Breakup-Reaction Theory Part IV: Application to Nuclear Astrophysics and Extension Beyond 2-b Projectiles

Pierre Capel

JGU

Astrophysical Application of Coulomb Breakup

Breakup of three-body projectiles

- 4-body CDCC
- Extension of the CCE to three-body projectiles

Core excitation

- XCDCC
- Adding an EFT 3-b force

Coulomb Breakup Method

Coulomb breakup : projectile breaks up colliding with a heavy target

$$a + T \rightarrow b + c + T$$

Coulomb dominated \Rightarrow due to exchange of virtual photons

Baur and Rebel Ann. Rev. Nucl. Part. Sc. 46, 321 (1996)

⇒ seen as the time-reversed reaction of the radiative capture
 ⇒ use Coulomb breakup to infer radiative-capture cross section
 [Baur, Bertulani and Rebel NPA458, 188 (1986)]

Radiative Capture Cross Section Radiative capture :

electromagnetic transition *b*-*c* continuum $\rightarrow a \equiv b + c$ bound state

At low energy, dominated by E1 transitions

$$\sigma_{\rm cap}^{\rm (E1)}(E) = \frac{2\pi^3}{3} \frac{E}{\hbar c} \frac{dB(E1)}{dE}$$
$$\propto \frac{d\sigma_{\rm bu}^{(1)}(E1)}{dE}$$

 \Rightarrow Infer $\sigma_{\rm cap}$ from $d\sigma_{\rm bu}/dE~$ [Baur, Bertulani and Rebel NPA458, 188 (1986)]

- easier to measure (above Coulomb barrier)
- higher cross sections

But :

- Nuclear interaction must be negligible
- Coulomb breakup must take place at first order
- and be dominated by E1 transitions

⁸B

⁸B has only one 2^+ loosely-bound state with $S_p = 137$ keV Often considered as a one-proton halo nucleus

Described as

$$|^{8}\mathbf{B}(2^{+})\rangle = |^{7}\mathbf{Be}(3/2^{-})\otimes \mathbf{p}(\mathbf{p}3/2)\rangle$$

Model of Esbensen & Bertsch [NPA 600, 37 (1996)] :

- ⁷Be assumed spherical, its spin is neglected
- ⁷Be-p potential has Woods-Saxon form factor (plus spin-orbit)

Parallel-momentum distribution

Parallel-momentum distribution is best to test this

See [Esbensen, Bertsch NPA 600, 37 (1996)]

Exp : [Davids et al. PRL 81, 2209 (2001)]

⁸B + Pb @ 44*A*MeV

Th : DEA [Goldstein, P.C., Baye, PRC 76, 064608 (2007)]

Excellent agreement with exp. (no fitting parameter)

Reaction Dynamics

E

Interpretation

These results suggest the following mechanism

- at forward angle, reaction dominated by Coulomb
 ⇒ removes sensitivity to nuclear interaction
- not only one-step E1 to continuum
- also one-step E2
- and two-step E1-E1 which interfere with E2

 \Rightarrow direct extraction of $\sigma_{\rm capt}$ from $\sigma_{\rm bu}$ not that simple

Energy distribution

⁸B + Pb @ 83AMeV (MSU) [Davids et al. PRL 83, 2750 (2001)]

Th : DEA [Goldstein, P.C., Baye PRC 76, 024608 (2007)]

- Fair agreement with experiment
- Little influence of nuclear interaction
- Small influence of $E2 \Rightarrow$ no study of E2
- Higher-order effects (s and $d \searrow$, while $p \nearrow$)

Angular distribution

Th : DEA [Goldstein, P.C., Baye PRC 76, 024608 (2007)]

 θ (deg)

- Good agreement with experiment
- Nuclear interaction influent only at large angle
- Small influence of E2 \Rightarrow no study of E2
- First-order too large ⇒ higher-order effects

S_{17} Using this ⁸B description, the ⁷Be(p, γ)⁸B S_{17} is

We obtain $S_{17} = 19.2$ b eV at E = 0Good agreement with Hammache [PRL 86, 3985 (2001)] Too low but good shape compared to Junghans [PRC 68, 065803 (03)]

Summers and Nunes suggest another idea ...

