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Abstract Breakup reactions are one of the main tools for the study ofiexu-
clei, and in particular of their continuum. In order to getuable information from
measurements, a precise reaction model coupled to a fagrigiésn of the pro-
jectile is needed. We assume that the projectile initiabbggesses a cluster struc-
ture, which is revealed by the dissociation process. Thiggire is described by
a few-body Hamiltonian involving effective forces betwettre clusters. Within
this assumption, we review various reaction models. In skssical models, the
projectile-target relative motion is described by a cleaktrajectory and the reac-
tion properties are deduced by solving a time-dependenit8atger equation. We
then describe the principle and variants of the eikonal @gpration: the dynami-
cal eikonal approximation, the standard eikonal approkimnaand a corrected ver-
sion avoiding Coulomb divergence. Finally, we present thietiouum-discretized
coupled-channel method (CDCC), in which the $dlinger equation is solved with
the projectile continuum approximated by square-intelgratates. These models
are first illustrated by applications to two-cluster praijles for studies of nuclei far
from stability and of reactions useful in astrophysics. &#aextensions to three-
cluster projectiles, like two-neutron halo nuclei, arerthpresented and discussed.
We end this review with some views of the future in breakugetion theory.
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1 Introduction

The advent of radioactive ion beams has opened a new eralganphysics by pro-
viding the possibility to study nuclei far from stabilitya particular the availability
of these beams favoured the discovery of halo nuclei [1]. @ube very short life-
time of exotic nuclei, this study cannot be performed thiougual spectroscopic
techniques and one must resort to indirect methods. Bremkope of these meth-
ods. In this reaction, the projectile under analysis digges into more elementary
components through its interaction with a target. Many siqeriments have been
performed with the hope to probe exotic nuclear structuaefdm stability [2, 3, 4].

In order to get valuable information from breakup measum@sieone must have
not only a fair description of the projectile, but also anw@wete reaction model.
At present, a fully microscopic description of the reactiercomputationally un-
feasible. Simplifying assumptions are necessary. Firstywill discuss only elastic
breakup, i.e. a dissociation process leaving the targdtamged in its ground state.
Other channels are simulated through the use of opticahfiate. Second, we as-
sume a cluster structure for the projectile. The projegiteund state is assumed to
be a bound state of the clusters appearing during the brea@agtion. The bound
and continuum states of the projectile are thus described teyv-body Hamilto-
nian involving effective forces between the constituenstdrs. Theoretical reaction
models are therefore based on this cluster descriptioneoptbjectile and effective
cluster-cluster and cluster-target interactions.

Even within these simplifying model assumptions, a diresbiution of the re-
sulting many-body Sclidinger equation is still not possible in most cases. In this
article, we thus review various approximations that hawentaeveloped up to now.

We begin with the models based on the semiclassical appetidm[5] in which
the projectile-target relative motion is described by asieal trajectory. This ap-
proximation is valid at high energies. It leads to the regotuof a time-dependent
Schibdinger equation. In a primary version, the time-dependguoation was solved
at the first order of the perturbation theory [5]. Then, as patars became more
powerful, it could be solved numerically [6, 7, 8, 9, 10, 1We present both ver-
sions indicating their respective advantages and draveback

We then describe the eikonal approximation [12] and itsards. The principle
is to calculate the deviations from a plane-wave motion Whice assumed to be
weak at high energy. By comparison with the semiclassicalehat is possible to
derive the dynamical eikonal approximation (DEA) that camels the advantages
of both models [13, 14]. The standard eikonal approximaisoobtained by mak-
ing the additional adiabatic or sudden approximation, Whieglects the excitation
energies of the projectile. With this stronger simplifyiagsumption, the final state
only differs from the initial bound state by a phase factdrisTapproach is mostly
used to model reactions on light targets at intermediatehégtdenergies. Its draw-
back is that the Coulomb interaction leads to a divergend®eskup cross sections
at forward angles. This problem can be solved using a fidéocorrection of the
Coulomb treatment within the eikonal treatment. A satigfacapproximation of
the DEA can then be derived [15, 16]: the Coulomb-correctkdral approxima-
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tion (CCE), which remains valid for breakup on heavy targgteproduces most of
the results of the DEA, although its computational time gn#icantly lower [17]
which is important for the study of the breakup of three-tduprojectiles.

