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Three-body Scattering Problem
Within this framework breakup reduces to three-body problem

h
TR + H0 + VcT + Vf T

i
 (r, R) = ET (r, R)

with the initial condition

 (r, R) �!
Z!�1

eiKZ+···�n0l0m0
(r)

, P in its ground state �n0l0m0
impinging on T

R

r

T

P

c

f

Various methods developed to solve that equation
[Review : Baye, P.C., Lecture Notes in Physics 848, 121 (2012) ; on Indico]

Coupled-channel method with discretised continuum (CDCC)
Time-dependent approach (TD)
(semiclassical)
Eikonal approximation

(for simplicity spin will be neglected)
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CDCC

Coupled-Channel Method
The eigenstates of H0 {|�ii} are a basis in r : H0|�ii = Ei|�ii
Idea : expand  on that basis :  (r, R) =

P
i �i(R)hr|�ii

h
TR + H0 + VcT + Vf T

i
 (r, R) = ET (r, R)
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CDCC

Coupled Equation
This leads to a set of coupled equations in �i(R)

TR � j(R) +
X

i

h� j|VcT + Vf T |�ii �i(R) =
⇣
ET � E j

⌘
� j(R)

where the coupling terms are h� j|VcT + Vf T |�ii
i.e. connect the various projectile states through the P-T interaction

f !"k ,r #!$cos %!"k #Fl"kr #!sin %!"k #Gl"kr #& , "3#

where k belongs to bin ! and Fl and Gl are the regular and
irregular partial wave Coulomb functions. So the f ! are real
when using a real c!n two-body interaction. Energy conser-
vation connects the wave numbers K! of the c.m. of the
fragments in bin state ! and the corresponding bin state ex-
citation energies Ê!"'(̂!!Hp!(̂!) . For non-s-wave bins we
used g!(k)"1. For the s-wave bins we used g!(k)"k
which aids the interpolation of the three-body transition am-
plitude near the breakup threshold.

These bin states (̂! provide an orthonormal relative mo-
tion basis for the coupled channels solution of the three-body
c!n!t wave function. The bins and their coupling poten-
tials '(̂!!U(r! ,R! )!(̂*) are constructed, and the coupled equa-
tions are solved, using the coupled channels code FRESCO

$44&. Here U(r! ,R! ) is the sum of the interactions of the core
and neutron with the target, which are expanded to multipole
order q. The coupled equations solution generates "effective
two-body# transition amplitudes T̂ M!M

! (K! !), already
summed over projectile-target partial waves, for populating
each bin state I!,M ! from initial state I ,M , as a function of
the angle of the c.m. of the emerging excited projectile in the
c.m. frame. These amplitudes are expressed in a coordinate
system with x axis in the plane of K! 0 and K! ! . For a general
x-coordinate axis the coupled channels amplitudes must sub-
sequently be multiplied by exp(i$M#M!&(K), with (K re-
ferred to the chosen x axis.

B. Three-body breakup observables

The relationship of the CDCC coupled channels bin state
inelastic amplitudes T̂ M!M

! (K! !) to the physical breakup tran-
sition amplitudes T+:M(k! ,K! ) from initial state I ,M to a
three-body continuum final state is discussed in detail in Ref.
$43&. This is needed to make predictions for the detection
geometries considered here, since each detector configura-
tion and detected fragment energy involves a distinct final
state c.m. wave vector K! , breakup energy Ek , and relative
motion wave vector k! .

The three-body breakup T matrix can be written

T+:M"k! ,K! #"
"2,#3/2

k -
!.

"#i # l" l.s+!I!M !#

$exp$ i%!"k #&$Y l
." k̂ #g!"k #TM!M"! ,K! #.

"4#

Here %!(k) is the neutron-core relative motion phase shift in
excitation state I!, and the TM!M(! ,K! ) are interpolated from
the coupled channels T̂M!M

! (K! !) on the chosen K! and /K!

grid. Specifically,

TM!M"! ,K! #

"exp" i$M#M !&(K#$ T̂M!M
! "K! #/!N!& , "5#

where the value of the bracketed term on the right hand side
is interpolated from the coupled channels solution. The num-
ber of bin states used to describe each I! excitation must
allow an accurate interpolation of these amplitudes. The sum
in Eq. "4# is taken over all bin states ! which contain k.

The three-body amplitudes, Eq. "4#, are used to compute
the triple differential cross sections for breakup in the labo-
ratory frame. If the energy or momentum of the core particle
is measured then the relevant cross section is

d3+

dEcd0cd0n
"

2,1pt

22K0

1
"2I!1 #

$-
+M

!T+:M"k! ,K! #!23"Ec ,0c ,0n#, "6#

where 3(Ec ,0c ,0n) is the three-body phase space factor
$45&. The data under discussion here are the parallel momen-
tum distributions for the heavy core fragments and the cross
sections must be integrated numerically over all directions of
the unobserved neutron. The core d+/dp " differential cross
sections are computed by writing, after d0n integration, in
the laboratory frame

d+

dp! c
"

1
mcpc

d2+

dEcd0c
"7#

and then integrating over the required angular acceptance
and/or perpendicular momentum components of the heavy
residue.

FIG. 4. Diagrammatic representation of the CDCC model space
calculation for 15C. The left side shows the physical bound states
and continuum and the right hand side the included continuum bins
"10# in each n! 14C partial wave. The dashed arrows are represen-
tative of the one-way couplings included in the DWBA. The solid
arrows show representative couplings for the full CDCC calcula-
tions which connect all bins, including diagonal bin couplings, with
two-way couplings to all orders. Relative h waves were found to
make negligible contributions.

SINGLE-NEUTRON REMOVAL REACTIONS FROM 15C . . . PHYSICAL REVIEW C 66, 024607 "2002#

024607-7

[Tostevin et al. PRC 66, 024607 (2002)]

Model of breakup requires
description of continuum tractable
in computations, i.e. discrete

�klm with k 2 R+ ! �ilm with i 2 N

[Rawitscher, PRC 9, 2210 (1974)]
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CDCC

Discretising the Continuum
Various methods exist :

mid-point : divide continuum in bins [Ei � �Ei/2, Ei + �Ei/2]

and choose �ilm(r) = �kilm(r) to describe bin i
average the wave function over the bin

�ilm(r) =
1p
Wi

Z Ei+
�Ei

2

Ei� �Ei
2

fi(E) �klm(r) dE with Wi =

Z Ei+
�Ei

2

Ei� �Ei
2

| fi(E)|2 dE

) square-integrable wave functions �ilm : binning technique
[Austern et al. , Phys. Rep. 154, 125 (1987)]

pseudo-states : solve H0 �ilm = E �ilm on finite basis or in a box
) square-integrable wave functions �ilm but Ei not chosen

[Druet et al. NPA 845 88 (2010)]
THO : Transformed Harmonic Oscillator
Map the (discrete) states of HO onto the continuum

[Pérez-Bernal et al. PRA 63, 052111 (2001)]
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CDCC

Solving the Coupled Equations
Expanding � into spherical harmonics

� j(R) =
1

R

X

L

iLu jL(R) Y0

L(⌦)

. . . and coupling l and L into J, the coupled equations read

� ~
2

2µPT

 
d2

dR2
� L(L + 1)

R2

!
uJ

c (R) +
X

c0
V J

cc0(R)uJ
c0(R) = (ET � E j)uJ

c (R)

with c ⌘ { j, L} and JT = L + l
These equations are solved assuming the asymptotic behaviour

uJ
c (R) �!

