Previously in Breakup-Reaction Theory. ..
On Monday, we've seen

@ how to include Coulomb in scattering problems

@ how to account for closed channels in a simple effective way :
optical potentials ~ &#™*
i.e. with imaginary part that absorbs flux from elastic channel

e how to explicitly include the breakup channel for 2-b projectiles
= need to solve a three-body Schrédinger equation

Yesterday, we’ve seen various methods to solve that 3-b problem
e CDCC

@ Time-dependent approach
@ Eikonal approximation and its variations

» DEA
» CCE (used in the project)
You've started the breakup-reaction project
@ develop the c-f interaction (e.g. within Halo-EFT)
@ find optical potentials for the ¢-T and f-T interactions
@ pay attention to the numerical convergence of the scheme
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Benchmarking breakup models : Coulomb breakup of 13C

Structure of °C
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15C spectrum

PC="C0" +n

14C cluster assumed in 0" ground state
(extreme shell model) (see Daniel’s classes)

= spin and parity of 1°C states

fixed by angular momenta /and jof n:
e 1/2* ground state in s1/2
@ 5/2* excited (bound) state in d5/2



Benchmarking breakup models : Coulomb breakup of 13C

5C+Pb @ 68AMeV : energy distribution

400
9.

. 4} CDICC e

300 "0) DEA —--
200

100

doy,/dE (mb/MeV)

E (MeV)

e Excellent agreement between all three methods
[P.C., Esbensen and Nunes, PRC 85, 044604 (2012)]

e Excellent agreement with experiment
[Nakamura et al. PRC 79, 035805 (2009)]

= Confirms the validity of the approximations
...and the two-body structure of °C



SC+Pb @ 68AMeV : angular distribution
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e TD lacks quantum interferences
but reproduces the general trend at small 6

e DEA exhibits quantum interferences
though much less time consuming than CDCC



I5C + Pb @ 20AMeV
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TD = CDCC TD gives trend of CDCC
DEA too high (lacks oscillations)
DEA peaks too early

DEA#CDCC due to Coulomb deflection
Eikonal is a high-energy approximation
Could an Eikonal-CDCC model solve the problem ?
[Ogata et al. PRC 68, 064609 (2003)]



Benchmarking breakup models : Coulomb breakup of 13C

Semiclassical correction
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[Fukui, Ogata, P.C. PRC 90, 034617 (2014)]
e E-CDCC also too high and too forward



Benchmarking breakup models : Coulomb breakup of 13C

Semiclassical correction

opu(L) (mb)
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[Fukui, Ogata, P.C. PRC 90, 034617 (2014)]
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e E-CDCC also too high and too forward
Shift in L = correction b — b’ (classical closest approach)

e hybrid solution : CDCC at low L (b) and eikonal at large L (b)
= excellent agreement with full CDCC

e Improve eikonal using Coulomb correction : b — b’




Dynamical vs. First-Order Calculations
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[P. C., Baye, PRC 71, 044609 (2005)]

e Comparison exact TD/FO
for breakup of !'Be on Pb
at different v and b

o Relative agreement between
first-order and exact solution

@ Accuracy of first order improves
at large v

@ But systematic distortion
even at high b

See also [Typel, Baur, PRC 64, 024601 (2001)]
[Esbensen, Bertsch, Snover PRL 94, 042502
(2005)]



Dynamics of Breakup Reactions

Partial-wave analysis

(dP/dE) / (dPY /dE)
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@ dPy,/dE decomposed in
partial-wave contributions

e First order predicts
mainly E1 transitions
= p waves from s bound state

@ In exact solution :
» Total close to first-order
» p waves indeed dominate

» But s and d components
which are not first-order

effects



Dynamics of Breakup Reactions

: . E 4 C
Time evolution  re @) C
= 1000 100 1000 2000 3000 4000 5000 6000 7000 8000 ' ‘
i T T T T T T T T T " (
12 .