Finally, we present the continuum-discretized coupledrctel method (CDCC)
[18, 19], in which the full projectile-target Sabdinger equation is solved approxi-
mately, by representing the continuum of the projectilédwsijuare-integrable states.
This model leads to the numerical resolution of coupledadeaequations, and is
suited for low- as high-energy reactions.

All the aforementioned models have been developed injtfall two-body pro-
jectiles. However, the physics of three-cluster systeiks tivo-neutron halo nuclei,
is the focus of many experimental studies and must also lestigated with these
models. We review here the various efforts that have beererimatie past few years
to extend breakup models to three-cluster projectiles22022].

In Sec. 2, we specify the general theoretical framework iwitthich the projec-
tile is described. The semiclassical model and approximestelutions of the time-
dependent Scbdinger equation are described in Sec. 3. Sec. 4 presertiiheal
approximation as well as the related DEA and CCE models. Nex$ec. 5, the
CDCC method is developed. In Sec. 6, we review applicatidhseakup reactions
to two-body projectiles. In particular, we emphasize the afsbreakup to study nu-
clei far from stability and as an indirect way to infer crogesons of reactions of
astrophysical interest. Sec. 7 details the recent effoadaro extend various reac-
tion models to three-body projectiles. We end this revievpl®senting some views
of the future in breakup-reaction theory.

2 Projectile and reaction models

We consider the reaction of a projectieof massmp and charge&Zpe impinging
on a targetT of massmy and chargeZre. The projectile is assumed to exhibit
a structure made dfl clusters with massesy and chargegie (mp = S;my and
Zp = % Z). Its internal properties are described by a Hamiltortin depending
on a set ofN — 1 internal coordinates collectively represented by notei. With
the aim of preserving the generality of the presentatiorhefreaction models, we
do not specify here the expressionty. Details are given in Secs. 6 and 7, where
applications for the breakup of two- and three-body prajesare presented.

The states of the projectile are thus described by the eigissofHy. For total
angular momenturd and projectiorM, they are defined by

oM (E, &) =E@M(E,E), 2.1)

wherekE is the energy in the projectile centre-of-mass (c.m.) neshe with respect
to the dissociation threshold intd clusters. Index symbolically represents the set
of all additional quantum numbers that depend on the pritgestructure, like spins
and relative orbital momenta of the clusters. Its precidindien depends on the
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number of clusters and on the model selected when defidindVe assume these
numbers to be discrete, though some may be continuous in sgpnesentations
when there are more than two clusters. To simplify the notatihe parityrr of the
eigenstates dfly is understood. In the following, any sum oveimplicitly includes
a sum over parity.

The negative-energy solutions of Eq. (2.1) correspondéditiund states of the
projectile. They are normed to unity. The positive-enetgyes describe the broken-
up projectile with full account of the interactions betwede clusters. They are
orthogonal and normed according tg;™(E’, &)|@M(E, &)) = 6(E —E')&p. TO
describe final states when evaluating breakup cross sectigmalso consider the

incoming scattering statenpé”. They correspond to positive-energy statesHgf
£

describing theN clusters moving away from each other in the projectile cnammie
with specific asymptotic momenta and spin projections. €h@®menta are not
independent, since the sum of the asymptotic kinetic eeergfi the clusters is the
positive energye. However, within that condition, their directions andNf> 2,
their norms can vary. Bkg, we symbolically denote these directions and wave
numbers, as well as the projections of the spins of the afsisTehese incoming
scattering states are thus solutions of the 8dimger equation

Hogf ' (E.€) =Eq} (E.&). (2.2)

They can be expanded into a linear combination of the eigeemp’™ of Eq. (2.1)
with the same energy as

G (B8 =5 a(k)@™(E.0) (2.3)

where the coefficients!™ depend on the projectile structure. These scatteringsstate
are normed following @, (E',&)| @ (E. £)) = 8(E — E')3(ke — K;).
3 3

The interactions between the projectile constituents &edtarget are usually
simulated by optical potentials chosen in the literatureobtained by a folding
procedure. Within this framework the description of theatémn reduces to the res-
olution of an(N + 1)-body Schédinger equation

2

;ﬂ +Ho+Ver(€,R) | W(&,R) =ETW(E.R). (2.4)
whereR = (R, Qr) = (R, 6r, ¢r) is the coordinate of the projectile centre of mass
relative to the targetP is the corresponding momentum,= mpmy /(mp + mr)

is the projectile-target reduced mass, dhdis the total energy in the projectile-
target c.m. frame. The projectile-target interactidsy is expressed as the sum of
the optical potentials (including Coulomb) that simuldte interactions between
the projectile constituents and the target,
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Ver(€,R) = ZlViT (RT), (2.5)
i=

whereR;r is the relative coordinate of the projectile clustewith respect to the
target.

