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Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Coulomb Breakup Method

Coulomb breakup : projectile breaks up colliding with a heavy target

a + T ! b + c + T

Coulomb dominated) due to exchange of virtual photons

Baur and Rebel Ann. Rev. Nucl. Part. Sc. 46, 321 (1996)

) seen as the time-reversed reaction of the radiative capture
) use Coulomb breakup to infer radiative-capture cross section

[Baur, Bertulani and Rebel NPA458, 188 (1986)]

3 / 30

Radiative capture :b + c → a+0



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Radiative Capture Cross Section
Radiative capture :

electromagnetic transition b-c continuum! a ⌘ b + c bound state

At low energy, dominated by E1 transitions

�(E1)
cap (E) =

2⇡3

3
E

~c

dB(E1)
dE

/
d�(1)

bu (E1)
dE

) Infer �cap from d�bu/dE [Baur, Bertulani and Rebel NPA458, 188 (1986)]

easier to measure (above Coulomb barrier)
higher cross sections

But :
Nuclear interaction must be negligible
Coulomb breakup must take place at first order
and be dominated by E1 transitions
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Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

8B

8B has only one 2+ loosely-bound state with S p = 137 keV
Often considered as a one-proton halo nucleus

Described as
���8B(2+)

E
=
���7Be(3/2�) ⌦ p(p3/2)

E

Model of Esbensen & Bertsch [NPA 600, 37 (1996)] :

7Be assumed spherical, its spin is neglected
7Be-p potential has Woods-Saxon form factor (plus spin-orbit)
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Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Parallel-momentum distribution
Parallel-momentum distribution is best to test this

see [Esbensen, Bertsch NPA 600, 37 (1996)]
8B + Pb @ 44AMeV Exp : [Davids et al. PRL 81, 2209 (2001)]
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Th : DEA [Goldstein, P.C., Baye, PRC 76, 064608 (2007)]

Excellent agreement with exp. (no fitting parameter)
6 / 30



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Reaction Dynamics
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Nuclear interaction
negligible
at forward angles

Significant
E2 contribution
(asymmetry)

First-order :
more asymmetric
)higher-order
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Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Analysis of the Dynamics of 8B Breakup on Pb

Both E1 and E2 are significant
Higher-order effects :

I presence of g components
from a p ground state

I p + f > first-order E2

Exact solution < first-order
)destructive interferences
e.g. E1-E1 vs E2

)be careful with first-order :
interesting qualitative tool
but inaccurate quantitative results
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Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Interpretation

These results suggest the following mechanism

at forward angle, reaction dominated by Coulomb
) removes sensitivity to nuclear interaction
not only one-step E1 to continuum
also one-step E2
and two-step E1-E1
which interfere with E2

)direct extraction of �capt from �bu not that simple
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Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Energy distribution
8B + Pb @ 83AMeV (MSU) [Davids et al. PRL 83, 2750 (2001)]
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Th : DEA [Goldstein, P.C., Baye PRC 76, 024608 (2007)]

Fair agreement with experiment
Little influence of nuclear interaction
Small influence of E2)no study of E2
Higher-order effects (s and d &, while p%)

10 / 30



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Angular distribution
8B + Pb @ 52AMeV (RIKEN) [Kikuchi et al. PLB 391, 261 (1997)]
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Th : DEA [Goldstein, P.C., Baye PRC 76, 024608 (2007)]

Good agreement with experiment
Nuclear interaction influent only at large angle
Small influence of E2)no study of E2
First-order too large)higher-order effects
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Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

S 17
Using this 8B description, the 7Be(p, �)8B S 17 is

Junghans 03
Baby 03

Hammache 01
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We obtain S 17 = 19.2 b eV at E = 0
Good agreement with Hammache [PRL 86, 3985 (2001)]
Too low but good shape compared to Junghans [PRC 68, 065803 (03)]

Summers and Nunes suggest another idea . . .
[Summers, Nunes PRC 78, 011601 (2008)]
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Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Analysis by Summers & Nunes
Summers and Nunes have calculated

15C + Pb! 14C + n + Pb at 68AMeV
within CDCC using different V14C�n [PRC 78, 011601 (2008)]

RAPID COMMUNICATIONS

EXTRACTING (n, γ ) DIRECT CAPTURE CROSS . . . PHYSICAL REVIEW C 78, 011601(R) (2008)
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FIG. 1. Differential cross section with respect to energy for
15C → 14C + n breakup on 208Pb. The data are from Ref. [8] and the
lines represent the cross sections obtained from each of the potential
sets in Table I.

low energy capture and the breakup are completely peripheral,
the s-wave component dominates the cross section. This part
is directly proportional to the bound state ANC, in such a
way that the dependence on the single-particle parameters and
the spectroscopic factor is negligible once the ANC is fixed
C2

g.s. = Ss1/2b
2
2s1/2

. As mentioned above, in 15C there is also
a d-wave excited state. The contribution of this state to the
neutron capture is small and uncertainty in the structure of this
state does not affect the errors bars.

Results. We present in Fig. 1 the results for the breakup
cross sections of 15C on 208Pb at 68 MeV/nucleon, calculated
within CDCC using the model space described in the previous
section. The shape of the distribution compares well with the
data. Most importantly, the peak of the cross section scales
linearly with the the ANC-squared. For each of the theoretical
curves, χ2 was calculated and a quadratic relation with the
ANC was determined. By minimizing the χ2, an ANC was
fixed at C0 = 1.28 ± 0.01 fm−1/2, the error bar corresponding
to χ2

min + 1. These allowed ANC values produced a range of
possible neutron capture cross sections, shown by the shaded
area in Fig. 2.

Plotted in Fig. 2 is the range for σn,γ E−1/2 based on the
RIKEN Coulomb dissociation data, compared with the data
from the latest direct measurements [11]. The agreement is
very good. Note that the lowest energy point in Fig. 2 at 23 keV

FIG. 2. Capture cross sections, multiplied by the energy factor
E−1/2, versus neutron energy. The shaded area is cross sections
obtained from the RIKEN data [8] and the black circles are the latest
direct measurements [11].

does not correspond to a monoenergetic neutron measurement.
The neutrons at this energy have a Maxwellian distribution, so
an averaged cross section is obtained. For 23 keV too, the
prediction based on the RIKEN Coulomb dissociation data
(7.0 ± 0.2 µb) compares well with the direct measurement
(7.1 ± 0.5 µb). For the purpose of the comparison in Fig. 2,
we multiplied the 23 keV data point by 0.67, which is the factor
one obtains assuming a perfect E−1/2 energy dependence in
the cross section (valid at this low energy).

A lower energy breakup measurement is also available [7].
A direct comparison of theoretical cross sections with the
experimental data was not possible for this experiment due to a
nonlinear energy response function of the detectors. Therefore
the theoretical cross sections had to be folded with the detector
efficiency to compare with the data. The analysis in Ref. [7]
suggested an (n, γ ) cross section approximately half that found
in the analysis of the RIKEN data presented in the previous
section and other direct and indirect measurements [6,9,10].
Here we present CDCC calculations that test the assumptions
that appeared in the analysis of Ref. [7]. For the purpose of
this study we use the single-particle model of Ref. [19], with
again the Perey and Perey [22] neutron-Pb potential and the
same optical potential for the core as in the previous section.

The first important assumption in Ref. [7] is that the
nuclear contribution can be subtracted from the data to leave a
Coulomb only cross section. This was attempted by measuring
the breakup data on a range of targets from the heavy Pb
down to the light C target. Assumptions were made on how
the Coulomb and nuclear cross sections scale with target mass,
and by adding them incoherently, a least squares fit of the data
was performed to estimate the relative cross sections so that
the nuclear part could be subtracted.