[Summers, Nunes PRC 78, 011601 (2008)]

Analysis by Summers & Nunes Summers and Nunes have calculated ${}^{15}C + Pb \rightarrow {}^{14}C + n + Pb$ at 68AMeV

within CDCC using different $V_{^{14}C-n}$

[PRC 78, 011601 (2008)]

Exp. : Nakamura *et al.* Th. : Summers, Nunes Exp. : Reifarth *et al.* Th. : Summers, Nunes

Significant dynamical effects \Rightarrow requires an accurate reaction model From a χ^2 fit to the data, they extract an ANC they use to get $\sigma_{n,\gamma}$

Influence of the ¹⁴C-n continuum

Breakup calculations are sensitive to ANC, but also to δ_l Wat is the influence of the phaseshifts?

We developed ¹⁴C-n potentials with very different ANC and δ_p

• Huge effect of ANC, but non-negligible effect of δ_p

Influence of the ¹⁴C-n continuum

Breakup calculations are sensitive to ANC, but also to δ_l Wat is the influence of the phaseshifts ?

We developed ¹⁴C-n potentials with very different ANC and δ_p

- Huge effect of ANC, but non-negligible effect of δ_p
- Same effect on $\sigma_{n,\gamma} \Rightarrow$ sensitive of the same inputs

Influence of the ¹⁴C-n continuum

Breakup calculations are sensitive to ANC, but also to δ_l Wat is the influence of the phaseshifts?

We developed ¹⁴C-n potentials with very different ANC and δ_p

[P.C., Nollet PRC 96, 015801 (2017)]

- Huge effect of ANC, but non-negligible effect of δ_p
- Same effect on $\sigma_{n,\gamma} \Rightarrow$ sensitive of the same inputs
- All potentials provide same $d\sigma_{\rm bu}/dE$ once scaled to data
- That scaling factor gives excellent agreement with capture data

Astrophysical Application of Coulomb Breakup

Initial idea : [Baur, Bertulani and Rebel NPA458, 188 (1986)] See Coulomb breakup as time-reverse of radiative capture :

$$\sigma_{\rm cap}(E) \propto \frac{dB({\rm E1})}{dE} \propto \frac{d\sigma_{\rm bu}^{(1)}({\rm E1})}{dE}$$

But :

- Nuclear interaction (negligible at forward angles)
- E2 transitions
- higher orders
- \Rightarrow requires accurate reaction model [no direct extraction of B(E1)]
- Nevertheless both reactions
 - sensitive to same input (projectile description : ANC and δ_l)
 - dominated by same interaction (Coulomb)
- \Rightarrow use breakup to constrain projectile model

from which to calculate capture

Nuclear Astrophysics

Astrophysical Application of Coulomb Breakup

Breakup of three-body projectiles

- 4-body CDCC
- Extension of the CCE to three-body projectiles

3 Core excitation

- XCDCC
- Adding an EFT 3-b force

[Zhukov et al. Phys. Rep. 231, 151 (1993)]

In first reaction models approached by a two-body model : $c + {}^{2}n$ This is not appropriate, a three-body model is needed : c + n + n

Extension of CDCC have been proposed

- Matsumoto et al. PRC 70, 061601(R) (2004) ibid. 73, 051602(R) (2006)]
- Rodríguez-Gallardo et al. PRC 77, 064609 (2008) ibid. 80, 051601(R) (2009)

Extension of CCE has been applied

• Baye et al. PRC 79, 024607 (2009)]

4-body CDCC

In Matsumoto *et al.* PRC 70, 061601(R) (2004) the antisymmetrised 3-b wave function is expanded in the 3 Jacobi sets of coordinates

$$\Phi_{nIM}(\xi) = \sum_{c=1}^{3} \psi_{nIM}^{(c)}(\xi)$$

To obtain a discretised continuum,

they diagonalise the Hamiltonian in a (finite) basis of Gaussians to generate pseudostates

⁶He+Bi elastic scattering @22.5 MeV

Th : [Matsumoto *et al.* 73, 051602(R) (2006)] Exp : [Aguilera PRL 84, 5058 (2000)]

- breakup influences elastic scattering
- 3-b description of ⁶He is needed to reproduce the data : dineutron model $c + {}^{2}n$ does not agree with data
- Calculations limited (so far) to elastic scattering

