 32.97 13.2 17.9	2.331 1.806 1.525 1.750 1.77	0.231 0.592 0.541 0.560 0.63							1.5? 1.25* 1.25* 1.4* 1.3?	1214	S S S 2 S 2 S 1	13 5 5 5 4	TAK71 HAN67 HAN67 SAT65 REB72
22 NE	104.	101.5	1.33	0.76	18.8	1.79	0.55							1.37		52	5	REB72
23 NA 23 NA 23 NA 23 NA	18.4 18.4 21.4	54.94 90.15 51.2*	1.656 1.549 1.710	0.589 0.579 0.568	10.36 10.80 20.50	1.656 1.549 1.710	0.589 0.579 0.568				2.74	1.710	0.568	1.2* 1.2* 1.65*	1159 1118	S S S2	13 13 11,19	LUC66 LUC66 LEG74

Alphas

TABLE VI. Optical-Model Parameters

NUCLIDE	EN ER GY (MEV)	R E A L V	POTENT: R	IAL A	VOL.IMA W	G. POTI	ENTIAL AW	SORF.IM WD	AG. POT	ENTIAL AD	SPIN-ORBI VSO RSO	T POTENTIAL ASO	RC	SR	FIT	NOTE	REF.
NG NG MG	24.7 24.7 24.7	20.8 200.8 185.1	1.853 1.425 1.496	0.497 0.557 0.511	6.78 16.5 15.45	1.853 1.425 1.496	0.497 0.557 0.511						1.3* 1.3* 1.34*	1121 1153 1152	52 53 53	10 10	MCF66 MCF66 MAK70
24 MG 24 MG	4.0 5.0	110.0 110.0	1.80* 1.80*	0.48 0.48	5.0* 5.0*	1.80* 1.80*	0.48 0.48						1.33* 1.33*		52 52		SO 66 SO 66
24 MG 24 Mg 24 Mg 24 Mg 24 Mg 24 Mg 24 Mg	12.30 12.57 12.70 13.0 13.44 13.70	113.3 115.0 106.0 107.0 106.0 106.1	1.62 1.80* 1.80* 1.80* 1.80* 1.80*	0.65 0.45 0.54 0.61 0.52 0.37	3.2 4.0 5.0* 4.0 5.0* 4.1	1.62 1.80* 1.80* 1.80* 1.80* 1.80*	0.65 0.45 0.54 0.61 0.52 0.37						1.33* 1.33* 1.33* 1.33* 1.33* 1.33*		\$2 53 53 53 53 53 53 52		SO 66 SO 66 SO 66 SO 66 SO 66 SO 66 SO 66
24 MG 24 MG 24 MG 24 MG 24 MG	14.0 15.02 15.25 18.8	113.0 88.0 177.0 190.8	1.80* 1.80* 1.80* 1.43	0.55 0.40 0.36 0.608	4.5 3.0 4.5 9.91	1.80* 1.80* 1.80* 1.78	0.55 0.40 0.36 0.39						1.33* 1.33* 1.33* 1.43?		53 53 53		SO 66 SO 66 SO 66 DRE70
24 MG 24 MG 24 MG	22.2 22.9 28.	51,2* 192,6 54,4	1.750 1.43* 1.700	0.530 0.60* 0.529	20.15 11.5 9.8	1.750 1.76 1.700	0.530 0.41 0.529						1.65* 1.43? 1.4*	1167	52 52	11 5	LEG74 DRE70 SAT65
24 MG 24 MG 24 MG 24 MG 24 MG 24 MG	40. 40. 42. 42. 42.	125 152. 84.7 47.05 185.7	1.55 1.39 1.52* 1.635 1.38	0.542 0.620 0.606 0.561 0.575	30.7 33.9 12.9 21.11 42.50	1.59 1.39 1.80 1.635 1.38	0.393 0.620 0.538 0.561 0.575						1.3* 1.3* 1.52* 1.25* 1.25*	1179 1176	S2 S2 S2 S3 S2	5 10 10	SIN69 SIN69 DEH67 BAR71 BAR71
24 MG 24 MG 24 MG 24 MG 24 MG 24 MG	50.1 65.7 80. 80. 81.0	100.* 100.* 92.0 120. 100.*	1.47 1.44 1.40 1.29 1.38	0.58 0.66 0.709 0.754 0.69	27.6 40.1 47.9 47.9 31.7	1.6* 1.6* 1.40 1.40 1.6*	0.47 0.48 0.709 0.709 0.58						1.3* 1.3* 1.3* 1.3* 1.3*		53 52 51 51 52		DUH68 DUH68 SIN69 SIN69 DUH68
24 MG 24 Mg 24 Mg	104. 119.7 166.	119.1 100.* 97.7	1.13 1.28 1.30	0.82 0.78 0.77	22.9 23.8 26.5	1.56 1.6* 1.63	0.82 0.71 0.53						1.3? 1.3* 1.4*		52 52 51	5 5 4	R EB 72 DUH68 BIM73
25MG	22.1	51.2*	1.694	0.585	11.13	1.694	0.585						1.65*		s2	11	LEG74
26 MG 26 Mg 26 Mg 26 Mg	15.7 15.7 22.2 104.	80.0 116.0 51.2* 95.6	1.61 1.56 1.701 1.30	0.52* 0.52* 0.570 0.71	13.5 17.5 10.84 39.3	1.61 1.56 1.701 1.28	0.52* 0.52* 0.570 0.90						1.5? 1.5? 1.65* 1.3?		S2 S2 S2 S2	24,25 24,25 11 5	WUH74 WUH74 Leg74 RBB72
AL Al Al Al	24.7 24.7 24.7 40.	49.1 197.1 189.4 30.	1.701 1.349 1.526 1.78*	0.572 0.592 0.457 0.5*	7.34 17.0 17.78 12.	1.701 1.349 1.526 1.78*	0.572 0.592 0.457 0.5*						1.3* 1.3* 1.34* 1.22*	1231 1159 1140	5 5 53 53	13 3,26	NCF66 NCF66 NAK70 IG057
27 AL 27 AL 27 AL 27 AL 27 AL 27 AL 27 AL	8.7 8.7 9.34 9.34 10.13 10.13	73.3 77.0 158.0 80.0 12.8 84.0	2.8 2.5* 2.0 2.5* 2.6 2.5*	0.30 0.31* 0.31 0.31* 0.30 0.31*	10.0 22.0 13.0 10.0 3.8 8.6	2.8 2.5* 2.0 2.5* 2.6 2.5*	0.30 0.31* 0.31 0.31* 0.30 0.31*						2.5? 2.5? 2.5? 2.5? 2.5? 2.5?		52 52 53 53 53 53	20 20 20 20 20 20 20	BRA67 BRA67 BRA67 BRA67 BRA67 BRA67 BRA67
27 NL 27 NL 27 NL 27 NL 27 NL 27 NL	22.0 24.9 24.9 25.9 25.9	51.2* 218. 215. 218. 215.	1.655 1.24 1.24 1.24 1.24 1.24	0.588 0.68 0.67 0.68 0.67	11.87 25.6 52.6 27.0 55.7	1.655 1.24 0.94 1.24 0.94	0.588 0.68 0.22 0.68 0.22						1.65* 1.7* 1.7* 1.7* 1.7*		S2 S3 S2 S3 S2	11 12,10 12,10 12,10 12,10	LEG74 KEM72 KEM72 KEM72 KEM72 KEM72
27 AL 27 AL 27 AL 27 AL 27 AL 27 AL 27 AL	27.2 27.2 27.5 27.5 27.5 27.5 28.	30.* 30.* 218. 215. 164.4 41.0	1.737 1.737 1.24 1.24 1.229 1.841	0.52 0.52 0.68 0.67 0.746 0,443	9.44 29.1 61.9 22.15 9.7	1.737 1.24 0.94 1.229 1.841	0.52 0.68 0.22 0.746 0.443	9.50	1.436	0.52			1.22* 1.22* 1.7* 1.7* 1.34* 1.3*	1251 1267	53 53 52 52 53 52	12,10 12,10 10 5	NEM67 NEM67 KEM72 KEM72 BOB71 SAT65
27 NL 27 NL	104. 104.	107.4 187.8	1.31	0.748 0.685	22.2 37.9	1.65 1.27	0.543 0.833						1.3? 1.37		5 1 5 1	5 5	HAU72 HAU72
51 51	24.7 24.7	24.9 203.0	1.802 1.557	0.540 0.449	9.0 18.88	1.802 1.557	0.540 0.449						1.3* 1.34*	1219 1175	53 53		MCF66 MAK70
2851 2851 2851 2851 2851 2851	15.7 15.7 21.9 27.5 28.	82.0 121.0 51.2* 202.4 52.5	1.62 1.52 1.682 1.314 1.657	0.52* 0.52* 0.627 0.673 0.555	13.5 17.5 14.10 20.55 8.6	1.62 1.52 1.682 1.314 1.657	0.52* 0.52* 0.627 0.673 0.555						1.5? 1.5? 1.65* 1.34* 1.4*	1279 1179	52 52 53 53 53	24,25 24,25 11 10 5	WUH74 WUH74 LEG74 BOB71 SAT65
2851 2851	104. 166.	104.7 109.7	1.35 1.25	0.658 0.81	37.1 24.6	1.36 1,63	0.77 0.51						1.3? 1.4+		51 52	4 4	REB72 TAT70
3051 3051	15.7 15.7	80.8 121.0	1.58 1.55	0.52* 0.52*	13.0 17.5	1.58 1.55	0.52* 0.52*						1.57 1.57		52 52	24,25 24,25	WUH74 WoH74
P 31P 31P	25.0 20.5 20.5	229.2 62.78 100.4	1.641 1.780 1.664	0.395 0.440 0.448	26.02 9.61 12.58	1.641 1.780 1.664	0.395 0.440 0.448						1.34* 1.2* 1.2*	1246 1178 1124	53 5 5	7 13 13	MAK70 LUC66 LUC66

ptical-	Model	Parar	neters		Alpł	nas					
NTIAL AW	SURF.IN WD	AG. POT RD	ENTIAL AD	SPIN- VSO	-ORBIT RSO	POTENTIAL ASO	RC	SR	FIT	NOTE	RE P.

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	TAL A	VOL.INA W	AG. POTI RW	ENTIAL AW	SURF.IN WD	AG. POT RD	ENTIAL AD	SPIN-ORBIŤ VSO RSO	POTENTIAL ASO	RC	SR	FIT	NOTE	RE F.
s	24.4	137.8	1.607	0.407	22.56	1.607	0.407						1.34*	1185	S 3		MAK70
325 325 325 325 325 325	18.1 18.1 23.8 27.5 27.9	78.31 112.2 49.45 227.1 57.6	1.596 1.543 1.62 1.101 1.63	0.588 0.584 0.63 0.744 0.525	9.18 11.09 7.13 26.64 10.6	1.596 1.543 1.62 1.101 1.63	0.588 0.584 0.63 0.744 0.525						1.2* 1.2* 1.6? 1.34* 1.4*	1193 1200 1190	S S S2 S3 S2	16 16 10 5	LUC66 LUC66 GRE67 BOB71 KOK67
32 S 32 S 32 S 32 S	56. 56. 56. 166.	80.55 171.1 197.2 116.8	1.5* 1.45* 1.3* 1.22	0.575 0.52 0.61 0.82	20.75 23.60 26.90 20.4	1.50* 1.5* 1.5* 1.67	0.615 0.515 0.545 0.52						1.4? 1.4? 1.4? 1.4?	1263 1243 1245	52 52 52 52	4,10 4,10 4,10 4	GAI69 GAI69 GAI69 BIM73
345	18.	206.0	1.40*	0.53	14.4	1.48	0.64						1.4*		S 3		LEI70
AR	18.	100.	1.57	0.6	15.	1.57	0.6						1.17*		S 2	10,26	IG059
36 AR 36 AR 36 AR 36 AR 36 AR	14. 15. 16. 17.	182.2 180.7 179.0 180.5	1.48* 1.48* 1.48* 1.48*	0.59* 0.59* 0.59* 0.59*				36.4 36.5 36.2 36.6	1.73* 1.73* 1.73* 1.73*	0.30* -0.30* 0.30* 0.30*			1.54* 1.54* 1.54* 1.54*		52 52 52 52	19 19 19 19	WAL70 WAL70 WAL70 WAL70
40 AR 40 AR 40 AR 40 AR	18.0 18.0 22.0 27.6	66.47 99.39 38.0 57.5	1.668 1.594 1.775 1.61	0.519 0.524 0.50* 0.540	12.25 15.07 9.0 14.0	1.668 1.594 1.775 1.61	0.519 0.524 0.50* 0.540						1.2* 1.2* 1.25* 1.4*	1255 1241	52 52 52 52	5	LUC66 LUC66 WAK70 KOK67
к к 39к	24.6 24.6 27.5	201.7 253.8 215.8	1.389 0.974 1.111	0.613 0.871 0.785	14.78 22.60 22.25	1.389 0.974 1.111	0.613 0.871 0.785						1.34* 1.34* 1.34*	1334 1272 1287	52 53 52	7 10	MAK70 MAK70 BOB71
CA CA CA CA CA	8.71 8.71 9.29 9.29 10.07 10.07	9.04 43.0 6.8 41.5 31.5 39.7	1.745 2.0* 2.15 2.0* 2.20 2.0*	0.604 0.35* 0.25 0.35* 0.327 0.35*	0.59 1.18 0.65 2.64 2.81 3.10	1.745 2.0* 2.15 2.0* 2.20 2.0*	0.604 0.35* 0.25 0.35* 0.327 0.35*						2.0? 2.0? 2.0? 2.0? 2.0? 2.0?		S1 S2 S2 S2 S2 S2 S2		BRA67 BRA67 BRA67 BRA67 BRA67 BRA67 BRA67
CA CA CA CA	24.7 24.7 40. 40.	195.0 211.1 210.0 180.0	1.210 1.140 1.41 1.35	0.721 0.790 0.59 0.65	19.2 28.8 20.2 23.5	1.210 0.750 1.66 1.31	0.721 1.142 0.35 0.69						1.3* 1.3* 1.30* 1.30*	1251 1369	53 53 5 52	10 10 4 4	NCF66 NCF66 YOU70A YOU70A
40CA 40CA 40CA	23.1 24.0 27.5	240. 49.38 229.0	1.21 1.667 1.066	0.67 0.574 0.790	22.5 9.58 24.36	1.33 1.843 1.066	0.44 0.475 0.790						1.33 1.56 1.34*	1233	53 5 53	7 5,17 10	LAB69 VOI74 BOB71
40CA 40CA 40CA 40CA	31. 41.78 56. 56.	50.03 200.* 74.3 158.9	1.652 1.437 1.5* 1.4*	0.585 0.554 0.605 0.585	12.39 21.95 18.75 21.05	1.652 1.437 1.5* 1.5*	0.585 0.554 0.63 0.54						1.5? 1.4? 1.4? 1.4?	1382 1364	52 51 5 5	5 4 10 10	LIP67 FER70 GA169 GA169
40CA 40CA 40CA 40CA	104. 104. 142. 166.	113.5 219.3 107.8 112.9	1.30 1.21 1.315 1.24	0.764 0.713 0.763 0.79	19.8 98.8 19.8 20.7	1.62 1.40 1.694 1.62	0.559 0.544 0.514 0.55						1.3? 1.3? 1.30* 1.4*		51 5 51 52	5 5 4	HAU72 HAU72 GOL74 BIN73
4 1 C A	24.0	49.38	1.667	0.574	9.58	1.843	0.475						1.56		52	5,17	V OI 7 4
42CA 42CA 42CA 42CA 42CA 42CA	30.5 30.5 31. 41.76 42. 42.	54.6 208.8 51.27 200.* 47.0 212.3	1.622 1.391 1.608 1.426 1.596 1.354	0.599 0.603 0.625 0.555 0.602 0.589	16.3 28.7 14.23 28.42 16.9 22.3	1.700 1.593 1.608 1.426 1.591 1.520	0.603 0.602 0.625 0.555 0.604 0.586						1.4? 1.4? 1.5? 1.4? 1.4? 1.4?		51 52 51 52 52 52	5 5 4 5,10 5,10	JAC68 JAC68 LIP67 FER70 JAC68 JAC68
43CA	25.5	52.58	1.573	0.606	11.02	1.658	0.552						1.65		S 2	4,17	V OI74
44 CA 44 CA 44 CA 44 CA	25.5 31. 41.76 166.	52.58 53.32 200.* 106.4	1.573 1.555 1.396 1.29	0.606 0.630 0.573 0.79	11.02 14.62 40.69 23.0	1.658 1.555 1.396 1.61	0.552 0.630 0.573 0.64						1.65 1.5? 1.4? 1.4*		52 52 51 52	4 ,17 5 4 2	VOI74 LIP67 FER70 BIM73
48 CA 48 CA 48 CA	31. 41.77 166.	53.00 200.* 106.9	1.549 1.354 1.29	0.641 0.586 0.77	14.98 52.04 21.5	1.549 1.354 1.59	0.641 0.586 0.65						1.5? 1.4? 1.4*		S2 S1 S1	5 4 2	LIP67 PER70 BIM73
45SC 45SC 45SC	41. 41. 41.	64.6 103.6 200.2	1.6* 1.515 1.395	0.538 0.544 0.565	14.3 17.5 26.4	1.6* 1.515 1.395	0.538 0.544 0.565						1.6 1.51 1.39		51 51 51	5 5 5	PRI69 PRI69 PRI69
TI TI	27.5 40.	192.1 30.	1.337 1.71*	0.614 0.5*	25.78 14.	1.337 1.71*	0.614 0.5*						1.34* 1.22*	1363	S2 S2	10 5,26	BOB71 IG057
46TI 46TI 46TI 46TI	41.92 43.0 43.0 104.	200.* 183.1 139.2 115.6	1.410 1.438 1.476 1.30	0.565 0.537 0.540 0.74	39.90 28.5 24.8 20.3	1.410 1.438 1.476 1.68	0.565 0.537 0.540 0.65						1.4? 1.4* 1.4* 1.3*		51 51 51 51	4 4 4	FER70 YNT67 YNT67 REB74