R!1

h
�c0 IL(⌘,KR) � S J

c0
OL(⌘,KR)

i

where IL = GL � iFL incoming Coulomb function
= O⇤L outgoing Coulomb function

The S matrix is used to compute the breakup cross sections
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CDCC

CDCC breakup cross sections

Starting from ground state 0l0m0 impinging on target with K = K Ẑ,
the scattering amplitudes into state c ⌘ jlm

scattered with momentum K0

Fm m0
(K0) =

2⇡

iK

r
K0

K

X

L0 L J

(L0l00m0|Jm0)(Ll(m0 � m)m|Jm0)

⇥ei(�L0
+�L)S J

c0
Y0

L0
(K̂)Ym0�m

L (K̂0)

with ET = ~2K2/2µ + E0 = ~2K02/2mu + E j

Breakup cross section to bin energy E j in direction ⌦ ⌘ K̂0

d�bu(E j)

dEd⌦
=

1

2l0 + 1

X

m0

X

l,m

���Fm m0
(K0)

���2
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CDCC

CDCC

Continuum Discretised Coupled-Channel : CDCC
[Austern et al. , Phys. Rep. 154, 125 (1987)]
[Tostevin, Nunes, Thompson, PRC 63, 024617 (2001)]
Recent review : [Yahiro et al. , PTEP 2012 01A206 (2012)]

Fully quantal approximation
No approximation on P-T motion, nor restriction on energy
But expensive computationally (at high energies)

Various codes have been written to solve these coupled equations
fresco written by Ian Thompson is free on www.fresco.org.uk
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CDCC

Example : 8
B breakup

8
B + 58

Ni! 7
Be + p + 58

Ni @26MeV

Exp. :[V. Guimarães et al. PRL 84, 1862 (2000)]

tended range of continuum energies is included, the bin dis-
cretization may itself not be fine enough so that the basis of
bin states is sufficiently complete. We have therefore verified
the stability of our results, with regard to the bin size, by
doubling the number of bins and confirming that the same
results are produced.

1. Angular distributions

The convergence of the three-body calculations with Emax
is clearly illustrated in Fig. 1. Here we show the 7Be labo-
ratory differential cross section angular distributions from
calculations that include continuum bins up to Emax
!3,4,6,8, and 10 MeV. The calculations for this conver-
gence test use multipoles q!2 and l!3. The calculations
use the BG proton-target potential and the EB proton- 7Be
potential. For the larger Emax the bins have been constructed
so as not to alter their low energy discretization. The calcu-
lation of the three-body cross sections thus provides a differ-
ent interpretation of the reaction mechanism, and evidence
for significantly higher-energy excitations than would be de-
duced from the earlier calculations and their comparison
with the 8B* c.m. cross section. We will show that these
high relative motion excitations are reflected in the calcu-
lated breakup energy distributions for 7Be and the proton.

Figures 2 and 3 present the calculated 7Be laboratory dif-
ferential cross section angular distribution, integrated over
energy and proton angles and averaged over the core detector
solid angles, and compare this with the data "24#. The 7Be
detectors were circular, subtending a solid angle $%c com-
prising a circle of radius 6° about the nominal laboratory
angle & lab . They have a stated Gaussian efficiency profile
'(&) with full width at half maximum of 10.9° "17#. Here &
is measured from the nominal & lab setting.

The convergence of the calculations with multipole order,
and also with the included continuum partial waves, is
shown in Fig. 2. Here the long-dashed curve is the result
shown in Fig. 1, converged with respect to excitation energy,
with q!2 and l!3. The solid curve includes also the effects
of the q!3 multipole couplings for l!3. The dot-dashed
curve is a calculation where q!4 multipole couplings and

the l!4 breakup partial waves are included. The additional
effects are small and the remaining calculations therefore use
the truncated model space with q!3 and l!3.

The solid curve in Fig. 3 uses the BG proton-target po-
tential and the EB proton- 7Be potential. In Ref. "28# it was
shown that different 7Be-58Ni potential models give essen-
tially the same shape for the 8B* c.m. angular distribution,
while the cross-section normalization depends on the size of
the 8B g.s. wave function. The long-dashed curve in Fig. 3
shows the results of using the proton- 7Be interaction of Kim
et al. "32#. Consistent with earlier work, the cross section is
enhanced due to the larger predicted 8B rms radius in this
model.

The Becchetti-Greenlees "33# proton- 58Ni potential, used
above and previously, has surface imaginary strength and
geometry parameters W!12 MeV, rW!1.32 fm, and aW
!0.534 fm when computed at 3 MeV proton energy. Expe-
rience tells us "34# that the BG parameters give reasonable
fits to data only down to approximately 10 MeV. An alter-

FIG. 1. Convergence of the calculated laboratory-frame 7Be
cross section angular distribution following the breakup of 8B on
58Ni at 25.8 MeV as a function of the maximum proton- 7Be rela-
tive energy included in the calculation.

FIG. 2. The calculated laboratory-frame 7Be cross section an-
gular distribution following the breakup of 8B on 58Ni at 25.8 MeV.
The long-dashed curve is the Emax!10 MeV, l!3, q!2, calcula-
tion from Fig. 1. The solid curve includes q!3 multipole terms
while the dot-dashed curve includes both q!4 and l!4 effects.

FIG. 3. The calculated laboratory-frame 7Be cross section an-
gular distribution following the breakup of 8B on 58Ni at 25.8 MeV
from the EB (solid) and Kim (dashed) models for the proton- 7Be
interaction and the BG proton-target interaction. The dotted-dashed
curve uses the EB proton- 7Be interaction and the VG proton-target
interaction. The experimental data are from Ref. "17#.

CALCULATIONS OF THREE-BODY OBSERVABLES IN . . . PHYSICAL REVIEW C 63 024617

024617-5

Th. :[Tostevin et al. PRC 63, 024617 (2001)]
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CDCC

Influence of breakup on the elastic channel
9,10,11

Be + Zn @ 24.5MeV

the barrier, the extracted TR cross section was found to be
similar to the one of 9Beþ 209Bi. In [18] 11Beþ 120Sn,
quasi-elastic-scattering [the 11Beð12#Þ inelastic excitation

was included] AD was measured, but in a very limited
angular range.

This Letter reports, for the first time, clear experimental
evidence of strong effects of the 11Be halo structure on
elastic-scattering and reaction mechanisms in collisions
close to the Coulomb barrier. We measured high quality
elastic-scattering AD of 9;10;11Be on a 64Zn target, in a wide
angular range and with small angular step, at Ec:m: %
24:5 MeV, corresponding to about 1.4 the Coulomb bar-
rier. Moreover, in the case of the 11Be halo nucleus, the
breakup or transfer AD was extracted. The three beryllium
isotopes have different structures, namely, 9Be is a
Borromean weakly bound nucleus (Sn ¼ 1:67 MeV),
with a well-developed !-!-n cluster structure (see, e.g.,
[19]). With an additional nucleon and due to pairing, 10Be
in its ground state is equally deformed but much more
bound (Sn ¼ 6:81 MeV) than 9Be. Finally, 11Be is a one
neutron halo nucleus whose core is 10Be and its binding
energy is only Sn ¼ 503 keV [20]. By comparing the
elastic-scattering AD for these three systems, the separate
effect of the weak binding and halo structure can be
investigated.