The projectile being initially bound in the staqégMO of negative energ¥y, we
look for solutions of Eqg. (2.4) with an incoming part behayesymptotically as

W(E,R) — kzIKR-2Z]) ooy, g), (2.6)
whereZ is the component dR in the incident-beam direction. The wavenumBer
of the projectile-target relative motion is related to th&at energyet by

h2K?2

TheP-T Sommerfeld parameter is defined as
n = ZpZre? /Ry, (2.8)

wherev = hK/u is the initial P-T relative velocity.

A first idea that may come to mind is to solve Eq. (2.4) exadly,, within the
Faddeev framework or its extensions. However, the infiratege of the Coulomb
interaction between the projectile and the target rendeesstandard equations
ill-defined. Only recently significant progress has been endebr example, in
Refs. [23, 24], this problem is tackled by using an apprdprigcreening of the
Coulomb force. This technique has been used to successledigribe the elastic
scattering and breakup of the deuteron on various targetisekkr, it has long been
limited to light targets (see Ref. [25] for a recent extendio a heavier target). To
obtain a model that is valid for all types of target, one mtiitresort to approxima-
tions in the resolution of Eq. (2.4). These approximatiomsmaade in the treatment
of the projectile-target relative motion, like in the setagsical (Sec. 3) or eikonal
(Sec. 4) approximations, or by using a discretized contimulike in the CDCC
method (Sec. 5).

3 Semiclassical approximation

3.1 Time-dependent Schdinger equation

The semiclassical approximation relies on the hypothésisthe projectile-target
relative motion can be efficiently described by a classigkttoryR(t) [5]. It is
thus valid when the de Broglie wavelength is small with respe the impact pa-
rameteib characterizing the trajectori(b>> 1, i.e. when the energy is large enough.
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Along that trajectory, the projectile experiences a tinepehdent potentidl that
simulates the Coulomb and nuclear fields of the target. Tteerial structure of the
projectile, on the contrary, is described quantum-medatalyi by the Hamiltonian
Ho. This semiclassical approximation leads to the resoluticihe time-dependent
equation

iﬁ%#’(é,b,t) =[Ho+V(&,1)]W(&.b,t). (3.1)

The time-dependent potential is obtained from the diffeedmetween the projectile-
target interactioVpr (2.5) and the potentiak,; that defines the classical trajectory

V(&,t) =Vpr[&,R(1)] — Virgj[R(1)]. (3.2)

The potentiaMy,j acts as &-T scattering potential that bends the trajectory, but
does not affect the projectile internal structure. Its iegt lies in the fact thav
decreases faster thafpr. Its effect amounts to changing the phase of the wave
function. Usually it is chosen to be the Coulomb potentidirleen the projectile
centre of mass and the target, but it may include a nucleapoasnt. At sufficiently
high energy, the trajectory is often approximated by a ghtdine.

For each impact parametierEq. (3.1) has to be solved with the initial condition
that the projectile is in its ground state,

WMo (& b,t) — ¢0"°(Eo.€). (3.3)

For each trajectory, the time-dependent wave func#é¥o) must be calculated for
the different possible values y.

3.2 Cross sections

¢ From the output of the resolution of Eq. (3.1), the proligiif being in a definite
state of the projectile can be obtained by projecting thd firsae function onto the
corresponding eigenstate ld§. One can for example compute the elastic scattering
probability

P(b \ oMo (g, £)| WM (£ bt — +oo))2.  (3.4)

O\

This probability depends only on the norm of the impact patarb because the
time-dependent wave functioH™o) depends on the orientation bf i.e. on the
azimuthal anglebr, only through a phase that cancels out in the calculatideof
¢ From this probability, the cross section for the elastattsecing in directionQ is
obtained as



Breakup reaction models for two- and three-cluster projestil 7

dog  don?
16 = qo Felb@)]. (35)

whereb(Q) is given by the classical relation between the scatterirgdeaand the
impact parameter derived from potenti4l,;. The factordoy”/dQ is the elastic
scattering cross section obtained frapy. In most caseslay”/dQ is generated
from the Coulomb interaction and is thus tRel' Rutherford cross section.