Alphas

TABLE VI. Optical-Model Parameters

NUCL ID E	EN ER GY (MEV)	R E A L V	POTENT R	IAL A	VOL.INA W	NG. POTI	ENTIAL AW	SURF.IM WD	AG. POTE RD	A D	SPIN-ORE VSO RS	BIT 1 50	POTENTIAL ASO	RC	SR	FIT	NOTE	REF.
48TI 48TI 48TI 48TI 48TI 48TI	28. 31. 41.94 43.0 43.0 104.	48.0 56.3 200.* 186.7 145.9 121.2	1.617 1.54 1.377 1.438* 1.458 1.26	0.516 0.646 0.582 0.526 0.540 0.76	12.9 13.0 43.28 26.0 23.4 22.7	1.617 1.54 1.377 1.438* 1.458 1.58	0.516 0.646 0.582 0.526 0.540 0.64							1.3* 1.4? 1.4? 1.4* 1.4* 1.3*	1347	51 52 51 51 51 51	5 4 4 4 4	SAT 65 BER 68 FER 70 YNT 67 YNT 67 REB 74
50TI 50TI 50TI	30.5 30.5 30.5	183.7 61.4 242.7	1.4 1.546 1.327	0.564 0.588 0.597	26.6 16.7 37.3	1.4 1.490 1.240	0.564 0.579 0.593							1.3* 1.4? 1.4?		52 52 52		ST067 JAC68 JAC68
50TI 50TI 50TI 50TI 50TI 50TI	41.92 43.0 43.0 44. 44. 104.	200.* 182.7 139.6 47.6 196.4 112.2	1.378 1.438* 1.476* 1.584 1.354 1.32	0.569 0.527 0.527 0.610 0.600 0.69	38.39 23.4 20.3 20.4 21.9 19.1	1.378 1.438* 1.476* 1.505 1.469 1.57	0.569 0.527 0.527 0.608 0.600 0.69							1.4? 1.5* 1.4* 1.4? 1.4? 1.3*		51 51 52 52 51	4 4 4,10 4,10 4	FER70 YNT67 YNT67 JAC68 JAC68 REB74
CR CR	24.7 24.9	193.5 193.5	1.383 1.383	0.550	26.88 26.88	1.383 1.383	0.550 0.550							1.4? 1.34*	1290 1289	S2 S2	10	BUD67 MAK70
50CR 50CR 50CR 50CR 50CR 50CR	21. 21. 23. 23. 25. 25.	226.2 217.7 184.3 206.2 185.6 217.0	1.33 1.37* 1.40 1.37* 1.40 1.37*	0.60 0.56* 0.56 0.56* 0.57 0.56*	31.4 31.4 24.8 27.7 25.4 29.9	1.33 1.37* 1.40 1.37* 1.40 1.37*	0.60 0.56* 0.56 0.56* 0.57 0.56*							1.40* 1.40* 1.40* 1.40* 1.40* 1.40*		53 53 53 53 53 53 53	14 14 14 14 14 14	LEM72 LEM72 LEM72 LEM72 LEM72 LEM72 LEM72
50CR 50CR 50CR 50CR 50CR	27.2 27.2 27.2 27.2 29.6 29.6	174.8 189.0 89.0 186.0 210.5 190.7	1.41 1.37* 1.46 1.36 1.28 1.37*	0.50 0.56* 0.58 0.58 0.63 0.56*	24.3 29.1 16.3 32.0 29.7 25.4	1.41 1.37* 1.46 1.36 1.28 1.37*	0.50 0.56* 0.58 0.58 0.63 0.56*							1.40* 1.40* 1.4? 1.4? 1.40* 1.40*		S 2 S S 2 S 2 S 3	14 16,14 10 10 15,14 14	LEM72 LEM72 SIM72 SIM72 LEM72 LEM72
50CR	35.6	200.*	1.368	0.619	15.18	1.728	0.395							1.4*		S2	5	PET72
52CR 52CR 52CR 52CR 52CR 52CR 52CR	21. 21. 25. 25. 29.6 29.6	189.3 186.6 211.4 203.9 174.4 178.2	1.36 1.37* 1.34 1.37* 1.43 1.37*	0.57 0.56* 0.57 0.56* 0.48 0.56*	24.9 24.9 30.1 29.0 23.4 24.5	1.36 1.37* 1.34 1.37* 1.43 1.37*	0.57 0.56* 0.57 0.56* 0.48 0.56*							1.40* 1.40* 1.40* 1.40* 1.40* 1.40*		S1 S2 S S2 S2 S3	14 14 16,14 14 14	LEM72 LEM72 LEM72 LEM72 LEM72 LEM72
52CR	41.96	200.*	1.413	0.539	26.29	1.413	0.539							1.4?		51	4	FER70
mn Bn Mn	24.7 24.7 24.7	169.8 212.9 211.2	1.445 1.416 1.419	0.494 0.493 0.495	25.1 28.7 26.64	1.445 1.416 1.419	0.494 0.493 0.495							1:3* 1.3* 1.34*	1264 1261 1266	S S 1 S 2	10 10	HCF66 HCF66 HAK70
pe Pe	24.7 24.9	223.7 223.0	1.380 1.382	0.542 0.540	24.62 24.62	1.380 1.382	0.542 0.540							1.4? 1.34*	1294 1295	\$2 \$2	10	BUD67 MAK70
54 PB 54 PB 54 PB 54 PB 54 PB 54 PB	8.0 8.5 9.0 9.5 10.0 10.5	42.5* 42.5* 42.5* 42.5* 42.5* 42.5*	1.495* 1.495* 1.495* 1.495* 1.495* 1.495*	0.57* 0.57* 0.57* 0.57* 0.57* 0.57*	2.40 2.88 3.35 3.90 4.40 4.93	1.614* 1.614* 1.614* 1.614* 1.614* 1.614*	0.57* 0.57* 0.57* 0.57* 0.57* 0.57*							1.49* 1.49* 1.49* 1.49* 1.49* 1.49*		S2 S2 S2 S2 S2 S2 S2		YAR73 YAR73 YAR73 YAR73 YAR73 YAR73 YAR73
54 PE 54 PE 54 PE 54 PE 54 PE 54 PB	11.0 11.5 12.0 12.5 13.0 15.0	42.5* 42.5* 42.5* 42.5* 42.5* 42.5*	1.495* 1.495* 1.495* 1.495* 1.495* 1.495*	0.57* 0.57* 0.57* 0.57* 0.57* 0.57*	5.45 5.99 6.50 7.02 7.52 9.60	1.614* 1.614* 1.614* 1.614* 1.614* 1.614*	0.57* 0.57* 0.57* 0.57* 0.57* 0.57*							1.49* 1.49* 1.49* 1.49* 1.49* 1.49*		52 52 52 52 52 52 52		YAR73 YAR73 YAR73 YAR73 YAR73 YAR73 YAR73
54 FE 54 PE 54 PE 54 FE 54 FE 54 FE	21. 21. 23. 23. 25. 25.	179.1 187.2 174.5 196.8 200.3 196.1	1.41 1.37* 1.43 1.37* 1.35 1.37*	0.52 0.56* 0.52 0.56* 0.56 0.56*	20.6 21.7 23.5 23.9 28.8 27.5	1.41 1.37* 1.43 1.37* 1.35 1.37*	0.52 0.56* 0.52 0.56* 0.56 0.56*							1.40* 1.40* 1.40* 1.40* 1.40* 1.40*		S1 S2 S3 S2 S2 S	14 14 14 14 14 16,14	LEM72 LEM72 LEM72 LEM72 LEM72 LEM72 LEM72
54 PE 54 PE 54 PE	29.6 29.6 42.02	192.6 179.1 200.*	1.31 1.37* 1.378	0.59 0.56* 0.562	25.0 24.1 32.46	1.31 1.37* 1.378	0.59 0.56* 0.562							1.40* 1.40* 1.4?		53 53 51	14 14 4	LEM72 LEM72 FER70
56 PE 56 PE 56 PE 56 PE 56 PE 56 PE	21. 21. 23. 23. 25. 25.	182.3 213.4 229.4 186.7 197.9 205.6	1.37 1.37* 1.20 1.37* 1.39 1.37*	0.55 0.56* 0.67 0.56* 0.53 0.56*	23.0 24.8 29.6 26.1 27.3 27.1	1.37 1.37* 1.20 1.37* 1.39 1.37*	0.55 0.56* 0.67 0.56* 0.53 0.56*							1.40* 1.40* 1.40* 1.40* 1.40* 1.40*		53 53 53 53 53 53 53 53	14 14 14 14 14 14	LEM72 LEM72 LEM72 LEM72 LEM72 LEM72 LEM72
56 FE 56 FE 56 FE 56 FE 56 FE	26.45 27.2 27.2 27.2 27.2 27.2	74. 223.1 214.3 93.0 187.0	1.53 1.30 1.37* 1.44* 1.34*	0.60 0.59 0.56* 0.60* 0.57	13. 29.1 27.4 20.0 25.0	1.53 1.30 1.37* 1.44* 1.34*	0.60 0.59 0.56* 0.60* 0.57							1.5? 1.40* 1.40* 1.4? 1.4?		S S S2 S2	W65 15,14 15,14 10 10	BLA62 LEM72 LEM72 SIM72 SIM72
56 PE 56 PE 56 PE	29.6 29.6 42.08	187.0 206.3 200.*	1.31 1.37* 1.350	0.61 0.56* 0.588	26.7 25.1 44.60	1.31 1.37* 1.350	0.61 0.56* 0.588							1.40* 1.40* 1.4?		S3 S3 S1	14 14 3	LEM72 LEM72 PER70

TABLE VI. Optical-Model Parameters Alphas

NUCLIDE	ENERGY (NEV)	REAL V	POTENT R	TAL A	VOL.IMA W	AG. POTI	ENTIAL AW	SURF.IMAG. POTENTIAL WD RD AD	SPIN-ORBIT VSO RSO	POTENTIAL A SO	RC	SR	FIT	NOTE	REF.
58 PE 58 PE	21. 21.	66.28 67.94	1.564 1.569*	0.564 0.533*	13.69 13.44	1.565 1.569*	0.503 0.388*				1.4* 1.4*	1274 1227	s2 s	20,10 20,10	FUL68 FUL68
58 FE 58 FE 58 FE 58 FE 58 FE 58 FE	64.3 64.3 64.3 64.3 64.3	41.22 78.5 118.1 165.2 220.4	1.57* 1.438 1.356 1.300 1.250	0.628 0.663 0.676 0.670 0.670	25.53 24.1 23.6 25.2 26.7	1.57* 1.576 1.581 1.546 1.537	0.585 0.579 0.571 0.601 0.598				1.5* 1.11* 1.11* 1.11* 1.11*	1681 1677 1684 1683	S1 S1 S1 S1 S1	5 22 22 22 22 22	DAR64 WEI70 WEI70 WEI70 WEI70
CO CD CO CO	24.7 24.7 24.7 24.7	164.7 206.8 204.7 204.7	1.442 1.410 1.418 1.418	0.520 0.519 0.519 0.519 0.519	22.4 25.8 24.00 24.0	1.442 1.410 1.418 1.418	0.520 0.519 0.519 0.519				1.3* 1.3* 1.4? 1.34*	1300 1294 1303 1303	S S 1 S 1 S 1	10 10 10	MCP66 MCP66 BUD67 MAK70
59CD 59CO	27.5 28.	175.3 46.3	1.458 1.574	0.484 0.586	26.02 15.4	1.458 1.574	0.484 0.586				1.34* 1.3*	1332 1441	52 51	10 5	BOB71 SAT65
NI NI NI NI NI	8.85 8.85 9.26 9.26 10.07 10.07	60. 174. 32. 173.3 12. 165.0	1.62 1.62* 1.70 1.62* 1.72 1.62*	0.54 0.40* 0.48 0.40* 0.48 0.48 0.48	0.5 0.65 1.8 13.8 1.6 11.4	1.62 1.62* 1.70 1.62* 1.72 1.62*	0.54 0.40* 0.48 0.40* 0.48 0.48				1.6? 1.6? 1.6? 1.6? 1.6? 1.6?		51 51 51 51 51 51		BRA67 BRA67 BRA67 BRA67 BRA67 BRA67 BRA67
NI NI NI	24.7 24.7 24.7 24.7	43.9 198.6 200.5 200.5	1.612 1.458 1.451 1.451	0.534 0.502 0.504 0.503	10.4 19.9 20.11 20.11	1.612 1.458 1.451 1.451	0.534 0.502 0.504 0.503				1.3* 1.3* 1.4? 1.34*	1292 1298 1285 1285	S2 S1 S2 S2	10 10 10	MCF66 MCF66 BUD67 MAK70
58NI 58NI 58NI 58NI 58NI 58NI	21. 21. 21. 21. 23. 23.	67.43 69.07 169.5 180.7 166.5 191.8	1.586 1.569* 1.43 1.37* 1.44 1.37*	0.522 0.533* 0.50 0.56* 0.53 0.56*	12.78 13.22 18.9 21.9 20.0 21.8	1.586 1.569* 1.43 1.37* 1.44 1.37*	0.409 0.388* 0.50 0.56* 0.53 0.56*				1.4* 1.40* 1.40* 1.40* 1.40* 1.40*	1158 1158	S2 S S1 S2 S2 S2	20,10 20,10 14 14 14 14	FUL68 FUL68 LEM72 LEM72 LEM72 LEM72
58NI 58NI 58NI 58NI 58NI 58NI	25. 25. 27.2 27.2 27.2 27.2 27.2	185.0 194.2 210.3 200.7 93.0 185.0	1.39 1.37* 1.31 1.37* 1.44* 1.40	0.55 0.56* 0.59 0.56* 0.60* 0.60*	24.6 26.0 26.7 24.9 20.0 20.0	1.39 1.37* 1.31 1.37* 1.44* 1.40	0.55 0.56* 0.59 0.56* 0.60* 0.60*				1.40* 1.40* 1.40* 1.40* 1.40* 1.4?		S2 S3 S S2 S3	14 15,14 15,14 15,14 10 10	LEM72 LEM72 LEM72 LEM72 SIM72 SIM72
58NI 58NI 58NI	28. 29.6 29.6	48.8 224.8 195.8	1.591 1.31 1.37*	0.530 0.56 0.56*	11.1 27.3 23.1	1.591 1.31 1.37*	0.530 0.56 0.56*				1.3* 1.40* 1.40*	1342	S 1 S 2 S	5 14 15,14	SAT65 LEM72 LEM72
58NI 58NI 58NI 58NI	32.3 32.3 34.4 34.4	103.6 135.4 46.33 228.5	1.406 1.425 1.633 1.416	0.637 0.575 0.534 0.530	14.1 21.5 15.43 51.97	1.626 1.576 1.476 0.971	0.443 0.345 0.534 0.530				1.4* 1.4* 1.25* 1.25*		52 52 51 52	10 10 5 5	COW74 COW74 IN068 IN068
58 NI 58 NI 58 NI 58 NI 58 NI	42. 42. 42.12 43. 43.	150.8 41.45 200.* 67.0 152.5	1.36 1.52 1.375 1.524 1.344	0.624 0.684 0.566 0.529 0.606	31.05 10.07 27.86 14.6 28.6	1.36 1.71 1.375 1.524 1.344	0.624 0.559 0.566 0.529 0.606				1.25* 1.25* 1.4? 1.4* 1.4*	1512 1541 1447 1460	53 52 51 5 5	10 10 4 10,15 10,15	BAR71 BAR71 FER70 BR065 BR065
58NI 58NI 58NI 58NI 58NI 58NI	50.2 50.2 50.2 50.2 50.2 50.2 50.2	105.3 144.5 188.2 95.1 132.9 178.4	1.456 1.417 1.385 1.555 1.505 1.450	0.571 0.563 0.557 0.516 0.518 0.540	22.3 25.4 28.8 19.6 20.8 20.7	1.456 1.417 1.385 1.692 1.678 1.687	0.571 0.563 0.557 0.246 0.250 0.251				1.5? 1.5? 1.5? 1.11* 1.11* 1.11*	1533 1525 1519	51 51 51 51 51 51	5 5 22 22 22 22	JAR67 JAR67 JAR67 WEI70 WEI70 WEI70
58NI 58NI 58NI 58NI 58NI 58NI	60. 60. 64.3 64.3 64.3 64.3	173.1 228.2 44.99 111.4 158.9 209.4	1.279 1.254 1.57* 1.423 1.357 1.316	0.719 0.692 0.565 0.625 0.629 0.625	22.17 25.23 20.91 20.0 21.0 22.3	1.588 1.577 1.57* 1.661 1.641 1.631	0.531 0.515 0.580 0.420 0.438 0.437				1.3* 1.5* 1.11* 1.11* 1.11*	4634 1628 4591 1592 1590	S1 S2 S2 S2 S2 S2	10 10 5 22 22 22	MAD74 MAD74 DAR64 WEI70 WEI70 WEI70
58NI 58NI 58NI 58NI 58NI 58NI	104. 139. 139. 139. 166.	120.0 116.7 116.4 118.2 107.4	1.27 1.246 1.245 1.240 1.27	0.74 0.793 0.793 0.796 0.75	21.3 21.15 20.52 20.5 22.6	1.55 1.590 1.595 1.595 1.595	0.67 0.569 0.571 0.571 0.50				1.3* 1.25? 1.40* 1.30* 1.4*		S1 S1 S1 S1 S2	17,5 5 5 5 4	REB72A GOL72 GOL73 GOL74 BIM73
60NI 60NI 60NI 60NI 60NI	16.6 21. 21. 23. 23.	45.9 212.3 211.0 160.8 189.8	1.45 1.47 1.37* 1.45 1.37*	0.55* 0.55 0.56* 0.53 0.56*	10.0 23.6 23.0 19.8 22.3	1.45 1.47 1.37* 1.45 1.37*	0.55* 0.55 0.56* 0.53 0.56*				1.45? 1.40* 1.40* 1.40* 1.40*		S 2 52 52 52 52 52 5	14 14 14 16,14	HER70 LEM72 LEM72 LEM72 LEM72
60NI 60NI 60NI 60NI 60NI 60NI	25. 25. 27.2 27.2 27.2 27.2 27.2	202.3 227.4 211.2 207.1 93.0 185.0	1.33 1.37* 1.34 1.37* 1.44* 1.40	0.59 0.56* 0.56 0.56* 0.60* 0.60*	30.8 30.9 26.8 26.9 20.0 21.7	1.33 1.37* 1.34 1.37* 1.44* 1.40	0.59 0.56* 0.56 0.56* 0.60* 0.60*				1.40* 1.40* 1.40* 1.40* 1.47		S3 S S2 S2 S2 S2 S2	14 16,14 14 14 10 10	LEM72 LEM72 LEM72 LEM72 SIM72 SIM72
60NI 60NI 60NI	28. 29.6 29.6	47.7 210.7 200.1	1.581 1.35 1.37*	0.549 0.55 0.56*	11.9 27.0 25.5	1.581 1.35 1.37*	0.549 0.55 0.56*				1.3* 1.40* 1.40*	1381	S 1 S2 S	5 14 15,14	SAT65 LEM72 LEM72

Alphas

TABLE VI. Optical-Model Parameters

NUCLIDE	ENERGY (Mev)	REAL V	POTENT R	IAL A	VOL.INA W	AG. POT	BNTIAL AW	SURP.IMAG WD	. POTE RD	NTIAL AD	SPIN-O VSO	RBIT RSO	POTENTIAL ASO	RC	SR	FIT	NOTE	REF.
60NI 60NI 60NI 60NI	32.3 32.3 34.4 34.4	101.4 131.1 50.56 226.0	1.408 1.419 1.589 1.385	0.645 0.579 0.567 0.554	14.0 19.2 17.22 35.94	1.624 1.547 1.509 1.254	0.531 0.465 0.567 0.554							1.4* 1.4* 1.25* 1.25*		52 52 51 51	10 10 5 5	COW74 COW74 IN068 IN068
60NI 60NI 60NI 60NI 60NI	42.00 60. 60. 104. 166.	200.* 163.3 215.2 113.1 103.8	1.371 1.299 1.272 1.325 1.28	0.572 0.666 0.643 0.68 0.71	42.97 24.86 29.04 22.4 25.3	1.371 1.518 1.484 1.52 1.51	0.572 0.577 0.580 0.72 0.63							1.4? 1.3* 1.3* 1.3* 1.4*	1624 1622	51 51 51 51 52	4 10 10 17,5 4	PER70 MAD74 MAD74 REB72A BIM73
62NI 62NI 62NI 62NI 62NI 62NI	21. 21. 21. 21. 23. 23.	67.89 65.63 236.0 203.2 201.0 186.7	1.555 1.569* 1.29 1.37* 1.40 1.37*	0.526 0.533* 0.54 0.56* 0.55 0.56*	12.81 12.94 23.9 22.1 25.2 24.9	1.555 1.569* 1.29 1.37* 1.40 1.37*	0.338 0.388* 0.54 0.56* 0.55 0.55							1.4* 1.4* 1.40* 1.40* 1.40* 1.40*	1189 1216	S 2 S S 2 S 2 S 2 S 2 S 2 S	20,10 20,10 14 14 14 14	PUL68 PUL68 LEM72 LEM72 LEM72 LEM72
62NI 62NI 62NI 62NI 62NI 62NI	25. 25. 29.6 29.6 32.3 32.3	204.2 196.8 195.3 200.2 101.3 134.6	1.33 1.37* 1.40 1.37* 1.408 1.399	0.59 0.56* 0.53 0.56* 0.645 0.582	25.3 25.5 26.5 26.9 14.0 21.2	1.33 1.37* 1.40 1.37* 1.624 1.478	0.59 0.56* 0.53 0.56* 0.531 0.598							1.40* 1.40* 1.40* 1.40* 1.4* 1.4*		S 3 S S S2 S2	14 16,14 15,14 15,14 10 10	LEN72 LEN72 LEN72 LEN72 COW74 COW74
62NI 62NI 62NI 62NI 62NI	33. 41.98 50. 60. 60.	60. 200.* 70. 162.3 217.2	1.550* 1.357 1.55* 1.300 1.263	0.533* 0.595 0.533* 0.663 0.649	11.4 54.30 40. 27.72 32.88	1.652* 1.357 1.652* 1.486 1.447	0.352* 0.595 0.352* 0.624 0.631							1.47 1.47 1.47 1.3* 1.3*	1686 1683	51 51 51 51 51	4 4 10 10	TAM65 FER70 TAM65 MAD74 MAD74
62 NI 62 NI 62 NI	100. 104. 166.	73. 117.5 115.7	1.55* 1.28 1.20	0.533* 0.70 0.80	50. 22.3 21.6	1.652* 1.525 1.53	0.352* 0.71 0.64							1.4? 1.3* 1.4*		S 1 S 1 S 2	2 17,5 4	TAM 65 REB72A BIM73
64 NI 64 NI 64 NI 64 NI 64 NI	19.5 21. 21. 21. 21. 21.	58.24 64.37 64.24 212.9 200.4	1.597 1.570 1.569* 1.33 1.37*	0.578 0.528 0.533* 0.56 0.56*	12.77 13.91 13.74 25.0 25.2	1.597 1.570 1.569* 1.33 1.37*	0.554 0.359 0.388* 0.56 0.56*							1.4* 1.4* 1.4* 1.40* 1.40*	1295 1235 1240	52 51 5 52 52	20,10 20,10 14 14	IVA 70 FUL68 PUL68 LEM 72 LEM 72
64 NI 64 NI 64 NI 64 NI 64 NI 64 NI	23. 23. 25. 25. 29.6 29.6	203.3 207.3 201.7 202.0 201.4 198.1	1.35 1.37* 1.33 1.37* 1.36 1.37*	0.59 0.56* 0.59 0.56* 0.56 0.56	29.4 30.7 25.8 29.3 25.8 25.8	1.35 1.37* 1.33 1.37* 1.36 1.37*	0.59 0.56* 0.59 0.56* 0.56 0.56							1.40* 1.40* 1.40* 1.40* 1.40* 1.40*		S2 S2 S3 S S S	14 14 15,14 15,14 15,14	LEN72 LEN72 LEN72 LEN72 LEN72 LEN72 LEN72
64 NI 64 NI 64 NI 64 NI 64 NI 64 NI	30.5 32.3 32.3 60. 60. 104.	206.2 96.7 133.4 165.8 224.1 135.1	1.472 1.436 1.406 1.275 1.235 1.235	0.501 0.614 0.574 0.671 0.659 0.80	21.22 14.6 24.2 27.87 30.57 21.2	1.472 1.590 1.366 1.462 1.441 1.55	0.501 0.580 0.652 0.642 0.644 0.73							1.47 1.4* 1.4* 1.3* 1.3* 1.3*	1683 1680	S2 S2 S2 S1 S1 S1	5 10 10 10 10 17,5	HEY68 COW74 COW74 MAD74 MAD74 REB72A
CU CU CU CU	24.7 24.7 24.7 40. 40.	157.8 196.8 193.2 46.8 49.3	1.443 1.416 1.436 1.67* 1.70	0.544 0.541 0.534 0.5* 0.5	21.9 24.6 22.84 13. 11.	1.443 1.416 1.436 1.67* 1.70	0.544 0.541 0.534 0.5* 0.5							1.3* 1.3* 1.4? 1.30* 1.17*	1349 1346 1356	S S1 S1 S3 S2	10,17 10,17 10 5,26 10,26	HCF66 NCF66 BUD67 IG057 IG059
63CU 65CU	19.5 19.5	59.22 59.26	1.641 1.586	0.500 0.581	12.12 12.16	1.641 1.586	0.307 0.598							1.4* 1.4*	1175 1272	52 52		IVA70 IVA70
ZN	24.7	200.4	1.394	0.572	25.13	1.394	0.572							1.47	1368	s i	10	BUD67
64 ZN 64 ZN 64 ZN 64 ZN 64 ZN 64 ZN	21. 21. 21. 21. 23. 23.	67.30 67.12 218.2 204.4 206.6 214.3	1.570 1.569* 1.35 1.37* 1.34 1.37*	0.525 0.533* 0.51 0.56* 0.63 0.56*	11.89 12.30 20.4 20.0 21.8 21.1	1.570 1.569* 1.35 1.37* 1.34 1.37*	0.312 0.388* 0.51 0.56* 0.63 0.56*							1.4* 1.4* 1.40* 1.40* 1.40* 1.40*	4171 4179	S2 S2 S3 S3 S3 S3	20,10 20,10 14 14 14 14	PUL68 PUL68 LEN72 LEN72 LEN72 LEN72
64 ZN 64 ZN 64 ZN 64 ZN 64 ZN 64 ZN	25. 25. 27.2 27.2 27.2 27.2 27.2	188.6 191.3 176.1 199.0 93.0 202.0	1.37 1.37* 1.38 1.37* 1.44* 1.34*	0.56 0.56* 0.57 0.56* 0.60* 0.60*	23.4 25.0 26.9 24.7 20.0 28.4	1.37 1.37* 1.38 1.37* 1.44* 1.34*	0.56 0.56* 0.57 0.56* 0.60* 0.60*							1.40* 1.40* 1.40* 1.40* 1.47 1.4?		S3 S3 S2 S2 S2 S2	14 14 15,14 14 10 10	LEM72 LEM72 LEM72 LEM72 SIM72 SIM72 SIM72
64 ZN 64 ZN 64 ZN 64 ZN	29.6 29.6 31.0 44.4	184.5 198.0 45.05* 60.	1.43 1.37* 1.639 1.57	0.50 0.56* 0.551 0.55	23.8 25.9 11.6* 15.	1.43 1.37* 1.639 1.57	0.50 0.56* 0.551 0.55							1.40* 1.40* 1.64? 1.5?		S 2 S S 2 S	14 15,14 5 W65	LEM72 LEM72 Alp70 BEU60
662N 662N 662N 662N	19.5 27.2 27.2 31.0	65.19 93.0 187.0 45.05	1.558 1.44* 1.34* 1.642	0.539 0.60* 0.60* 0.562	10.85 20.0 25.0 11.65	1.558 1.44* 1.34* 1.642	0.539 0.60* 0.60* 0.562							1.4* 1.4? 1.4? 1.64?	1138	52 52 52 51	10 10 5	IVA70 SIH72 SIH72 ALP70
682N	31.	46.05	1.58	0.619	12.29	1.58	0.619							1.58		52	4	ALP71
702N 702N 702N	27.2 27.2 31.	100.0 189.0 38.57	1.40 1.34* 1.64	0.60* 0.60* 0.578	42.3 28.5 12.13	1.40 1.34* 1.64	0.60* 0.60* 0.578							1.4? 1.4? 1.64		52 52 52	10 10 5	SIM72 SIM72 ALP71