Il

= 1 &‘v‘ i ( (
N I L : , (
< s i P

5\ total N A

% 0.6 5 waves 1 . (
> U-L L P waves _ ( ‘
i d waves

B02F ( ‘/
[y e r— /

0
-20 0 20 40 60

t (h/MeV)

@ At < 0 no breakup

80 100

1 El
140 __QL 5)) (i

184 gg~ 05 Y

120

o At closest approach ¢ = 0 steep rise

Only p waves : E1 transition from s ground state
e Att> 0 p waves depleted towards s and d

But total remains constant

= Significant

in the continuum
with Al = 1 and AE ~ 0 = mostly E1 coupling &7
[P. C., Baye, PRC 71, 044609 (2005)]
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= FO does not capture the whole reaction mechanism
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Nuclear Astrophysics Introduction

Introduction : a bit of history
Where do we come from ?
Where was produced the matter that surrounds us ?

The answer came from astrophysics. . .

In 1920 A. Eddington : stars are nuclear powered

In 1929 R. Atkinson and F. Houtermans : fusion of light elements
produces energy

e.g. fusion of 4 protons into “He

4p — *He +2e" + 2v, + 26.73 MeV

In 1938-39, H. Bethe and C. Critchfield : pp chain and CNO cycles
(H. Bethe got NP in 1967)

In 1957, seminal paper of Burbidge, Burbidge, Fowler and Hoyle
on nucleosynthesis in stars [Rev. Mod. Phys. 29, 257]



Nuclear Astrophysics Introduction

Introduction : nucleosynthesis in a nutshell
By fusion of light elements we can reach the Fe-Ni region
because reactions are exoenergetic and Coulomb repulsion is small
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Beyond, processes based on n or p capture lead to heavy nuclei :
S, Iy p, rp Processes. ..



pp chain
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Nuclear Astrophysics pp chain and CNO cycle

Ray Davis’ Experiment
In 1964, Ray Davis measures the solar neutrino flux using

ICl+v, » TAr+e”

threshold E,, = 0.8 MeV = sensitive mostly to ®B neutrinos
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The measured flux does not fit the prediction of the Solar Model. ..
Solved by SNO and Super Kamiokande : neutrino oscillations
NP : Davis in 2002 and Mc Donald and Kajita in 2015



Nuclear Astrophysics pp chain and CNO cycle

CNO cycle(s)

If the star contains C, N or O
they can be used as catalyst
to synthesise *He from 4 p
e.g. CNO C cycle :

12C+p
13N
13C+p
14N+p
150
15N+p

Summary :

Ll Ll

SN
BC+e + v,
14N+y
60+y
BN +e + v,
2C+a

4p — 3He + 2e* + 2v, + 25MeV

@

@\;@7%{“?

O Proton Y Gamma Ray
O Neutron V  Neutrino
O Positron

CNO C cycle



Nuclear Astrophysics pp chain and CNO cycle

Other cycles

Other cycles are possible
@ CNO N cycle using '“N as catalyst :

@ NeNaMg cycles
o ...

14N+p
150
wN+p
16O+p
1R
17O+p

N R R

BOo+y
BN +et + v,
10 + y
17F+)/
"0 +et + v,
UN +



Reaction rate

We consider the radiative-capture reaction :b+c —a+7y
The reaction rate is the number of reactions occurring
per unit time and volume

r=N,N.ov
The velocity v is distributed according to Maxwell-Boltzmann
pv) o et

= (cVv) = 4n f d(v) oc(v) v’ dv

o fe_E/kT o(E) E dE



o(E) at low energy

Due to Coulomb barrier o plummets at low E
because reaction takes place only through tunneling

*He + @ — "Be + v also noted *He(«, y) 'Be
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©
g
b
§

aO




Astrophysical S factor

The rapid drop explained

by the Gamow factor e~ 2",
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Nuclear Astrophysics Reaction rate and Gamow window

Gamow peak
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Example

For the reaction *He(e, y) "Be in the sun

Gamow peak
at Ey ~ 20 keV
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= difficult to measure due to background