Likewise, a general breakup probability density can be aatexb by projecting
the final wave function onto the ingoing scattering statedgf

dRyu
dkedE

_ 1 -) (Mo) N2
O =210 % (BOIWM(Ebt— )% (36)

After integration and summation ov&g, the breakup probability per unit energy
reads

o= 5 > S M ELWIED e (3)

Similarly to Eq. (3.5), a differential cross section for theakup of the projectile is
given by

dop, _ dog” dRy,
dEd? ~ dQ dE

The breakup cross section can then be obtained by summitgahkup probability
over all impact parameters

b(<2)]. (3.8)

dopy * dRy
i fzn/o 2 (b)bdh (3.9)

Because of the trajectory hypothesis of the semiclasspyaioximation, the im-
pact parameteb is a classical variable. Therefore, no interference betwhe dif-
ferent trajectories can appear. This is the major disadggnof that technique since
quantal interferences can play a significant role in reastian particular in those
which are nuclear dominated.

3.3 Resolution at the first order of the perturbation theory

In the early years of the semiclassical approximations,(Bq.) was solved at the
first order of the perturbation theory [5]. This techniquaedo Alder and Winther,
was applied to analyze the first Coulomb-breakup experisneithalo nuclei [26].
The time-dependent wave functi&®Mo) is expanded upon the basis of eigen-
states ofHp in Eq. (2.1). At the first order of the perturbation theorye tiesulting
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equation is solved by considering thatis small. With the initial condition (3.3),
the wave function at first order is given by [5, 27]

i Uit LHgt!
eﬁHO‘W(M°)(E,b,t)—[1+ilﬁ [ eftotvig tyetre dt} 98" (Eo,§). (3.10)

Following Eq. (3.6), the general breakup probability dgnstads

2

dPDu o wt JoMo

St =5 7| [ e, B Ve E )0 @
wherew = (E — Ep)/h. The breakup probability per unit energy reads

dRy _ 2 wt JoMo ?

it rig [ M E OV (€01 (B, )| (312)

With Eg. (3.10), exact expressions can be calculated whaesidering a purely
CoulombP-T interaction for straight-line trajectories in the far-tiedpproximation
[28], i.e. by assuming that the charge densities of the ptitgeand target do not
overlap during the collision. One obtains

(@M(E,&)|WwM (& bt — +oo)) =
efiEt/ﬁ AT

ZTe R zzA 11

Ly (@, D) (@M(E, &) (&)| 9 (Eo, £)), (3.13)

Where///EA are the electric multipoles operators of rahkandl) , are time inte-
grals (see, e.g., Eq. (13) of Ref. [29]) that can be evaluatediytically as [28]

22411 iA+H w\ A wb
o) =2 o (0 () 039

whereKp, is a modified Bessel function [30].
If only the dominant dipole term E1 of the interaction is colesed, the breakup
probability (3.12) reads [31]

i _W(ZTe)Z

dE (b) = 9 \ hv

« (%) [Kl (“’b> +K2<°\J/b)] dz(gl). (3.15)

The last factor is the dipole strength function per energy[34],

dB(EY) E1(£)| oMo (K, 2
dE 2Jo+1%idk5| (E.&)L45HE)| ™ (Eo. £))]




Breakup reaction models for two- and three-cluster projestil 9
M
- 7571 3 A E LA E O (316)

Since modified Bessel functions decrease exponentiallyalymptotic behaviour
of dREL/dE for b — « is proportional to exp-2wb/v).

In the case of a purely CouloniBT interaction, the first order of the perturbation
theory exhibits many appealing aspects. First, it can beegadhnalytically. Second,
the dynamics partif,,) and structure part (matrix elementsmﬁ)‘) are separated
in the expression of the breakup amplitudes (3.13). This-dirder approximation
has therefore often been used to analyze Coulomb-brealpgriments by assum-
ing pure E1 breakup (see Ref. [4]). However, as will be seéer,ldigher-order
and nuclear-interaction effects are usually not negl@ilaind a proper analysis of
experimental data requires a more sophisticated appraixima

3.4 Numerical resolution

The time-dependent Sdhdinger equation can also be solved numerically. Various
groups have developed algorithms for that purpose [6, 7, 80911, 32, 33]. They
make use of an approximation of the evolution operbt@pplied iteratively to the
initial bound state wave function following the scheme

wMo) (g b t+At) =U(t+At,H) M) (& pt). (3.17)

Although higher-order algorithms exist (see, e.g., Red])3all practical calcula-
tions are performed with second-order approximationt) oiVarious expressions
of this approximation exist, depending mainly on the wayegfresenting the time-
dependent projectile wave function. However they are iregarsimilar to [11]

U(t+At) = e 2V (EHA) g i FHog I HV(ED | g (Ar3). (3.18)

With this expression, the time-dependent potential carrdsgtdd separately from
the time-independent Hamiltonidty, which greatly simplifies the calculation of
the time evolution when the wave functions are discretized sesh [11].