Alphas

NUCLIDE	ENERGY (MEV)	REAL V	POTENT R	TAL A	VOL.INI W	AG. POT BW	ENTIAL AW	SURF.INA WD	G. POTE RD	NTIAL AD	SPIN-ON VSO	RBIT RSO	POTENTIAL ASO	RC	SR	FIT	NOTE	REF.
GE GE GE	23.4 24.7 24.7	225.9 184.9 225.6	1.370 1.408 1.382	0.599 0.572 0.569	27.55 24.5 27.5	1.370 1.408 1.382	0.599 0.572 0.569							1.34* 1.3* 1.3*	1391 1360 1356	52 S 51	10,17 10,17	NAK70 NCP66 NCP66
88 SR	166.	116.0	1.27	0.76	22.6	1.50	0.76							1.4*		S 2	2	BIN73
894 1 1 1	20.0 20.0 20.0 65.0	52.93 146.1 177.2 125.0*	1.568 1.464 1.443 1.365	0.528 0.515 0.514 0.635	10.28 18.25 19.84 54.78	1.569 1.470 1.459 1.365	0.485 0.449 0.445 0.635							1.4* 1.4* 1.4* 1.4*	19 22	51 51 51 52	5,10	PAR71 PAR71 PAR71 BIN69
ŻR ZR	24.7 24.7	153.6 187.3	1.468 1.444	0.523	19.8 22.3	1.468 1.444	0.523							1.3* 1.3*	1316 1312	s s 2	10,21	MCF66 MCF66
90 ZR 90 ZR 90 ZR 90 ZR 90 ZR 90 ZR 90 ZR	31. 40.0 59.1 65. 79.5 99.5	42.78 109.5 116.0 34.63 140.6 131.6	1.579 1.491 1.372 1.553 1.225 1.237	0.574 0.509 0.645 0.631 0.824 0.804	10.40 15.15 20.42 17.35 18.04 19.55	1.579 1.570 1.479 1.553 1.587 1.570	0.574 0.309 0.627 0.631 0.548 0.563							1.58 1.3? 1.3? 1.4* 1.3? 1.3?		S 1 S S 1 S 2 S 2	3 15,23 15,23 5 23 23	NAR68 PER75 PER75 BIN66 PER75 PER75
90 ZR 90 ZR 90 ZR	118. 142. 166.	130.0 117.5 118.4	1.231 1.267 1.24	0.821 0.783 0.79	20.03 21.0 21.7	1.572 1.564 1.54	0.568 0.569 0.59							1.3? 1.30* 1.4*		S 2 S 1 S 2	3 4	PUT74 GOL74 BIM73
91 Z R	65.	36.92	1.550	0.661	19.15	1.550	0.661							1.4+		S 1	5	BIN66
922R 922R 922R 922R 922R	65. 65. 65.0 65.0	34.36 75.00* 79.66 212.6	1.554 1.426 1.397 1.267	0.662 0.661 0.699 0.663	18.92 39.34 22.04 98.45	1.554 1.426 1.547 1.261	0.662 0.661 0.595 0.673							1.4* 1.4* 1.4* 1.4*	1968 1982	S 1 S 1 S S	5 5 10 10	BIN66 BIN66 BIN69 BIN69
94ZR	65.0	125.0*	1.346	0.661	66.2	1.346	0.661							1.4*	2014	S 2	5,10	BIN69
96 ZR	65.0	125.0*	1.346	0.660	67.6	1.346	0.660							1.4*	∠040	S 2	5,10	BIN69
NB	40.	45.	1.64*	0.5*	13.5	1.64*	0.5*							1.30*		\$3	5,26	IG057
NO	40.	42.	1.63*	0.5*	9.5	1.63*	0.5*							1.30*		S 2	5,26	IG057
92 NO 92 NO 92 NO 92 NO 92 NO	30.9 31. 32.2 166.	184.9 39.45 154.9 120.5	1.396* 1.624 1.43 1.22	0.562* 0.568 0.549 0.81	25.17 8.65 22.2 21.1	1.396* 1.624 1.26 1.54	0.562* 0.568 0.665 0.60							1.3* 1.62 1.3* 1.4*		S 2 S 1 S 2 S 2	5 5 5,10 4	MAT72 MAR68 BUR75 BIM73
94 MO 94 MO	30.9 32.2	185.4 154.8	1.396¤ 1.42	0.562* 0.562	25.62 23.2	1.396* 1.25	0.562* 0.788							1.3* 1.3*		51 51	5 5,10	HAT72 BUR75
96 MO 96 MO	30.9 32.2	185.9 153.5	1.396# 1.42	0.562* 0.572	26.09 24.9	1.396* 1.25	0.562* 0.825							1.3* 1.3*		51 51	5 5,10	MAT72 BUR75
98 MO 98 MO	30.9 32.2	186.4 158.9	1.396* 1.42	0.562* 0.558	26.45 26.6	1.396* 1.29	0.562* 0.784							1.3* 1.3*		S1 S1	5 5,10	MAT72 BUR75
100 MO 100 MO	30.9 32.2	186.9 161.5	1.396* 1.38	0.562* 0.604	26.90 22.6	1.396* 1.35	0.562* 0.930							1.3* 1.3*		51 51	5 5,10	MAT72 BUR75
AG AG AG AG AG AG	22. 22. 24.7 24.7 24.7	50.* 150.* 35. 37.7 175.4 206.3	1.57 1.49 1.62* 1.596 1.444 1.430	0.6* 0.6* 0.5* 0.582 0.548 0.547	20.* 20.* 7.5 17.4 31.7 30.05	1.57 1.49 1.62* 1.596 1.444 1.430	0.6* 0.6* 0.5* 0.582 0.548 0.547							1.57 1.49 1.30* 1.3* 1.3* 1.34*	1351 1309 1306	S S S S S S S S S S S	W65 W65 26 10 10	CHE57 CHE57 IG057 MCP66 MCP66 MAK70
AG Ag Ag	28. 28. 40.	51.1 50.2 37.	1.484 1.499 1.62*	0.597 0.599 0.5*	9.4 9.8 10.	1.484 1.499 1.62*	0.597 0.599 0.5*							1.3* 1.3* 1.30*	1329 1362	S1 S1 S2	5 5,17 5,26	SAT65 SAT65 IG057
107 AG 107 AG 107 AG 107 AG 107 AG 107 AG	18.7 18.7 22. 22. 40. 40.	50.* 75.* 50.* 75.* 50.* 75.*	1.580 1.526 1.580 1.526 1.580 1.526	0.55 0.55 0.60 0.60 0.61 0.60	20. 27. 20. 27. 29. 37.	1.580 1.526 1.580 1.526 1.580 1.580 1.526	0.55 0.55 0.60 0.60 0.61 0.60							1.4? 1.4? 1.4? 1.4? 1.4? 1.4?		S2 S2 S2 S2 S2 S2 S2 S2	10 10 10 5,10 5,10	ELN65 ELN65 ELN65 ELN65 ELN65 ELN65 ELN65
CD CD	28. 28.	46.2 58.9	1.523 1.521	0.574 0.572	11.8 13.5	1.523 1.521	0.574 0.572							1.3* 1.3*	1408 1460	s t S 1	5 5,17	SAT65 SAT65
IN IN IN	24.7 24.7 24.7	34.8 179.8 172.8	1.590 1.418 1.412	0.598 0.569 0.589	16.7 39.9 60.57	1.590 1.418 1.412	0.598 0.569 0.589							1.3* 1.3* 1.34*	1350 1309 1351	S S 1 S 1	10 10	MCP66 MCP66 MAK70
SN SN SN SN SN SN	24.7 24.7 24.7 28. 28. 166.	45.4 219.3 218.6 47.1 63.1 127.6	1.562 1.395 1.373 1.493 1.488 1.19	0.556 0.549 0.553 0.572 0.575 0.88	11.0 31.8 29.87 9.7 13.5 22.0	1.562 1.395 1.373 1.493 1.488 1.50	0.556 0.549 0.553 0.572 0.575 0.60							1.3* 1.3* 1.34* 1.3* 1.3* 1.5*	126 1 1253 1221 1342 1415	S S1 S1 S1 S1 S1 S2	10 10 5 5,17 4	MCP66 MCP66 MAK70 SAT65 SAT65 TAT70

Alphas

TABLE VI. Optical-Model Parameters

NUCLID E	ÉNERGY (MEV)	R BAL V	POTENT R	TAL A	VOL.IN W	AG. POT RW	ENTIAL AV	SURF.IM WD	NG. POT	BNT IAL AD	SPIN- Vso	ORBIT RSO	POTENTIAL ASO	RC	SR	FIT	NOTE	RE F.
1 16 SN 1 16 SN 1 16 SN 1 16 SN 1 16 SN 1 16 SN	34.4 40. 65.7 65.7 166.	48.5* 60.1 100.0* 200.0* 121.5	1.52* 1.46* 1.352 1.254 1.21	0.585* 0.712 0.667 0.669 0.84	13.0* 18.7 53.7 102.9 21.9	1.52* 1.46* 1.352 1.254 1.51	0.585* 0.712 0.667 0.669 0.63							1.3* 1.4? 1.4* 1.4* 1.20?	1888 2082 2077	51 52 52 52 52 52	17,5 5,10 5,10 4	KUM68 BAR66 BIN69 BIN69 BRI72
11751	34.4	48.5*	1.52*	0.585*	13.0*	1.52*	0.585*							1.3*		S 1	17,5	KU 1168
1 18 SN 1 18 SN 1 18 SN	34.4 40. 166.	48.5* 61.8 125.6	1.52* 1.46* 1.19	0.585* 0.671 0.86	13.0* 26.3 21.6	1.52* 1.46* 1.52	0.585* 0.671 0.62							1.3* 1.4? 1.20?	1896	51 52 52	17,5 4	KUM68 BAR66 BRI72
119 SN	34.4	48.5*	1.52*	0.585*	13.0*	1.52*	0.585*							1.3*		S 1	17,5	KUM68
1205N 1205N 1205N 1205N 1205N 1205N	34.4 40. 42. 42. 166.	48.5* 58.0 42.85 87.68 119.4	1.52* 1.46* 1.47 1.37 1.26	0.585* 0.708 0.724 0.714 0.76	13.0* 28.0 22.80 38.60 30.7	1.52* 1.46* 1.52 1.43 1.43	0.585* 0.708 0.605 0.615 0.70							1.3* 1.4? 1.25* 1.25* 1.20?	1981 1887 1886	5 1 52 52 5 5 52	17,5 10 10 4	KUM68 BAR66 BAR71 BAR71 BRI72
122 SN	40.	62.1	1.46*	0.684	30.3	1.46*	0.684							1.4?	1991	32		BAR66
1245N 1245N	104. 166.	60.0 119.3	1.383 1.26	0.742 0.77	40.88 28.8	1.383 1.45	0.742 0.67							1.387 1.20?		S 2 S 2	4 4	HAU69 BRI72
122TE 124TE 126TE 128TE 130TE	42. 42. 42. 42. 42.	36,64 38,95 39,65 45,79 34,13	1.50* 1.48* 1.48* 1.48* 1.48* 1.50*	0.671 0.672 0.682 0.655 0.671	19.95 21.20 21.55 22.75 20.19	1.50* 1.48* 1.48* 1.48* 1.50*	0.671 0.672 0.682 0.655 0.671							1.5? 1.5? 1.5? 1.5? 1.5?	1881 1878 1915 1931 1959	51 51 51 51 51	5 5	LE067 LE067 LE067 LE067 LE067
140CB 140CB	45. 45.	153.3 189.1	1.386 1.309	0.578 0.62*	20.64 24.2	1.271 1.435	0.805 0.52*							1.4? 1.4*		51 52	5	BAK 70 BAK 72
144 SM	50.	185.0	1.40*	0.52	25.8	1.33	0.49							1.4*		S 2	5	BAR71J
hp Hp Hp	24.7 24.7 24.7	24.6 188.6 207.5	1.440 1.284 1.388	0.578 0.532 0.520	11.2 23.7 46.49	1.440 1.284 1.388	0.578 0.532 0.520							1.3* 1.3* 1.34*	575 561 794	S S 1 S 3	10 10	NCF66 NCF66 NAK70
TA	40.	51.	1.58*	0.5*	9.	1.58*	0.5*							1.30*		52	3,26	IG057
4 11 11	24.7 24.7 24.7	35.2 249.5 195.2	1.448 1.236 1.282	0.573 0.592 0.575	4.96 27.5 27.96	1.448 1.236 1.282	0.573 0.592 0.575							1.3* 1.3* 1.34*	594 592 607	S S 1 S 1	10 10	NCF66 NCF66 NAK70
AU AU AU AU AU	22. 24.7 24.7 24.7 40.	30. 49.1 168.7 191.8 44.	1.57* 1.460 1.378 1.423 1.57*	0.5* 0.549 0.517 0.483 0.5*	9.5 14.9 21.6 32.46 10.	1.57* 1.460 1.378 1.423 1.57*	0.5* 0.549 0.517 0.483 0.5*							1.30* 1.3* 1.3* 1.34* 1.30*	564 559 619	S2 S S1 S2 S2	26 10 10 3,26	IG057 MCF66 MCF66 MAK70 IG057
PB PB PB PB	22. 40. 48. 166.	30. 43. 25. 118.0	1.57* 1.57* 1.47 1.25	0.5* 0.5* 0.6 0.71	16. 7.6 15. 23.1	1.57* 1.57* 1.47 1.39	0.5* 0.5* 0.6 0.81							1.30* 1.30* 1.17* 1.5*		52 52 52 52 52	26 3,26 10,26 4	IG057 IG057 IG059 TAT70
207 PB 207 PB	42. 42.	187. 135.	1.35 1.38	0.574 0.577	25. 21.	1.35 1.38	0.574 0.577							1.3* 1.3*		51 51	5 5	SAT69 SAT69
208 PB 208 PB 208 PB 208 PB 208 PB	19. 19.5 20. 20.	96.44 20. 174. 96.44	1.376 1.22* 1.47 1.376	0.625 0.57* 0.47 0.625	38. 16.83	1.22* 1.47	0.57* 0.47	32.0 32.0	1.216	0.42 0.42				1.20* 1.22* 1.4? 1.20*		52 51 53 52	12,14 12 12,14	BAR74 HUD74 BAR69 BAR74
208 PB 208 PB 208 PB 208 PB 208 PB 208 PB	21.0 22. 22.5 24.5 25.5	32. 96.44 33. 37. 41.	1.22* 1.376 1.22* 1.22* 1.22*	0.57* 0.625 0.57* 0.57* 0.57*	15. 6. 5. 2.	1.22* 1.22* 1.22* 1.22*	0.57* 0.57* 0.57* 0.57*	32.0	1.216	0.42				1.22* 1.20* 1.22* 1.22* 1.22*		S1 S2 S1 S1 S1	12,14	HUD74 BAR74 HUD74 HUD74 HUD74 HUD74
208PB 208PB 208PB 208PB 208PB 208PB	104. 139. 139. 139. 166.	60.0 110.0 155.0 200.0 119.9	1.392 1.315 1.282 1.261 1.26	0.656 0.705 0.677 0.657 0.74	43.85 21.27 23.26 24.50 21.3	1.392 1.509 1.478 1.462 1.45	0.656 0.673 0.733 0.767 0.80							1.39? 1.40* 1.40* 1.40* 1.40*		S2 S2 S1 S2 S1	4 5 5 5 4	HAU69 GOL73 GOL73 GOL73 BIN73
BI BI	24.7 24.7	58.8 177.3	1.454 1.342	0.560 0.569	5.83 15.6	1.454 1.342	0.560 0.569							1.3* 1.3*	502 500	s 51	10 10	NCP66 NCP66
20981 20981 20981 20981 20981 20981 20981	19. 20. 20 22. 22. 104.	96.44 96.44 174. 96.44 100.4 63.98	1.376 1.376 1.47 1.376 1.444 1.368	0.625 0.625 0.47 0.625 0.542 0.702	16.83 46.34	1.47	0.47 0.702	32.0 32.0 32.0 44.3	1.216 1.216 1.216 1.20	0.42 0.42 0.42 0.40				1.20* 1.20* 1.4? 1.20* 1.20* 1.37?		S2 S2 S3 S2 S1 S1	12,14 12,14 12 12,14	BAR74 BAR74 BAR69 BAR74 BAR74 HAU69
	40	50	1 66-	0 5 4	7 5	1 66+	0 5-							1 30-		e 7	5 36	10057
0 8	24.7 24.7	43.1 225.8	1.413	0.550*	8.51 24.3	1.413	0.550* 0.515							1.3*	185 189	s s1	10	MCF66 MCF66

Alphas

NOTES

- 1. The Coulomb potential has a Woods-Saxon form with $r_{\rm c}$ = (1.106 + 1.053 x 10 $^{\circ}{\rm A}$) F and a $_{\rm c}$ = 0.502 F
- 2. Data for angles smaller than 40°
- 3. Data for angles smaller than 100°
- 4. Data for angles smaller than 60°
- 5. Data for angles smaller than 90°
- Because of the lack of details there is some uncertainty in the interpretation of some of the parameters describing the imaginary part of the potential
- 7. Data for angles larger than 90° are not used in the search
- 8. Data absolute normalization known to $\pm 35\%$
- An I.1 term is used in place of the usual spinorbit term
- 10. See publication for other sets of parameters fitting the same data $% \left({{{\left[{{{\left[{{{c_{\rm{m}}}} \right]}} \right]}_{\rm{max}}}} \right)$
- 11. L-dependent absorption: see publication
- These parameters are obtained from a global search on several angular distributions
- 13. These parameters give a good fit to the data up to 90°
- 14. Data measurements between 60° and 170°

- 15. Acceptable fit up to 120°
- 16. Acceptable fit up to 130°
- 17. See publication for data normalization
- See publication for other sets of parameters with bell-shaped potentials
- 19. See publication for compound elastic contribution
- 20. Data at angles larger than 130° are not used in the search
- 21. Arbitrary normalization of cross section data
- 22. Notes 1, 5 and 10
- 23. See also reference PUT74
- 24. Energy averaged-data. See publication.
- 25. Hauser-Feshbach calculations performed
- 26. RC is the half-value parameter, divided by $A^{2/3}$ of a charge distribution having an exponential dependence on radial distance. See publication.
- 465. As reported in a previous compilation by D. R. Winner and R. M. Drisko, "Phenomenological Optical Model Parameters," Technical Report, Department of Physics, University of Pittsburgh, June 1965

