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Three-body Scattering Problem
Within this framework breakup reduces to three-body problem

|Tx + Ho + Ver + Vir |9, R) = Er%(r, R)
with the initial condition

P R) — " fuytom, (1)

© P inits ground state ¢,,,,m, impinging on T

Various methods developed to solve that equation
[Review : Baye, P.C., Lecture Notes in Physics 848, 121 (2012) ; on Indico]
@ Coupled-channel method with discretised continuum (CDCC)
e Time-dependent approach (TD)
(semiclassical)
e Eikonal approximation
(for simplicity spin will be neglected)



CcDCC

Coupled-Channel Method
The eigenstates of H, {|¢;)} are abasisinr:  Hyl¢;) = Ei|¢;)
Idea : expand ¥ on that basis :  W(r,R) = X, xi(R){r|¢;)

|Tx + Ho + Ve + Vir | ¥, R) = Er¥(r.R)
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CcDCC

Coupled Equation
This leads to a set of coupled equations in y;(R)

Trx i (R) + D (lVer + Virlg) xi(R) = (Er = E;) x/(R)

where the coupling terms are (¢;|V.r + Virlg:)
I.e. connect the various projectile states through the 7-T interaction

e
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CcDCC

Discretising the Continuum
Various methods exist :
@ mid-point : divide continuum in bins [E; — AE;/2,E; + AE;/2]
and choose ¢, (r) = ¢xm(r) to describe bin i
e average the wave function over the bin

AE;
Eit+—*

1 E+ 20
buntr) = fE L ) ) dE with W= fE . |REPaE

i 2
= square-integrable wave functions ¢,;, : binning technique
[Austern et al. , Phys. Rep. 154, 125 (1987)]
e pseudo-states : solve Hy ¢y, = E ¢, on finite basis or in a box
= square-integrable wave functions ¢;,, but E; not chosen
[Druet et al. NPA 845 88 (2010)]
e THO : Transformed Harmonic Oscillator
Map the (discrete) states of HO onto the continuum
[Pérez-Bernal et al. PRA 63, 052111 (2001)]



CcDCC

Solving the Coupled Equations
Expanding y into spherical harmonics

1 :
XR) = & D up(R) Y@
L
..and coupling / and L into J, the coupled equations read
_ n (4 L(L +1)
2upr dR?

withc={j,L}and J; = L +1
These equations are solved assuming the asymptotic behaviour

u/(R) — [6:0 I(n. KR) = S, OL(1, KR)|

®+ZWMMM>:wr&M®

where I, = G,—iF; incoming Coulomb function
= 0] outgoing Coulomb function

The S matrix is used to compute the breakup cross sections



CcDCC

CDCC breakup cross sections

Starting from ground state 0/ym, impinging on target with K = K Z,
the scattering amplitudes into state ¢ = jim
scattered with momentum K’

KI
Frm(K') = \/ D (LoloOmolJmo)(Li(mo — mymlJmo)
LQLJ
Xei(‘TLoWL)SCOYSO(I?)YZ’O_m(IA(')

with Er = B2K?*/2u + Ey = °K"*/2mu + E;
Breakup cross section to bin energy £; in direction Q = K’

dow(E;)
d;dQ 210 +1 Z Z

’
m mo K )




CDCC

Continuum Discretised Coupled-Channel : CDCC
[Austern et al. , Phys. Rep. 154, 125 (1987)]

[Tostevin, Nunes, Thompson, PRC 63, 024617 (2001)]
Recent review : [Yahiro et al. , PTEP 2012 01A206 (2012)]

Fully quantal approximation
No approximation on P-T" motion, nor restriction on energy
But expensive computationally (at high energies)

Various codes have been written to solve these coupled equations
FResco written by lan Thompson is free on www. fresco.org.uk



CcDCC

Example : B breakup

B+ Ni —» 'Be+p+Ni @26MeV

Exp. :[V. Guimaraes et al. PRL 84, 1862 (2000)]
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Th. :[Tostevin et al. PRC 63, 024617 (2001)]