The significant advantage of this technique over the firseload perturbation
is that it naturally includes higher-order effects. Moregvhe nuclear interaction
between the projectile and the target can be easily adddeeinumerical scheme
[35]. However, the dynamical and structure evolutions geiow more deeply en-
tangled, the analysis of the numerical resolution of ther&dinger equation is less
straightforward than its first-order approximation. Themarical technique is also
much more time-consuming than the perturbation one. Thediider of the pertur-
bation theory therefore remains a useful tool to qualiddyivanalyze calculations of
Coulomb-dominated reactions performed with more elaleonabdels. Moreover,
as will be seen in Sec. 4.4, it can be used to correct the esteneeatment of the
Coulomb interaction within the eikonal description of btep reactions.
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Fig. 1 illustrates the numerical resolution of the time-gleglent Sctirdinger
equation for the Coulomb breakup¥Be on lead at 68 MeV/nucleon [11]. It shows
the breakup cross section as a function of the relative griergetween thé°Be
core and the halo neutron after dissociation. The full line@esponds to the calcu-
lation with both Coulomb and nucleB¥T interactions. The dashed line is the result
for a purely Coulomb potential, in which the nuclear intei@g is simulated by an
impact parameter cutoff dt,i, = 13 fm. A calculation performed with an impact
parameter cutoff ab,in = 30 fm simulating a forward-angle cut is plotted as a dot-
ted line. The experimental data from Ref. [26] are multiglmy a factor of 0.85 as
suggested in Ref. [36] after a remeasurement.

2.5 T T T

T T
Coulomb + Nuclear

o ""Be + 20%Ph — '"Be +n + ?0%Ph Coulomb ——-_|

dov, /dE (b/MeV)

—
0 0.5 1 15 2 2.5 3
E (MeV)

Fig. 1 Breakup cross section 6tBe on Pb at 68 MeV/nucleon as a function of the relative energy
E between thé'®Be core and the neutron. Calculations are performed withinsémiclassical
approximation with or without nuclear interaction [11]. Eetpmental data [26] are scaled by 0.85
[36]. Reprinted figure with permission from Ref. [11]. Copyri@®003) by the American Physical
Society.

This example shows the validity of the semiclassical apipnexion to describe
breakup observables in the projectile c.m. frame for dolfis at intermediate en-
ergies. It also confirms that for heavy targets the reacsastrongly dominated by
the Coulomb interaction. The inclusion of optical potelstta simulate the nuclear
P-T interactions indeed only slightly increases the breakgs<isection at large
energy. This shows that Coulomb-breakup calculations ar&ery sensitive to the
uncertainty related to the choice of the optical potentislisvertheless, since opti-
cal potentials can be very easily included in the numerieablution of the time-
dependent Scbdinger equation, they should be used so as to avoid the aispre
impact-parameter cutoff necessary in purely Coulomb datmns.
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4 Eikonal approximations

4.1 Dynamical eikonal approximation

Let us now turn to a purely quantal treatment providing agpnate solutions of the
Schivdinger equation (2.4). At sufficiently high energy, thejpatile is only slightly
deflected by the target. The dominant dependence @iNhkel)-body wave function
W on the projectile-target coordinakis therefore in the plane wave contributing
to the incident relative motion (2.6). The main idea of thieoaal approximation
is to factorize that plane wave out of the wave function torde& new functior!
whose variation withR is expected to be small [12, 31, 37]

(& R) =P R). (4.1)

With factorization (4.1) and energy conservation (2.7 8chbdinger equation
(2.4) becomes

P2 >
EJFVPZJFHO*EOJFVPT(EaR) ¥(¢,R)=0, (4.2)
where the relative velocity between projectile and target is assumed to be large.