In Fig. 3 we show the breakup energy distribution for the full
calculation (solid line), including both nuclear and Coulomb,
Coulomb only (dotted line), nuclear only (dashed line), and
the incoherent sum of Coulomb and nuclear (dot-dashed line).
The nuclear contribution is not negligible and interference
effects are large, in agreement with the results of Ref. [16].
Most importantly, the shape of the distribution is changed
when interference is taken into account. At low energies the
full calculation including nuclear and Coulomb coherently is
actually less than the Coulomb only calculation.

The other main assumptions appear in the analysis of the
detector efficiencies. To calculate the efficiencies, a cross
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FIG. 3. (Color online) Nuclear and Coulomb interference in the
Coulomb breakup of 15C at 35 MeV/nucleon.

011601-3

Exp. : Nakamura et al.
Th. : Summers, Nunes

PHYSICAL REVIEW C 78, 069908(E) (2008)

Erratum: Extracting (n, γ ) direct capture cross sections from Coulomb dissociation:
Application to 14C(n, γ )15C [Phys. Rev. C 78, 011601 (2008)]

N. C. Summers and F. M. Nunes
(Received 19 November 2008; published 29 December 2008)

DOI: 10.1103/PhysRevC.78.069908 PACS number(s): 21.10.Jx, 24.10.Eq, 25.60.Gc, 25.60.Tv, 99.10.Cd

In Ref. [1] we proposed a systematic methodology to
extract neutron capture cross sections from Coulomb dis-
sociation data. Using the continuum discretized coupled
channel formalism to describe the 15C breakup process, the
asymptotic normalization coefficient (ANC) for the ground
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FIG. 1. (Color online) Capture cross sections, multiplied by
the energy factor E−1/2, versus neutron energy. The shaded area
corresponds to results obtained from the RIKEN data [3] and the
black circles are the latest direct measurements [4].

state is extracted through a χ2 fit. The corresponding error
bar is defined using χ2

min + 1. We discovered a mistake in the
calculation of the errors associated with the extracted ANC
and here we present the corrected values.

The experimental data from which the ANC are extracted
cover a range of energies up to 4 MeV, and the value
obtained for the full energy range is C0 = 1.31 ± 0.07 fm−1/2.
We find that the ANC is better determined if the high
energy data are discarded and the maximum energy is cut at
1.2 MeV. This is justified because the direct measurements
we are comparing to, and the peak of the cross section
(Fig. 1 in Ref. [1]), all lie below this cut. The higher
energy data are more uncertain and lie in a region where the
theoretical cross section is insensitive to the ANC, thus adding
unwarranted uncertainty to the extracted ANC. With this
energy cut one can better determine the ANC as C0 = 1.32 ±
0.04 fm−1/2.

All conclusions in our previous paper [1] hold. More details
on the fitting procedure can be found in Ref. [2]. Figure 2
of Ref. [1] should be replaced by the figure below, where
the shaded area is the range of uncertainty for an ANC of
C0 = 1.32 ± 0.04 fm−1/2, extracted from data up to E =
1.2 MeV.

[1] N. C. Summers and F. M. Nunes, Phys. Rev. C 78, 011601(R)
(2008).

[2] F. M. Nunes et al., in Proceedings of Nuclei in the Cosmos - X,
Mackinac Island, 2008, PoS(NIC-X)055.

[3] T. Nakamura et al., Nucl. Phys. A722, 301c (2003).
[4] R. Reifarth et al., Phys. Rev. C 77, 015804 (2008); R. Reifarth

et al., in Proceedings of Nuclei in the Cosmos - IX, CERN, 2006,
PoS(NIC-IX)223.

0556-2813/2008/78(6)/069908(1) 069908-1 ©2008 The American Physical Society

Exp. : Reifarth et al.
Th. : Summers, Nunes

Significant dynamical effects) requires an accurate reaction model

From a �2 fit to the data, they extract an ANC they use to get �n,�
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Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Influence of the 14C-n continuum
Breakup calculations are sensitive to ANC, but also to �l

Wat is the influence of the phaseshifts?
We developed 14C-n potentials with very different ANC and �p

[P.C., Nollet PRC 96, 015801 (2017)]

Vp = 0

ap = 1.5 fm

E0p = �8 MeV

ap = 0.6 fm

E (MeV)

� p
(d
eg
)

543210

30

20

10

0

-10

-20

-30

Exp.

Vp = 0

ap = 1.5 fm

E0p = �8 MeV

ap = 0.6 fm

as = 0.6 fm

as = 0.3 fm

as = 1.5 fm

E (MeV)

d�
b
u
/d
E

(b
/M

eV
)

43210

1.2

1

0.8

0.6

0.4

0.2

0

Huge effect of ANC, but non-negligible effect of �p

Same effect on �n,� ) sensitive ot the same inputs
All potentials provide same d�bu/dE once scaled to data
That scaling factor gives excellent agreement with capture data
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Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Astrophysical Application of Coulomb Breakup
Initial idea : [Baur, Bertulani and Rebel NPA458, 188 (1986)]
See Coulomb breakup as time-reverse of radiative capture :

�cap(E) / dB(E1)
dE

/
d�(1)

bu (E1)
dEBut :

Nuclear interaction (negligible at forward angles)
E2 transitions
higher orders

) requires accurate reaction model [no direct extraction of B(E1)]

Nevertheless both reactions
sensitive to same input (projectile description : ANC and �l)
dominated by same interaction (Coulomb)

) use breakup to constrain projectile model
from which to calculate capture
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Breakup of three-body projectiles

1 Nuclear Astrophysics
Astrophysical Application of Coulomb Breakup

2 Breakup of three-body projectiles
4-body CDCC
Extension of the CCE to three-body projectiles

3 Core excitation
XCDCC
Adding an EFT 3-b force
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Breakup of three-body projectiles 4-body CDCC

Breakup of Borromean Nuclei
Borromean nuclei have a three-body structure :

M. V. Zhukov et a!., The Borromean halo nuclei ‘He and ‘‘Li 173

6He spatial correlations

R(fln~core)f 0 0

Fig. 4. Correlation density plot for the ground state of ‘He in the (nn) and (nn)a variables.

in particular for 6He). The presence of three-body correlations are reflected in these densities, but
less strikingly than in the momentum-space correlation densities to be discussed below. Thus the
slope of the neutron density is substantially steeper than that defined by an exponential tail of the
WF with half the two-neutron separation energy as often used in a shell model treatment. This is
a natural consequence of the three-body model where the WF asymptotic behavior is given by
exp(— 1~p),,~= ~ where S is the two-neutron separation energy (i.e. Ibinding energy I). Note
that the numerical calculations show a power-law behavior of the valence nucleon density in the
small r region (—~r” with y —‘ 2) reflecting the Pauli principle influence. This is easy to understand in
a shell model picture where the valence neutron are situated mainly in the p-shell.
A fascinating aspect of the neutron drip line nuclei is the possibility to explore correlations

between the particles in the neutron halo. We have already in table 6 given decompositions of the
wave function in terms of the hypermoment K, which is an approximately good quantum number
with K = 2. In principle these decompositions contain all necessary information about particle
correlations in 6He. Additional insight is gained by plotting the correlation density (fig. 4) (which is
the probability to have definite distances between the particles in the three-body system) defined by