The data with the radioactive beams were obtained, in
the same experiment, using the new postaccelerated 10;11Be
beams of REX-ISOLDE at CERN. The detection system
used consisted of an array of Si-detector telescopes each
formed by a 40 "m, 50' 50 mm2, !E DSSSD detector
(16' 16 pixels) and a 1500 "m single pad E detector. The
detectors were placed very close to the target in order to
have a large angular (10( ) # ) 150() and solid angle
coverage. Because of the high granularity, the AD could be
obtained with a 1( step. The beam energy resolution was
insufficient to separate 11Be elastic from inelastic scatter-
ing of the 11Be 1st excited state at Ex ¼ 320 keV, but as we
will see in the following, the inelastic channel contributes
very little to the measured AD. A 550 and 1000 "g=cm2

64Zn target was used with 10Be and 11Be beams, respec-
tively. The target was tilted at 45( to facilitate the mea-
surement in the angular region around 90(. The average
beam intensity was 106 and 104 pps for 10Be and 11Be,
respectively. Because of the very compact geometry of the
detection system, small variations of the beam position
onto the target resulted in a non-negligible variation of
the detector angles. Therefore, particular care was taken
in the off-line analysis, to reconstruct the correct detector
angles. This was done by looking at the small angle
Rutherford scattering in the two front detectors placed
symmetrically with respect to the beam axis. In order to
check the adopted procedure, 12C, 10Beþ 197Au elastic-
scattering at energies Ec:m: ¼ 25:7 and 27.9 MeV, respec-
tively, was also measured and the expected Rutherford
cross sections were obtained. The experiment with the

stable 9Be beam was performed at Laboratori Nazionali
del Sud (LNS) in Catania. The 9Be beam was delivered by
the 14 MV SMP Tandem of LNS and was impinging on a
550 "g=cm2 64Zn target. Five Si-detector telescopes
(10 "m!E and 200 "m E detectors), placed on a rotating
arm, allowed the measurement of the elastic-scattering AD
up to 110(.
In Fig. 1 the AD for the scattering of 9;10;11Beþ 64Zn are

shown in linear scale. As one can see, in spite of the very
different binding energies of 9Be and 10Be, their elastic-
scattering AD are similar. 11Be scattering shows a very
different pattern; the main feature that one can observe in
Fig. 1 is a dramatic reduction of the elastic cross section at
forward angles. A similar reduction of the elastic cross
section is observed in collisions involving deformed nuclei
[21] where it arises from coupling with the strong Coulomb
excitation of the 2þ state in the target. In [4] the effect of
coupling with a large Coulomb dipole excitation due to the
presence of the continuum low-lying E1 strength is inves-
tigated for 6He projectile on different target charges and
beam energies. It is concluded that close to the Coulomb
barrier, coupling to Coulomb dipole breakup should be
evident only in scattering with targets having high charge
(ZT % 80) and that measurements with lighter targets
(ZT % 28) are not sensitive to this coupling. 11Be has
strong low-lying continuum dipole strength, as 6He. The
observation of a strong reduction of the Coulomb-nuclear
interference peak (CNIP) in the scattering of 11Be with a
light charge target must be due to other mechanisms be-
sides coupling to Coulomb breakup. These mechanisms
could be associated with the halo structure. In 6He-induced
collisions, a clear reduction of the elastic scattering in the
CNIP region is observed, although not as large as in the
present case only for heavy targets [22]. The 6He elastic-

FIG. 1 (color online). Elastic-scattering angular distributions
on 64Zn: 9Be (triangles), 10Be (diamonds), and 11Be (squares).
The lines represent the OM calculations for 9Be (dot-dashed
line), 10Be (dashed line), and 11Be (full line). The inset shows the
measured AD (symbols) and OM fit (full line) for the 11Beþ
64Zn system together with the result of the calculation for the
inelastic excitation of (12

#, Ex ¼ 0:32 MeV, dashed line). The

error bars are statistical for 10;11Be and statisticalþ systematic
for 9Be on 64Zn. See text for details.

PRL 105, 022701 (2010) P HY S I CA L R EV I EW LE T T E R S
week ending
9 JULY 2010

022701-2

Exp. : [A. Di Pietro et al. PRL 105, 022701 (2010)]

9,10
Be elastic scattering reproduced with usual optical potentials

11
Be elastic scattering strongly affected by breakup channel
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CDCC

Influence of breakup on the elastic channel
9,10,11

Be + Zn @ 24.5MeV
EXPERIMENTAL STUDY OF THE COLLISION 11Be . . . PHYSICAL REVIEW C 85, 054607 (2012)

0 20 40 60 80 100
θc.m.  (deg)  

0

0.2

0.4

0.6

0.8

1

σ/
σ R

OM: bare
OM: bare + DPP

FIG. 8. (Color online) Elastic scattering angular distribution
for the 11Be+64Zn system (symbols). The dotted line is the OM
calculation performed with the bare interaction alone, and the solid
line is the OM calculation adding the Coulomb DPP to the bare
potential. See text for details.

B. CDCC calculations

The measured quasielastic angular distribution has been
also compared with CDCC calculations. In the CDCC method,
the projectile is described in a two-body model (10Be + n
in this case) and coupling to breakup channels is taken into
account by considering inelastic excitations of this composite
projectile to the unbound states. For simplicity, we ignore
the contribution of 10Be excited states in the 11Be states. So,
within this simplified model, the 11Be ground state (1/2+) and
the first excited state (1/2−; Ex = 320 keV) are described,
respectively, by the pure single-particle configurations 2s1/2
and 1p1/2, coupled to the 10Be ground state. The continuum
spectrum was discretized using the standard binning method.
For each 10Be − n partial wave (!), the spectrum was truncated
at a maximum excitation energy (εmax) and divided into a set
of energy intervals (bins). For each interval, a representative
normalizable wave function is constructed by averaging the
continuum wave functions within the bin interval. In order to
achieve full convergence of the calculated quasi-elastic cross
section we needed to include n+10Be partial waves up to ! ≈ 5,
and a maximum excitation energy of εmax = 12 MeV, with
respect to the neutron separation threshold.

The neutron-10Be interaction, which is required to generate
the 11Be wave functions, was adopted from Ref. [22]. This
potential consists of a central and a spin-orbit component, of
WS shape, with a fixed geometry and a parity-dependent depth.
For even partial waves, this potential reproduces the ground-
state separation energy as well as the position of the 5/2+

resonance at Ex = 1.8 MeV, assuming that these states are
described by pure 2s1/2 and 1d5/2 configurations, respectively.
For the ! = 1 states, the depth was adjusted to reproduce the
separation energy of the 1/2− bound excited state (assuming a
1p1/2 configuration). For other odd partial waves, we just used
the depth determined for ! = 1.

In CDCC, the three-body wave function (two-body pro-
jectile plus target) is expanded in the truncated model space

0 20 40 60 80 100
θc.m. (deg)  

0

0.5

1
σ/

σ R

CDCC: full
CDCC: no continuum
CDCC: nuclear only
CDCC: Coulomb only

11Be+64Zn

FIG. 9. (Color online) Differential quasielastic angular distri-
butions measured in the present experiment (symbols) and CDCC
calculations. The solid line is the full CDCC calculation. The dotted
line is the calculation including only the ground state and first excited
state of 11Be. The dashed (dot-dashed) line is the CDCC calculation
including only nuclear (Coulomb) breakup.

for the internal states of the projectile. When inserted into
the Schrödinger equation, this gives rise to a set of coupled
differential equations, which are solved by numerical integra-
tion subject to the appropriate boundary conditions. In this set
of equations, the main physical ingredients are the coupling
potentials, which are generated by folding the sum of the
10Be-target and neutron-target interactions with the internal
states of the projectile. For the 10Be-target potential, we used
the optical potential extracted in Ref. [6] from the fit of the
10Be+64Zn elastic data. The n-64Zn interaction was taken from
the global parametrization of Koning and Delaroche [23],
evaluated at the appropriate energy per nucleon. The coupling
potentials are expanded in multipoles (λ) up to a maximum
value of λmax = 5. Both nuclear and Coulomb couplings were
included.