The first step in the eikonal approximation is to assume thersiorder deriva-
tive P?/2u negligible with respect to the first-order derivativigz,

P2 -~
@‘P(E, R) < VE.¥(&,R). (4.3)
This first step leads to the second-order equation (but netvdider inZ),
= 0 ~ ~
|ﬁvﬁW(E,b,Z) = [Ho—Eo+VpT(&,R)|W(E,b,2Z), (4.4)

where the dependence of the wave function on the longitldirend transverse
b parts of the projectile-target coordinag®has been made explicit. This equation
is mathematically equivalent to the time-dependent &dimnger equation (3.1) for
straight-line trajectories with replaced byZ/v. It can thus be solved using any of
the algorithms cited in Sec. 3.4. However, contrary to tile@endent models, it is
obtained without the semiclassical approximation. Thegutile-target coordinate
componentd andZ are thus quantal variables. Interferences between sohkitb-
tained at differenb values are thus taken here into account. This first step iwkno
as the dynamical eikonal approximation (DEA) [13, 14].
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4.2 Cross sections

The transition matrix element for elastic scattering int@ctionQ = (6, ¢) of the
final momentunK = (K, Q) of the projectile in the c.m. frame reads [38]

Tri = (@R @M (B, &) Vet (&, R)| WM (£, R)), (4.5)

where@Mo) js the exact solution of the Sdbdinger equation (2.4) with the asymp-
totic condition (2.6). By using Egs. (4.1), (2.1), and (4@he obtains the approxi-
mation [13]

— (KR (Eg, £)[€7 [Ho — Eq + Ver (&.R)] | (£,R))

~ iy [ dRe O (B, )| 90 (£ ), (4.6)

where the transfered momentugn= K — KZ is assumed to be purely transverse,
i.e. exgi(K -Z —K)], is neglected. The norm gfis linked to the scattering angle by

g=2Ksinf/2. 4.7)
Let us define the elastic amplitude

JoMO

Mo)
Siron (0) = (90 (B0, )| P MO (E,b,Z — +00)) ~ Sy (48)
The transition matrix element (4.6) reads after integrativerZ,

Ty = ifv / dbe 140¢l(Mo Mng{)b) (6%), (4.9)
where ¢r is the azimuthal angle characteriziig The phase factor efgMg —
Mp) ¢r] arises from the rotation of the wave functions when the daigon of b
varies [14]. The integral ovepr can be performed analytically, which leads to the

following expression for the elastic differential crosstsen [14]

do-e| o 2 1
daQ 2Jo+l

/ bdbdy, vy (@D)SYY (B)| . (4.20)

el, M’

MoMg

whereJn, is a Bessel function [30]. ¢ From Eq. (4.10), one can see timdtary to the
semiclassical approximation (3.5), the eikonal elastissrsection is obtained as a
coherent sum of elastic amplitudes overlallalues. This illustrates that quantum
interferences are taken into account in the eikonal frannkewo

The transition matrix element for dissociation reads

Tii = (€< Rg (E &)Ver(€.R) WM (& R)), (4.11)
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whereK’ = (K’, Q) is the final projectile-target wave vector. One can then @edc
as for the elastic scattering. Using Egs. (4.1), (2.2), and)( taking into account
the energy conservation,

ﬁsz HZKIZ
TR +Ep= o

+E, (4.12)

and assuming the transfered momentym K’ — KZ to be purely transverse, the
transition matrix element is expressed as

Tii ~ ifv / dbe M) (E k¢ b), (4.13)
with the breakup amplitude
S Ekeb) = (@ EOIPMEDZ - 4w).  (4.24)

The differential cross section for breakup is given by

2
/ dbe 9§M) (E &, b)

do 1 : (4.15)

. 0
dk;dEdQ 2Jo+1g0

where the proportionality factor depends on the phase sphaoethe elastic scat-
tering cross section (4.10), it is obtained from a coherent ef breakup amplitudes
(4.14), confirming the quantum-mechanical character oétkenal approximation.
Here also, the integral ovelir can be performed analytically and leads to Bessel
functions [14].

By integrating expression (4.15) over unmeasured quastitine can obtain the
breakup cross sections with respect to the desired vasglilte the internal excita-
tion energy of the projectile. Since these operations de:perthe projectile internal
structure, we delay the presentation of some detailed exjmes to Secs. 6 and 7
treating of two-body [14] and three-body [20] breakup.