TABULAR BIBLIOGRAPHY

Target <u>Nuclei</u>	Energy Range (MeV)	References
^{1 2} C	27 to 39	YAM74
³² S	10 to 17.5	ALD68
^{36*40} Ar, ⁴¹ K,Ca Isotopes	18 to 29	GAU69
*°Ca	5 to 12.5	J0H69
⁺ °Ca	12 to 18	R0B68
⁴² Ca, ⁴⁸ Ti, ⁵² Cr	16.0	B0C67
°°Ca to ^{6°} Ni	19.5	B0C67
Ni Even-Isotopes	18 to 27	TR074

ALPHA PARTICLES REFERENCES

- ALD68 J. P. ALDRIDGE, G. E. CRAWFORD AND R. H. DAVIS, PHYS. REV. 167, 1053 (1968)
- ALP70 N. ALPERT, JONAS ALSTER, AND E. J. MARTENS, PHYS. REV. C1, 974 (1970).
- ALP71 N. ALPERT, JONAS ALSTER AND E. J. MARTENS, PHYS. REV. C4, 1230 (1971)
- BAC72 D. BACHELIER ET AL., NUCL. PHYS. A195, 361 (1972)
- BAR70 F. T. BAKER AND R. TICKLE, PHYS. LETT. 32B, 47
- (1970) BAK72 P. TODD BAKER AND ROBERT TICKLE, PHYS. REV. C5, 182 (1972)
- BAL69 GORDON C. BALL AND JOSEPH CERNY, PHYS. REV. 177, 1466 (1969).
- BAR66 N. BARON ET AL., PHYS. REV. 146, 861 (1966)
- BAR69 A. R. BARNETT, J. S. LILLEY AND P. CHNIEROTH, UNIV. MINNESOTA ANN. REPORT (1969), P. 89
- BAR71 N. BARON, R. P. LEONARD AND W. H. STEWART, PHYS. REV. C4, 1159 (1971)

- BAR71A J. H. BARKER AND J. C. HIEBERT, PHYS. REV. C4, 2256 (1971)
- BAR74 A. R. BARNETT AND J. S. LILLEY, PHYS. REV. C9, 2010 (1974)
- EER68 A. M. BERNSTEIN, E. P. LIPPINCOTT, G. T. SAMPLE AND C. B. THORN, NOCL. PHYS. &115, 79 (1968)
- BEUGO R. BEURTEY, GUILLOU AND J. RAYNAL, J. PHYS. RADIUM 21, 402 (1960)
- BIN73 L. BINBOT ET AL., NUCL. PHYS. A210, 397 (1973), AND PRIVATE COMMUNICATION
- BIN66 C. R. BINGHAM, M. L. HALBERT AND R. H. BASSEL, PHYS. REV. 148, 1174 (1966)
- BIN69 C. R. BINGHAM, M. L. HALBERT, AND A. R. QUINTON, PHYS. REV. 180, 1197 (1969).
- BIN71 H. G. BINGHAM, K. W. KEMPER AND N. R. FLETCHER, NUCL. PHYS. A175, 374 (1971)
- BLA62 A. G. BLAIR AND H. E. WEGNER, PHYS. REV. 127, 1233 (1962)

Alphas

ALPHA PARTICLES REFERENCES

- BOB71 A. BOBROWSKA ET AL., INSTITUTE OF NUCL. PHYS., CRACOW, POLARD, REPORT NO. 777/PL (1971)
- BOC67 R. BOCK ET AL., NUCL. PHYS. A92, 539 (1967)
- BRA67 P. P. BRADY, J. A. JUNGERMAN AND J. C. YOUNG, NUCL. PHYS. A98, 241 (1967)
- BRIG9 I. BRISSAUD, M. K. BRUSSEL, M. SOWINSKI, AND B. TATISCHEFF, PHYS. LETTERS 30B, 324 (1969).
- BRI72 I. BRISSADD ET AL., PHYS. REV. C6, 595 (1972)
- BRO65 H. W. BROCK, J. L. INTERA, 8. BUCK AND G. R. SATCHLER, NUCL. PHYS. 64, 259 (1965)
- BUD67 A. BUDZANOWSKI ET AL., NUCL. PHYS. A106, 21 (1967)
- BUR72 G. F. BURDZIK AND G. HEYMANN, NUCL. PHYS. A185, 509 (1972)
- BUR75 S. J. BURGER AND G. HETMANN, NUCL. PHYS. A243, 461 (1975)
- CAR64 E. B. CARTER, G. E. MITCHELL AND R. H. DAVIS, PHYS. REV. 133, 81421 (1964)
- CHE57 W. B. CHESTON AND A. E. GLASSGOLD, PHYS. REV. 106, 1215 (1957)
- CON71 W. R. COMER BT AL., NUCL. PHYS. &168, 307 (1971)
- COW74 A. A. COWLEY ET AL., NUCL. PHTS. A229, 256 (1974)
- DAR64 P. DARBIULAT ET AL., PHYS. BEV. 134, B42 (1964)
- DAV63 R. H. DAVIS, PROC. THIRD CONF. REACTIONS BETWEEN COMPLEX NUCLEI, ED. BY A. GRIORSO, B. N. DIAHOND AND H. B. CONZETT (UNIV. OF CALIFORNIA PRESS, BERKELEY AND LOS ANGRLES, 1963), P. 61
- DAV72 P. DAVID, J. DEBRUS, H. MOMMSEN AND A. RICCATO, NUCL. PHYS. A182, 234 (1972)
- DEH67 D. DEHNHARD AND C. MAYER-BORICKE, NUCL. PHYS. 497, 164 (1967)
- DEV72 R. H. DEVRIES, JEAN-LUC PERRENOUD, I. SLAUS AND J. W. SUNIER, NUCL. PHYS. A178, 424 (1972)
- DRE70 A. G. DRENTJE AND J. D. A. ROEDERS, PHYS. LETTERS 328, 356 (1970).
- DUH68 H. H. DUHN, NUCL. PHYS. A118, 563 (1968)
- ELN65 H. EL-WADI AND P. RIAD, NUCL. PHYS. 65, 99 (1965)
- FER70 B. FERNANDEZ AND J. S. BLAIR, PHYS. REV. C1, 523 (1970).
- FRI71 J. W. PRICKEY, K. A. EBERHARD AND R. H. DAVIS, PHYS. REV. C4, 434 (1971)
- FUL68 C. B. FULMER, J. BENVENISTE AND A. C. MITCHELL, PHYS. REV. 165, 1218 (1968)
- GAI69 P. GAILLARD ET AL., NUCL. PHYS. A131, 353 (1969).
- GAU69 G. GAUL ET AL., NUCL. PHYS. A137, 177 (1969)
- GOL72 D. A. GOLDBERG AND S. S. SMITH, PHYS. REV. LETT. 29, 500 (1972)
- GOL73 D. A. GOLDBERG ET AL., PHYS. REV. C7, 1938 (1973)
- GOL74 D. A. GOLDBERG, S. H. SMITH AND G. E. BURDZIK, PHYS. REV. C10, 1362 (1974)
- GRE67 G. GREGOIRE AND P. C. MACQ, NUCL. PHYS. A99, 481 (1967)
- HANG7 LUISA P. HANSEN ET AL., PHYS. REV. 158, 917 (1967)
- HAU69 G. HAUSER ET AL., NUCL. PHYS. &128, 81 (1969).
- HAU72 G. HAUSER ET AL., NUCL. PHYS. A182, 1 (1972)
- HER70 W. C. HERMANS, H. R. E. TJIN A DJIE, L. D. TOLSMA, AND B. J. VERHAAR, NUCL. PHYS. A141, 431 (1970).
- HET68 G. HETMANN, PHYS. LETT. 278, 280 (1968)
- HUD74 G. N. HUDSON AND R. H. DAVIS, PHYS. REV. C9, 1521 (1974)
- IG057 G. IGO AND R. M. THALER, PHYS. REV. 106, 126 (1957) IG059 G. IGO, PHYS. REV., 115, 1665 (1959)
- IG060 G. IGO, PHYS. REV. 117, 1079 (1960)

- IN068 MAKOTO INOUE, NUCL. PHYS. A119, 449 (1968)
- IVA70 M. IVASCU, G. SEMEMESCU, D. BUCURESCU, AND M. TITIRICI, NUCL. PHYS. A147, 107 (1970).
- JAC68 DAPBNE F. JACKSON AND C. G. MORGAN, PHYS. REV. 175, 1402 (1968)
- JAR67 O. N. JARVIS, B. G. HARVEY, D. L. HENDRIE AND JEANETTE MARONEY, NUCL. PHYS. A102, 625 (1967)
- JOH69 JOSEPH JOHN, C. P. ROBINSON, J. P. ALDRIDGE AND R. H. DAVIS, PHYS. REV. 177, 1755 (1969)
- JOH70 D. J. JOHNSON AND M. A. WAGGONER, PHYS. REV. C2, 41 (1970).
- KEN72 K. W. KEMPER, A. W. OBST AND R. L. WHITE, PHYS. REW. C6, 2090 (1972)
- KOR67 J. KOKAME, K. FUKUNAGA AND H. NAKAMURA, PROC. OF INT. CONF. ON NUCL. PHIS., GATLINBURG, TENN., SEPT. 1966, ACADEMIC PRESS INC., B.Y., P. 153 (1967)
- KO569 C. J. KOST AND B. HIRD, NUCL. PHYS. A132, 611 (1969).
- KRI73 THOMAS P. KRICK, NORTON M. HINTZ AND D. DEMNHARD, NUCL. PHYS. A216, 549 (1973)
- KUN68 ISAO KUNAKE ET AL., J. PHYS. SOC. JAPAN 25, 14 (1968)
- LAB69 E. LABIE, J. LEGA AND P. C. MACQ, NUCL. PHYS. A135, 145 (1969).
- LEG74 J. LEGA AND P. C. MACQ, NUCL. PHYS. A218, 429 (1974)
- LEI70 H. G. LEIGHTON AND A. C. WOLPP, NOCL. PHYS. A151, 71 (1970).
- LEM72 ORLANDO P. LEMOS, DIPPUSION ELASTIQUE DE PARTICULES Alpha de 21 à 29.6 MEV sue des Noyaux de la region TI-ZH, ORSAY, SERIE à, NO. 136 (1972)
- LE067 R. P. LEONARD, W. N. STEWARD AND N. BARON, PHYS. REV. 162, 1125 (1967)
- LI 68 T. Y. LI AND B. HIRD, PHYS. REV. 174, 1130 (1968)
- LIP67 E. P. LIPPINCOTT AND ARON H. BERNSTEIN, PHTS. REV. 163, 1170 (1967)
- LOW72 J. LOWE AND A. R. BARNETT, NUCL. PHYS. & 187, 323 (1972)
- LUC66 B. T. LUCAS, S. W. COSPER AND O. E. JOHNSON, PHYS. REV. 144, 972 (1966)
- LUC68 B. T. LUCAS, D. R. OBER AND O. E. JOHNSON, PHYS. REV. 167, 990 (1968)
- LU766 H. P. LUTZ AND S. F. ECCLES, NUCL. PHYS. 81, 423 (1966)
- MAD74 D. G. MADLAND ET AL., PHYS. REV. C9, 1002 (1974)
- BAK70 M. BAKOWSKA-RZESZUTKO, A. DUBEK AND A. DRZYBALA, INSTITUTE OF NUCL. PHYS., CEACOW, POLAND. REPORT NO. 735/PL (1970)
- NAR68 E. J. MARTENS AND A. M. BERNSTEIN, NUCL. PHYS. A117, 241 (1968)
- HAT69 S. MATSUKI ET AL., J. PHYS. SOC. JAPAN 26, 1344 (1969)
- NAT72 KAZUHISA MATSUDA, YOHKO AWAYA, NORIYOSHI NAKANISHI AND SHIGERU TAKEDA, J. PHYS. SOC. JAPAN 33, 298 (1972)
- HCD62 D. K. HCDANIELS, D. L. HENDRIE, R. H. BASSEL AND G. R. SATCHLER, PHYS. LETTERS 1, 295 (1962)
- MCF66 LYNNE HCFADDEN AND G. R. SATCHLER, NUCL. PHYS. 84, 177 (1966)
- NEM67 O. F. NEWETS AND A. T. RUDCHIK, SOVIET J. WOCL. PHYS. 4, 694 (1967)
- OBE68 D. R. OBER AND O. E. JOHNSON, PHYS. REV. 170, 924 (1968)
- PAR71 YONG SOOK PARR, H. D. JONES AND D. E. BAINUM, PHYS. REV. C4, 778 (1971)
- PER75 D. C. PERKIN, A. M. KOBOS AND J. R. ROOK, NUCL. PHYS. A245, 343 (1975)
- PET72 R. J. PETERSON, E. W. STOUB AND R. A. RISTINEN, PHYS. REV. C6, 829 (1972)

ALPHA PARTICLES REFERENCES

- PRIG9 JOSEPH R. PRIEST AND JOHN S. VINCENT, PHYS. REV. 182, 1121 (1969).
- PUT74 L. M. PUT AND A. M. J. PRANS, PHYS. LETT. 498, 266 (1974)
- BEB72 H. REBEL ET AL., NUCL. PHYS. & 182, 145 (1972)
- REB72A H. REBEL ET AL., Z. PHYSIK 256, 258 (1972)
- REB74 H. REBEL ET AL., NUCL. PHYS. A218, 13 (1974)
- ROB68 C. P. ROBINSON, J. P. ALDRIDGE, JOSEPH JOHN AND R. H. DAVIS, PHYS. REV. 171, 1241 (1968)
- SAT65 G. R. SATCHLER, NUCL. PHYS. 70, 177 (1965)
- SAT69 G. R. SATCHLER, W. C. PARKINSON, AND D. L. HENDRIE, PHYS. REV. 187, 1491 (1969).
- SIN72 I. N. SINONOV, K. O. TERENETSKII AND V. V. TOKAREVSKII, SOV. J. NUCL. PHYS. 14, 59 (1972)
- SIN69 P. P. SINGH, R. E. HALMIN, H. HIGH, AND D. W. DEVINS, PHYS. REV. LETT. 23, 1124 (1969).
- SHI73 S. M. SHITH ET AL., NOCL. PHYS. A207, 273 (1973)
- SO 66 S. S. SO, C. MATER-BORICKE AND R. H. DAVIS, NUCL. PHYS. 84, 641 (1966)
- ST067 R. STOCK ET AL., NUCL. PHYS. A104, 136 (1967)
- TAK71 MINORU TAKEDA, SYCHEI KATO AND TAKASHI YAMAZAKI, J. PHYS. SOC. JAPAN 31, 625 (1971)
- TAN65 TARO TAMURA, NUCL. PHYS. 73, 81 (1965)

- TAT70 B. TATISCHEFF AND I. BRISSAUD, NUCL. PHIS. A155, 89 (1970).
- TAY65 R. B. TAYLOR, N. R. PLETCHER AND R. H. DAWIS, NUCL. PHYS. 65, 318 (1965)
- TR074 W. TROMBIK ET AL., PHYS. REV. C9, 1813 (1974)
- VIN70 JOHN S. VINCENT AND EDMUND T. BOSCHITZ, NUCL. PHYS. A143, 121 (1970).
- VOI74 N. J. A. DE VOIGHT, D. CLINE AND R. N. HOROSHKO, PHYS. REV. C10, 1798 (1974)
- WAK70 TETSUO WARATSUKI ET AL., J. PHYS. SOC. JAPAN 28, 1107 (1970)
- WAL70 W. J. WALLACE, K. R. KNOTH AND R. H. DAVIS, PHYS. REV. C2, 1738 (1970).
- WEI70 DAVID C. WEISSER, J. S. LILLEY, BUSSEL K. HOBBIE, AND G. W. GREENLEES, PHYS. REV. C2, 544 (1970).
- WUH74 W. WUHR, A. HOFMANN AND G. PHILIPP, Z. PHYSIK 269, 365 (1974)
- YAN74 SHUHEI YANAJI ET AL., J. PHYS. SOC. JAPAN 37, 1191 (1974)
- YAR73 B. YARAMIS, D. D. TOLBERT AND R. H. DAVIS, NUCL. PHYS. A215, 197 (1973)
- YNT67 J. L. YNTERA AND G. R. SATCHLER, PHYS. REV. 161, 1137 (1967)
- YOU70% D. H. YOUNGBLOOD, R. L. KOZUB, J. C. HIEBERT, AND R. A. KENEPICK, NUCL. PHYS. A143, 512 (1970).

Alphas

Heavy Ions

							LITHION	-6 INCI	DENT P	ARTICLE						
NUCLIDE	evergy (nev)	RBAL V	POTENT R**	IAL A	VOL.IM W	AG. POT RW##	ENTIAL AW	SURP.IN WD	AG. POT RD**	ENTIAL AD	SPIN-ORBIT POTENTIAL VSO RSO** ASO	RC**	SR	FIT	NOTE	REF.
611 611 611	6.0 7.0 8.	53.9 81.8 109.	2.40* 5.41 4.2	1.05* 0.545 0.5	4.1	2.40*	1.05*	5.964 23.0	8.74 4.5	0.449 0.45		2.40* 5.41? 7.0* 2.36*		S2 S2 S2	7 7 16,7	PER73 YOU72 GRU73 CIR72
6LI	10.	109.	4.2	0.5	10 7	2.30+	1.15	23.0	4.5	0.45		7.0*		52 52	16,7	GRU73
611	10.	04.1	2.40+	0.76+	47	2.40-	0.76*					1.7*		52 53	•	MOR70
6LI	12.	109.	4.2	0.5	3.7	2 264	1 15	23.0	4.5	0.45		7.0*		52 52	16,7	GRU73
6 LI 6 LI	14. 14.5	72.0	2.40*	1.05*	27.9	2.40*	1.05*	23.0	4.5	0.45		2.40*		52 52	7 16,7	PER73 GRU73
6 LI 6 LI	20. 28.	9.8* 9.8*	4.7* 4.7*	0.76* 0.76*	16.1 12.2	4.7* 4.7*	0.76* 0.76*					4.7* 4.7*		\$2 53		HOR70 HOR70
9 BE 9 BE	4.0 6.0	213. 207.	3.23* 3.23*	0.46* 0.46*				3.3 3.5	4.89* 4.89*	0.89* 0.89*		3.23* 3.23*		52 51		VBE74 VBE74
11B	28.0	481.	2.33*	0.66	11.0	4.68	0.93					5.55*		S 2	11	BAS72
12C 12C 12C 12C 12C	4.5 5.8 6.4 7.5 9.0	148.* 148.* 148.* 148.* 148.*	3.37* 3.37* 3.37* 3.37* 3.37*	0.65* 0.65* 0.65* 0.65* 0.65*				6.9 7.14 7.25 7.95 7.74	3.37* 3.37* 3.37* 3.37* 3.37* 3.37*	0.65* 0.65* 0.65* 0.65* 0.65*		3.37* 3.37* 3.37* 3.37* 3.37* 3.37*		52 52 52 52 52 52	8 8 8	POL72 POL72 POL72 POL72 POL72 POL72
12C 12C 12C 12C 12C 12C 12C	11.0 13.0 13.0 13.0 13.0 13.0	148.* 171.0 136.8 173.7 148.* 403.*	3.37* 3.04 3.48 2.85 3.37* 3.21*	0.65* 0.67 0.64 0.64 0.65* 0.58*				8.1 7.24 7.75 6.55 8.5 18.0	3.37* 3.33 3.27 3.89 3.37* 3.21*	0.65* 0.72 0.77 0.80 0.65* 0.58*		3.37* 3.04 3.48 2.85 3.37* 3.21*		52 52 52 52 52 52 52	8	POL72 JOH70 JOH70 JOH70 POL72 POL72
12C	20.	35.0	3.25	1.04				8.46	4.97	0.49		5.72*		S		BET69
12C 12C 12C	20. 20. 20.	65.0 232.* 232.*	3.25 2.86 2.86	0.80 0.755* 0.755*	3.2 6.03	5.36	0.56	9.45	4.24	0.58		5.72* 5.72* 5.72*		5 51 51	12 12	WAT72
12C 12C 12C 12C 12C	24.5 28.0 28.0 28.0 30.	461. 466. 283. 281. 245.	2.40* 2.40* 3.55* 3.55* 2.75*	0.77 0.74 0.63 0.64 0.8	18.6 35.3 13.8 12.5	3.73 2.34 5.13 4.01	0.65 0.96 0.28 1.0	27.6	4.51	0.36		5.72* 5.72* 5.72* 5.72* 3.2*	14 10	52 52 52 52 52 52		BAS72 BAS72 BAS72 BAS72 BAS72 CHU71A
120 120 120 120	30.6 30.6 30.6 30.6	461. 201. 276. 363.	2.40* 2.40* 2.40* 2.40*	0.76 0.91 0.85 0.80	13.3 7.4 9.0 10.9	4.56 5.29 5.06 4.83	0.61 0.54 0.56 0.58					5.72* 5.72* 5.72* 5.72*		52 52 52 52 52		BAS72 BAS72 BAS72 BAS72 BAS72
12C 12C 12C 12C	34. 34. 34. 36.	121.3 173.2 243.8 173.2	2.75* 2.77* 2.77* 2.77*	0.888 0.802 0.770 0.802	9.6 8.9 10.6 8.9	4.97* 4.97* 4.97* 4.97*	0.946 0.945 0.945 0.945					2.98* 2.98* 2.98* 2.98*		S S2 S S2	9 9 9	SCH73 SCH73 SCH73 SCH73 SCH73
13C 13C 13C 13C	20. 20. 20. 20.	40.4 37.1 234.* 234.*	4.56 4.77 2.75 2.77	0.54 0.33 0.76* 0.76*	2.2 6.07	7.92 6.02	0.45 0.60	6.8 10.3	4.37 4.58	0.84		5.87* 5.87* 5.87* 5.87* 5.87*	1390 1510	S3 S3 S2 S2	9,12 9,12	BET69 BET69 WAT72 WAT72
13C 13C 13C	28.0 34. 34.	444. 176.4 245.2	2.47* 2.84* 2.84*	0.71 0.773 0.716	13.2 10.4 11.9	4.53 5.10* 5.10*	0.87 0.817 0.749					5.87* 3.05* 3.05*		S2 S2 S	11 9 9	BAS72 SCH73 SCH73
14 N	32.	114.2	3.37	0.79				20.3	4.46	0.57		3.37		\$ 2	14	ZEI71
160	20.	37.8	3.58	0.95				8.07	4.79	0.62		6.30*	1200	S 2		BET69
160 160	20. 20.	60.3 135.	3.70 2.70	0.75 0.929	4.6	5.77	0.85	10.5	4.86	0.585		6.30* 6.3*	1280	S2 S2	2	BET69 SCH70
160 160	20.	190. 241.*	2.67	0.868	6.67	5.75	0.70	11.2	4.76	0.611		6.3*		\$2 \$2	2 12	5CH70 WAT72
160	20.	241.+	2.80	0.75	•• •		0.62	9+21	4.31	0.74		6.30*		52	12	##172
160 160 160	29.8 29.8 29.8 29.8	187. 253. 327.	2.65* 2.65* 2.65*	0.89 0.83 0.79	6.6 7.7 8.7	5.94 5.92 5.75	0.54 0.57 0.60					6.30* 6.30* 6.30*		52 52 52 52		BAS72 BAS72 BAS72 BAS72
160 160 160	30. 36. 36.	252. 164.3 222.3	3.28* 3.05* 3.05*	0.7 0.826 0.800	13. 10.6 11.8	4.41 5.08 5.08	1.2 1.064 1.035					3.5* 3.28* 3.28*	1700	S2 S3 S	9 9	CH 071A SCH 73 SCH 73
19 F 19 F 19 F 19 F	20. 20. 20. 20.	35.5 65.5 246.* 246.*	3.79 3.95 3.15 3.15	0.92 0.41 0.795* 0.795*	12.0 10.0	3.82 5.90	1.48 0.88	7.94 12.8	4.57 4.24	0.89 0.92		6.67* 6.67* 6.67* 6.67*	1510 1730	S2 S1 S2 S2	9,12 9,12	BET69 BET69 WAT72 WAT72
24 MG 24 MG	20.	34.9	4.06	1.02	14.7	4.84	1, 17	6.52	5.76	0.90		7.20* 7.20*	1780	51 51		BET69 BET69
24 NG 24 MG	20.	253.* 253.*	3.54	0.815* 0.815*	8.64	7.31	0.86	11.8	5.41	0.97		7.20* 7.20*		52 52	9,12 9,12	WAT72 WAT72