The coupled equations were solved for total angular
momenta up to J = 1000 and up to a matching radius of
1000 fm. These calculations were performed with the code
FRESCO [21].

In Fig. 9 we compare the measured quasielastic cross
section with the calculations. The solid line is the full CDCC
calculation. The dotted line is the calculation omitting the
coupling to the continuum states, that is, including only the
ground state and first excited state of 11Be. Comparing these
two curves, we see that the coupling to the breakup channels
has a strong influence on the elastic cross section. In particular,
the inclusion of these couplings produces a sizable reduction in
the elastic cross section at angles of around 30◦. A qualitatively
similar effect has been observed in other reactions induced by
weakly bound nuclei (see, e.g., Refs. [2], [18], [24], and [25],).
Overall, the full CDCC calculation reproduces fairly well the
data in the full angular range, although some overestimation
is seen at large angles.

We have examined the contribution of the inelastic ex-
citation of the 1/2− bound state to the quasielastic cross
section. This contribution is found to be relatively large

054607-7

[A. Di Pietro et al. PRC 85, 054607 (2012)]

9,10
Be elastic scattering reproduced with usual optical potentials

11
Be elastic scattering strongly affected by breakup channel

Confirmed by CDCC calculations
11 / 34



Time-dependent approach Semiclassical Approximation

Time-dependent model
P-T motion described by classical trajectory R(t) defined by Vtraj(R)

T

c

f

P

b
R(t)

r
RcT (t)

RfT (t)

P structure described quantum-mechanically by H0

Time-dependent potentials simulate P-T interaction

) time-dependent (TD) Schrödinger equation

i~
@

@t
 (r, b, t) = [H0 + VcT (t) + Vf T (t) � Vtraj(t)] (r, b, t)

Solved for each b with initial condition  (m0) �!
t!�1
�n0l0m0
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Time-dependent approach Semiclassical Approximation

Numerical resolution of the TD Schrödinger equation
Time-step evolution approximating the evolution operator

 (m0)
(r, b, t + �t) = U(t + �t, t) (m0)

(r, b, t)
with U(t0, t) = exp[

i
~

R t0

t H(⌧)d⌧] and  (m0)
(r, b, t ! �1) = �n0l0m0

(r)
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Time-dependent approach Semiclassical Approximation

Numerical resolution of the TD Schrödinger equation

Faster computation compared to CDCC
because each trajectory treated separately
Lacks quantum interferences between trajectories

Many codes developed to solve TD
Partial-wave expansion of  :
[Kido, Yabana, and Suzuki, PRC 50, R1276 (1994)]
[Esbensen, Bertsch and Bertulani, NPA 581, 107 (1995)]
[Typel and Wolter, Z. Naturforsch.A 54, 63 (1999)]

Expansion on a 3D spherical mesh :
[P. C., Melezhik and Baye, PRC 68, 014612 (2003)]

Expansion on 3D cubic lattice : [Fallot et al. NPA700, 70 (2002)]
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Time-dependent approach Semiclassical Approximation

Semicassical breakup cross sections
For each trajectory (b) a breakup probability can be computed

dPbu(b)

dE
=
µc f

~2k
1

2l0 + 1

X

m0

X

l,m

|h�klm| (m0)
(b, t ! 1)i|2

We can build an angular distribution from b$ ✓
d�bu

dEd⌦
=

d�el

d⌦
dPbu[b(✓)]

dE
,

where d�el/d⌦ is obtained from Vtraj

And an energy distribution

d�bu

dE
= 2⇡

Z 1

0

dPbu(b)

dE
b db

Initially TD equation solved perturbatively
At the first-order [Alder and Winther Electromagnetic Excitation (1975)]
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Time-dependent approach Semiclassical Approximation

16 / 34

At the first order of the perturbation theory
<Orem 14Gt > I
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Time-dependent approach Semiclassical Approximation
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Time-dependent approach First-Order of Perturbation Theory

First-Order Perturbation Theory
At the first-order of the perturbation theory

[Alder and Winther Electromagnetic Excitation (1975)]

h�klm| (m0)
(t ! 1)i =

Z 1

�1
ei!t

D
�klm

���VcT (t) + Vf T (t) � Vtraj(t)
��� �n0l0m0

E
dt

with ! = (E � E0)/~

For purely Coulomb P-T interaction the E1 contribution to breakup

dB(E1)

dE
=
µc f

~2k

⇣m f

mP
Zce

⌘2

4⇡✏0

1

2l0 + 1

X

m0

X

l,m

����
D
�klm

���rYm�m0

1

��� �n0l0m0

E����
2

d�(1)

bu
(E1)

dE
=

32⇡2

9

1

4⇡✏0

✓ZT e
~v

◆2

xminK0(xmin)K1(xmin)
dB(E1)

dE

with xmin = !bmin/v and v = ~K/µPT the P-T relative velocity
K0 and K1 are modified Bessel functions
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Time-dependent approach First-Order of Perturbation Theory

Example : 15
C Coulomb breakup

15
C ⌘ 14

C(0
+
) + n

15
C + 208

Pb! 14
C + n + 208

Pb @68AMeV

Exp. :[Nakamura et al. PRC 79, 035805 (2009)]
COULOMB DISSOCIATION OF 15C AND RADIATIVE . . . PHYSICAL REVIEW C 80, 024608 (2009)
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FIG. 7. (Color online) Decay energy spectra obtained in first-order perturbation theory (a) and in the dynamic calculations with Lmax = 4
(b) compared to the data of Ref. [4]. The dashed curves show the calculated spectra. The solid curves include the experimental energy resolution
and have been scaled to give an optimum fit to the data.

that was used in the experiment [4]. The dynamic calculations
have actually already converged at a smaller scattering angle
because of the strong absorption at small impact parameters.
For example, at the impact parameter b = 9 fm, where the
dynamic dissociation probability is already quite small, the
Coulomb scattering angle is θcm = 4.9◦.

C. Analysis of the measured spectra

The decay-energy spectrum of 15C at 68 MeV/nucleon on
a Pb target was measured for two center-of-mass acceptance
angles, namely, at 2.1◦ and 6◦ [4]. The data are compared
to the first-order and the dynamic calculations in Fig. 7(a)
and 7(b), respectively. The actual calculations are shown by
dashed curves. The solid curves were obtained by a folding and
scaling procedure: The calculated spectra were first folded with
the experimental energy resolution, which is a Gaussian with a
(1σ ) width of #Erel = 0.23

√
Erel [4]. The folded spectra were

next scaled by the factor Sc, which optimizes the χ2 fit to the
data. The values of the scaling factors and the associated best
values of the χ2 per point are listed in Table II for different
values of Lmax.