P(r~~,r(flfl)C) = ~ 2J + l~Jd~
3d5’3 I ~jM(X3, Y3)I, (14)

where ~ and r(flfl)C are the neutron-neutron separation and the distance from the cc-core to the (nn)
CM respectively. The correlation plot (fig. 4) exhibits two prominent peaks, a di-neutron-like peak
with the two valence neutrons located together outside the cc-particle (r~~< r(flfl)a) and a cigar-like
peak with the valence neutrons positioned on opposite sides of the cc-particle (r~~> rtnnia). While
the former is smaller in extension than a free deuteron, the latter is larger. Qualitatively, the same
result was obtained in CSF and VA [35] approaches. The origin of these configurations is the so

[Zhukov et al. Phys. Rep. 231, 151 (1993)]
In first reaction models approached by a two-body model : c + 2n
This is not appropriate, a three-body model is needed : c + n + n
Extension of CDCC have been proposed

Matsumoto et al. PRC 70, 061601(R) (2004) ibid. 73, 051602(R) (2006)]
Rodrı́guez-Gallardo et al. PRC 77, 064609 (2008) ibid. 80, 051601(R) (2009)

Extension of CCE has been applied
Baye et al. PRC 79, 024607 (2009)] 17 / 30
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Breakup of three-body projectiles 4-body CDCC

4-body CDCC

In Matsumoto et al. PRC 70, 061601(R) (2004)
the antisymmetrised 3-b wave function
is expanded in the 3 Jacobi sets of coordinates

processes, the incident energies Ein are much higher than the
Coulomb barrier energy !"3 MeV#, so only nuclear breakup
processes become significant. We thus concentrate our appli-
cation on nuclear breakup. The calculated elastic cross sec-
tions well reproduce experimental data at both Ein. More-
over, effects of the four-body breakup and the Borromean
structure of 6He on the elastic and total reaction cross sec-
tions are discussed in the case of Ein=18 MeV.
We assume that 6He+12C scattering is described as a four-

body system, n+n+4He+12C. Then, the Schrödinger equa-
tion can be written as

$KR + %
i!P

%
j!T

vij + VC!R# + H6 − E&!!",R# = 0, !1#

where R and " are, respectively, the coordinate of the center
of mass of 6He relative to 12C and the internal coordinates of
6He; KR is the kinetic energy associated with R. Here, H6 is
the internal Hamiltonian of the 6He projectile, and E is the
sum of Ein and the ground state energy of 6He. The vij rep-
resent two-body nuclear interactions working between the
6He projectile (P) and the 12C target (T). Meanwhile, the
Coulomb potential VC is treated approximately as a function
of R only, i.e., we neglect Coulomb breakup processes.
The four-body wave function !JM, where J is the total

angular momentum of the four-body system and M is its
projection on the z axis, is expanded in terms of a finite
number of the internal wave functions #nIm of the 6He pro-
jectile,

!JM!",R# = %
nI,L

$nI,L
J !PnI,R#/RYnI,L

JM , !2#

where YnI,L
JM = '#nI!"# ! iLYL!R̂#(JM. Here I is the total spin of

6He and m is its projection on the z axis, and n stands for the
nth eigenstate. The #nIm satisfies H6#nIm=%nI#nIm and the
expansion coefficient $nI,L

J in Eq. (1) represents the relative
motion between the projectile and the target; L is the orbital
angular momentum regarding R. The relative momentum PnI
is determined by the conservation of the total energy: E
=PnI

2 /2&+%nI, with & the reduced mass between the projec-
tile and the target. Multiplying Eq. (1) by Yn!I!,L!

*JM from the
left, one can obtain a set of coupled differential equations for
$nI,L
J , called the CDCC equation; it should be noted that the
CDCC equation for the four-body system is formally equal
to that for the three-body system. Solving the CDCC equa-
tion under the appropriate asymptotic boundary condition
[9,14], we can obtain the elastic and discrete breakup
S-matrix elements. Details of the formalism of CDCC are
shown in Ref. [9].
In the Gaussian expansion method [13], #nIm is written as

#nIm!"# =%
c=1

3

'nIm
!c# !"# , !3#

where c denotes a set of Jacobian coordinates in Fig. 1. Each
'nIm

!c# is expanded in terms of the Gaussian basis functions

'nIm
!c# !"# = (!)# %

*!+S
%
i=1

imax

%
j=1

jmax

Ai*j!+S
!c#nI yc

*rc
!e−!yc/ȳi#

2
e−!rc/r̄ j#

2

, ''Y*!ŷc# ! Y!!r̂c#(+ ! '-1/2
!n1# ! -1/2

!n2#(S(Im,
!4#

where * !!# is the angular momentum regarding the Jacobian
coordinates yc !rc#, and -1/2 is the spin wave function of
each valence neutron (n1 or n2). 4He has been treated as an
inert core with the !0s#4 internal configuration, (!)#. The
Gaussian range parameters are taken to lie in geometric pro-
gression

ȳi = ȳ1!ȳmax/ȳ1#!i−1#/!imax−1#, !5#

r̄ j = r̄1!r̄max/r̄1#!j−1#/!jmax−1#. !6#

#nIm is antisymmetrized for the exchange between n1 and n2;
we then have Ai*j!+S

!2#nI = !−#SAi*j!+S
!1#nI , and !−#*+S=1 for c=3.

Meanwhile, the exchange between each valence neutron and
each nucleon in 4He is treated approximately by the orthogo-
nality condition model [15]. The eigenenergies %nI of 6He
and the corresponding expansion coefficients Ai*j!+S

!c#nI are de-
termined by diagonalizing H6 [16,17].
In the four-body CDCC calculation shown below, we take

I.=0+ and 2+ states for 6He. Here we omit the 1− and 3−
states that do not contribute to the nuclear breakup processes.
The calculated %nI are −0.98 MeV for the 0+ ground state and
0.72 MeV for the 2+ resonance state, which well reproduce
the corresponding experimental values. We show in Table I
the maximum values of the internal angular momenta, *max,
!max, and +max, and the Gaussian range parameters, ȳ1, ȳmax,
r̄1, and r̄max, used in the calculation of #nIm. It should be
noted that most of them depend on I. and c, while in Eqs.
(4)–(6) the dependence has been omitted for simplicity.
In order to demonstrate the convergence of the four-body

CDCC solution with an increasing number of Gaussian basis
functions, we prepare three sets of the basis functions, i.e.,
sets I, II, and III. Each set is specified by imax

I.!c# and jmax
I.!c#. One

can calculate the total number of the eigenenergies of H6,
Nmax
I. , by using Eqs. (3)–(6) and the input parameters shown

in Table I. The values of imax
I.!c#, jmax

I.!c#, and Nmax
I. for each set

are shown in Table II. In the actual CDCC calculation for
6He+12C scattering at 18 MeV !229.8 MeV#, high-lying
states with %nI/12 MeV !%nI/25 MeV# are found to give
no effect on the elastic and breakup S-matrix elements. Thus,

FIG. 1. Jacobian coordinates of three rearrangement channels
!c=1–3# adopted for the n+n+4He model of 6He structure.