CcDCC

Influence of breakup on the elastic channel

%10.11Be + 7Zn @ 24.5MeV
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Exp. : [A. Di Pietro et al. PRL 105, 022701 (2010)]

e *19Be elastic scattering reproduced with usual optical potentials
o !'Be elastic scattering strongly affected by breakup channel



Influence of breakup on the elastic channel
%10.11Be + 7n @ 24.5MeV
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[A. Di Pietro et al. PRC 85, 054607 (2012)]

e *1'Be elastic scattering reproduced with usual optical potentials
e !'Be elastic scattering strongly affected by breakup channel
Confirmed by CDCC calculations



Time-dependent approach Semiclassical Approximation

Time-dependent model
P-T motion described by classical trajectory R(t) defined by Vi.,;(R)

Ryr(t)
R(l

P structure described quantum-mechanically by H
Time-dependent potentials simulate P-T interaction

= time-dependent (TD) Schrbédinger equation
0
iha‘l‘(n b,1) = [Ho + Ver(t) + Vir(t) = Viy()]¥(r, b, 1)

Solved for each b with initial condition ¥ — ¢, .,
f——00



Time-dependent approach Semiclassical Approximation

Numerical resolution of the TD Schrddinger equation
Time-step evolution approximating the evolution operator

Y (r, bt + Ay = U(t+ At 1) ¥"(r, b, 1)
with U(¢,1) = expl [ H(D)dr] and ¥(r,b,1 — =) = Gyyiymn(F)
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Time-dependent approach Semiclassical Approximation

Numerical resolution of the TD Schrddinger equation

e Faster computation compared to CDCC
because each trajectory treated separately

e Lacks quantum interferences between trajectories

Many codes developed to solve TD

e Partial-wave expansion of ¥ :
[Kido, Yabana, and Suzuki, PRC 50, R1276 (1994)]
[Esbensen, Bertsch and Bertulani, NPA 581, 107 (1995)]
[Typel and Wolter, Z. Naturforsch.A 54, 63 (1999)]

e Expansion on a 3D spherical mesh :
[P. C., Melezhik and Baye, PRC 68, 014612 (2003)]

e Expansion on 3D cubic lattice : [Fallot et al. NPA700, 70 (2002)]



Time-dependent approach Semiclassical Approximation

Semicassical breakup cross sections
For each trajectory (b) a breakup probability can be computed

dPy(b) _ e "
TRt =T HZZMWW Dbyt — o))

We can build an angular distribution from b < 6
do—bu do—el dP, bu[b(e)]
dEdQ  dQ dE

where do;/dQ is obtained from Vi
And an energy distribution

dop, f * dPy,(b)
=2r
dE 0 dE

bdb

Initially TD equation solved perturbatively
At the first-order [Alder and Winther Electromagnetic Excitation (1975)]



Time-dependent approach Semiclassical Approximation
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Time-dependent approach Semiclassical Approximation
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Time-dependent approach First-Order of Perturbation Theory

First-Order Perturbation Theory
At the first-order of the perturbation theory
[Alder and Winther Electromagnetic Excitation (1975)]

(Prm "™ (t > o0)) = f e <‘/’k1m

VcT(t) + VfT(t) - Vtraj(t)

¢nolom0> dt

with w = (E — Eo)/h

For purely Coulomb P-T interaction the E1 contribution to breakup

dBED s (27 -
m Y 0 nolom
dE th 47TEO 2[0 +1 Z Z| ¢kl |r ¢ olo 0>
dO‘él)(El) 3022 1 (Zre dBED)
y = mmK min K min
dE 9 4 ( hy ) Fanin Ko (Cbnin) K1 (omin) =5 2=

with  Xpin = Wbmin/v  and v = AK/upr the P-T relative velocity
K, and K, are modified Bessel functions



First-Order of Perturbation Theory
Example : '>C Coulomb breakup
15C = 4C(0*) +n
BC+2Pb - M“C+n+%Pb @684AMeV

Exp. :[Nakamura et al. PRC 79, 035805 (2009)]
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Th. :[Esbensen, PRC 80, 024608 (2009)]