The decay-energy spectra for θ < 2.1◦ were calculated with
a sharp cutoff at the impact parameter where the Coulomb
scattering angle is θ = 2.1◦. An acceptance angle of 6◦

does not impose any strict cutoff on the dynamic calculation
because it converges already at a smaller angle. The first-order
Coulomb excitation calculation, however, does not have such a
natural cutoff, except from Coulomb scattering, but that leads
to a very large cross section. The first-order decay-energy
spectrum (E1 Coulex) shown in Fig. 7(a) for θ < 6◦ was
therefore determined by integrating over all impact parameters
for which the minimum distance of closest approach is
larger than 1.2(A1/3 + A

1/3
2 ). The associated minimum impact

parameter for a Coulomb trajectory is 9.7 fm, which is a fairly
reasonable choice because it falls in the region where the
absorption in the dynamic calculation sets in (see Fig. 3.)

The dynamic calculations converge quickly for the smaller
acceptance angle. This can be seen in Table II, where the
scaling factor Sc that gives the best fit to the data is independent
of Lmax. At the 6◦ acceptance angle, the scaling factor increases
by almost 5% to the value Sc ≈ 0.98 for Lmax = 4; it is not

expected to increase much further for larger values of Lmax.
The scaling factors obtained in the two analyses are therefore
approximately identical and the χ2/N value is also very
reasonable for both acceptance angles. This implies that the
adopted nuclear interactions with the target must be realistic
because the calculations at large scattering angles are strongly
influenced by the nuclear interactions, whereas the dissociation
at the smaller acceptance angle is dominated by Coulomb
dissociation.

The results of the first-order analysis are shown in the
first line of Table II. The analysis of the large acceptance
angle measurement is not so interesting because the fit is poor
and the necessary scaling factor is small and uncertain. The
uncertainty stems from the crude estimate of the minimum
impact parameter. Although one could possibly choose a better
value for the minimum impact parameter, the fit to the data
would still be poor because the first-order decay-energy spectra
are narrow compared to the results of the dynamic calculations
at small impact parameters. This can be seen in Fig. 4.

The result of first-order perturbation theory at the smaller
acceptance angle is much more interesting. Here the χ2/N
value is good and the necessary scaling factor does not differ
dramatically from the dynamic calculations. However, we shall
see in the next section that the 4% larger scaling factor of
the dynamic calculation, combined with other corrections,
is essential for reaching a good agreement with the neutron
capture data.

TABLE II. Analysis of the measured decay-energy spectra of 15C
on a Pb target [4]. The scaling factor Sc and the associated χ 2/N for
the best fit to the data up to Erel < 4 MeV are shown as functions of
the maximum angular momentum Lmax and for the two acceptance
angles of the experiment. Also shown are the cross sections before
and (in brackets) after the folding and scaling procedure.

Lmax θ < 2.1◦ θ < 2.1◦ θ < 6.0◦ θ < 6.0◦

σ (mb) Sc–χ 2/N σ (mb) Sc–χ 2/N

E1 Coulex 326 [303] 0.941–0.87 767 [638] 0.841–2.24
2 316 [303] 0.972–0.76 750 [696] 0.939–1.15
3 316 [303] 0.972–0.77 732 [699] 0.969–1.20
4 316 [304] 0.973–0.77 716 [696] 0.984–1.19

024608-5

COULOMB DISSOCIATION OF 15C AND RADIATIVE . . . PHYSICAL REVIEW C 80, 024608 (2009)
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FIG. 7. (Color online) Decay energy spectra obtained in first-order perturbation theory (a) and in the dynamic calculations with Lmax = 4
(b) compared to the data of Ref. [4]. The dashed curves show the calculated spectra. The solid curves include the experimental energy resolution
and have been scaled to give an optimum fit to the data.

that was used in the experiment [4]. The dynamic calculations
have actually already converged at a smaller scattering angle
because of the strong absorption at small impact parameters.
For example, at the impact parameter b = 9 fm, where the
dynamic dissociation probability is already quite small, the
Coulomb scattering angle is θcm = 4.9◦.

C. Analysis of the measured spectra

The decay-energy spectrum of 15C at 68 MeV/nucleon on
a Pb target was measured for two center-of-mass acceptance
angles, namely, at 2.1◦ and 6◦ [4]. The data are compared
to the first-order and the dynamic calculations in Fig. 7(a)
and 7(b), respectively. The actual calculations are shown by
dashed curves. The solid curves were obtained by a folding and
scaling procedure: The calculated spectra were first folded with
the experimental energy resolution, which is a Gaussian with a
(1σ ) width of #Erel = 0.23

√
Erel [4]. The folded spectra were

next scaled by the factor Sc, which optimizes the χ2 fit to the
data. The values of the scaling factors and the associated best
values of the χ2 per point are listed in Table II for different
values of Lmax.

The decay-energy spectra for θ < 2.1◦ were calculated with
a sharp cutoff at the impact parameter where the Coulomb
scattering angle is θ = 2.1◦. An acceptance angle of 6◦

does not impose any strict cutoff on the dynamic calculation
because it converges already at a smaller angle. The first-order
Coulomb excitation calculation, however, does not have such a
natural cutoff, except from Coulomb scattering, but that leads
to a very large cross section. The first-order decay-energy
spectrum (E1 Coulex) shown in Fig. 7(a) for θ < 6◦ was
therefore determined by integrating over all impact parameters
for which the minimum distance of closest approach is
larger than 1.2(A1/3 + A

1/3
2 ). The associated minimum impact

parameter for a Coulomb trajectory is 9.7 fm, which is a fairly
reasonable choice because it falls in the region where the
absorption in the dynamic calculation sets in (see Fig. 3.)

The dynamic calculations converge quickly for the smaller
acceptance angle. This can be seen in Table II, where the
scaling factor Sc that gives the best fit to the data is independent
of Lmax. At the 6◦ acceptance angle, the scaling factor increases
by almost 5% to the value Sc ≈ 0.98 for Lmax = 4; it is not

expected to increase much further for larger values of Lmax.
The scaling factors obtained in the two analyses are therefore
approximately identical and the χ2/N value is also very
reasonable for both acceptance angles. This implies that the
adopted nuclear interactions with the target must be realistic
because the calculations at large scattering angles are strongly
influenced by the nuclear interactions, whereas the dissociation
at the smaller acceptance angle is dominated by Coulomb
dissociation.

The results of the first-order analysis are shown in the
first line of Table II. The analysis of the large acceptance
angle measurement is not so interesting because the fit is poor
and the necessary scaling factor is small and uncertain. The
uncertainty stems from the crude estimate of the minimum
impact parameter. Although one could possibly choose a better
value for the minimum impact parameter, the fit to the data
would still be poor because the first-order decay-energy spectra
are narrow compared to the results of the dynamic calculations
at small impact parameters. This can be seen in Fig. 4.

The result of first-order perturbation theory at the smaller
acceptance angle is much more interesting. Here the χ2/N
value is good and the necessary scaling factor does not differ
dramatically from the dynamic calculations. However, we shall
see in the next section that the 4% larger scaling factor of
the dynamic calculation, combined with other corrections,
is essential for reaching a good agreement with the neutron
capture data.

TABLE II. Analysis of the measured decay-energy spectra of 15C
on a Pb target [4]. The scaling factor Sc and the associated χ 2/N for
the best fit to the data up to Erel < 4 MeV are shown as functions of
the maximum angular momentum Lmax and for the two acceptance
angles of the experiment. Also shown are the cross sections before
and (in brackets) after the folding and scaling procedure.