Heavy lons

							LITHIU	5-6 INC	IDENT P	PARTICLE						
NUCLIDE	ENERGY (MEV)	R BAL V	POTENT R**	TAL A	VOL.IN W	AG. POI RE**	ENTIAL AV	SURP.I WD	AG. POT R D**	ENTIAL AD	SPIN-ORBIT POTENTIAL VSO RSO** ASO	RC**	SR	FIT	NOTE	REF.
26 MG 26 MG	36. 36.	161.9 208.6	3.58* 3.58*	0.80 0.75	17.3 19.8	5.48 5.30	0.890 0.89					3.85* 3.85*		52 5	9 9	SCH73 SCH73
2851 2851 2851	20. 20. 20.	28.9 62.2 258.*	4.83 3.95 3.86	0.84 0.87 0.835*	7.3 9.51	6.26 7.36	0.77	8.54	4.92	0.79		7.59* 7.59* 7.60*	1230 1260	51 51 52	12	BET69 BET69 WAT72
285I 285I	20. 30.	258.* 262.	3.86 3.65*	0.835* 0.71	16.	5.32	1.15	13.9	5.65	0.83		7.60* 4.3*		52 52	12	WAT72 CHU71
40CA 40CA	20. 20.	32.6 72.6	6.19 4.68	0.64 0.87	6.9	7.87	0.81	7.4	5.85	1.00		8.55*	1620 1590	51 51		BET69 BET69
40CA	20.	270.*	3.88	0.89*	6.02	7.00	0.75	13.7	5.98	0.76		8.55*		S1 S1	9,12	WAT72
40CA 40CA 40CA	30. 30. 30.	240. 250.* 250.*	4.10* 4.10* 4.10*	0.76 0.70* 0.70*	12. 14.	5.57 5.81	0.90 0.88	16.	4.10*	0.98		4.8* 4.107 4.107		53 5 5		СНU71 GAA73 GAA73
58 NI 58 NI 58 NI 58 NI 58 NI 58 NI	12. 14. 16. 18. 20. 30.	152.* 152.* 152.* 152.* 152.* 240.	5.38 4.99 5.50 5.53 5.46 4.64*	0.75 0.83 0.73 0.71 0.69 0.82	6.32 2.07 4.63 7.83 10.3 18.	9.02 9.37 8.21 7.51 7.01 6.19	0.61 0.41 0.53 0.56 0.56 0.80					5.4? 5.4? 5.4? 5.4? 5.4? 5.4? 5.4?	125 275 491 680 789	S2 S2 S2 S2 S2 S2 S2		PFE73 PFE73 PFE73 PFE73 PFE73 CHU71
1 18 SN 1 18 SN 1 18 SN 1 18 SN 1 18 SN 1 18 SN 1 18 SN	18. 19. 20. 21. 22.5 24.	152.* 152.* 152.* 152.* 152.* 152.*	8.24 7.90 8.49 8.34 8.53 8.63	0.4 0.58 0.46 0.39 0.33 0.29	6.5 2.7 1.2 2.26 2.8 3.05	9.71 11.53 11.67 10.94 10.69 10.45	0.71 0.11 0.12 0.29 0.49 0.56					7.9? 7.9? 7.9? 7.9? 7.9? 7.9?	88 124 216 266 521 697	S2 S2 S2 S1 S1 S2		PFE73 PFE73 PFE73 PFE73 PFE73 PFE73 PFE73
1205N	30.	240.	5.92*	0.80	18.	8.38	0.80					6.9*		s 2		CHU71
197 AU	30.	240.	6.98*	0.84	18.	10.2	0.70					8.15*		52		CHU71
208 PB	30.	250.	7.10*	0.50	13.5	10.1	0.91					8.3*		S 2		CHU71

LITHIUM-7 INCIDENT PARTICLE

NUCLIDE	EN BRGY (MEV)	R E A L V	POTENT R**	IAL A	VOL.IN W	AG. POT RW**	ENTIAL AW	SURF.I WD	MAG. POI RD**	ENTIAL AD	SPIN-ORBIT P VSO RSO**	OTENTIAL ASO	₿C * *	SR	FIT	NOTE	REF.
71I	7.3	40.	8.00	0.75	20.	8.00	0.75						8.07		s	₩65	BEN63
9 BE	24.0	30.*	4.79	0.57	7.1	5.64	0.79						2.5*		53		WEB72
9 BE	24.0	152.*	2.87	0.75	6.72	5.66	0.76						2.5*		s		WEB72
9 BE	24.0	60.*	2.67	0.88				17.4	3.87	0.78			2.5*		S 2		WEB72
10B	24.0	30.*	8.97	0.61	10.3	4.06	1.14						2.5*		s		WEB72
10B	24.0	152.*	2.76	0.77	7.88	5.07	0.86						2.5*		S		WEB72
10 B	24.0	60.*	2.31	1.1				16.7	4.00	0.68			2.5*		s		WEB72
120	4.5	166.*	3.37*	0.65*				12.0	3.37*	0.65*			3.37*		51		POL72
120	5.8	166.*	3.37*	0.65*				14.0	3.37*	0.65*			3.37*		S1	8	POL72
12C	7.3	40.	8.00	0.51	20.	8.00	0.51						8.0?		S	₩65	BEN63
12C	9.0	166.*	3.37*	0.65*				19.4	3.37*	0.65*			3.37*		\$1	8	POL72
12C	11.0	166.*	3.37*	0.65*				22.6	3.37*	0.65*			3.37*		S1	8	POL72
12C	13.0	166.*	3.37*	0.65*				26.0	3.37*	0.65*			3.37*		S1		POL72
12C	15.0	30.*	4.62	0.7	4.8	6.57	0.88						2.5*		53		WEB72
12C	15.0	150.*	3.40	0.67	13.9	4.90	0.76						2.5*		S3		WEB72
12C	15.0	60.*	3.02	0.88				8.3	4.28	0.81			2.5*		52		WEB72
120	21.1	141.4	3.71	0.59	13.6	4.53	0.90						5.72*		s		BET 69
120	21.1	50.	3.36	0.83				8.65	4.25	0.80			5.27*		s		PUH70
120	21.1	30.*	4.66	0.59	7.8	4.81	0.99						2.5*		S1	9	WEB72
12C	21.1	152.*	2.73	0.77	8.85	5.11	0,89						2.5*		53	9	WEB72
12C	21.1	70.*	3.74	0.69				9.8	3.80	0.88			2.5*		S1	9	WEB72
12C	36.	187.8	2.77+	0.824	12.9	4.97+	0.77						2.98*		5 2	7	SCH73
12C	36.	245.0	2.77*	0.759	14.7	4.58*	0.909						2.98*		s	7	SCH73
13C	20.	30.7	4.84	0.64				8. 3	4.86	0.70			5.87*	1440	53		BET69
130	20.	151.5	3.50	0.71	6.8	6.18	0.59	•					5.87*	1400	53		BET69
130	34.	166.4	2.84*	0.763	9.1	5.10*	0.95						3.05*		52	1	SCH73
13C	34.	248.2	2.84*	0.755	12.7	4.70*	0.944						3.05*		s	i	SCH73
16.0	20	12.1	4.36	0.85				10.3	4.71	0.77			6.30#	1390	\$7		82769
160	36	189.5	3.05±	0.747	21.3	5.04*	0.821	10.3	7 + 7 1	v./2			3.28*		52	7	SCH73
160	36	238 8	3 05*	0 7 00	10 2	5 04*	0 822						3 29#		52	÷	50973
,00	30.	230.0	3.03+	0.703	17.2	5.04+	0.022						3.20+		5	,	30475
19 F	20.	35.4	4.65	1.05				11.3	5.69	0.62			6.67*	1660	53		BET69

Heavy Ions

							LITHIO	H-7 INC	CDENT 1	PARTICLE						
NUCLIDE	ENERGY (NEV)	RBAL V	POT ENT R**	IAL A	VOL.INA W	G. POT R¥**	ENTIAL AW	SURF.IM VD	RD**	ENTIAL AD	SPIN-ORBIT POTENTIAL VSO RSO** ASO	RC**	SR	FIT	NOTE	RE F.
24 NG 24 NG 24 NG 24 NG 24 NG	20. 20. 34. 34. 34.	34.0 100.5 197.9 54.1 213.5	4.95 6.31 3.48 5.13 3.48	0.90 0.46 0.77 0.58 0.88	28.3 30.8 10.95 14.54	5.79 4.75 6.19 6.02	1.10 0.92 1.01 0.78	11.4	5.47	0.74		7.20* 7.20* 3.74* 3.74* 3.74*	1500 ∡320	51 51 5 5 5 5	13 13 13	Bet69 Bet69 H0074 H0074 H0074
2851 2851 2851	20. 36. 36.	42.2 177.3 214.6	5.04 3.68* 3.68*	0.78 0.775 0.83	9.4 14.4	6.38* 6.38*	0.848 0.73	9.86	5.28	0.64		7.59* 3.95* 3.95*	1220	52 52 5	7 7	BET69 SCH73 SCH73
40CA 40CA	20. 20.	31.0 173.0	5.88 5.33	0.81 0.62	20.7	3.69	0.97	13.3	5.78	0.80		8.55* 8.55*	1370 1420	51 51		BET69 BET69
58 NI 58 NI 58 NI 58 NI 58 NI 58 NI	12.19 14.22 16.25 18.28 20.31	152.* 152.* 152.* 152.* 152.*	5.34 5.11 6.12 5.50 6.58	0.75 0.79 0.69 0.71 0.53	5.15 3.65 4.22 10.24 12.98	9.21 9.60 8.67 7.28 7.63	0.58 0.49 0.39 0.52 0.28					5.4? 5.4? 5.4? 5.4? 5.4?	118 420 589 644 868	52 52 52 52 52 52		PPE73 PPE73 PPE73 PFE73 PFE73 PFE73
1 18 5N 1 18 5N 1 18 5N 1 18 5N 1 18 5N 1 18 5N	16.13 18.15 19.15 20.16 21.17	152.* 152.* 152.* 152.* 152.*	8.29 7.26 7.80 8.24 8.53	0.6 0.6 0.61 0.39 0.35	3.9 2.81 5.91 5.82 2.58	10.59 10.99 10.30 9.47 11.87	0.51 0.45 0.53 0.57 0.14					7.9? 7.9? 7.9? 7.9? 7.9?	49 135 118 458	S S3 S2 S1 S3		PFE73 PFE73 PFE73 PFE73 PFE73 PFE73

							BORON-	10 INCIDEN	PARTIC	LE								
NUCL ID E	ENERGY	REAL	POTENT	INL	VOL. IN	AG. POT	ENTIAL	SUPP.IMAG	POTENTI	TAL	SPIN-	ORBIT	POTENTI AL	RC**	SR	FIT	NOTE	REF.
	(UEV)	¥	R**	X	W	R9**	A W	WD RI	0** AI	0	VSO	RSO**	ASO					
12C	18.	100.*	5.11*	0.50*	10.	5.77*	0.22							6.22*		\$ 3	з	¥0069
12C	18.	100.*	5.28*	0.48*	27.	5.59*	0.26							6.22*		S 3	3	¥0069
12C	18.	100.*	5.11*	0.48*	35.	5.64	0.2*							6.22*		S 3	3	¥0069
12C	18.	100.*	5.40	0.5*	18.	5.40	0.5*				5.0	5.40	0.5*	5.4?		s	18	ROB71A

BORON-11 INCIDENT PARTICLE

NUCLIDE	ENERGY (MEV)	REAL V	POTENT: R**	IAL A	VOL.INA W	G. POTI R¥**	ENTIAL AW	SURF.IM WD	AG. POTE RD**	NTIAL AD	SPIN-ORBIT POTENTIAL VSO RSO** ASO	RC**	SR	FIT	NOTE	REP.
12C 12C	28. 28.	50.* 100.*	5.82* 5.37*	0.48* 0.48*	15. 17.	5.33 5.69*	0.3* 0.26*					6.32* 6.32*		S S	4 4	¥0069 ¥0069
208 PB 208 PB	72.2 72.2	40.* 40.*	9.91 10.61	0.612	15.* 16.44	9.91 9.39	0.612 0.424					10.6* 10.6*	1366 1321	52 52	13,16 13,16	FOR 74 FOR 74

CARBON-12 INCIDENT PARTICLE

NUCLIDE	energy (Hev)	REAL V	POTENT R**	IAL A	VOL.IN W	AG. POT RW**	ENTIAL AW	SURF. WD	R D**	POTE •	NTIAL AD	SPIN- VSO	-ORBIT RSO*	POTENTI * ASO	L RC**	SR	FIT	NOTE	REF.
11B	87.	100.*	4.60	0.70	26.00	4.96	0.44								6.31*		s	1	L1U71
12C 12C	70. 127.	62.3 44.2	6.58 4.81	0.522 0.683	37. 28.3	6.42 4.81	0.464 0.683								3.79* 3.66		s 52	6 6	KOH 71 BAS 66
13C 13C	87. 87.	100.* 50.*	4.73 4.41	0.48 0.70	20.30 25.0*	5.71 5.47	0.70 0.53								6.50* 6.50*		5 5	6 6	LIU71 LIU71
26 NG	46.	100.*	6.51	0.48	27.	7.14	0.22								6.57		\$1	7	CON73
2851 2851 2851	49.3 70. 83.5	55.* 55.* 55.*	6.60 5.44 5.93	0.462 0.697 0.631	10. 20. 16.	6.26 6.27 6.40	0.811 0.671 0.776								4.83* 4.83* 4.83*		52 52 52	1 6 6	KOH71 KOH71 KOH71
64 NI	48.	120.*	7.57	0.50*	15.0	7.57	0.50*								7.57		S1	7	CUN 74
197 AG	121.	41.8*	10.2	0.49	16.4*	10.2	0.49								10.2*		s	₩65	AUE63
208 PB 208 PB	116. 116.	40.* 40.*	10.00 10.76*	0.612 0.45*	15.* 15.*	10.00 10.76*	0.612 0.45*								10.6* 10.7*		S2 52	1 1	FOR74 FOR74

CARBON-13 INCIDENT PARTICLE VOL.IMAG. POTENTIAL SURF.IMAG. POTENTIAL SPIN-OBBIT POTENTIAL RC** SR FIT NOTE REF. W RU** AW WD RD** AD VSO RSO** ASO

Heavy Ions

NUCLIDE	ENERGY (HEV)	RBAL V	POTENT R**	IAL A	VOL.IM W	AG. POT RW**	B NTIA L AW	SURF.I WD	R D**	ENTIAL AD	SPIN-ORBIT POTENTIAL VSO RSO** ASO	RC**	SR	FIT	NOTE	REF.
40CA 40CA 40CA 40CA 40CA	40. 40. 48. 60. 68.	33.6 33.4 33.6 33.6 33.6 33.6	7.33 7.33 7.33 7.33 7.33 7.33	0.55 0.55 0.55 0.55 0.55	18. 18. 18. 18. 18.	7.33 6.75 7.33 7.33 7.33 7.33	0.55 0.05 0.55 0.55 0.55	4.5	6.75	0.55		6.92* 7.? 6.92* 6.92* 6.92*		51 51 51 51 51	13 1 13 1	BON73 BON74A BON73 BON73 BON73 BON73
48CA	50.	70.*	7.326	0.5*	10.*	7.326	0.5*					7.5 ?		S1	1	SCH73A
94 110 96 110	51. 54.5	100.* 100.*	8.40 8.44*	0.5* 0.5*	40. 40.*	8.40 8.44	0.5* 0.5*					8.40 8.44		51 51	7 7	BON74 Bon74

NITROGEN-14 INCIDENT PARTICLE

NUCLIDE	ENERGI (NEV)	REAL V	POTENT R**	IAL A	VOL.IN W	AG. POT RW**	AN AN	SORF.I WC	RD**	TENTIAL AD	SPIN-ORBIT POTENTIAL VSO RSO** ASO	RC**	SR	FIT	NOTE	REF.
9 BE 9 BE 9 BE	12.8 15.8 27.3	50.* 50.* 50.	5.88 5.88 5.52	0.45 0.45 0.65	10. 10.	5.88 5.88	0.45 0.45	16.G	5,52	1.125		5.88 5.88 3.9		52 52 5	₩65	KUB64 KUB64 BAS60
118 118 118 118 118 118 118	41. 41. 77. 77. 113. 113.	100.* 50.* 100.* 50.* 100.* 50.*	3.70 4.68 4.17 3.98 4.72 4.81	0.985 0.95 0.85 1.11 0.78 0.74	8.30 25.0* 10.85 25.0* 9.64 25.0*	6.76 6.11 6.44 6.02 6.53 6.48	0.62 0.60* 0.49 0.50* 0.47 0.45*					6.48* 6.48* 6.48* 6.48* 6.48* 6.48*		5 5 5 5 5 5 5 5	1 1 1 6 6	LIU71 LIU71 LIU71 LIU71 LIU71 LIU71
12C 12C 12C 12C 12C 12C	17.3 19.5 21.3 21.4 27.3 27.3	50.* 50.* 100.* 50.* 48. 47.	5.59 5.59 5.70 5.59 6.00 6.00	0.49 0.49 0.5* 0.49 0.575 0.645	4. 4. 18. 4. 5.75	5.59 5.59 5.70 5.59 6.00	0.49 0.49 0.5* 0.49 0.575	9. G	6.00	1.25		5.59 5.59 5.77 5.59 4.2 4.2		52 52 5 52 5 5 5 5	18 165 165	KUE64 KUE64 ROB71A KUB64 BAS60 BAS60
12C 12C 12C 12C 12C 12C 12C	65. 78. 78. 78. 84. 88.	55.* 100.* 50.* 100.* 65.* 65.*	5.71 4.00 4.84 4.32 5.71* 5.71*	0.484 0.84 0.78 0.77 0.484* 0.484*	15. 8.0 12. 38.5 20. 30.	6.34 6.96 6.49 6.06 6.34* 6.34*	0.250 0.18 0.20 0.26 0.250* 0.250*					3.45* 6.58* 6.58* 6.58+ 3.45* 3.45*		52 52 52 52 52 5 5	1 1 1 1 1	KOH71 VOE70 VOE70 VOE70 KOH71 KOH71
13C	20.	100.*	5.85	0.5*	18.	5.85	0.5*					5.87		s	18	ROB71A
14 N 14 N 14 N 14 N 14 N	14.6 14.6 16.2 17.7	15.0 24.0 26.1 29.4	7.23* 7.23* 7.23* 7.23* 7.23*	0.5* 0.5* 0.5* 0.5*	6.2 10.0 10.5 11.8	7.23* 7.23* 7.23* 7.23*	0.5* 0.5* 0.5* 0.5*					7.2? 7.2? 7.2? 7.2?		52 52 53 53		JAC69 JAC69 JAC69 JAC69 JAC69
160 160 160	14.0 17.0 18.3	10.1 14.1 10.6	6.90 6.65 6.90	0.5* 0.5* 0.5*	3.0 4.0 3.3	6.90 6.65 6.90	0.5* 0.5* 0.5*					7.27 7.27 7.27		53 53 53		JAC69 JAC69 JAC69
27 ML 27 ML 27 ML	65. 84. 88.	60.* 65.* 70.*	5.66 5.52 5.96	0.677 0.792 0.615	12. 14. 18.	6.80 7.03 6.60	0.569 0.528 0.738					4.51* 4.51* 4.51*		S1 S2 S2	6 1 1	KOH71 Koh71 Koh71
2851 2851 2851	40. 48. 84.	20.0 21.0 60.*	7.36* 7.36* 6.25	0.49* 0.49* 0.527	6.0 7.25 14.	7.36* 7.36* 6.34	0.38* 0.38* 0.929					7.4* 7.4* 4.54*		52 52 52	6	SIE71 SIE71 Koh71
40CA 40CA 40CA 40CA	28.0 30.0 32.0 36.0	17. 22. 19. 16.	7.58* 7.58* 7.58* 7.58*	0.60* 0.60* 0.60* 0.60*	8. 6. 14. 4.	7.58* 7.58* 7.58* 7.58*	0.60* 0.60* 0.60* 0.60*					7.58* 7.58* 7.58* 7.58*		52 52 52 52	9	WI175 WI175 WI175 WI175
48CX	50.	70.*	7.470	0.5*	10.*	7.470	0.5*					7.5?		S1	1	SCH73A
56 PE 56 PE 56 PE 56 PE 56 PE	26.0 28.0 32.0 36.0 40.0	20. 30. 27. 22. 21.	7.80* 7.80* 7.80* 7.80* 7.80*	0.60* 0.60* 0.60* 0.60* 0.60*	11. 9. 9. 12. 16.	7.80* 7.80* 7.80* 7.80* 7.80*	0.60* 0.60* 0.60* 0.60* 0.60*					7.80* 7.80* 7.80* 7.80* 7.80*		\$2 \$2 \$2 \$2 \$2 \$1		WIL75 WIL75 WIL75 WIL75 WIL75 WIL75
58 NI	84.	60.*	6.58	0.705	12.	7.52	0.516					6.22*		S 2	6	K0H71
62NI 62NI 62NI 62NI	32.0 36.0 40.0 42.0	38. 27. 35. 41.	7.96* 7.96* 7.96* 7.96*	0.56* 0.56* 0.56* 0.56*	19. 20. 16. 18.	7.96* 7.96* 7.96* 7.96*	0.56* 0.56* 0.56* 0.56*					7.96* 7.96* 7.96* 7.96*		52 52 52 51		WIL75 WIL75 WIL75 WIL75 WIL75