Eikonal approximation

Eikonal approximation
Three-body scattering problem :

|Tx + Ho + Ver + Vyr |9, R) = Er¥(r, R)

with condition ¥ —s ¢%%¢,
A
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Dynamical Eikonal Approximation (DEA)

0 = —~
ihva—Z‘P(r, b,Z) = [Hy — Eyiy + Ver + Vir¥(r, b, 2)

solved for each b with condition ¥ e Brolomo (T)

This is the dynamical eikonal approximation (DEA)
[Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

Equation is mathematically equivalent to TD (Z = t)
with straight line trajectories
= we know how to solve it

A similar development can be done within CDCC
Leading to the Eikonal-CDCC (E-CDCC)
[Ogata et al. PRC 68, 064609 (2003) & PRC 73, 024605 (2006)]



Eikonal cross section

After some mathematical developments. ..
[Goldstein, Baye, P.C. PRC 73, 024602 (2006)]

4T ! Um (mo) ?
Jino-m(gb) S " (b) bdb| ,
dEdQOCZIOHmZO; - Jim-mi(gb) S} )

S ,(:l"rg)(b) = <¢k,m|@<mo>(z — 00)) are breakup amplitudes

do—bu fdQ dO—bu
—
dEdQ dE

= Dynamical eikonal extends TD
takes into account interferences between trajectories
(sum of breakup amplitudes)



Usual Eikonal

0 —~ —
ihva—Z‘I’(r, b, Z) = [H() - Eﬂolo + Vo + VfT]‘I’(r, b, Z)
The uses adiabatic approx. Hy — E,,;, ~ 0

m i : :
P, b, Z) = exp {—ﬁ f dz' |Ver(r.b.2) + Vyr(r, b, Z )]}cpnm(r)

e Easy to interpret and implement
@ Neglects internal dynamics of projectile

= dynamical eikonal generalises



Eikonal approximation Usual Eikonal

Example : ''Be Coulomb breakup

Be + 2%Pp — "Be + n + 2%Pb  @694MeV
Exp. :[Fukuda et al. PRC 68, 054606 (2004)]

10° T T

10*
10° 1,

102

do/d2 (b/sr)

10!

100 Y

10—t L

6 (degrees)

Th. :[Goldstein, Baye, P.C. PRC 73, 024602 (2006)]

e DEA exhibits interferences (oscillations)
° diverges at forward angles ~ Why ?



Eikonal approximation CCE

Coulomb Correction to the Eikonal approximation (CCE)
For a one-neutron halo nucleus, the eikonal Coulomb phase reads

© ] 1
xc(r,b) = —n[ R d <

oo T

= € =1+ iyc - 1y2 +... diverges when [ db to compute o,
However, only because of iy term : higher-order terms converge

Idea : replace iyc by ixro from perturbation theory
[Margueron, Bonaccorso, and Brink, NPA 720, 337 (2003)]

N | e~
7b = - lwz_dZ ——
xro(r, b) n I we R, x—

which has the correct asymptotics
That Coulomb Correction to the Eikonal approximation (CCE) reads

e = v (e’XC —iyc+ i)(po)



=
'1Be Breakup on Pb @ 694 MeV

APy /dE (Ve mm—

T
DEA ——
0.05 CCE ——
Eik. — | 92|

I I I I I I I I I I
5 10 15 20 25 30 35 40 0 10 20 30 40 50 60 70 80 90 100
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Good agreement between CCE and DEA at all bs

e Eikonal ok at small b ( ) but oc 1/b at large b
e FO good asymptotic (Coulomb), but no nuclear

= CCE combines advantages of eikonal and FO

[P. C., Baye and Suzuki, PRC 78, 054602 (2008)]



Energy Distribution
IBe + Pb —» '9Be + n + Pb @ 69AMeV

1.6 T T T T T

DEA ——
Lar CCE — |
12 Eik. bpax = 71 fm ——

1 FO bpin = 15 fm

0.8
0.6

doy, /dE (b/MeV)

0.4
0.2

0 0.5 1 15 2 25 3
E (MeV)

e Excellent agreement between CCE and DEA
e Eikonal needs cutoff at large b ; wrong shape
@ FO needs cutoff at small b; lacks nuclear

= Confirms the validity of the Coulomb correction



Eikonal approximation CCE

Parallel-Momentum Distribution
""Be + Pb - !"Be + n + Pb. @ 69AMeV

25 . .