MATSUMOTO et al. PHYSICAL REVIEW C 70, 061601(R) (2004)
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To obtain a discretised continuum,
they diagonalise the Hamiltonian in a (finite) basis of Gaussians
to generate pseudostates
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Breakup of three-body projectiles 4-body CDCC

6He+Bi elastic scattering @22.5AMeV
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1

6He+209Bi at 22.5 MeV

σσ σσ
 / σσ σσ

R

θθθθc.m. [deg]

Four−body CDCC
 (full coupling)

Three−body CDCC
 (full coupling)

Four−body CDCC
 (no coupling)

Three−body CDCC
 (no coupling)

Th : [Matsumoto et al. 73, 051602(R) (2006)]
Exp : [Aguilera PRL 84, 5058 (2000)]

breakup influences elastic scattering
3-b description of 6He is needed to reproduce the data :
dineutron model c + 2n does not agree with data
Calculations limited (so far) to elastic scattering
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Breakup of three-body projectiles 4-body CDCC

Exension of Fresco
In Rodrı́guez-Gallardo et al. PRC 77, 064609 (2008)
the 3-b wave function is computed in hyperspherical harmonics

(see Nir’s lectures)

M. RODRÍGUEZ-GALLARDO et al. PHYSICAL REVIEW C 77, 064609 (2008)

structure [17,18,20] and scattering [21–23] problems. In a
recent work [24] the THO method was generalized to describe
continuum states of three-body systems, based on expansion
in hyperspherical harmonics (HH) [25]. In particular the
method was applied to the Borromean nucleus 6He, for
which several strength functions, including the dipole and
quadrupole Coulomb transition strengths, were calculated.
These observables are found to converge quickly with respect
to the number of THO basis states included. Furthermore, the
calculated strength distributions are in very good agreement
with those obtained using three-body scattering wave functions
[26].

Most of our knowledge of 6He comes from the analysis
of reactions where secondary beams collide with stable
nuclei. These experiments have been performed with both
light [27,28] and heavy targets [29–33], and at low and
high energies, providing a body of data which can be used
to benchmark reaction and structure models. The theoretical
understanding of reactions involving a three-body projectile,
such as 6He, is a complicated task because it requires the
solution of a four-body scattering problem. At high energies, a
variety of approximations have been used such as semiclassical
approximations [34–36], frozen halo or adiabatic approxima-
tions [37,38], multiple scattering expansions [39–41], four-
body DWBA [42,43], among others. However, at energies of
a few MeV per nucleon, some of these approximations are not
justified. Then the use of the CDCC method is an alternative
to solve these problems. For a four-body problem (three-body
projectile) this method has already been applied using a PS
basis based on Gaussian functions. The scattering of 6He by
12C [16] and 209Bi [44] have been studied. In both cases a
good agreement was obtained with the experimental data of
Refs. [45,46] and [31], respectively.

In this work, we study the scattering of a three-body
projectile by a target using the CDCC formalism. The novel
feature of the present approach is the use of the THO PS
basis to represent the states of the projectile. These states are
then used to generate the projectile-target coupling potentials
that enter the system of coupled equations. Furthermore, we
have developed a new procedure to calculate these coupling
potentials making use of an expansion of the wave functions
of the projectile internal states in a HH basis.

This paper is structured as follows. In Sec. II the three-body
discretization method is presented. In Sec. III the multipole
expansion of the interaction potential between the projectile
and the target is addressed. In Sec. IV we describe the
three-body model for the Borromean nucleus 6He. In Sec. V
we apply the formalism to the reactions 6He+12C at Elab =
229.8 MeV, 6He+64Zn at Elab = 13.6 and 10 MeV, and
6He+208Pb at Elab = 22 MeV. Finally, Sec. VI summarizes
and draws conclusions.

II. THREE-BODY CONTINUUM-DISCRETIZATION
METHOD

The THO discretization method applied to a three-body
system is described in detail in Ref. [24]. For completeness, in
this section we outline the main features of the formalism.
In the three-body case, it is convenient to work with the

FIG. 1. (Color online) Relevant coordinates for the scattering of
a three-body projectile by a structureless target.

hyperspherical coordinates {ρ,α, x̂, ŷ}. They are obtained
from the Jacobi coordinates {x, y} that are illustrated in Fig. 1.
The variable x is proportional to the relative coordinate
between two of the particles, with a scaling factor depending on
their masses [20] and y is proportional to the coordinate from
the center of mass of these two particles to the third particle,
again with a scaling factor depending on their masses. From
these coordinates, the hyper-radius (ρ) and the hyperangle
(α) are defined as ρ =

√
x2 + y2 and tan α = x/y. Obviously

there are three different Jacobi sets but ρ is the same for all of
them.

For a three-body system the discretization method has two
parts. First, the wave functions of the system are expanded in
hyperspherical harmonics (HH) [25]. We define states of good
total angular momentum as

Yβjµ($) =
∑

νι

〈jabνI ι|jµ〉χι
I

∑

mlσ

〈lmlSxσ |jabν〉ϒ lx ly
Klml

($)χσ
Sx

,

(1)

where ϒ
lx ly
Klm($) are the hyperspherical harmonics that depend

on the angular variables $ ≡ {α, x̂, ŷ},χσ
Sx

is the spin wave
function of the two particles related by the coordinate x, and
χι

I is the spin function of the third particle. Each component
of the wave function (or channel) is defined by the set of
quantum numbers β ≡ {K, lx, ly, l, Sx, jab}. Here, K is the
hypermomentum, lx and ly are the orbital angular momenta
associated with the Jacobi coordinates x and y, l = lx + ly

is the total orbital angular momentum, Sx is the spin of
the particles related by the coordinate x, and jab = l + Sx .
Finally, j = jab + I is the total angular momentum, with I
the spin of the third particle, which we assume fixed. The
physical states of the system can now be expressed as a linear
combination of the states given by Eq. (1) as

ψjµ(ρ,$) =
∑

β

Rβj (ρ)Yβjµ($), (2)

where {Rβj } are the hyper-radial wave functions.
Secondly, the THO method is used to obtain the functions

Rβj (ρ). Writing the ground-state wave function in the form of
Eq. (2), the equation that defines the LST for each channel β
is

|NBβ |2
∫ ρ

0
dρ ′ρ ′5|RBβ(ρ ′)|2 =

∫ s

0
ds ′s ′5∣∣RHO

0K (s ′)
∣∣2

, (3)

where RBβ(ρ) is the bound ground-state hyper-radial wave
function for the channel β, with NBβ the normalization factor,

064609-2

�nIM(⇠) =
X

�

Rn�I(⇢)Y�IM(⌦5)

Y�IM are the hyperspherical harmonics, known functions of
⌦5 ⌘ {↵, x̂, ŷ}, which includes the hyperangle tan↵ = x/y
Rn�I are functions of the hyperradius ⇢ =

p
x2 + y2

that are determined by diagonalising the 3-b Hamiltonian

To obtain a discretised continuum, they generalise the THO method
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Breakup of three-body projectiles 4-body CDCC

6He+Zn elastic scattering @13.6AMeV

Th : [Rodrı́guez-Gallardo et al. PRC 77, 064609 (2008)]
Exp : [Di Pietro et al. PRC 69, 044613 (2004)]

breakup influences elastic scattering
Note the convergence study shown in the figure. . .
Size of the base limits the description of breakup
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Breakup of three-body projectiles Extension of the CCE to three-body projectiles

CCE for three-body projectiles
Coulomb-Corrected Eikonal model extended to three-body projectile

[Baye et al. PRC 79, 024607 (2009)]
Less computationally challenging than CDCC
) gives access to finer breakup cross sections :

11Li+Pb @70AMeV

THREE-BODY BREAKUP OF 11Li WITH THE . . . PHYSICAL REVIEW C 85, 054610 (2012)

�20
�20

1�

2+

0+

�

FIG. 5. Breakup cross sections of the 0+, 1−, 2+ partial waves.
The dashed curves correspond to a modified 9Li-target potential as
described in Sec. V D.

around 0.25 MeV and a second wider structure around 1 MeV.
Those peaks coincide with the positions of the bumps observed
in the eigenphases of Fig. 1. A similar prediction for the 0+

excitation energy spectrum was suggested by Ershov et al.
[40] from the study of the excitation energy spectrum of 11Li
colliding on a proton target at 68 MeV/nucleon. The 2+ partial
cross section exhibits two broad peaks, near 1.2 and 2.5 MeV,
in agreement with the 2+ eigenphases of Fig. 1.