Optical-Model Parameters, 1954-1975

TABLE VII. Optical-Model Parameters

Heavy Ions

							NITROGE	N-14]	NCIDE	INT	PARTICL	E							
NUCL ID B	BNERGY	REAL	POTENT	IAL	VOL.I	MAG. POT	ENTIAL	SURF.	INAG.	. PO 1	TENTIAL	SPIN	-ORBIT	POTENTIA	L RC**	SR	FIT	NOTE	REF.
	(88V)	٧	R*≠	A		R ₩* *	XW	WD	RD)**	A D	¥S0	RSO	* ASO					
70GB	34.0	43.	8.49*	0.50*	2.	8.49*	0.50*								8.49*		S 2		¥TT.75
70GB	36.0	24.	8.49*	0.50*	20.	8.49*	0.50*								8.49*		S 2		971.75
70 GE	38.0	35.	8.49*	0.50*	23.	8.49*	0.50*								8.49*		52		971.75
70GB	42.0	29.	8.49*	0.50*	34.	8.49*	0.50*								8.49*		52		911.75
70GE	45.0	33.	8.49*	0.50*	20.	8.49*	0.50*								8.49*		52		WT1.75
70 GB	50.0	33.	8.49*	0.50*	35.	8.49*	0.50*								8.49*		S 2	9	WIL75
74 GB	32.0	8.2	8.59*	0.50*	30.	8.59*	0.50*								8.59*		51		NTL 75
74GE	36.0	26.	8.59*	0.50*	12.	8.59*	0.50*								8.59#		51		BT1.75
74 GE	38.0	18.	8.59*	0.50*	20.	8.59*	0.50*								8.59#		51		NTL75
74 GE	40.0	22.	8.59*	0.50*	17.	8.59*	0.50*								8.59#		51		WT1.75
74 GE	42.0	22.	8.59*	0.50*	28.	8.59*	0.50*								8.59*		51		911.75
74 GE	45.0	28.	8.59*	0.50*	22.	8.59*	0.50*								8.59*		51		WIL75
00.77	36.0					0 6 4 4	• • • •												
90ZR	36.0	25.	8.61*	0.60*	44.	8.61#	0.60*								8.61*		S1		WIL75
90ZR	40.0	22.	8.61*	0.60+	в.	8.61*	0.60#								8.61*		S1		WIL75
9028	43.0	28.	8.61	0.60*	8.	8.61*	0.60*								8.61*		S1		WIL75
9028	45.0	28.	8.61*	0.60*	16.	8.61*	0.60*								8.61*		51		WIL75
90ZR	50.0	30.	8.61*	0.60*	13.	8.61*	0.60*								8.61*		S1		WIL75
1185N	42.0	16.	9.14*	0.60+	12.	9.14*	0.60*								9.14*		51		NT 1.75
11858	46.0	7.	9.14*	0.60*	10.	9.14*	0.60*								9.14+		s i		911.75
11858	48.0	32.	9.14*	0.60*	8.	9.14+	0.60*								9.14+		51		11.75
118 SN	50.0	24.	9.14*	0.60*	14.	9.14*	0.60*								9.14*		51		UTL75
118 SN	54.0	23.	9.14*	0.60*	19.	9.14*	0.60*								9.14*		S1		WIL75

NITROGEN-15 INCIDENT PARTICLE

NUCLIDE	ENERGY (BFV)	REAL V	POTENT: R**	IAL A	VOL.IMA W	G. POTI	ENTIAL AW	SORF.IN WD	AG. POT RD**	ENTIAL AD	SPIN- VSO	-ORBIT RSO**	POTENTIAL ASO	RC**	52	FIT	NOTE	REF.
28 SI 28 SI	41. 49.3	20.5 23.5	7.42* 7.42*	0.49* 0.49*	4.50 6.50	7.42* 7.42*	0.38* 0.38*							7.4* 7.4*		52 52		SIE71 SIE71
89 Y	49.5	100.*	8.44	0.5	25.	8.44	0.5							8.44		S 2		ANA7 3

OXYGEN-16 INCIDENT PARTICLE

NUCLIDE	EN ER GY (TEV)	R BAL V	POTENI R**	IAL A	VOL.IM W	AG. POI RW**	ENTIAL AW	SORF.I WD	MAG. PO' RD**	TENTIAL A D	SPIN- VSO	ORBIT I RSO**	POTENTIAL ASO	BC** 5	R	FIT	NOTE	REF.
61I	36.	10.1	4.14	0.649	3.32	4.14	0.649							2.36* 4	63	S 1	7	ORL71
7 1 I	36.	10.5	3.76	0.658	3.38	3.76	0.658							2.49* 3	96	s 2	7	ORL71
10B	7.00	59.*	5.60*	0.57*	5.0	5.60*	0.57*							5.60*		52		0KU68
10B	8.22	59.*	5.60*	0.57*	6.3	5.60*	0.57*							5.60*		S2		08068
10B	8.95	59.*	5.60*	0.57*	7.0	5.60*	0.57*							5.60*		\$2		OKU68
10 B	10.0	59.*	5.60*	0.57*	8.0	5.60*	0.57*							5.60*		S 2		OKU 68
10B	10.5	59.*	5.60*	0.57*	8.5	5.60*	0.57*							5.60*		S 2		0KU68
11B	7,00	59.*	5.21*	0.58*	3.0	5.21*	0.58*							5.21*		S2		08068
11B	8.09	59.*	5.21*	0.58*	3.75	5.21*	0.58*							5.21*		52		08068
11B	9.00	59.*	5.21*	0.58*	5.0	5.21*	0.58*							5.21*		S 2		08068
11B	10.0	59.*	5.21*	0.58*	6.0	5.21*	0.58*							5.21*		52		OKU6B
11B	11.0	59.*	5-21*	0.58*	7.0	5.21*	0.58*							5.21*		S 2		OKU 68
11B	27.	100.*	5.74*	0.55*	15.	6.40*	0.55*							6.64*		52		V 0069
11B	27.	100.*	5.64*	0.48*	25.	5.97*	0.26*							6.87*		s	10	SCH72
11B	30.	100.*	5.74*	0.55*	17.	6.40*	0.55*							6.64*		S3		¥0069
11B	30.	100.*	5.64*	0.48*	25.	5.97*	0.26*							6.87*		S	10	SCH72
11B	32.5	100.*	5.74*	0.55*	18.5	6.40*	0.55*							6.64*		S3		¥0069
11B	32.5	50.*	5.74*	0.63	6.0	6.93	0.52							6.64*		S 3	3	10069
11B	32.5	88.*	6.21*	0.45	8.2	7.12*	0.15							6.64*		52	3	₹0069
11B	32.5	100.*	5.68	0.55	30.	5.68	0.55				2.5	5.68	0.55	5.7?		s	18	RO B 7 1 A
118	32.5	100.*	5.64*	0.48*	25.	5.97*	0.26*							6.87*		s	10	SCH72
11B	35.	100.*	5.74*	0.55*	20.	5.74	0,95							6.64*		S 3		¥0069
11B	35.	100.*	5.64*	0.48*	27.	5.97*	0.26*							6.87*		s	10	SCH72
11B	60.	100.*	5.64*	0.48*	30.	5.97*	0.26*							6.87*		s	10	SCH72
					,													
12C	18.7	50.*	6.085	0.39	2.	6.085	0.39							6.08		52		KUE64
120	20.	100.*	9.19*	0.48*	10.	6.06*	0.26*							6.73*		S2	5,2	10069
120	21.0	50.4	6.085	0.39	2.	6.085	0.39							6.08		52		KUE64
120	23.3	100 +	0.085	0.39	2.	6.085	0.39							6.08		52		KUE64
120	24.	100.+	9.19+	0.48+	13.	0.064	0.20+							6./3*		53	5,2	40069
12C	35.	100.*	6.20*	0.34	148.	1.30	0.38							6.73*		S 3	3	₹0069
12C	36.	92.3	4.39	0.850				17.8	6.37	0.263				2.98* 10	44	S2		ORL71
12C	36.	51.3	6.24*	0.533	2.45	6.24*	0.533							2.98* 8	93	S 3		ORL71
12C	42.	100.*	9,19*	0.48*	27.	6.06*	0.26*							6.73*		S 3	5,2	V0069
12C	42.	25.*	5.53*	0.68	2.1	7.31	0.23							6.73*		S 3	5,2	¥0069
12C	42.	100.*	5.72	0.5*	37.8	5.72	0.5*							5.7?		s	18	ROB71A
12C	65.	100.*	5.68	0.45	30.0*	6.01	0.18							6.97*		S 2	4	GUT73A
12C	80.	100.*	5.24	0.54	30.0*	5.82	0.27							6.97*		\$2	4	GUT73A
12C	168.	30.57	5.44	0.651	17.2	5.44	0.651							3.37		S2	6	BAS 66

Heavy Ions

0 X YG EN- 16	I NCI DE NT	PARTICLE

NUCLIDE	ENERGY (NEV)	REAL V	POTENT R**	IXL A	VOL.IH	AG. POTI R###	BNTIAL AV	SURP.INAG. PO WD RD**	TENTIAL AD	SPIN-ORBIT POTENTI VSO RSO** ASO	AL RC**	SR	FIT	NOTE	REF.
180 180 180	24. 28. 32.	100.* 95. 90.'	6.42* 6.42* 6.42*	0.4* 0.4* 0.4*	30.* 30.* 30.*	6.84* 6.84* 6.84*	0.2* 0.2* 0.2*				6.47 6.47 6.47		52 52 52	17,18 18 17,18	GEL74 GEL74 GEL74
26 NG 26 NG 26 NG 26 NG 26 NG	40. 45. 45. 50. 60.	17.* 17.* 32.8 17.* 32.8	7.16* 7.16* 7.12* 7.16* 7.16*	0.42* 0.42* 0.50* 0.42* 0.50*	8.92 13.11 8.11 12.48 8.11	6.78* 6.78* 7.12* 6.78* 7.12*	0.25* 0.25* 0.5* 0.25* 0.5*				7.16? 7.16? 7.12* 7.16? 7.12*		52 52 52 52 52 52	1 1	SIE70 SIE70 BAL75 SIE70 BAL75
27 AL 27 AL 27 AL 27 AL	42. 45. 47. 60.	60.0 32.8 44.9 32.8	7.17* 7.18* 7.17* 7.18*	0.438 0.50* 0.522 0.50*	8.02 8.11 24.74 8.11	7.17* 7.18* 7.17* 7.18*	0.433 0.5* 0.522 0.5*				3.90* 7.18* 3.90* 7.18*	1005 1303	52 52 51 52	1 7 1	ORL71 BAL75 ORL71 BAL75
2851 2851 2851 2851 2851 2851	33.0 36.0 38.0 40. 55.	16.75 16.75 16.75 14.0 21.5	7.51 7.51 7.51 7.51* 7.51*	0.49 0.49 0.49 0.49* 0.49*	7.0 7.0 7.0 5.0 6.25	7.51 7.51 7.51 7.51* 7.51*	0.38 0.38 0.38 0.38* 0.38*				7.51 7.51 7.51 7.5* 7.5*		\$1 51 52 52	9 9 9	GAL73 GAL73 GAL73 SIE71 SIE71
3051 3051	45. 60.	32.8 32.8	7.31* 7.31*	0.50* 0.50*	8.11 8.11	7.31* 7.31*	0.5* 0.5*				7.31* 7.31*		52 52	1 1	BAL75 BAL75
325	45.	100.*	6.95	0.5*	30.*	7.12	0.4*				7.?		51	13	BRA73
40 CA 40 CA 40 CA	40. 40. 47.	91.7 100.* 62.9	7.72* 7.25 7.72*	0.406 0.50* 0.399	43.7 24.4* 4.46	7.72* 7.25 7.72*	0.406 0.50* 0.399				4.45* 7.25 4.45*	572 797	S1 52 52		ORL71 GRO72 ORL71
48CA 48CA	40. 60.	100.* 32.8	7.43 8.0*	0.50 0.50*	24.41 8.11	7.43 8.0*	0.50 0.5*				7.43 8.0*		S 1 S2	13	GR072 BA175
48TI 48TI	42. 48.	60.3 60.2	8.0* 8.0*	0.418 0.403	3.05 3.38	8.0* 8.0*	0.418 0.403				4.72* 4.72*	583 838	51 52		ORL71 ORL71
54 FE 54 FE 54 FE	46. 46. 46.	100.* 200.* 300.*	7.27 6.89 6.67	0.55* 0.55* 0.55*	18.81 35.09 51.56	7.27 6.89 6.67	0.55* 0.55* 0.55*				7.27 6.89 6.67		51 51 51	16 16 16	BON72 BON72 BON72
56 PE 56 PE 56 PE 56 PE 56 PE 56 PE	38. 40. 42. 44. 46. 48.	27. 25. 24. 26. 28. 27.	7.94* 7.94* 7.94* 7.94* 7.94* 7.94*	0.6* 0.6* 0.6* 0.6* 0.6*	5. 9. 11.5 12. 11.5 11.	7.94* 7.94* 7.94* 7.94* 7.94* 7.94* 7.94*	0.6* 0.6* 0.6* 0.6* 0.6* 0.6*				7.94* 7.94* 7.94* 7.94* 7.94* 7.94*		51 51 51 51 52 51		0B572 0B572 0B572 0B572 0B572 0B572 0B572
56 PE 56 PE 56 PE 56 PE 56 PE 56 PE	50. 52. 54. 56. 58. 60.	30, 28. 28. 24. 24. 30.	7.94* 7.94* 7.94* 7.94* 7.94* 7.94*	0.6* 0.6* 0.6* 0.6* 0.6* 0.6*	6. 10. 11. 16. 17. 8.	7.94* 7.94* 7.94* 7.94* 7.94* 7.94*	0.6* 0.6* 0.6* 0.6* 0.6* 0.6*				7.94* 7.94* 7.94* 7.94* 7.94* 7.94*		S2 S1 S1 S1 S1 S1 S1	7 7 7	OBS72 OBS72 OBS72 OBS72 OBS72 OBS72 OBS72
58 NI 58 NI 58 NI 58 NI	44. 44. 50. 60.	22.69 29.43 23.65 25.25	8.31* 8.31* 8.31* 8.31*	0.533 0.491 0.533 0.533	2.35 2.43 3.49 5.39	8.75* 8.31* 8.75* 8.75*	0.375 0.491 0.375 0.375				4.84* 4.84* 4.84* 4.84*		51 51 52 51	7	CHR73 CHR73 CHR73 CHR73 CHR73
58 MI 58 MI 58 MI	63. 71.5 81.	70.* 70.* 70.*	7.54 7.54 7.54	0.57 0.57 0.57	82.1 82.1 82.1	7.54 7.54 7.54	1.18 1.18 1.18				7.54? 7.54? 7.54?		51 51 51	13 13	ZIS75 ZIS75 ZIS75
60 WI	62.	70.*	8.36	0.4*	8.*	8.2*	0.5*				8.5?		52	13	AUE73
62WI	62.	70.*	8.31	0.4*	8.*	8.2*	0.5*				8.57		\$ 2	13	AUE73
64 NI 64 NI 64 NI 64 NI 64 NI	56. 56. 56. 56. 62.	100.* 35.2 34.5 35.3 70.*	7.97 8.52 8.52* 8.52* 8.52* 8.71	0.50* 0.493 0.493* 0.493* 0.493*	25.8 61.4 34.5 19.67 9.*	7.97 7.81 7.93 8.10 8.71	0.50* 0.204 0.204* 0.204* 0.204*				7.97 8.57 8.57 8.57 8.57		S1 S1 S1 S1 S2	9 13	CUN74 LEM74 LEM74 LEM74 AUE73
66 WI	62.	70.*	8.77	0.4*	9.*	8.77	0.4*				8.5?		S 2	13	AUE73
70 GE 70 GE 70 GE 70 GE	42. 44. 46. 48.	46. 39. 38. 38.	8.30* 8.30* 8.30* 8.30*	0.6* 0.6* 0.6* 0.6*	4. 16. 22. 19.	8.30* 8.30* 8.30* 8.30*	0.6* 0.6* 0.6* 0.6*				8.30* 8.30* 8.30* 8.30*		51 51 51 51		0BS 72 0BS 72 0BS 72 0BS 72
70ge 70ge 70ge 70ge 70ge 70ge	50. 52. 54. 56. 58. 60.	42. 37.5 41. 38. 41. 37.	8.30* 8.30* 8.30* 8.30* 8.30* 8.30*	0.6* 0.6* 0.6* 0.6* 0.6* 0.6*	17. 24. 13. 15. 16. 13.	8.30* 8.30* 8.30* 8.30* 8.30* 8.30*	0.6* 0.6* 0.6* 0.6* 0.6* 0.6*				8.30* 8.30* 8.30* 8.30* 8.30* 8.30*		S1 S1 S1 S1 S1 S1	9 9	0BS72 0BS72 0BS72 0BS72 0BS72 0BS72 0BS72