Lmax θ < 2.1◦ θ < 2.1◦ θ < 6.0◦ θ < 6.0◦

σ (mb) Sc–χ 2/N σ (mb) Sc–χ 2/N

E1 Coulex 326 [303] 0.941–0.87 767 [638] 0.841–2.24
2 316 [303] 0.972–0.76 750 [696] 0.939–1.15
3 316 [303] 0.972–0.77 732 [699] 0.969–1.20
4 316 [304] 0.973–0.77 716 [696] 0.984–1.19

024608-5

Th. :[Esbensen, PRC 80, 024608 (2009)]
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Eikonal approximation

Eikonal approximation
Three-body scattering problem :

h
TR + H0 + VcT + Vf T

i
 (r, R) = ET (r, R)

with condition  (m0) �!
Z!�1

eiKZ�n0l0m0
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Eikonal approximation DEA and E-CDCC

Dynamical Eikonal Approximation (DEA)

i~v
@

@Z
b (r, b,Z) = [H0 � En0l0 + VcT + Vf T ]b (r, b,Z)

solved for each b with condition b (m0) �!
Z!�1

�n0l0m0
(r)

This is the dynamical eikonal approximation (DEA)
[Baye, P. C., Goldstein, PRL 95, 082502 (2005)]

Equation is mathematically equivalent to TD
with straight line trajectories
) we know how to solve it

A similar development can be done within CDCC
Leading to the Eikonal-CDCC (E-CDCC)

[Ogata et al. PRC 68, 064609 (2003) & PRC 73, 024605 (2006)]
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Eikonal approximation DEA and E-CDCC

Eikonal cross section
After some mathematical developments. . .

[Goldstein, Baye, P.C. PRC 73, 024602 (2006)]

d�bu

dEd⌦
/ 1

2l0 + 1

X

m0

X

lm

�����

Z 1

0

J|m0�m|(qb) S (m0)

klm (b) bdb
�����
2

,

S (m0)

klm (b) = h�klm|b (m0)
(Z ! 1)i are breakup amplitudes

d�bu

dEd⌦

R
d⌦
�! d�bu

dE

)Dynamical eikonal extends TD
takes into account interferences between trajectories
(sum of breakup amplitudes)
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Eikonal approximation Usual Eikonal

Usual Eikonal

i~v
@

@Z
b (r, b,Z) = [H0 � En0l0 + VcT + Vf T ]b (r, b,Z)

The usual eikonal uses adiabatic approx. H0 � En0l0 ⇠ 0

b (m0)

eik
(r, b,Z) = exp

(
� i
~v

Z Z

�1
dZ0

h
VcT (r, b,Z0) + Vf T (r, b,Z0)

i)
�n0l0m0

(r)

Easy to interpret and implement
Neglects internal dynamics of projectile

) dynamical eikonal generalises eikonal
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Eikonal approximation Usual Eikonal

Example : 11
Be Coulomb breakup

11
Be + 208

Pb! 10
Be + n + 208

Pb @69AMeV
Exp. :[Fukuda et al. PRC 68, 054606 (2004)]

Th. :[Goldstein, Baye, P.C. PRC 73, 024602 (2006)]

DEA exhibits interferences (oscillations)
Usual eikonal diverges at forward angles Why ?
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Eikonal approximation CCE

Coulomb Correction to the Eikonal approximation (CCE)
For a one-neutron halo nucleus, the eikonal Coulomb phase reads

�C(r, b) = �⌘
Z 1

�1

1

RcT
dZ / 1

b

) ei�C = 1 + i�C � 1

2
�2

C + . . . diverges when
R

db to compute �bu

However, only because of i�C term : higher-order terms converge

Idea : replace i�C by i�FO from perturbation theory
[Margueron, Bonaccorso, and Brink, NPA 720, 337 (2003)]

�FO(r, b) = �⌘
Z 1

�1
ei!Z 1

RcT
dZ / e�!b

b
,

which has the correct asymptotics
That Coulomb Correction to the Eikonal approximation (CCE) reads

ei� = ei�N
⇣
ei�C � i�C + i�FO

⌘
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Eikonal approximation CCE

11Be Breakup on Pb @ 69A MeV11Be breakup on Pb @ 69AMeV

FO

Eik.

CCE

DEA

b (fm)

d
P
b
u
/
d
E

(
M
e
V

�
1
)

403530252015105

0.06

0.05

0.04

0.03

0.02

0.01

0

FO

Eik.

CCE

DEA

b (fm)

1009080706050403020100

10
�2

10
�3

10
�4

Good agreement between CCE and DEA at all b
Eikonal ok at small b (nuclear) but / 1/b at large b
FO good asymptotic (Coulomb), but no nuclear

)CCE combines advantages of eikonal and FO
[P. C., Baye and Suzuki, PRC 78, 054602 (2008)]

– p. 16

Good agreement between CCE and DEA at all bs
Eikonal ok at small b (nuclear) but / 1/b at large b
FO good asymptotic (Coulomb), but no nuclear

) CCE combines advantages of eikonal and FO
[P. C., Baye and Suzuki, PRC 78, 054602 (2008)]
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Eikonal approximation CCE

Energy Distribution
11

Be + Pb! 10
Be + n + Pb @ 69AMeV

Energy distribution
11Be+Pb !10Be+n+Pb @ 69AMeV

FO bmin = 15 fm

Eik. bmax = 71 fm

CCE

DEA

E (MeV)

d
�
b
u
/
d
E

(
b
/
M
e
V
)

32.521.510.50

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

Excellent agreement between CCE and DEA
Eikonal needs cutoff at large b; wrong shape
FO needs cutoff at small b; lacks nuclear

)Confirms the validity of the Coulomb correction
– p. 17

Excellent agreement between CCE and DEA
Eikonal needs cutoff at large b ; wrong shape
FO needs cutoff at small b ; lacks nuclear

) Confirms the validity of the Coulomb correction
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Eikonal approximation CCE

Parallel-Momentum Distribution
11

Be + Pb! 10
Be + n + Pb @ 69AMeV

Momentum distribution
11Be+Pb !10Be+n+Pb @ 69AMeV

FO bmin = 15 fm

Eik. bmax = 71 fm

CCE

DEA

pk (MeV/c)

d
�
b
u
/
d
p
k
(
m
b
/
(
M
e
V
/
c
)
)

100500-50-100

2.5

2

1.5

1

0.5

0

Excellent agreement between CCE and DEA
in particular asymmetry (dynamical effects)
Eikonal too high and symmetric
FO too low and symmetric

)Coulomb correction restores dynamical effects
– p. 18

Excellent agreement between CCE and DEA
In particular the asymmetry in the distribution
Eikonal too high and symmetric
FO too low and symmetric

) Coulomb correction restore dynamical effects
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Eikonal approximation CCE

11Be Breakup on C @ 67A MeV

Eik. bmax = 70 fm

CCE

DEA

E (MeV)

d
�
b
u
/
d
E

(
b
/
M
e
V
)

Total

p

s

d

32.521.510.50

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0

Very good agreement between all eikonal approximations
(DEA, CCE, Eik.)