Figure 6 displays the total and 1− breakup cross sections of
Fig. 4 convoluted with the detector response and compared
with the experimental data of Ref. [2]. We observe a fair
agreement for energies above 1.5 MeV, but the peak energy is
slightly too high in the model. The conditions of the calculation
have been determined on the 0+ ground state, and no fitting
procedure is applied to the 1− partial wave. Including the 0+

and 2+ contributions increases the total cross section beyond
1 MeV, in better agreement with the experimental data. In
the literature, calculations of breakup cross sections of halo
nuclei often use the equivalent photon method [41]. This
approximation assumes a dipole breakup process and ignores

�

FIG. 6. Total breakup cross section (solid line) and 1− contribu-
tion (dashed line) convoluted with the detector response. Experimen-
tal data are taken from Ref. [2].
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FIG. 7. Double differential cross sections (solid lines) as a
function of the scattering angle with their partial-wave decomposition
at different excitation energies (top labels in MeV). The dashed,
dotted, and dash-dotted lines correspond to the 0+, 1−, and 2+ partial
waves, respectively.

other contributions. In contrast, the present eikonal description
of the breakup reaction is more accurate, because it allows a
quantitative evaluation of other partial wave contributions.

A further investigation of the excitation multipoles and
mechanism is shown in the double differential cross sections,
d2σ

dθdE
(Eq. (50) of Ref. [17]), as a function of the scattering

angle, and at different excitation energies. In Fig. 7, we
display the cross section and its partial-wave decomposition
for four excitation energies: 0.2 MeV, near the 0+ narrow peak;
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FIG. 8. Total angular distribution (thin solid line) for the breakup
of 11Li on 208Pb at 70 MeV/nucleon in the range 0 6 E 6 4 MeV,
and its decomposition in the dominant partial waves 0+ (dashed),
1− (dotted), and 2+ (dash-dotted). The thick solid line shows the
total angular distribution convoluted with the detector resolution.
The experimental data are taken from Ref. [2].

0.45 MeV, close to the 1− narrow peak; 1.05 MeV, around the
0+ wide peak; and 2.95 MeV, presumably far from resonances.

At all energies the 0+ partial cross section presents
diffraction patterns at large angles (θ & 1◦). At 0.2 MeV, for
very forward angles (θ . 1◦), the total double differential cross
section is practically of 1− character, but at larger angles, there
is a strong influence of the 0+ partial contribution supporting
the indication of a 0+ resonance. As expected, at 0.45 MeV,
the dipole contribution is strongly dominant. Conversely, at
E = 1.05 MeV, the 0+ and 2+ contributions are not negligible
at large angles. Around 3 MeV the 2+ and 1− components
have the same order of magnitude at large angles.

Energy-integrated cross sections are available experimen-
tally. They are defined as

dσ

d#
=

∫ Emax

0

d2σ

d#dE
dE. (29)

In Fig. 8 we show this total angular distribution for Emax =
4 MeV, which corresponds to the experimental conditions [2].
The theoretical cross section is convoluted by a Gaussian
function (with a width of 0.44◦) to simulate the experimental
angular resolution. For all scattering angles the 1− partial wave
dominates, and the total angular distribution is mainly 1− at
very small angles. The agreement between the experimental
data and the convoluted theoretical curve is quite good for
almost all angles, even though there is no free parameter in
our calculations.

Figure 9 presents double differential cross sections with
respect to two-body energies (see Ref. [17] for detail). In the
top panel, E21 and Ec(21) are the energies between the external
neutrons and between their c.m. and the core. These energies
correspond to the “dineutron” or “T” configuration. The “Y”
configuration is characterized by E1c, the relative energy
between a neutron and the 9Li core, and by E2(c1), the energy
between neutron 2 and the c.m. of the 10Li =9 Li + n system.
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FIG. 9. (Top) 1− component of the double-differential cross
sections d2σ/dE21dEc(12) in b/MeV2 as a function of partial energies
E21 and Ec(12) for 11Li breakup on 208Pb at 70 MeV/nucleon. (Bottom)
Same as top panel for d2σ/dE1cdE2(c1).

These cross sections provide information about correlations in
11Li.

In the T configuration (top panel of Fig. 9), a maximum
is obtained near E21 = 0.15 MeV and Ec(21) = 0.3 MeV.
This peak might correspond to the neutron-neutron virtual
state. In the Y configuration (bottom panel of Fig. 9), there
is a maximum near E1c ≈ E2(c1) ≈ 0.2 MeV. Experimental
measurements would be helpful to clarify the structure of the
1− resonance.

D. Influence of the nucleus-target potentials

The 9Li-208Pb potential is poorly known and has been
determined here from a scaling of an optical α-208Pb potential.
To test the sensitivity of the breakup cross section to this
potential, we multiply it by a factor of two. The dependence is
illustrated by the dashed curves of Fig. 5. For all partial waves,

054610-8

Th : [Pinilla PRC 85, 054610 (2012)] Exp : [Nakamura PRL 96, 252502 (2006)]
Excellent agreement with experimental data
Reaction dominated by E1 transition from ground state
Narrow peak in energy distribution) “1�” resonance?
Convolution with experimental resolution is necessary 22 / 30



Breakup of three-body projectiles Extension of the CCE to three-body projectiles

Structure of 11Li continuum
CCE enables looking at how the energy is shared
between the three bodies in the continuum (here in “1�” contribution)

11Li+Pb @70AMeVE. C. PINILLA, P. DESCOUVEMONT, AND D. BAYE PHYSICAL REVIEW C 85, 054610 (2012)
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FIG. 8. Total angular distribution (thin solid line) for the breakup
of 11Li on 208Pb at 70 MeV/nucleon in the range 0 6 E 6 4 MeV,
and its decomposition in the dominant partial waves 0+ (dashed),
1− (dotted), and 2+ (dash-dotted). The thick solid line shows the
total angular distribution convoluted with the detector resolution.
The experimental data are taken from Ref. [2].

0.45 MeV, close to the 1− narrow peak; 1.05 MeV, around the
0+ wide peak; and 2.95 MeV, presumably far from resonances.

At all energies the 0+ partial cross section presents
diffraction patterns at large angles (θ & 1◦). At 0.2 MeV, for
very forward angles (θ . 1◦), the total double differential cross
section is practically of 1− character, but at larger angles, there
is a strong influence of the 0+ partial contribution supporting
the indication of a 0+ resonance. As expected, at 0.45 MeV,
the dipole contribution is strongly dominant. Conversely, at
E = 1.05 MeV, the 0+ and 2+ contributions are not negligible
at large angles. Around 3 MeV the 2+ and 1− components
have the same order of magnitude at large angles.