Solutions
e Rely on theory to extrapolate down to astrophysical energies

e Go to an underground laboratory to reduce background
e.g. LUNA collaboration

e Use indirect techniques, e.g. Coulomb breakup



Astrophysical Application of Coulomb Breakup
Coulomb Breakup Method

Coulomb breakup : projectile breaks up colliding with a heavy target

a+T —>b+c+T
Coulomb dominated = due to exchange of virtual photons

Baur and Rebel Ann. Rev. Nucl. Part. Sc. 46, 321 (1996)

= seen as the time-reversed reaction of the radiative capture
= use Coulomb breakup to infer radiative-capture cross section
[Baur, Bertulani and Rebel NPA458, 188 (1986)]



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Radiative Capture Cross Section

Radiative capture :
electromagnetic transition b-¢ — a = b + c bound state

At low energy, dominated by El transitions
27 E dB(E1)

R T
do\(E1)
dE

= Infer o, from do,,/dE  [Baur, Bertulani and Rebel NPA458, 188 (1986)]

@ easier to measure (above Coulomb barrier)
e higher cross sections

But :
e Nuclear interaction must be negligible
e Coulomb breakup must take place at first order
@ and be dominated by E1 transitions



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup
B

has only one 27 loosely-bound state with S, = 137 keV
Often considered as a one-proton halo nucleus

Described as

'B@2%) = ['Be(3/27) @ p(p3/2))

Model of Esbensen & Bertsch [NPA 600, 37 (1996)] :

e "Be assumed spherical, its spin is neglected
e "Be-p potential has Woods-Saxon form factor (plus spin-orbit)



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Parallel-momentum distribution

Parallel-momentum distribution is best to test this
see [Esbensen, Bertsch NPA 600, 37 (1996)]
8B + Pb @ 44AMeV  Exp: [Davids et al. PRL 81, 2209 (2001)]
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Excellent agreement with exp. (no fitting parameter)



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Reaction Dynamics
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Nuclear interaction Significant First-order :
negligible E2 contribution more asymmetric
at forward angles (asymmetry) = higher-order



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

(dP/dE) / (dPY /dE)
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e Both E1 and E2 are significant
e Higher-order effects :
> presence of ¢ components
from a p ground state
» p+ /> first-order E2

e Exact solution < first-order
= destructive interferences
e.g. E1-E1 vs E2
= be careful with first-order :
interesting qualitative tool
but inaccurate quantitative results



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Interpretation

These results suggest the following mechanism
e at forward angle, reaction dominated by Coulomb
= removes sensitivity to nuclear interaction
@ not only one-step E1 to continuum
@ also one-step E2

e and two-step E1-E1
which interfere with E2

= direct extraction of o, from o, not that simple



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup
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We obtain S =192beVatE =0
Good agreement with Hammache [PRL 86, 3985 (2001)]
but good shape compared to Junghans [PRC 68, 065803 (03)]

Summers and Nunes suggest another idea . ..
[Summers, Nunes PRC 78, 011601 (2008)]



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Analysis by Summers & Nunes
Summers and Nunes have calculated

BC+Pb— "“C+n+Pb at684AMeV

within CDCC using different Visc_, [PRC 78, 011601 (2008)]
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Significant dynamical effects = requires an accurate reaction model
From a y? fit to the data, they extract an ANC they use to get o,



Nuclear Astrophysics Astrophysical Application of Coulomb Breakup

Astrophysical Application of Coulomb Breakup
Initial idea : [Baur, Bertulani and Rebel NPA458, 188 (1986)]
See Coulomb breakup as time-reverse of radiative capture :

dBEl) dol)(El)
o
dE dE

Ucap(E) &
But :

e Nuclear interaction (negligible at forward angles)
e E2 transitions
@ higher orders

= requires accurate reaction model

Nevertheless both reactions
@ sensitive to same input (projectile description : ANC and ¢;)
e dominated by same interaction (Coulomb)

= use breakup to constrain projectile model
from which to calculate capture