Heavy Ions

NUCLIDE ENERGY RBAL POTENTIAL (NSV) VOL.IHAG. POTENTIAL V SURF.IHAG. POTENTIAL VL SPIN-ORBIT POTENTIAL VL SPIN-ORBIT POTENTIAL VSO SPIN-ORBIT POTENTIAL VSO RC** SR FIT NOTE I 7467 42. 8.40* 0.6* 52. 8.40* 0.6* <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>O X Y G EN</th> <th>-16 INC</th> <th>TDENT</th> <th>PARTICLE</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>								O X Y G EN	-16 INC	TDENT	PARTICLE								
7402 $40.$ $3.$ 8.40^{+} 0.6^{+} $42.$ 8.40^{+} 0.6^{+}	UCLIDE	EN ER GY (NEV)	REAL V	POTENT R**	IAL A	VOL.II W	AG. POI RW**	ENTIAL AW	SURT.I WC	NAG. PO RD**	TENTIAL AD	SPIN- VSO	ORBIT RSO*	POTENTIAL * ASO	RC**	SR	FIT	NOTE	REF.
7402 $42.$ 8.40° 0.6° 6.40° 6.40° 51 00 7462 $44.$ $40.$ 8.40° 0.6° 8.40° 51 00 7462 $46.$ $42.$ 8.40° 0.6° 8.40° 51 00 7462 $84.$ 8.40° 0.6° 8.40° 8.40° 51 00 7462 $51.$ 8.40° 0.6° 8.40° 8.40° 51 00 7462 $52.$ $37.$ 8.40° 0.6° 8.40° 0.6° 8.40° 51 00 7462 $52.$ $37.$ 8.40° 0.6° 8.40° 0.6° 8.40° 51 00 7462 $56.$ $57.$ 8.40° 0.6° 8.40° 0.6° 8.40° 51 00 7462 $56.$ $57.$ 8.40° 0.5° 0.5° 0.5° 0.5° 0.5° 0.6° $0.6^{$	74 GE	40.	3.	8.40*	0.6*	52.	8.40*	0.6*							8.40*		51		08572
7402 44 , 40 , $8, 40^{\circ}$ $0.6*$ $33.$ 8.40° $0.6*$ 8.40° 51 00 7402 $46.$ $42.$ 8.40° $0.6*$ 8.40° 51 00 7402 $48.$ $38.$ 6.40° 0.6° $13.$ 8.40° 0.6° 8.40° 51 00 7402 $52.$ $38.$ 6.40° 0.6° $18.$ 8.40° 0.6° 8.40° 51 00 7402 $54.$ $37.$ 8.40° 0.6° $18.$ 8.40° 0.6° 8.40° 51 00 7402 $54.$ $37.$ 8.40° 0.6° $18.$ 8.40° 0.6° 8.40° 0.6° 8.40° 51 00° 8.44 52 8.40° 51 00.5°	74 GE	42.	28.	8.40*	0.6*	42.	8.40*	0.6*							8.40*		S1		OBS72
7402 $46.$ $42.$ 8.40° 0.6° $20.$ 8.40° 0.6° 8.40° 8.1 00 7402 $46.$ $38.$ 8.40° 0.6° $13.$ 8.40° 0.6° 8.40°	74 GE	44.	40.	8.40*	0.6*	33.	8.40*	0.6*							8.40*		51		OBS72
7462 48. 38. 8.40* 0.6* 13. 8.40* 0.6* 8.40* 51 01 7462 50. 37. 8.40* 0.6* 14. 8.40* 0.6* 8.40* 51 01 7462 52. 38. 8.40* 0.6* 28. 8.40* 0.6* 8.40* 51 01 7462 54. 37. 8.40* 0.6* 28. 8.40* 0.6* 8.40* 51 01 7462 56. 57. 8.40* 0.6* 18. 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.6* 8.40* 0.5* 9.0* 8.40* 0.5* 9.0* 8.40* 0.5* 9.0* 8.44* 52 8.40* 55 55 51 0.5* 9.0* 8.75	74 GB	46.	42.	8.40*	0.6*	20.	8.40*	0.6*							8,40*		S1		OBS72
7462 50. 37. 8.40^{*} 0.6^{*} $14.$ 8.40^{*} 0.6^{*} 8.40^{*} 51 01 7462 52. 38. 8.40^{*} 0.6^{*} $18.$ 8.40^{*} 0.6^{*} 8.40^{*} 51 01 7462 56. 57. 8.40^{*} 0.6^{*} $18.$ 8.40^{*} 0.6^{*} 8.40^{*} 51 01 8858 52. 23.93 9.06^{*} 0.5^{*} $25.$ 8.440^{*} 0.6^{*} 8.40^{*} 51 01 8858 56. $100.*$ 8.440 0.5 $25.$ 8.444 0.5 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.93^{*} 8.40^{*} 8.75^{*} 8.75^{*} 8.75^{*} 8.75^{*} 8.75^{*} 8.75^{*} 8.75^{*} 8.75^{*} 8.75^{*} 8.75^{*} 8.75^{*} 8.75^{*} 8.75^{*} 8.75^{*}	74 GE	48.	38.	8.40*	0.6*	13.	8.40*	0.6*							8.40*		S 1		OBS72
7462 52. 38. 8.40* 0.6* 18. 8.40* 0.6* 8.40* 51 00 7462 56. 57. 8.40* 0.6* 28. 8.40* 0.6* 8.40* 51 00 8878 52. 23.93 9.06* 0.568 3.70 9.76* 0.323 5.56* 51 cr 8858 56. 300.* 7.469 0.5 60.6 7.89 0.5 8.44 52 8.44 52 8858 56. 600.* 8.93 0.3 15.2 8.93 0.3 8.93 52 8.44 53 9.76* 0.323 5.56* 51 9 9 9028 46. 84. 6.75* 0.5* 3. 8.75* 0.5* 8.75* 51 9 9 9028 48. 79. 8.75* 0.5* 2. 8.75* 9 8.75* 51 9 9 9 9 9 8.75* 51 9 9 9 9 9 9 8.75	74 GE	50.	37.	8.40*	0.6*	14.	8.40*	0.6*							8.40*		51		08572
74 GE 54. 37. 8.40° 0.6° 28. 8.40° 0.6° 8.40° 0.6° 8.40° 0.6° 74 GE 56. 57. 8.40° 0.6° 18. 8.40° 0.6° 8.40° 51° 0.40° 51° 01° 88 SR 52. 23.93 9.06° 0.56° 0.323° 5.56° 51° 01° 88 SR 56. 100.* 8.44° 0.5° 64.44° 0.5° 8.44° 52° 14° 8.44° 52° 14° 8.44° 52° 14° 8.44° 51° 61° 61° 8.44° 8.46° 8.46° 8.75° 8.75° 8.75° 8.75° 8.75° 8.75° 8.75° 8.75° 8.75°	74 GE	52.	38.	8.40*	0.6*	18.	8.40*	0.6*							8.40*		S1		08572
74GE 56. 57. 8.40* $0.6*$ 18. 8.40* $0.6*$ 8.40* 51 01 885R 52. 23.93 $9.06*$ 0.568 3.70 $9.76*$ 0.323 $5.56*$ 51 Cr 885R 56. 100.* 8.444 0.5 8.444 0.5 8.444 52 $A1$ 885R 56. 300.* 7.89 0.5 60.6 7.89 0.5 8.93 $5.56*$ 51 9 902R 46. 84. $8.75*$ 0.58 2.893 0.3 $8.75*$ 51 90 902R 46. 84. $8.75*$ $0.5*$ 2.893 $0.5*$ $8.75*$ 51 90 902R 46. 84. $8.75*$ $0.5*$ 2.893 $0.5*$ $8.75*$ 51 90 902R 46. 84. $8.75*$ $0.5*$ $2.875*$ $0.5*$ $8.75*$ 51 90 902R 50. $8.75*$ $0.5*$ $2.8.75*$ <	74 GE	54.	37.	8.40*	0.6*	28.	8.40*	0.6*							8.40*		S2		OBS72
885852.23.939.06*0.568 3.70 9.76*0.3235.56*51Cr885856.100.*8.440.525.8.440.58.4452Al885856.300.*7.890.560.67.890.58.930.3885856.24.739.06*0.5685.309.76*0.3238.935.56*51902846.84.8.75*0.5*3.8.75*0.5*8.75*5100902846.84.8.75*0.5*2.8.75*0.5*8.75*5100902850.82.8.75*0.5*2.8.75*0.5*8.75*5100902850.82.8.75*0.5*2.8.75*0.5*8.75*5100902850.82.8.75*0.5*2.8.75*0.5*8.75*5100902856.76.8.75*0.5*25.8.75*0.5*8.75*5100902856.76.8.75*0.5*23.8.75*0.5*8.75*5100902856.76.8.75*0.5*17.8.75*0.5*8.75*5100902856.76.8.75*0.5*17.8.75*0.5*8.75*5100902856.76.8.75*0.5*17.8.75*0.5*8.75* <td>74GB</td> <td>56.</td> <td>57.</td> <td>8.40*</td> <td>0.6*</td> <td>18.</td> <td>8.40*</td> <td>0.6*</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8.40*</td> <td></td> <td>S1</td> <td></td> <td>08572</td>	74GB	56.	57.	8.40*	0.6*	18.	8.40*	0.6*							8.40*		S1		08572
9858 - 56. $100.*$ 8.44 0.5 $25.$ 8.44 0.5 8.44 0.5 $8858 - 56.$ $300.*$ 7.89 0.5 60.6 7.89 0.5 7.89 52 11 $8858 - 56.$ $300.*$ 7.89 0.5 60.6 7.89 0.5 8.93 0.3 8.93 52 11 $8858 - 56.$ 24.73 $9.06*$ 0.568 5.30 $9.76*$ 0.323 $5.56*$ 51 9 $c1$ $9028 - 46.$ $84.$ $8.75*$ $0.5*$ $2.$ $8.75*$ $0.5*$ $8.75*$ 51 01 $9028 - 50.$ $82.$ $8.75*$ $0.5*$ $2.$ $8.75*$ $0.5*$ $8.75*$ 51 01 $9028 - 50.$ $82.$ $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 01 $9028 - 50.$ $82.$ $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 01 $9028 - 50.$ $82.$ $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 01 $9028 - 50.$ $82.$ $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 01 $9028 - 56.$ $76.$ $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 01 $9028 - 56.$ $76.$ $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 01 $9028 - 56.$ $76.$ $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 01 $9028 - 50.$ $73.$ $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 </td <td>885R</td> <td>52.</td> <td>23.93</td> <td>9,06*</td> <td>0.568</td> <td>3.70</td> <td>9.76*</td> <td>0.323</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>5.56*</td> <td></td> <td>\$1</td> <td></td> <td>CHP73</td>	885R	52.	23.93	9,06*	0.568	3.70	9.76*	0.323							5.56*		\$1		CHP73
8858 $56.$ $300.*$ 7.89 0.5 60.6 7.89 0.5 15.2 8.93 0.3 8858 $56.$ $600.*$ 8.93 0.3 15.2 8.93 0.3 8.93 52 11 8858 $60.$ 24.73 $9.06*$ 0.568 5.30 $9.76*$ 0.323 $5.56*$ 51 9 $c1$ 9028 $46.$ $84.$ $6.75*$ $0.5*$ $3.$ $8.75*$ $0.5*$ $8.75*$ 51 01 9028 $46.$ $84.$ $6.75*$ $0.5*$ $2.$ $8.75*$ $0.5*$ $8.75*$ 51 01 9028 $50.$ $82.$ $8.75*$ $0.5*$ $2.$ $8.75*$ $0.5*$ $8.75*$ 51 01 9028 $50.$ $82.$ $8.75*$ $0.5*$ $8.75*$ 51 01 01 01 01 9028 $52.$ $76.$ $8.75*$ $0.5*$ $8.75*$ 51 01 01 01 9028 $56.$ $76.$ $8.75*$ $0.5*$ $8.75*$ 51 01 01 9028 $56.$ $76.$ $8.75*$ $0.5*$ $8.75*$ 51 01 9028 $58.$ $75.$ $8.75*$ $0.5*$ $8.75*$ 51 01 9028 $56.$ $73.$ $8.75*$ $0.5*$ $8.75*$ 51 01 9028 55.0 $79.25*$ $0.5*$ 17.8 $8.75*$ $0.5*$ $8.75*$ 51 9028 55.0 <	88 SR	56.	100.*	8.44	0.5	25.	8.44	0.5							8.44		\$2		11173
885856.600.*8.930.315.28.930.315.28.930.3885860.24.739.06*0.5685.309.76*0.3235.56*519902846.84.8.75*0.5*3.8.75*0.5*8.75*5101902846.84.8.75*0.5*3.8.75*0.5*8.75*5101902850.8.75*0.5*2.8.75*0.5*8.75*5100902850.8.75*0.5*15.8.75*0.5*8.75*5100902852.78.8.75*0.5*15.8.75*0.5*8.75*5100902856.76.8.75*0.5*15.8.75*0.5*8.75*5100902856.76.8.75*0.5*15.8.75*0.5*8.75*5100902856.76.8.75*0.5*15.8.75*0.5*8.75*5100902858.75.8.75*0.5*17.8.75*0.5*8.75*5100902856.73.8.75*0.5*17.8.75*0.5*8.75*5100902855.079.50.5*4.539.25*0.5*9.540.509.54518.75*1165864.41.239.560.309.560.309.5651 <td>88 SR</td> <td>56.</td> <td>300.*</td> <td>7.89</td> <td>0.5</td> <td>60.6</td> <td>7.89</td> <td>0.5</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>7.89</td> <td></td> <td>52</td> <td></td> <td>ANA 73</td>	88 SR	56.	300.*	7.89	0.5	60.6	7.89	0.5							7.89		52		ANA 73
8858 60. 24.73 $9.06*$ 0.568 5.30 $9.76*$ 0.323 $5.56*$ 51 9 9028 46. 84. $8.75*$ $0.5*$ $3.$ $8.75*$ $0.5*$ $8.75*$ 51 01 9028 46. 84. $8.75*$ $0.5*$ $2.$ $8.75*$ 51 $005*$ $8.75*$ 51 $005*$ 9028 50. 82. $8.75*$ $0.5*$ $2.$ $8.75*$ $0.5*$ $8.75*$ 51 $005*$ 9028 50. 82. $8.75*$ $0.5*$ $2.$ $8.75*$ $0.5*$ $8.75*$ 51 $005*$ 9028 54. 76. $8.75*$ $0.5*$ $8.75*$ 51 $005*$ 9028 56. 76. $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 $005*$ 9028 56. 75. $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 $05*$ 9028 56. 73. $8.75*$ $0.5*$ $0.5*$ 8	88 S R	56.	600.*	8.93	0.3	15.2	8.93	0.3							8.93		52		ANA73
902R46.84.8.75* $0.5*$ 3.8.75* $0.5*$ $0.5*$ $0.5*$ $8.75*$ 51 00 902R48.79.8.75* $0.5*$ $2.$ 8.75* $0.5*$ $0.5*$ $8.75*$ 51 00 902R50.82.8.75* $0.5*$ $2.$ $8.75*$ $0.5*$ $8.75*$ 51 00 902R52.76. $8.75*$ $0.5*$ $0.5*$ $8.75*$ $0.5*$ $8.75*$ 51 00 902R56.76. $8.75*$ $0.5*$ $25.$ $8.75*$ $0.5*$ $8.75*$ 51 00 902R56.75. $8.75*$ $0.5*$ $0.5*$ $0.5*$ $8.75*$ 51 00 902R56.73. $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 00 902R60.73. $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 00 1165M64. 41.23 $9.25*$ $0.5*$ 4.53 $9.25*$ $0.5*$ 4.53 9.54 0.50 9.257 51 00 1165M64. 41.23 9.54 0.55 4.53 $9.25*$ $0.5*$ 4.53 9.54 0.50 9.257 51 00 1205M55.039.929.81 0.45 9.81 0.45 9.81 51 8.75 1205M55.0799.9 9.56 0.30 9.56 5.8 0.455 9.84 51 8.65 1205M <td< td=""><td>88 SR</td><td>60.</td><td>24.73</td><td>9.06*</td><td>0.568</td><td>5.30</td><td>9.76*</td><td>0.323</td><td></td><td></td><td></td><td></td><td></td><td></td><td>5.56*</td><td></td><td>51</td><td>9</td><td>CHR73</td></td<>	88 SR	60.	24.73	9.06*	0.568	5.30	9.76*	0.323							5.56*		51	9	CHR73
302h $40.$ $50.$ $51.$ <	90.7P	46	84	8 75±	0.5.	э	8 75*	0.5*							0 75+		61		08670
$902R$ 90.7 0.75^{*} 0.75^{*} 0.75^{*} 0.75^{*} 51 010^{*} $902R$ 50.8 8.75^{*} 0.5^{*} 0.5^{*} 0.75^{*} 51 010^{*} $902R$ $52.$ $78.$ 8.75^{*} 0.5^{*} 0.5^{*} 8.75^{*} 51 010^{*} $902R$ $54.$ $76.$ 8.75^{*} 0.5^{*} 8.75^{*} 51 010^{*} $902R$ $54.$ $76.$ 8.75^{*} 0.5^{*} 8.75^{*} 51 010^{*} $902R$ $56.$ $76.$ 8.75^{*} 0.5^{*} 0.5^{*} 8.75^{*} 51 010^{*} $902R$ $56.$ $76.$ 8.75^{*} 0.5^{*} 8.75^{*} 51 010^{*} $902R$ $60.$ $73.$ 8.75^{*} 0.5^{*} 0.5^{*} 8.75^{*} 51 00^{*} $1165N$ $64.$ 41.23 9.25^{*} 0.5^{*} 4.53 9.54 0.50 9.54 51 cc $1165N$	0040	40.	70	0.75+	0.5+	3.	0.75*	0.5+							0./07		51		08572
902R $52.$ $76.$ $8.75*$ $0.5*$ $8.75*$ 51 01 $902R$ $54.$ $76.$ $8.75*$ $0.5*$ $8.75*$ 51 01 $902R$ $54.$ $76.$ $8.75*$ $0.5*$ $25.$ $8.75*$ $0.5*$ $8.75*$ 51 01 $902R$ $56.$ $76.$ $8.75*$ $0.5*$ $8.75*$ $0.5*$ $8.75*$ 51 01 $902R$ $56.$ $76.$ $8.75*$ $0.5*$ $8.75*$ $8.75*$ 51 01 $902R$ $56.$ $75.$ $8.75*$ $0.5*$ $8.75*$ $8.75*$ 51 01 $902R$ $60.$ $73.$ $8.75*$ $0.5*$ $8.75*$ 8.7	0070	50	93	0 75 ±	0.5*	5.	0.75*	0.5*							0.75+		3 I 6 1		05572
902R $54.$ $76.$ $8.75*$ $0.5*$ $25.$ $8.75*$ $0.5*$ $8.75*$ 51 01 $902R$ $56.$ $76.$ $8.75*$ $0.5*$ $8.75*$ $0.5*$ $8.75*$ 52 01 $902R$ $56.$ $76.$ $8.75*$ $0.5*$ $8.75*$ 52 01 $902R$ $56.$ $75.$ $8.75*$ $0.5*$ $8.75*$ 52 01 $902R$ $60.$ $73.$ $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 01 $902R$ $60.$ $73.$ $8.75*$ $0.5*$ $0.5*$ $8.75*$ 51 01 $1165N$ $64.$ 41.23 $9.25*$ $0.5*$ 4.53 $9.25*$ $0.5*$ 9.257 51 00 $1165N$ $64.$ 41.23 $9.25*$ $0.5*$ 4.53 $9.25*$ $0.5*$ 9.257 51 00 $1205N$ 55.0 39.92 9.81 0.45 9.81 51 0.956 8.75	0070	52	78	8 75*	0.5*	15	8 75*	0.5*							0.75*		21		00572
902R 56. 76. 8.75* 0.5* 8.75* 52 01 $902R$ 56. 76. 8.75* 0.5* 15. 8.75* 0.5* 10 $902R$ 58. 75. 8.75* 0.5* 17. 8.75* 0.5* 10 $902R$ 60. 73. 8.75* 0.5* 17. 8.75* 0.5* 10 1165H 64. 41.23 9.25* 0.5* 17. 8.75* 0.5* 8.75* 51 01 1165H 66.0 41.23 9.25* 0.5* 4.53 9.25* 0.5* 9.54 51 0.5 10 120SH 55.0 39.92 9.81 0.45 9.81 51 0.45 9.81 51 0.45 9.56 5 0.20 9.56 5 0.20 9.56 5 0.20 9.56 5 0.20 9.45 9.45 9.84 5 9.84 5 0.45 9.84 5 0.45 9.84 5 0.45 9.84 5 0.45	90ZR	54.	76.	8.75*	0.5*	25.	8.75*	0.5*							8 75*		\$1		08572
90 ZR 58. 75. 8.75* 0.5* 23. 8.75* 0.5* 0.5* 8.75* 51 00 116 5H 64. 41.23 9.25* 0.5* 17. 8.75* 0.5* 4.53 9.54 0.50 9.257 51 00 116 5H 66.0 41.23 9.25* 0.5* 4.53 9.54 0.50 9.257 51 ccc 120 5H 55.0 79.9. 9.56 0.30 9.54 0.45 9.81 51 Rcc 120 5H 55.0 79.9. 9.56 0.30 9.56 9.58 8.75* 9.64 9.81 51 Rcc 120 5H 55.0 79.9. 9.56 0.30 9.56 9.58 8.75* 9.64 9.81 51 Rcc 120 5H 55.0 79.9. 9.56 0.30 9.56 9.84 51 Rcc 120 5H 55.0 79.9. 9.84 0.45 9.84 9.84 51 Rcc 120 5H 55.0 79.9. 9.84 <td< td=""><td>90 Z R</td><td>56.</td><td>76.</td><td>8.75*</td><td>0.5*</td><td>15.</td><td>8.75*</td><td>0.5*</td><td></td><td></td><td></td><td></td><td></td><td></td><td>8.75*</td><td></td><td>52</td><td></td><td>08572</td></td<>	90 Z R	56.	76.	8.75*	0.5*	15.	8.75*	0.5*							8.75*		52		08572
90 ZR 60. 73. 8.75* 0.5* 17. 8.75* 0.5* 8.75* S1 01 116 SH 64. 41.23 9.25* 0.5* 4.53 9.25* 0.5* 9.257 S1 CC 116 SH 66.0 41.23 9.54 0.50 4.53 9.54 0.50 9.54 S1 RC 120 SH 55.0 39.92 9.81 0.45 9.81 S1 RC 120 SH 55.0 79.9. 9.56 0.30 9.56 S RC 120 SH 55.0 7.91. 9.84 0.45 9.84 S1 RC 120 SH 55.0 7.92. 9.84 0.45 9.84 S1 RC	90 ZR	58.	75.	8.75*	0.5*	23.	8.75*	0.5*							8.75*		S1		OBS72
1165H 64. 41.23 9.25* 0.5* 4.53 9.25* 0.5* 9.25? S1 CC 1165H 66.0 41.23 9.25* 0.5* 4.53 9.54 0.50 9.54 S1 CC 1105H 66.0 41.23 9.25* 0.5* 4.53 9.54 0.50 9.54 S1 RC 1205H 55.0 79.9 9.56 0.30 50.0 9.56 0.30 9.56 S RC 1205H 55.0 79.9 9.56 0.30 9.56 S RC 1205H 55.0 79.9 9.56 0.30 9.56 S RC 1205H 55.0 79.9 9.84 0.45 9.84 S1 RC	90 Z R	60.	73.	8.75*	0.5*	17.	8.75*	0.5*							8.75*		51		0BS72
1165N 66.0 41.23 9.54 0.50 9.54 51 RC 1205N 55.0 39.92 9.81 0.45 4.42 9.81 0.45 9.81 51 RC 1205N 55.0 799. 9.56 0.30 9.56 5 RC 1205N 55.0 799. 9.56 0.30 9.56 5 RC 1205N 55.0 799. 9.56 0.30 9.56 5 RC 1205N 55.7 39.12 9.84 0.45 9.84 51 RC	11658	64.	41.23	9.25*	0.5*	4.53	9.25*	0.5*							9.257		\$1		CON731
1205N 55.0 39.92 9.81 0.45 9.81 S1 RC 1205N 55.0 799. 9.56 0.30 9.56 S BC 1205N 55.0 799. 9.56 0.30 9.56 S BC 1205N 55.7 39.12 9.84 0.45 9.84 S1 RC	11651	66.0	41.23	9.54	0.50	4.00	74 2 5 1	0.0	4.53	9.54	0.50				9.54		51		ROB71
120SN 55.0 799. 9.56 0.30 50.0 9.56 0.30 9.56 s BC 120SN 65.7 39.12 9.84 0.45 4.42 9.84 0.45 9.84 S1 RC	120 SN	55.0	39.92	9.81	0.45				4.42	9.81	0.45				9.81		S1		ROB71
1205# 55.7 39.12 9.84 0.45 9.84 S1 RC	120SN	55.0	799.	9.56	0.30				50.0	9.56	0.30				9.56		S		ROB71
	12051	65.7	39.12	9.84	0.45				4.42	9.84	0.45				9.84		S 1		ROB71
1205N 65.7 797. 9.56 0.30 20.0 9.56 S RC	120 SN	65.7	797.	9.56	0.30				50.0	9.56	0.30				9.56		S		ROB71
142 ND 70. 37.07 10.06* 0.527 2.87 11.45 0.156	142 ND	70.	37.07	10.06*	0.527	2.87	11.45	0.156							6.52*		5		CHR73