Energy-integrated cross sections are available experimen-
tally. They are defined as

dσ

d#
=

∫ Emax

0

d2σ

d#dE
dE. (29)

In Fig. 8 we show this total angular distribution for Emax =
4 MeV, which corresponds to the experimental conditions [2].
The theoretical cross section is convoluted by a Gaussian
function (with a width of 0.44◦) to simulate the experimental
angular resolution. For all scattering angles the 1− partial wave
dominates, and the total angular distribution is mainly 1− at
very small angles. The agreement between the experimental
data and the convoluted theoretical curve is quite good for
almost all angles, even though there is no free parameter in
our calculations.

Figure 9 presents double differential cross sections with
respect to two-body energies (see Ref. [17] for detail). In the
top panel, E21 and Ec(21) are the energies between the external
neutrons and between their c.m. and the core. These energies
correspond to the “dineutron” or “T” configuration. The “Y”
configuration is characterized by E1c, the relative energy
between a neutron and the 9Li core, and by E2(c1), the energy
between neutron 2 and the c.m. of the 10Li =9 Li + n system.
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FIG. 9. (Top) 1− component of the double-differential cross
sections d2σ/dE21dEc(12) in b/MeV2 as a function of partial energies
E21 and Ec(12) for 11Li breakup on 208Pb at 70 MeV/nucleon. (Bottom)
Same as top panel for d2σ/dE1cdE2(c1).

These cross sections provide information about correlations in
11Li.

In the T configuration (top panel of Fig. 9), a maximum
is obtained near E21 = 0.15 MeV and Ec(21) = 0.3 MeV.
This peak might correspond to the neutron-neutron virtual
state. In the Y configuration (bottom panel of Fig. 9), there
is a maximum near E1c ≈ E2(c1) ≈ 0.2 MeV. Experimental
measurements would be helpful to clarify the structure of the
1− resonance.

D. Influence of the nucleus-target potentials

The 9Li-208Pb potential is poorly known and has been
determined here from a scaling of an optical α-208Pb potential.
To test the sensitivity of the breakup cross section to this
potential, we multiply it by a factor of two. The dependence is
illustrated by the dashed curves of Fig. 5. For all partial waves,
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FIG. 8. Total angular distribution (thin solid line) for the breakup
of 11Li on 208Pb at 70 MeV/nucleon in the range 0 6 E 6 4 MeV,
and its decomposition in the dominant partial waves 0+ (dashed),
1− (dotted), and 2+ (dash-dotted). The thick solid line shows the
total angular distribution convoluted with the detector resolution.
The experimental data are taken from Ref. [2].

0.45 MeV, close to the 1− narrow peak; 1.05 MeV, around the
0+ wide peak; and 2.95 MeV, presumably far from resonances.

At all energies the 0+ partial cross section presents
diffraction patterns at large angles (θ & 1◦). At 0.2 MeV, for
very forward angles (θ . 1◦), the total double differential cross
section is practically of 1− character, but at larger angles, there
is a strong influence of the 0+ partial contribution supporting
the indication of a 0+ resonance. As expected, at 0.45 MeV,
the dipole contribution is strongly dominant. Conversely, at
E = 1.05 MeV, the 0+ and 2+ contributions are not negligible
at large angles. Around 3 MeV the 2+ and 1− components
have the same order of magnitude at large angles.

Energy-integrated cross sections are available experimen-
tally. They are defined as

dσ

d#
=

∫ Emax

0

d2σ

d#dE
dE. (29)

In Fig. 8 we show this total angular distribution for Emax =
4 MeV, which corresponds to the experimental conditions [2].
The theoretical cross section is convoluted by a Gaussian
function (with a width of 0.44◦) to simulate the experimental
angular resolution. For all scattering angles the 1− partial wave
dominates, and the total angular distribution is mainly 1− at
very small angles. The agreement between the experimental
data and the convoluted theoretical curve is quite good for
almost all angles, even though there is no free parameter in
our calculations.

Figure 9 presents double differential cross sections with
respect to two-body energies (see Ref. [17] for detail). In the
top panel, E21 and Ec(21) are the energies between the external
neutrons and between their c.m. and the core. These energies
correspond to the “dineutron” or “T” configuration. The “Y”
configuration is characterized by E1c, the relative energy
between a neutron and the 9Li core, and by E2(c1), the energy
between neutron 2 and the c.m. of the 10Li =9 Li + n system.
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FIG. 9. (Top) 1− component of the double-differential cross
sections d2σ/dE21dEc(12) in b/MeV2 as a function of partial energies
E21 and Ec(12) for 11Li breakup on 208Pb at 70 MeV/nucleon. (Bottom)
Same as top panel for d2σ/dE1cdE2(c1).

These cross sections provide information about correlations in
11Li.

In the T configuration (top panel of Fig. 9), a maximum
is obtained near E21 = 0.15 MeV and Ec(21) = 0.3 MeV.
This peak might correspond to the neutron-neutron virtual
state. In the Y configuration (bottom panel of Fig. 9), there
is a maximum near E1c ≈ E2(c1) ≈ 0.2 MeV. Experimental
measurements would be helpful to clarify the structure of the
1− resonance.

D. Influence of the nucleus-target potentials

The 9Li-208Pb potential is poorly known and has been
determined here from a scaling of an optical α-208Pb potential.
To test the sensitivity of the breakup cross section to this
potential, we multiply it by a factor of two. The dependence is
illustrated by the dashed curves of Fig. 5. For all partial waves,

054610-8

Th : [Pinilla PRC 85, 054610 (2012)]

Structure in the continuum; confirms 1� resonance?
Sign of 2n virtual state in E21 ? 9Li-n structure in E1c ?
More precise experimental data are needed to check this. . .
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Core excitation

1 Nuclear Astrophysics
Astrophysical Application of Coulomb Breakup

2 Breakup of three-body projectiles
4-body CDCC
Extension of the CCE to three-body projectiles

3 Core excitation
XCDCC
Adding an EFT 3-b force
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Core excitation XCDCC

Core of the problem. . .
NLO analysis of 11Be breakup on C
includes 10Be-n interaction in s and p waves (not in d waves)
) misses the resonant structures in data (5/2+ and 3/2+ peaks)

11Be+C!10Be+n+C @ 67AMeV
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Exp. [Fukuda et al. PRC 70, 054606 (2004)]
Th. [P.C., Phillips & Hammer PRC 98, 034610 (2018)]

Adding single-particle d5/2 and d3/2 resonances is not enough
some degrees of freedom are missing. . .

25 / 30



Core excitation XCDCC

Including the core excitation
Idea : consider that the core can be in an excited state :