Exension of Fresco

In Rodríguez-Gallardo *et al.* PRC 77, 064609 (2008) the 3-b wave function is computed in hyperspherical harmonics

(see Nir's lectures)

$$\Phi_{nIM}(\xi) = \sum_{\beta} R_{n\beta I}(\rho) \mathcal{Y}_{\beta IM}(\Omega_5)$$

- $\mathcal{Y}_{\beta IM}$ are the hyperspherical harmonics, known functions of $\Omega_5 \equiv \{\alpha, \hat{x}, \hat{y}\}$, which includes the hyperangle $\tan \alpha = x/y$
- $R_{n\beta I}$ are functions of the hyperradius $\rho = \sqrt{x^2 + y^2}$ that are determined by diagonalising the 3-b Hamiltonian

To obtain a discretised continuum, they generalise the THO method

⁶He+Zn elastic scattering @13.6/MeV

Th : [Rodríguez-Gallardo *et al.* PRC 77, 064609 (2008)] Exp : [Di Pietro *et al.* PRC 69, 044613 (2004)]

- breakup influences elastic scattering
- Note the convergence study shown in the figure...
- Size of the base limits the description of breakup

- Reaction dominated by E1 transition from ground state Narrow peak in energy distribution ⇒ "1⁻" resonance?
- Convolution with experimental resolution is necessary

- Structure in the continuum; confirms 1⁻ resonance?
- Sign of ²n virtual state in E_{21} ? ⁹Li-n structure in E_{1c} ?
- More precise experimental data are needed to check this...

Nuclear Astrophysics

Astrophysical Application of Coulomb Breakup

2 Breakup of three-body projectiles

- 4-body CDCC
- Extension of the CCE to three-body projectiles

Core excitation

- XCDCC
- Adding an EFT 3-b force

Core of the problem...

NLO analysis of ¹¹Be breakup on C includes ¹⁰Be-n interaction in *s* and *p* waves (not in *d* waves) \Rightarrow misses the resonant structures in data (5/2⁺ and 3/2⁺ peaks)

Th. [P.C., Phillips & Hammer PRC 98, 034610 (2018)]

 Adding single-particle d_{5/2} and d_{3/2} resonances is not enough some degrees of freedom are missing...

XCDCC

Including the core excitation

Idea : consider that the core can be in an excited state :

[De Diego et al. PRC 89, 064609 (2014)]

 $H_0 = H_c(\xi_c) + T_r + V_{cn}(\xi_c, \mathbf{r})$

[Summers, Nunes & Thompson PRC 73, 031603 (2006)] [Lay, de Diego, Crespo, Moro, Arias & Johnson PRC 94, 021602 (2016)] ¹¹Be = 10 Be(0⁺) \otimes n(1s_{1/2}) + 10 Be(2⁺) \otimes n(0d_{5/2})+...

Core excitation in structure of the projectile & in reaction process \Rightarrow XCDCC (eXtended CDCC)

XCDCC

Role in resonant breakup ¹¹Be+C→¹⁰Be+n+C @ 67AMeV

Th : DWBA [Moro& Lay PRL 109, 232502 (2012)] Exp. [Fukuda *et al.* PRC 70, 054606 (2004)]

- ¹¹Be+C : diffraction pattern reproduced only with core excitation
 - $3/2^+$ dominated by ${}^{11}\text{Be}(3/2^+) \equiv {}^{10}\text{Be}(2^+) \otimes n(d5/2)$
- Good agreement with data (no fitting parameter)
- Influence in resonant breakup confirmed on other systems

Adding an EFT 3-b force

Including a 3-b force

¹¹Be+C \rightarrow ¹⁰Be+n+C @ 67AMeV (beyond NLO)

- Beyond NLO description is not sufficient : missing ¹⁰Be(2⁺) [de Diego, Crespo & Moro, PRC 95, 044611 (2017)]
- Adding an effective 3-b force solves the issue Confirms role of the excitation of the core in reaction process

Summary

- Inferring B(E1) from breakup is risky
 - E2 contribution
 - Higher-order effect
- However radiative capture (n,γ) and breakup are sensitive to same structure inputs
- Extension of breakup models to Borromean systems :
 - 4-b CDCC
 - CCE
- Core degree of freedom of halo nuclei plays a role in resonant breakup