DEA =—
CCE — |
Fik. bpax = 71 fm
FO byin = 15 fm

doyy,/dpy (mb/(MeV/c))

0 50 100
P (MeV/c)
e Excellent agreement between CCE and DEA
In particular the asymmetry in the distribution
e Eikonal too high and symmetric
e FO too low and symmetric

= Coulomb correction restore dynamical effects



=
1Be Breakup on C @ 674 MeV

0.07 T T T T T

DEA —
0-06 Total [} CCE — 7]
0.05 Eik. bpax = 70 fm

o /dE (b/MeV)

0 0.5 1 15 2 2.5 3
E (MeV)

e \Very good agreement between all eikonal approximations
(DEA, CCE, Eik.)

@ Usual eikonal well suited for light targets

@ Coulomb correction is minor in nuclear-dominated reactions

[P. C., Baye and Suzuki, PRC 78, 054602 (2008)]



Parallel-Momentum Distribution
"Be +C — "Be +n+C @ 67AMeV

doyy/dky (b fm)

e CCE and Eikonal are both symmetric

0.3

0.25
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Eik. bpax =70 fm
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-0.

2 0
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@ They miss the asymmetry of DEA distribution
@ Confirms the minor effect of Coulomb correction



Parallel-Momentum Distribution

T T T T
60000 1 ( ”Bc, ""Be (gs))

Counts / (5 MeV/c)

40000 —

20000 [~

L L e
-100 =50 0 50 100
P, (MeVic)

[Aumann et al. PRL 85, 35 (2000)]
e CCE and Eikonal are both symmetric

@ They miss the asymmetry of DEA distribution
@ Confirms the minor effect of Coulomb correction
@ Seen in analysis of KO data

= missing dynamical effects on light targets



Simplified Dynamical Eikonal Approximation (S-DEA)

Idea : use yro approximation instead of y
and do that for both Coulomb and nuclear interactions
[Hebborn & Baye PRC 101, 054609 (2020)]

o C N i C N
elX elX N elXFOelXFO

N A _iwm f N
Xro = —— e {e mp <Y/ T(RfT) + el cT(RCT)} dz



Eikonal approximation S-DEA

"'Be breakup on C and Pb @ ~ 70AMeV
UBe + C - “Be +n+ C @ 67AMeV IIBe + Pb — 1°Be + n + Pb @ 69AMeV
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[Hebborn & Baye PRC 101, 054609 (2020)]

@ All corrections reproduce DEA fairly well
e Problem at large energy with full optical potential [Eq. (12)]
e The S-DEA solves that issue using instead [Eq. (16)]

X8 pea = I} - L f " {e“%% (ViR + R {ViVT(RCT)}}dZ



Eikonal approximation S-DEA

Parallel-Momentum Distributions
UBe + C - “Be +n+ C @ 67AMeV IIBe + Pb — 1°Be + n + Pb @ 69AMeV
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[Hebborn & Baye PRC 101, 054609 (2020)]

@ On C, S-DEA reproduces DEA
@ Not on Pb, but problem is less dire

= S-DEA could be a good approximation to study
e KO
@ more complex nuclear structure (3-b projectiles)



Eikonal approximation S-DEA

Summary
@ Breakup can be included assuming cluster structure of

e Two-body structure leads to a three-body scattering probem
e CDCC : ¥ expanded over H, eigenstates

» fully quantal model = valid at all energies
» requires continuum discretisation

» heavy computationally
e Time-dependent : collision simulated by trajectory

» semiclassical approximation = no quantal interferences

» simple interpretation and light numerically
e Eikonal : high-energy approximation

» DEA :includes interferences and dynamic
only valid at high energy

> : add adiabatic approximation
= not valid for Coulomb breakup

» CCE and S-DEA offer efficient corrections
for Coulomb treatment and dynamical effects

= important to know the range of validity of the models you use