R. DE DIEGO, J. M. ARIAS, J. A. LAY, AND A. M. MORO PHYSICAL REVIEW C 89, 064609 (2014)

In this work, we revisit the formulation of the XCDCC
method of Ref. [18] and perform calculations for the elastic
scattering and breakup of 11Be on several targets at low and
intermediate energies. The aim of this work is to provide an
improved description of the reaction dynamics, as compared
to the no-recoil DWBA method and also to pin down the
effect of core excitation in elastic scattering and breakup.
Our description of the reaction dynamics follows closely the
derivation of Ref. [18], but a new code to compute the required
coupling potentials has been developed in order to provide an
independent assessment of the importance of core excitation
effects in the scattering of halo nuclei. The main difference
between our approach and that of Ref. [18] relies on the
description of the states of the weakly bound projectile. In
Ref. [18], the wave functions for these states were obtained by
direct integration of the multichannel Schrödinger equation,
subject to the appropriate boundary conditions for bound
or unbound states. The latter were then grouped into bins,
constructed by superposition of scattering states, following the
standard average procedure. In this work, we use instead the
so-called pseudostate method, in which the projectile states are
approximated by the eigenstates of the Hamiltonian in a trun-
cated basis of square-integrable functions. Negative-energy
eigenvalues correspond to the bound states of the system,
whereas those located at positive energies, usually referred
to as pseudostates (PS), can be regarded as a finite and discrete
representation of the continuum spectrum. The method has
been successfully applied to two- [21–23] and three-body
problems [24–27]. In particular, we make use of a transformed
harmonic oscillator (THO) basis. This basis has been applied
to the case of spherical systems [23] and also to deformed
systems [28]. In both cases, the THO basis is used to describe
the relative motion between the clusters and it is obtained by
applying a local scale transformation (LST) to the harmonic
oscillator (HO) basis. The LST, adopted from a previous
work of Karataglidis et al. [29], is such that it transforms
the Gaussian asymptotic behavior into an exponential form,
thus ensuring the correct asymptotic behavior for the bound
wave functions. The combined XCDCC + THO formalism is
applied to 11Be + p, 11Be + 64Zn, and 11Be + 208Pb reactions
and the effect of core excitation is discussed in each case (light,
medium, and heavy target).

The work is structured as follows. In Sec. II we briefly recall
the THO basis used for the description of two-body systems
with core excitation. In Sec. III, the XCDCC formalism,
particularized to our basis functions, is revisited. In Sec. IV
the XCDCC + THO method is applied to several reactions
induced by the 11Be nucleus. Finally, in Sec. V the main results
of this work are summarized.

II. STRUCTURE OF THE PROJECTILE IN A THO BASIS

In this section, we briefly review the features of the PS
basis used in this work to describe the states of a two-body
composite projectile, made of a valence particle (v) and a core
nucleus (c) (see schematic in Fig. 1). The Hamiltonian of this
system, Hp, is described in the weak-coupling limit and is

c
r

v
r

projectile

target

v

c

r

ξ

c.m.

R

FIG. 1. (Color online) Schematic sketch of the weakly bound
projectile composed by a core (c) and a valence particle (v). To
study the scattering of the composite projectile with an inert target,
within a three-body model, the relevant coordinates are the relative
coordinate of the valence particle with respect to the core (!r) and
that between the center of mass of the projectile and the target ( !R).
Note that the valence-target and core-target coordinates (!rv and !rc,
respectively) can be written in terms of !r and !R.

written as

Hp(!r,ξ ) = T (!r) + Vvc(!r,ξ ) + hc(ξ ), (1)

where T (!r) is the core-valence kinetic energy operator, Vvc

is the valence-core interaction, and hc(ξ ) is the intrinsic
Hamiltonian of the core.

In the calculations presented in this work, the composite
system (projectile) is treated within the particle-rotor model
[30]. Therefore, we assume that the core nucleus has a
permanent deformation which, for simplicity, is taken to be
axially symmetric. Thus, we can characterize the deformation
by a single parameter, β2. In the body-fixed frame, the surface
radius is parameterized as R(ξ̂ ) = R0[1 + β2 Y20(ξ̂ )], with R0
as an average radius. Starting from a central potential, V (0)

vc (r),
the full valence-core interaction is obtained by deforming this
interaction as

Vvc(!r,ξ̂ ) = V (0)
vc (r − δ2Y20(ξ̂ )), (2)

with δ2 = β2R0, usually called deformation length. By trans-
forming this to the space-fixed reference frame and expanding
the spherical harmonics, this deformed potential reads (see,
e.g., Ref. [31])

Vvc(r,θ,φ) =
√

4π
∑

λµ

Vλ
vc(r)Dλ

µ0(α,β,γ )Yλµ(r̂) (3)

with the radial form factors

Vλ
vc(r) = λ̂

2

∫ 1

−1
Vvc(r − δ2Y20(θ ′,0))Pλ(u)du, (4)

(with u = cos θ ′ and λ̂ ≡
√

2λ + 1). Dλ
µ0(α,β,γ ) is a rotation

matrix, depending on the Euler angles {α,β,γ } which define
the transformation from the body-fixed frame to the laboratory
frame.

The eigenstates of the Hamiltonian and their associated
wave functions can be obtained by solving a system of
differential equations, as done in Ref. [18]. Alternatively, they
can be obtained by diagonalizing the Hamiltonian matrix in a
finite basis of square integrable functions. In this work we use

064609-2

[De Diego et al. PRC 89, 064609 (2014)]

H0 = Hc(⇠c) + Tr + Vcn(⇠c, r)
[Summers, Nunes & Thompson PRC 73, 031603 (2006)]

[Lay, de Diego, Crespo, Moro, Arias & Johnson PRC 94, 021602 (2016)]
11Be ⌘ 10Be(0+)⌦ n(1s1/2) + 10Be(2+)⌦ n(0d5/2)+. . .
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small differences are found in the 3=2þ state. The ground
state corresponds predominantly to a j10Beð0þÞ $ s1=2i
configuration, with some admixture of the j10Beð2þÞ $
d5=2i configuration. The 5=2þ state is mainly based on
the 10Be ground state. On the other hand, the 3=2þ reso-
nance is mainly built on top of the excited core. According
to this result, it is expected that the population of the 5=2þ

state is mainly due to the valence excitation mechanism,
whereas the excitation of the 3=2þ state will be mostly due
to a core-excitation mechanism.

To illustrate the sensitivity of the calculation with the
structure model, we have considered two additional models
assuming pure single-particle configurations for the 11Be
g.s. and the 5=2þ and 3=2þ resonances. For the 11Beðg:s:Þ
we consider a pure j0þ $ 2s1=2i configuration. For the
5=2þ resonance we consider two single-particle models:
(i) j0þ $ 1d5=2i (denoted SP1) and (ii) j2þ $ 2s1=2i (SP2).
In the former, the resonance is populated by means of a
valence excitation mechanism, whereas in the second
model the excitation is due to a pure core excitation effect.
Similarly, for the 3=2þ we consider also two extreme
models: (i) j0þ $ 1d3=2i (SP1) and (ii) j2þ $ 2s1=2i
(SP2). The required radial wave functions are taken from
the PRM calculation, conveniently normalized to one.

The nþ 12C potential was taken from Ref. [27]. The
central and transition components of the 10Beþ 12C po-
tential were generated by a double folding procedure,
convoluting an effective nucleon-nucleon (NN) interaction
with the 10Be and 12C matter densities. The latter were
taken, respectively, from the antisymetrized molecular dy-
namics (AMD) calculation of Ref. [28] and from the
parametrization of Ref. [29]. For the effective NN interac-
tion we adopt the spin-isospin independent part of the M3Y
interaction [30] based on the Reid soft-core NN potential.
For the imaginary part of the 10Beþ 12C potential we
assume the same geometry as for the real part. A renor-
malization factor was included to reproduce the elastic
scattering data of 10Beþ 12C at 59.4 MeV/nucleon from
Ref. [31]. Further details of these calculations will be
provided elsewhere.