OXYGEN-18 INCIDENT PARTICLE

NUCLIDE	ENERGY (MEV)	RBAL V	POTENT R**	TAL A	VOL.IM W	AG. POI R#**	BNTIAL AW	SDRF.IN WD	RD**	TENTIAL AD	SPIN-ORBIT POTENTIAN VSO RSO** ASO	RC**	SR	FIT	NOTE	REP.
160	42.	17.5	6.94	0.56	5.7	6.79	0.5					6.94		S 2	5	VAN74
160	52.	18.5	6.94	0.56	5.9	6.79	0.5					6.94		S 2	3	VAN74
180	42.	11.4	7.06	0.6	5.2	7.06	0.6					7.06		52	7	VAN74
180	52.	12.6	7.06	0.6	6.3	7.06	0.6					7.06		S 2	7	VAN 74
28 SI	36.0	16.75	7.64	0.49	7.0	7.64	0.60					7.64		51	9	GAL73
58 NI	62.	70.*	8,52	0.4*	8.*	8.2*	0.5*					8.57		52	13	10873
58 N I	63.4	70.*	8.63	0.38	149.	8.63	1.33					8.637		S1	9	ZI S 75
60 NI	62.	70.*	8.68	0.4*	8.*	8.2*	0.5*					8.5?		52	13	AUE73
62NI	62.	70.*	8.68	0.4*	9.*	8.68	0.4*					8.57		52	13,15	AUE73
64 NI	62.	70.*	8.93	0.4*	9,*	8,93	0.4*					8.5?		52	13	AUE73
116 SN	67.0	39.69	9.75	0.50				4.53	9.75	0.50		9.75		51		R0871
120 SM	66.7	38.86	9.78	0.51				4.52	9.78	0.51		9.78		S 1		ROB71

							FLUORIN	E-19 INCIDE	NT PARTICL	B							
NUCLIDE	ENERGY	REAL	POTENT	IAL	VOL.I	MAG. POT	ENTIAL	SURP.IMAG.	POTENTIAL	SPIN	-ORBIT	POTENTIAL	RC**	SR	FIT	NOTE	REF.
	(124)	•	R++	A		To ++		WL RD	AD AD	450	#20++	ASU					
12C 12C	40. 40.0	100.* 100.*	5.90* 5.90*	0.48* 0.48*	23. 25.	6.25* 6.25*	0.26* 0.26*						6.94* 7.19*		53 5	10	V0069 5CE72
12C	60.	100.*	5.90*	0.48*	27.	6.25*	0.26*						6.94*		53		¥0069
12C	60.	100.*	6.15	0.5*	33.	6.15	0.5*			0.4	6.15	0.5*	6.17		5	18	ROB71A
12C	60.0	100.*	5.90*	0.48*	27.	6.25*	0.26*						7.19*		S	10	SCB72
12C	68.8	100.*	5.90*	0.48*	30.	6.25*	0.26*						7.19*		S	10	SCH72

Heavy Ions

							SILICON	-28 INC	IDENT	PARTICLE						
NUCLIDE	ENERGY (BEV)	REAL V	POTEN R**	TIAL A	VOL.II W	NAG. POT RW**	ENTIAL AW	SURF.I WD	NAG. PO R D**	TENTIAL AD	SPIN-ORBIT POTENTIÀ VSO RSO** ASO	. RC**	SR	FIT	NOTE	R EF.
2851	50.	100.*	7.36	0.49*	2.	7.78*	0.39*					7.30*		51	9	HI174
28SI	60.	100.	7.30	0.49*	2.	7.78*	0.39*					7.30≢		S1	9	HIL74
28 SI	67.	100.*	7.36	0.49*	7.	7.78*	0.39*					7.30*		S1	9	HIL74
28SI	74.	100.*	7.30	0.49*	14.	7.78*	0.39*					7.30*		S 1	9	81174
28 SI	77.	100.*	7.36	0.49*	17.	7.78*	0.39*					7.30*		S 1	9	BIL74

SULFOR-32 INCIDENT PARTICLE

NUCLIDE	ENERGY	RBAL	POTENT	INL	VOL.IM	IG. POT	ENTIAL	SUPP.I	HAG.	POTE	NTINL	SPIN	-ORBIT	POT	ENTI AL	RC**	5 R	FIT	NOTE	REF.
	(NBV)	۷	R**	X	W	R#**	¥ A	WD	R D*	*	A D	₩50	RSO*	* A:	\$ 0					
24 HG	70.	100.*	7.44	0.488*	27.*	8.95	0.26*									8.47*	282	s	14	GUT73
24 🗟 G	75.	100.*	7.08	0.488*	27.*	6.72	0.26*									8.47*	263	s	14	GUT73
24 HG	80.	100.*	7.08	0.488*	27.*	6.84	0.26*									6.47*	406	5	14	GUT73
24 HG	80.	41.8*	7.34	0.49*	16.4*	8.39	0.49*									8.47*	650	s		GUT73
24 MG	90.	26.8	7.42	0.5*	4.26	8.35	0.5*									8.47*	656	s	14	GUT 73
24 MG	110.	100.*	7.23	0.488*	27.*	7.59	0,26*									8.47*	1013	s		GUT73
24 HG	110.	31.07	7.63	0.5*	5.11	7.93	0.5*									8.47*	1017	S2	7	GUT73
24 MG	120.	100.*	7.50	0.5*	27.*	7.50	0.5*									8.47*	1320	S 2	1	GUT 73
27.17	67	100 *	7 37	0.55	27 ±	7 67	0.5#									0 <i>6 1</i> #	205	e 1		00073
27 11	67	22.81	8.36	0.5*	<u> </u>	8.36	0.5*									A 64#	156	5		CUT 73
2711	73.	24.2	8.00	0.5+	5.41	8.00	0.5*									8 64*	308	\$2		CUT 73
27 11	82.5	100.*	7.50	0.48*	27.*	8.33	0.26*									8.64*	555	82		GUT 73
27 81.	85.	100.*	7.40	0.48*	27. *	8.08	0.26*									8.64*	595	52		60773
27 AL	85.	47.8*	7.71	0.49*	16.4+	7.03	0.49*									8.64*	585	s		GUT73
27AL	110.	32.67	7.71	0.5*	5.43	8.64	0.5*									8.64*	1135	\$ 2		GUT73
40CA	80.	41.8*	7.71	0.49*	16.4*	7.64	0.49*									9.23*	76	S 1		GUT 73
40C3	80.	100.*	7.81	0.55	27.*	7.69	0.5*									9.23*	63	51		GBT73
40C)	80.	100.*	8.17	D.48*	27. *	8.90	0.26*									9.23*	62	S1		60773
40CA	82.5	100.*	7.81	0.55	27.*	7.69	0.5*									9.23*	130	s		GUT 73
40CA	82.5	30.42	8.74	0.5*	7.27	8.74	0.5*									9.23*	187	S1		GUT73
40Ch	85.	31.11	8.70	0.5*	7.48	8.70	0.5*									9.23*	266	S	14	GUT73

NOTES

- 1. Data for angles smaller than 60°
- 2. Absolute normalization of the data is unknown
- 3. Data for angles larger than 90° are not used in the search
- 4. Data for angles larger than 60° are not used in the search
- Data for angles larger than 80° are not used in the search
- 6. Data for angles smaller than 45°
- 7. Data for angles smaller than 90°
- The value of WD has been obtained assuming a linear variation of this parameter between 4.5 and 13 MeV
- 9. Data for angles smaller than 100°
- The fixed parameters are from Ref. V0069. Parameter W is adjusted as a function of energy. Unacceptable fit to the data at backward angles.

- See publication for a systematic study of the optical model parameters
- 12. The parameters V and A, of the real potential, were obtained from the superposition model $% \left[{{{\left[{{{K_{\rm{s}}}} \right]}_{\rm{s}}}} \right]$
- 13. Data for angles smaller than 80°
- 14. Good fit to the data up to 90°
- 15. Data measured at energies between 60 and 64 MeV
- See publication for other sets of parameters fitting the same data
- 17. Data for angles larger than 90°
- 18. Angular momentum dependent imaginary potential
- W65. As reported in a previous compilation by D. R. Winner and R. M. Drisko, "Phenomenological Optical Model Parameters," rechnical Report, Department of Physics, University of Pittsburgh, June 1965

Heavy Ions

Incident Nuclei	Target <u>Nuclei</u>	Energy Range (MeV)	References
۴Li	۴Li	15 to 36	WHA74
۴Li	^{1 2} C	20 to 63	BIN74
^{1 2} C	^{1 2} C	20 to 30	G0B71
^{3 e} 0	, eO	12.5 to 35	MAH69
1 e O	¹⁸ 0	21 to 29	SIE71,SIE72
160	^{2 e} Mg	35 to 50	SIE71
^{1 e 0} (*)	^{14,15} N, ¹⁶ O, ²⁴ Mg	12 to 32	SIE71
^{1 e} 0	² "Mg	47 to 72	SIW74
1 e O	"°Ca to "°Zr	60	BEC73
1 60	⁹⁶ Zr	49	BEC73
² •Mg	² *Mg	45 to 66	EML75
²ªSi	² ⁸ Si	66 to 72	EML75

TABULAR BIBLIOGRAPHY

*Excitation functions only

HEAVY TONS REFERENCES

- ANA73 N. ANAMTARAMAN, PHYS. REV. C 8, 2245 (1973)
- AUE53 E. H. AUERBACH AND C. E. PORTER, PROC. THIRD CONF. REACTIONS BETWEEN COMPLEX NUCLEI, ED. A. GHIORSO, R. H. DIANOND, AND H. E. COMPETT, (UNIV. CAL. PRESS, BERKELEY AND LOS ANGELES, 1963), P. 19
- AUE73 B. H. AUERBACH ET AL., PHYS. REV. LETT. 30, 1078 (1973)
- BAL75 J. B. BALL ET AL., NUCL. PHYS. A244, 341 (1975)
- R. H. BASSEL AND R. M. DRISKO, PROC. INT. CONF. NUCLEAR STRUCTURE, ED. D. A. BROHLEY AND E. W. VOGT, (UNIV. TORONTO PRESS, TORONTO, 1960), P. 212 BAS60
- R. H. BASSEL, G. R. SATCHLER, AND R. M. DRISKO, PROC. THIRD COMP. REACTIONS BETWEEN COMPLEX NOCLEI, ED. A. GHIORSO, R. M. DIAMOND, AND H. B. CONZETT, (UNIV. CAL. PRESS, BERRELEY AND LOS ANGELES, 1963), P. 45 BAS63 R.
- BAS66 R. H. BASSEL, G. R. SATCHLER AND R. M. DRISKO, NUCL. PHYS. 89, 419 (1966)
- BAS72 G. BASSANI ET AL., NUCL. PHYS. A189, 353 (1972)
- BEC73 P. D. BECCHETTI, P. R. CHRISTENSEN, V. I. MANKO AND R. J. NICKLES, NUCL. PHYS. A203, 1 (1973)
- BEN63 J. R. J. BEWNETT AND I. S. GRANT, PROC. THIRD CONF. REACTIONS BETWEEN COMPLEX NUCLEI, ED. A. GHIORSO, R. M. DIAMOND, AND H. E. CONZETT, (UNIV. CAL. PRESS, BERKELEY AND LOS ANGELES, 1973), P. 50
- BET69 K. BETHGE, C. N. FOU, AND R. W. ZURMUHLE, NUCL. PHYS. A123, 521 (1969).
- P. K. BINDAL, K. NAGATANI, M. J. SCHNEIDER AND P. D. BOND, PHYS. REV. C 9, 2154 (1974) BIN74
- BON72 P. BONCHE FT AL., PHYS. REV. C6, 577 (1972)
- BON73 P. D. BOND ET AL., PHYS. LETT. 478, 231 (1973)
- BON74 P. D. BOND ET AL., PHYS. REV. C 9, 2001 (1974)
- BON74A P. D. BOND ET AL., PROC. INT. CONF. REACTIONS BETWEEN COMPLEX NUCLEI, MASHVILLE, TENNESSEE, (NORTH HOLLAND, AMSTERDAM/AMERICAN ELSEVIER, NEW YORK, 1974), VOL. 1, P. 54

- BRA73 P. BRAUN-MUNZINGER ET AL., PHYS. REV. LETT. 31, 1423 (1973)
- CHR73 P. R. CHRISTENSEN ET AL., NUCL. PHYS. A207, 433 (1973)
- CHU71 V. I. CHUEV ET AL., SIMPOSIUM ON HEAVY ION REACTIONS AND MANY PARTICLE EXCITATION, SACLAY, J. DE PHYS. 32, C6-157 (1971)
- CHU71A V. I. CHUEV ET AL., SYMPOSIUM ON HEAVY ION REACTIONS AND MANY PARTICLE EXCITATION, SACLAY, J. DE PHYS. 32, C6-161 (1971)
- CLE72 C. F. CLEMENT AND S. M. PEREZ, NUCL. PHYS. A 196, 561 (1972)
- CON73 M. CONJEAUD, S. HARAR, E. DA SILVEIRA AND C. VOLANT, COMPTE RENDU D'ACTIVITE DU DEPARTEMENT DE PHYSIQUE NUCLEAIRE 1972-73, NOTE CEA N-1700, P. 15, SACLAI 1973
- CON73A M. CONJEAUD ET AL., COMPTE RENDU D'ACTIVITE DU DEPARTEMENT DE PHYSIQUE NUCLEAIRE 1972-73, NOTE CEA N-1700, P. 46, SACLAY 1973
- CUN74 A. CUNSOLO ET AL., PHYS. REV. C10. 180 (1974)
- EN175 H. ENLING ET AL., NUCL. PHYS. 1239, 172 (1975)
- FOR74 J. L. C. FORD ET AL., PHYS. REV. C 10, 1429 (1974)
- GAA73 C. GAARDE AND T. KANMUBI, NUCL. PHYS. A215, 314 (1973)
- GAL73 D. S. GALE AND J. S. ECK, PHYS. REV. C 7, 1950 (1973)
- GEL74 C. K. GELBKE, R. BOCK AND A. RICHTER, PHYS. REV. C 9, 852 (1974)
- GDB71 ADRIANO GOBBI, "HEAVY-ION SCATTERING" PROC. SYMPOSIUM HELD AT ARGONNE NATIONAL LABORATORY (1971), ANL-7037 (P. 63)
- GRO72 K. O. GROENEVELD, L. METER-SHUTZMEISTER, A. RICHTER AND U. STROHBUSCH, PHYS. REV. C6, 805 (1972)
- GR073 G. GRUBER, I. C. DORNEHL, K. HEIER-EWERT AND K. BETHGE, Z. PHYSIK 265, 411 (1973)
- GUT73 H. H. GUTBROD, M. BLANN AND W. G. WINN, NUCL. PHYS. A213, 285 (1973)

Heavy Ions

HEAVY IONS REFERENCES

- GUT73A H. H. GUTBROD, R. BOCK, W. VON OERTZEN AND U. C. SCHLOTTHAUER-VOOS, Z. PHYSIK 262, 377 (1973)
- HIL74 K. D. HILDENBRAND ET AL., NUCL. PHYS. A234, 167 (1974)
- JAC69 L. A. JACOBSON, PHYS. REV. 188, 1509 (1969).
- JOH70 D. J. JOHNSON AND M. A. WAGGONER, PHYS. REV. C2, 41 (1970).
- KJH71 ISAO KOHNO, SHYUNJI NAKAJINA, TADAO TONUNA AND MASATOSHI ODBRA, J. PHYS. SOC. JAPAN 30, 910 (1971)
- KUE64 J. A. KUEHNER AND E. ALMOVIST, PHYS. REV. 134, B1229 (1964)
- LEH74 M.-C. LEMAIRE, H. C. MERNAZ, H. SZTARK AND A. CUNSOLO, PROC. INT. CONP. REACTIONS BETWEEN COMPLEX NUCLEI, NASHVILLE, TENNESSEE, (WORTH HOLLAND, AMSTERDAM/ANER-ICAN ELSEVIER, NEW YORK, 1974) VOL. 1, P. 21.
- LIU71 N. LIU ET AL., NUCL. PHYS. A165, 118 (1971)
- MAH69 J. V. MAHER ET AL., PHYS. REV. 188, 1665 (1969)
- MOO74 G. E. MOORE, K. W. KENPER AND B. L. WHITE, PROC. INT. CONF. REACTIONS BETWEEN CONFLEX NUCLEI, NASHVILLE, TENNESSEE, (NORTH HOLLAND, ANSTERDAH/AMERICAN ELSEVIER, NEW YORK, 1974) VOL. 1, P. 47
- HDR70 G. C. MORRISON, H. T. FORTUNE, AND R. H. SIEMSSEN, "PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR REACTIONS INDUCED BY HEAVY IONS", HEIDELBERG, GENHANY, 15-18 JULY 1969, P. 72, NORTH-HOLLAND (1970).
- OBS72 A. W. OBST, D. L. MCSHAN AND R. H. DAVIS, PHYS. REV. C6, 1814 (1972)
- OKU68 YASUHIKO OKUMA, J. PHYS. SOC. JAPAN 24, 677 (1968)
- ORL71 J. OPLOPP AND W. W. DARHNICK, PHYS. REV. C3, 430 (1971)
- PER73 S. M. PEREZ, PHYS. REV. C 8, 1606 (1973)
- PFE73 K. O. PFEIFFER, E. SPETH AND K. BETHGE, NUCL. PHYS. A206, 545 (1973)
- POL72 J. E. POLING, E. NORBECK AND R. R. CARLSON, PHYS. REV. C5, 1819 (1972)
- POR58 C. E. PORTER, PHYS. REV. 112, 1722 (1958)
- PUH70 P. PUHLHOPER ET AL., NUCL. PHYS. A147, 258 (1970).
- RDB71 D. ROBSON, "HEAVY-ION SCATTERING" PROC. SYMPOSIUM HELD AT ARGONNE NATIONAL LABORATORY (1971) ANL-7837, P. 239
- ROB71A B. C. ROBERTSON, J. T. SAMPLE, D. R. GOOSMAN, K. NACATANI AND K. W. JONES, PHYS. REV. C4, 2176 (1971)

- SCH70 R. SCHMIDT AND G. STROHBUSCH, NUCL. PHYS. A159, 104 (1970).
- SCH72 URSULA C. SCHLOTTHAUER-WOOS ET AL., NUCL. PHYS. A180, 385 (1972)
- SCH73 P. SCHUMACHER ET AL., NUCL. PHYS. A212, 573 (1973)
- SCH73A M. J. SCHNEIDER ET AL., PHYS. REV. LETT. 31, 320 (1973)
- SIE70 R. H. SIEMSSEN, H. T. FORTUME, A. RICHTER, AND J. L. INTENA, "PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUCLEAR REACTIONS INDUCED BY HEAVY IONS", HEIDELRERG, GERNANY, 15-18 JULY 1969, P. 65, NORTH-HOLLAND (1970).
- SIE71 P. H. SIEMSSEN, "HEAVY-ION SCATTERING" PROC. SYMPOSIUM HELD AT ARGONNE NATIONAL LABORATORY (1971) ANL-7837, P. 145
- SIE72 R. H. SIEMSSEN, H. T. FORTUNE, A. RICHTER AND J. W. TIPPIE, PHYS. REV. C5, 1839 (1972)
- SIW74 K. SIWEK-WILCZYNSKA, J. WILCZINSKI AND P. R. CHRISTENSEN, NUCL. PHYS. A223, 461 (1974)
- VAN74 R. VANDENBOSCH, W. N. REISDORF AND P. H. LAU, NUCL. PHYS. A230, 59 (1974)
- VBE74 P. L. VON BERREN, E. NORBECK AND G. L. PAYNE, PHYS. REV. C 10, 550 (1974)
- VDE70 W. VON OERTZEN ET AL., NUCL. PHYS. A143, 34 (1970).
- VOO69 URSULA C. VOOS, W. VON OERTZEN, AND R. BOCK, NUCL. PHYS. A135, 207 (1969).
- WAT72 J. W. WATSON, NUCL. PHYS. A198, 129 (1972)
- WEB72 K. A. WEBER ET AL., NUCL. PHYS. A186, 145 (1972)
- WES75 LEON WEST, JR., K. W. KEMPER AND N. R. PLETCHER, PHYS. REV. C 11, 859 (1975)
- WHA74 W. R. WHARTON, PHYS. REV. C 9, 164 (1974)
- WIL75 N. E. WILLIAMS ET AL., PHYS. REV. C 11, 906 (1975)
- YOU72 F. C. YOUNG AND A. R. KNUDSON, NUCL. PHYS. A184, 563 (1972)
- ZEI71 B. ZEIDMAN, U. STROHBUSH, A. RICHTER AND K. O. GROENEVELD, SYMPOSIUM ON HEAVY ION REACTIONS AND MANY PARTICLE EXCITATION, SACLAY 1971, P. 295
- ZIS75 M. S. ZISMAN ET AL., PHYS. REV. C 11, 809 (1975)