Usual eikonal well suited for light targets
Coulomb correction is minor in nuclear-dominated reactions

[P. C., Baye and Suzuki, PRC 78, 054602 (2008)]
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Eikonal approximation CCE

Parallel-Momentum Distribution
11

Be + C! 10
Be + n + C @ 67AMeV

Eik. bmax=70 fm

CCE

DEA

kk (fm
�1
)

d
�
b
u
/
d
k
k
(
b
fm

)

0.40.20-0.2-0.4

0.3

0.25

0.2

0.15

0.1

0.05

0

CCE and Eikonal are both symmetric
They miss the asymmetry of DEA distribution
Confirms the minor effect of Coulomb correction

Seen in analysis of KO data
) missing dynamical effects on light targets

29 / 34



Eikonal approximation CCE

Parallel-Momentum Distribution

VOLUME 84, NUMBER 1 P H Y S I C A L R E V I E W L E T T E R S 3 JANUARY 2000

The nature of the 10Be states is well understood. It is
seen from Table I that only 78% of the inclusive fragment
spectrum corresponds to neutron removal to the ground
state. About one-third of the intensity of the strongest
g ray (3.37 MeV) corresponds to direct feeding of the
21 level. It is this part that carries information about
the 0d5!2 ≠ 21 admixture in the 11Be ground state. The
two excited states with negative parity have the dominant
structure 1s1!2 ≠ 9Be" 3

2
2#, and are excited by the removal

of a neutron from a p3!2 core state, while the halo s-wave
neutron acts as a spectator. We now compare these four
cross sections with the theoretical expectations.

The theoretical cross section for a given 10Be core fi-
nal state, and removed nucleon j value, is assumed to
be a product of a spectroscopic factor S and a single-
particle cross section [6,25]. The latter is the sum of terms
corresponding to knockout (often referred to as stripping)
and diffraction dissociation. These were calculated within
a spectator-core eikonal three-body model [25] similar to
that used in [26] with the same parameters.

The results of the calculations are given in Table I.
These show an expected reduction in the single-particle
cross sections for higher l values and higher binding ener-
gies, since the reactions take place at the nuclear surface
and depend sensitively on the tail of the neutron wave func-
tion. This surface dominance justifies our use of the op-
tical limit in the 50–100 MeV!nucleon region. Although
the potential is highly attractive and absorptive in the nu-
clear interior, comparison with calculations using Sn de-
rived from the microscopic nucleon optical potential of
Jeukenne et al. [27] confirms that the optical limit Sn per-
forms well in the critical surface region. The same conclu-
sions pertain for analogous experiments and analyses with
phosphorus and carbon isotopes [6,28]. Details of these
theoretical model comparisons, and also those using phe-
nomenological potentials, will be presented elsewhere.

Table I shows that the agreement is good in the present
case. The most important conclusion is that the cross sec-
tions to the two lowest levels support the Warburton-Brown
[11] spectroscopic factors, thus corroborating a dominant
s-wave single-particle configuration for the ground state.

Table I includes an estimate of the effect of excitation
of an assumed deformed 10Be core by the target. Within
the eikonal framework [29], using the same interaction
and density parameters and an assumed 10Be quadrupole
deformation b2 ! 0.67 [9], the calculated cross section
for excitation to the 21 core state is 11 mb, which has to
be multiplied with the 01 state spectroscopic factor. In
addition, a small contribution of 7 mb was estimated for
the Coulomb breakup, which was added to the ground state
cross section (see Table I).

We now turn to the momentum distributions of the
10Be fragments, from which the angular-momentum
assignments are deduced. Since the normalization of the
distribution is contained in the absolute cross section, we
present the distributions scaled in an arbitrary way to the
data. From the coincidences with g rays it is possible to

obtain the distribution corresponding to the ground state
by subtracting the components to excited states from the
singles spectrum. The result is shown in Fig. 2. The full
width at half maximum is 47.5"6# MeV!c [45.7(6) after
subtracting quadratically the resolution]. The ability to
cleanly see the contribution of nucleon removal from the
1s state allows us to make a precise comparison of the mea-
sured 10Be fragment distribution with calculations. Past
experiments [3,30] had significant contributions from parts
of the wave function that do not reflect the halo, including
the 22 and 12 core neutron removal hole states. We com-
pare our result with theoretical momentum distributions
calculated in an eikonal model for the knockout process.
The distribution for diffractive dissociation is expected to
have a similar shape [26]. We follow [5] and calculate
the distribution for a given impact parameter as the one-
dimensional Wigner transform of the wave function after
the reaction. For this we use a black-disk approximation.
The cutoff radii were adjusted to reproduce the core-target
and neutron-target reaction cross sections for free particles
and are 5.28 and 3.12 fm, respectively. The calculated
result for a neutron separation energy of 0.5 MeV and
for three values of the angular momentum is shown in
Fig. 2. The comparison points to an unambiguous l ! 0
assignment.

The second calculation, by Bonaccorso and Brink [31],
used time-dependent perturbation theory with the interac-
tion represented by optical potentials. The two reaction
channels were treated separately, but turned out to give es-
sentially identical shapes and absolute cross sections. The
close agreement between the two theoretical differential
cross sections suggests that both approaches reflect the
same basic physics input: the momentum content of the
external part of the single-particle neutron wave function.
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FIG. 2. pjj distribution of the 10Be fragments in the rest frame
of the projectile. Only the contribution leading to the ground
state of 10Be is shown. The curves are calculations assuming a
knockout reaction from s, p, and d states.

37

[Aumann et al. PRL 85, 35 (2000)]
CCE and Eikonal are both symmetric
They miss the asymmetry of DEA distribution
Confirms the minor effect of Coulomb correction
Seen in analysis of KO data

) missing dynamical effects on light targets
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Eikonal approximation S-DEA

Simplified Dynamical Eikonal Approximation (S-DEA)

Idea : use �FO approximation instead of �
and do that for both Coulomb and nuclear interactions

[Hebborn & Baye PRC 101, 054609 (2020)]
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Eikonal approximation S-DEA

11Be breakup on C and Pb @ ⇠ 70AMeV
11

Be + C! 10
Be + n + C @ 67AMeV 11

Be + Pb! 10
Be + n + Pb @ 69AMeV
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FIG. 1. Diffractive breakup cross sections of 11Be with (a) 12C at 67A MeV and (b) 208Pb at 69A MeV as a function of the 10Be -n relative
energy E . In (a), we also plot a zoom of the energy distributions between 3 MeV and 3.5 MeV.

may take unrealistic values as exp[iχC
FO + iχN

FO] then involve
increasing real exponentials. This problem is enhanced by the
use of optical potentials. Such potentials contain an imaginary
part simulating the absorption into channels other than the
elastic one in the core or neutron interaction with the target.
Consequently, the Hamiltonian is not Hermitian and the S
matrix loses its unitarity. Even for purely real potentials, an
imaginary part would arise from the imaginary exponential
multiplying the potentials. To partly cure this problem, we
treat separately the absorptive part of the potentials with the
usual eikonal approximation. This ensures that the imaginary
parts of the optical potentials suppress the unphysical contri-
butions. The S-DEA model is thus defined by

eiχC
PT eiχC

eiχN → eiχC
PT eiχC

FO eiχN
S−DEA (16)

with
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(17)

where χN has been defined in Sec. II C.

III. RESULTS

In this article, we study the S-DEA with the breakup of
11Be on 12C and 208Pb targets. We use the same description
of 11Be as in Refs. [16,27]: it is seen as a 10Be core in its 0+

ground state to which a neutron is bound by 0.504 MeV. The
10Be -n interaction is simulated by a Woods-Saxon potential
and a spin-orbit term, adjusted to the three first levels: 1/2+,
1/2−, and 5/2+, modelled, respectively, as a 1s1/2 state, a

0p1/2 state, and a d5/2 resonance. The parameters of this
10Be -n potential are given in Ref. [27]. The 10Be -T and n-T
interactions are simulated through the same optical potentials
as in Ref. [16]. Our eikonal, CCE, and DEA calculations have
the same numerical inputs as in Ref. [16]. The numerical
computations of the S-DEA use the same meshes as the CCE.