4.3 Standard eikonal approximation

In most references, the concept of eikonal approximatigalires a further simpli-
fication to the DEA [39, 31]. This adiabatic, or sudden, appr@tion consists in
neglecting the excitation energy of the projectile comgarethe incident kinetic
energy. It comes down to assume the low-lying spectrum optbgctile to be de-
generate with its ground state, i.e. to consider the intemardinates of the projec-
tile as frozen during the reaction [31]. This approximatibarefore holds only for
high-energy collisions that occur during a very brief tinidis second assumption
leads to neglect the terig — Eg in the DEA equation (4.4) which then reads
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iﬁv(;iZ@(E,b,Z) = Ver(§,R)¥(E,b,2). (4.16)
The solution of Eq. (4.16) that follows the asymptotic cdiodi (2.6) exhibits the
well-known eikonal form [12, 37]

YMo)(£,b,Z) = exp [—ﬁ'v | ‘ va<£,b,Z'>dZ’] oe°(E0.é).  (417)

After the collision, the whole information about the chanigéhe projectile wave
function is thus contained in the phase shift

+o00
X(Sg,b) :_ﬁlv ) Ver(€,R)dZ. (4.18)
Due to translation invariance, this eikonal phgsdepends only on the transverse
components of the projectile-target coordinaf® ands; of the projectile inter-
nal coordinates. Cross sections within this standard eikonal approxinmatice
obtained as explained in Sec. 4.2, replaciiéfo) by eX g™

Being obtained from the adiabatic approximation, expmssi4.17) and (4.18)
are valid only for short-range potentials. For the Coulomieraction, the assump-
tion that the reaction takes place in a short time no longédshalue to its infi-
nite range. The adiabatic approximation thus fails for @oub-dominated reactions
[31]. Besides imprecise uses of a cutoff at large impactmatars [40], there are
two ways to avoid this problem. The first is not to make the laglii@ approxima-
tion, i.e. to resort to the more complicated DEA (see Sec). 4tie second is to
correct the eikonal phase for the Coulomb interaction agestgd in Ref. [15] (see
Sec. 4.4). Nevertheless, as shown in Ref. [14], the Couloivdrgknce does not
affect eikonal calculations performed on light targetsightenough energies. Most
of the nuclear-dominated reactions can thus be analyzédnaain eikonal model
including the adiabatic approximation (see, e.g., Ref])[41

Fig. 2 illustrates the difference between the DEA (full e usual eikonal ap-
proximation (dashed line) and the semiclassical approtiangdotted line) when
Coulomb dominates. It shows the breakup cross sectioh'®& on Pb at 69
MeV/nucleon for al®Be-n relative energy of 0.3 MeV as a function of tReT
scattering angle. As explained above, the usual eikonabappation diverges for
the Coulomb-dominated breakup, i.e. at forward angles.O0BA, which does not
include the adiabatic approximation, exhibits a reguldravéour at these angles.
Interestingly, the semiclassical approximation follows general behaviour of the
DEA, except for the oscillations due to quantum interfeemnbetween different
b values. The DEA has therefore the advantage of being vatiddscribing any
breakup observable on both light and heavy targets.

The nuclei studied through breakup reactions being exivticay be difficult, if
not impossible, to find optical potentials that describegbattering of the clusters
by the target. One way to circumvent that problem is to resomhat is usually
known as the Glauber model [43, 39, 31, 37]. This model has Ineestly used
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Fig. 2 Breakup cross section 6tBe on Pb at 69 MeV/nucleon as a function of & scattering
angle in theP-T c.m. frame for @°Be-n energyE = 0.3 MeV. Calculations are performed within
the DEA, usual eikonal, and semiclassical approximations [42].

to calculate total and reaction cross sections. At the aplimit approximation
(OLA) of the Glauber model, correlations in the cluster aady¢et wave functions
are neglected. The nuclear component of the eikonal phéafséosttiusteri is then
expressed as a function of the densipgsof the target ang; of the cluster, and of

a profile function 1- €Xnn that corresponds to an effective nucleon-nucleon inter-
action. The nuclear component of the eikonal phase shifipsaximated by [31]

xNbo) =i [[ prirop(r)L - SDardr,  (4.19)

wheresr ands are the transverse components of the internal coordimgte$the
target andr; of clusteri, respectively, and; is the transverse component of the
c.m. coordinate of clusteér The OLA is therefore equivalent to the double-folding
of an effective nucleon-nucleon interaction. The densftyhe target can usually
be obtained from experimental data. The cluster densitggbanknown, it has to
be estimated from some structure model, like a mean-fielcut@tion. The profile
function is usually parametrized as [31, 44]