In Fig. 1 we compare the calculated angular distributions
with the experimental data of Ref. [4]. The upper and
bottom panels correspond to the 5=2þ (Ex ¼ 1:78 MeV)
and 3=2þ (Ex ¼ 3:41 MeV) resonances. It is readily seen

that the pure single-particle models SP1 and SP2 do not
reproduce the shape of the resonances. In the model SP1
(pure valence excitation) the maxima and minima are
shifted to smaller angles with respect to the data and the
angular distribution decays too fast. On the other hand, in
the model SP2 (pure core excitation mechanism) the max-
ima and minima are shifted to larger angles. Finally, the
full PRM model, which includes both valence and core
excitation mechanisms and their interference, the position
of the maxima and minima is very well reproduced. It is
also seen that the absolute magnitude of the data is over-
estimated. Except for this discrepancy in the normaliza-
tion, it is clear that the shape is appreciably improved with
respect to the pure single-particle description and that the
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FIG. 1 (color online). Angular distribution for the Ex ¼
1:78 MeV and 3.41 MeV states in 11Be. The circles are the
data from Ref. [4]. The curves correspond to the extended
DWBA calculations, including core excitation effects, using
different structure models for the 11Be nucleus. For the single-
particle models (SP1 and SP2) the resonance configuration is
indicated in the labels.

TABLE I. Spectroscopic factors for the ground state and resonant wave functions of 11Be, according to the particle-rotor model
(PRM) and the shell-model calculations (WBT) presented in this work.

State Model j0þ $ ð‘sÞji j2þ $ s1=2i j2þ $ d3=2i j2þ $ d5=2i
1=2þ (g.s.) PRM 0.857 . . . 0.021 0.121

WBT 0.762 . . . 0.002 0.184
5=2þ (Ex ¼ 1:78 MeV) PRM 0.702 0.177 0.009 0.112

WBT 0.682 0.177 0.009 0.095
3=2þ (Ex ¼ 3:41 MeV) PRM 0.165 0.737 0.017 0.081

WBT 0.068 0.534 0.008 0.167
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FIG. 2. Angular distribution of the resonant breakup of 19C on
protons at 70 MeV/nucleon. The solid red line and the dashed
blue line correspond to the XCDCC calculation for the first and
the second 5/2+ resonance of the P-AMD model [34] respectively.
The dotted dashed line corresponds to a XDWBA calculation for the
first 5/2+ resonance. The dotted line corresponds to an inert-core
DWBA calculation where ground state and resonance are considered
to be pure s1/2 and d5/2 states respectively. Experimental data are from
Ref. [33].

The calculated breakup angular distributions for the two
5/2+ resonances predicted by our structure model are shown in
Fig. 2. The first 5/2+ resonance is the one that best reproduces
the experimental data. However, the second resonance gives a
similar angular distribution and even the sum of both would be
consistent with the data. As shown in Ref. [12], the magnitude
and shape of the resonant breakup is sensitive to the weights of
the different configurations of each state. Unfortunately, in this
case, both resonances are mainly based in the 2+ core excited
state and, therefore, there is not a clear difference between
both choices. Furthermore, in this case the population of both
resonances was found to be almost exclusively due to the
core excitation mechanism. To illustrate this effect, we include
in Fig. 2 a standard inert-core DWBA calculation where the
ground state and the 5/2+ resonant state are represented by
pure s1/2 and d5/2 single-particle configurations orbiting an
inert 18C core, respectively. The result of this calculation is
given by the dotted line in Fig. 2. It is clearly seen that the
resulting angular distribution significantly underestimates the
magnitude of the data, and fails to reproduce the shape too.
The same conclusion was achieved in Ref. [35] where a AGS-
Faddeev calculation, using a more realistic p-n interaction
(CD-Bonn), but ignoring core excitations, was also found to
provide too small a breakup cross section. This result clearly
shows that the observed resonant peak is not consistent with a
simple 2s1/2 → 1d5/2 transition and evidences the dominance
of the core excitation mechanism in the present case, resulting
from the large 18C(2+) component in both resonances (cf.
Table I). The DCE mechanism is much larger than that found
in the 11Be +p case, in which the valence and core excitations
have been found to be of similar magnitude.

Additionally, XDWBA and XCDCC calculations for the
first 5/2+ resonance have been performed. Both calculations

give almost identical results as expected at intermediate
energies. This agreement shows that the process is a one-step
excitation, which in this case is almost entirely a dynamical
core excitation.

A final comment is in order related to the agreement
between the semimicroscopic calculations presented here in
Fig. 2 and the fully microscopic calculations presented in
Ref. [33]. These two approaches give very similar results,
thus indicating that the microscopic description of 19C is able
to reproduce the collective nature of the core excitations.
However, in such a description it is very difficult to isolate
and identify the underlying core structures responsible for
the resonances. In our semimicroscopic approach this can
be easily done as presented in Table I. More importantly,
the reaction frameworks used here are able to consider and
distinguish the contribution of valence and core excitations to
the total cross section. This allows us to predict quantitatively
the contribution to the resonances of 18C ground state and
excited states, an observable that can be compared directly
with the experimental yields.

Conclusions. We have investigated the role of core excita-
tions in the resonant breakup of 19C on a proton target. For that,
we have considered a two-body model for 19C and performed
XCDCC and XDWBA calculations that include the possibility
of core (18C) excitations in the structure of the projectile as
well as in the reaction dynamics.

We have compared our results with the experimental data
measured by Satou and collaborators [33] for this reaction,
at an incident energy of 70 MeV/nucleon, corresponding to
the angular distribution for a resonant state in 19C, which was
identified with the second 5/2+ state predicted by sd shell-
model calculations.

Our structure calculations, based on a particle-plus-core
model of 19C, predict two 5/2+ low-lying resonances, but
none of them at the energy of the peak observed in [33].
Furthermore, the corresponding angular distributions are both
compatible with the shape and magnitude of the experimental
one, thus precluding an unambiguous identification of the
experimental peak with one or another. This result is un-
derstood as a consequence of the similar structure for the
two resonances. Both resonances are mainly based on the
first 2+ state of the core. Therefore, it is clearly seen in
the present analysis that the dynamic excitation of the core
is the main mechanism responsible for the peak observed in
the breakup with protons. Moreover, we have shown that the
pure valence excitation mechanism, assuming a 2s1/2 → 1d5/2
single-particle transition, gives a negligible contribution here.
This is the first case where we have identified that the core
excitation mechanism dominates overwhelmingly.

The present results are in contrast with the naive picture
of halo nuclei where the weakly bound neutron is completely
decoupled from the rest of the nucleons inside the core, which
could be considered as a frozen object. We had previously
found cases where single-particle excitations of the valence
particle and dynamic excitations of the core compete on equal
footing, leading to an interesting interplay of both processes
[12]. However, the dynamic excitation of the core in 19C is so
strong that it is the core that plays the main role in the breakup
reaction of a halo nucleus.

021602-4

Th : XCDCC [Lay et al. PRC 94, 021602 (2016)]
Exp. [Y. Satou et al. PLB 660, 320 (2008)]

11Be+C : diffraction pattern reproduced only with core excitation
3/2+ dominated by 11Be(3/2+) ⌘ 10Be(2+)⌦n(d5/2)
Good agreement with data (no fitting parameter)
Influence in resonant breakup confirmed on other systems
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Including a 3-b force
11Be+C!10Be+n+C @ 67AMeV (beyond NLO)
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Beyond NLO description is not sufficient : missing 10Be(2+)
[de Diego, Crespo & Moro, PRC 95, 044611 (2017)]

Adding an effective 3-b force solves the issue
Confirms role of the excitation of the core in reaction process
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Summary

Inferring B(E1) from breakup is risky
I E2 contribution
I Higher-order effect

However radiative capture (n,�) and breakup
are sensitive to same structure inputs
Extension of breakup models to Borromean systems :

I 4-b CDCC
I CCE

Core degree of freedom of halo nuclei plays a role in resonant
breakup
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