To evaluate the accuracy of the S-DEA, we compute the
breakup cross section as a function of the relative c-n en-
ergy, displayed in Fig. 1. Panel (a) corresponds to a nuclear-
dominated breakup, 11Be on 12C at 67A MeV, and panel (b)
to a Coulomb-dominated reaction, 11Be on 208Pb at 69A MeV.
For these two reactions, the DEA (solid red lines) reproduces
well the RIKEN data [4,11,19] and is used as reference. As
previously mentioned, the eikonal model (dashed green lines)
does not treat properly the Coulomb interaction and therefore
requires the use of an upper cutoff bmax to provide breakup cal-
culations [28]. With this cutoff, the usual eikonal model leads
to results close to the DEA ones for the nuclear-dominated re-
action but fails to describe the Coulomb-dominated breakup,
due to the incompatibility of this long-range interaction with
the adiabatic assumption.

Both panels (a) and (b) of Fig. 1 show that the CCE
(dash-dotted blue lines) improves the eikonal treatment of the
Coulomb interaction and gives accurate energy distributions
for both reactions. Let us first consider the approximation
defined by Eq. (12). For the nuclear-dominated breakup distri-
bution (a), it leads to exactly the same results (dotted magenta
lines) as the CCE at E < 1.5 MeV. The Coulomb-dominated
cross section (b) shows that it is accurate at E < 2.5 MeV.
Indeed, even if it slightly overestimates the peak of the
distribution, it lies close to the DEA and the CCE. For both
reactions, the approximation (12) starts to increase at higher
energies and completely fails to reproduce the shape and the
magnitude of the breakup cross section. These unrealistic
values are due to a lack of absorption at small bs within
the model. As explained in Sec. II E, the real parts of the
potentials contribute to the imaginary parts of the phases (14)
and (15). These contributions decrease the absorption and lead
to unrealistic values of the cross section.

054609-4

[Hebborn & Baye PRC 101, 054609 (2020)]

All corrections reproduce DEA fairly well
Problem at large energy with full optical potential [Eq. (12)]
The S-DEA solves that issue using instead [Eq. (16)]
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Eikonal approximation S-DEA

Parallel-Momentum Distributions
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FIG. 2. Diffractive breakup distribution of 11Be with (a) 12C at 67A MeV and (b) 208Pb at 69A MeV as a function of 10Be -n parallel
momentum.

To suppress these unphysical contributions of the real part
of the potentials, we treat separately the real and imaginary
parts of the nuclear potential. As shown in Eq. (16), the
S-DEA is applied to the Coulomb potential and the real part
of the nuclear potentials. The imaginary part of the nuclear
interaction is treated with the usual eikonal model. The corre-
sponding distributions are plotted in dash-dotted-dotted black
lines. For both collisions with carbon and lead targets, the
S-DEA is accurate over the whole considered energy range.
Note that, the distribution of the Coulomb-dominated breakup
still exhibits an unphysical increase at E = 12 MeV, caused by
the imaginary part of the Coulomb first-order approximation
(14). However, at these energies, the breakup cross section is
negligible. There is no such increase in the nuclear-dominated
collision since the Sommerfeld parameter η and thus the
Coulomb first-order-perturbation approximation are smaller.

We now consider in Fig. 2(a) the breakup distribution as
a function of the relative 10Be -n parallel momentum [see
Eq. (18) below] for the breakup of 11Be on 12C at 67A
MeV.1 In this case, the eikonal model does not display a
divergence since the nuclear interaction dominates. However,
it overestimates the magnitude of the cross section and does
not reproduce the asymmetry of the distribution. Indeed, the
eikonal distribution is perfectly symmetric, due to the addi-
tional symmetry of the projectile across the plane defined by
s (see Sec. II C). The CCE cross section lies close to eikonal
results, because its Coulomb correction (8) is not significant
for such nuclear-dominated reaction. On the contrary, the
S-DEA leads to a more accurate distribution, enhancing both
shape and magnitude. This result confirms that the asymmetry
of the distribution is due to dynamical effects and shows
that a first-order simplification of the DEA already improves
significantly the distributions. Further analyses have shown
that the d5/2 resonance does not impact the accuracy of

1We have noted that the magnitudes of the parallel-momentum
distributions in Figs. 4, 5, 8, and 9 of Ref. [16] are underestimated by
a factor 2.

the S-DEA. Similarly to the energy distribution, the S-DEA
underestimates the DEA magnitude.

The parallel-momentum distributions obtained for the col-
lision of 11Be on 208Pb at 69A MeV are plotted in Fig. 2(b). As
for the energy distribution, the eikonal model fails to describe
the parallel-momentum distribution: the magnitude and shape
of the distribution are different from the DEA predictions.
On the contrary, the CCE lies close to the DEA results and
is precise for this Coulomb-dominated breakup. The S-DEA
slightly overestimates the peak of the distribution and is too
symmetrical compared to the DEA. Since this collision is
dominated by the Coulomb interaction, this difference is due
to the treatment of electric transitions within the CCE and
S-DEA.

To understand the origin of the asymmetry, we consider the
expression of the parallel-momentum observable, which reads

dσbu

dk‖
= 8π

2 j0 + 1

∑

m0
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0
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|k‖|

dk
k

×
∑
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l j

(lIm − νν| jm)Y m−ν
l (θk, 0)S(m0 )

kl jm(b)

∣∣∣∣∣∣

2

,

(18)

where θk = arccos(k‖/k) is the colatitude of the c-n relative
wave vector k after breakup, l is the orbital angular momen-
tum of the c-n system, j is the total angular momentum,
resulting from the composition of l and the spin of the neutron
I , m is its projection, and ν is the projection of the spin.
The subscript 0 corresponds to the quantum numbers of the
ground state φ0. The partial breakup amplitude S(m0 )

kl jm is the
matrix element of the operator (8) [respectively (16)] for the
CCE (respectively for the S-DEA) between the initial state
φ0 and the final breakup state (see Eq. (25) of Ref. [16]).
The integration over k is limited to kmax = 0.7 fm−1 for
the Pb target and kmax = 1.4 fm−1 for the C target, which
correspond, respectively, to Emax = 11.26 MeV and Emax =
45 MeV. These values are large enough to reach convergence.

054609-5

[Hebborn & Baye PRC 101, 054609 (2020)]

On C, S-DEA reproduces DEA
Not on Pb, but problem is less dire

) S-DEA could be a good approximation to study
KO
more complex nuclear structure (3-b projectiles)

32 / 34



Eikonal approximation S-DEA

Summary
Breakup can be included assuming cluster structure of P
Two-body structure leads to a three-body scattering probem
CDCC :  expanded over H0 eigenstates

I fully quantal model) valid at all energies
I requires continuum discretisation
I heavy computationally

Time-dependent : collision simulated by trajectory
I semiclassical approximation) no quantal interferences
I simple interpretation and light numerically

Eikonal : high-energy approximation
I DEA : includes interferences and dynamic

only valid at high energy
I Usual eikonal : add adiabatic approximation
) not valid for Coulomb breakup

I CCE and S-DEA offer efficient corrections
for Coulomb treatment and dynamical effects

) important to know the range of validity of the models you use
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