. _q 2
1* elXNN(b) = zﬁaf\ﬁ&l eXp<2;)NN> ) (420)

whereay); is the total cross section for the N-N collisiomyy is the ratio of the
real part to the imaginary part of the N-N scattering ampl@uandByy is the slope
parameter of the N-N elastic differential cross sectioneSeh parameters depend
on the nucleon type (p or n) and on the incident energy. Thradires can be found
in the literature (see, e.g., Ref. [44]). The validity of B&uber approximation is
discussed in Ref. [45].
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4.4 Coulomb-corrected eikonal approximation

The eikonal approximation gives excellent results for racldominated reactions
[31, 14]. However, as mentioned above, it suffers from ardigace problem when
the Coulomb interaction becomes significant. To explais,thet us divide the

eikonal phase (4.18) into its Coulomb and nuclear contiimst

X(sg.b) = xpr(b) + X“(s¢,b) + X" (55, b).- (4.21)

In this expression)(gT is the global elastic Coulomb eikonal phase between the
projectile and the target. However, Coulomb forces not ady globally on the
projectile, they also induce ‘tidal’ effects due to theiffelient actions on the var-
ious clusters. The tidal Coulomb phag€ is due to the difference between the
cluster-target and projectile-target bare Coulomb irtoas. The remaining phase
xN contains effects of the nuclear forces as well as of diffeesrbetween Coulomb
forces taking the finite size of the clusters into accounttardare Coulomb forces.

At the eikonal approximation, the integral (4.18) definjfg diverges and must
be calculated with a cutoff [12, 31]. Up to an additional dixttependent term that
plays no role in the cross sections, it can be written as [37]

Xst(b) = 2nIn(Kb), (4.22)

where appears the projectile-target Sommerfeld paramgtifined in Eq. (2.8).
The phase (4.22) depends onlytan

The tidal Coulomb phase is computed with Eq. (4.18) for tlffiedince between
the bare Coulomb interactions for the clusters in the ptdgeand the globaP-T
Coulomb interaction,

4o [ N : i
Clse.b) = — 1 %P )4z 4.23
X (E ) ZP —oo i;|RiT‘ |R| ( )

It can be expressed analytically. Because of the long rahdleeoE1l component
of the Coulomb force, this phase behaves As 4t large distances [14, 17]. In the
calculation of the breakup cross sections (4.15), the ratem overbdbdiverges for
smallq values, i.e. at forward angles, because of the correspgrigimasymptotic
behaviour of the breakup amplitude, as illustrated in Figl'tds divergence occurs
only in the first-order ternixC of the expansion of the eikonal Coulomb amplitude
exp(ix©).

As seen in Sec. 3.3, the first order approximation (3.15)efesas exponentially
at largeb and hence does not display such a divergence. A plausibteatiom is
therefore to replace the exponential of the eikonal phaserding to [15, 16]

gX _ g (eixc —ixc+ ixFo) X", (4.24)

wherexFC is the result of first-order perturbation theory (3.10),
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o0 N :
xFo(E by =1 T ez 4 _ 2 )4z (4.25)
p /o & IRt [R|
Note that because of the pha#@?/, the integrand in Eq. (4.25) does not exhibit
a translational invariance. The first-order pha$€ depends on all internal coordi-
nates of the projectile. When the adiabatic approximaticempislied to Eq. (4.25),
i.e. whenw is set to 0, one recovers exactly the Coulomb eikonal pha23)4
This suggests that without adiabatic approximation the-firder term of exfix©)
would beixFO (4.25) instead ofx© (4.23), intuitively validating the correction
(4.24). Furthermore, since a simple analytic expressi@vaslable for each of the
Coulomb multipoles (see Sec. 3.3), this correction is easyplement.

With this Coulomb correction, the breakup of loosely-boymmdijectiles can be
described within the eikonal approximation taking on (hgdahe same footing both
Coulomb and nuclear interactions at all orders. This agprakon has been tested
and validated for a two-body projectile in Ref. [17]. Notatln all practical cases
[16, 17, 20], only the dipole term of the first-order expams(8.13) is retained to
evaluatey™©

Fig. 3 illustrates the accuracy of the CCE for the breakupg'@&e on lead at
69 MeV/nucleon [17]. The figure presents the parallel-mamendistribution be-
tween the'%Be core and the halo neutron after dissociation. This olagéevhas
been computed within the DEA (full line), which serves asfan@nce calculation,
the CCE (dotted line), the eikonal approximation includthg adiabatic approx-
imation (dashed line), and the first-order of the pertudratheory (dash-dotted
line). The usual eikonal approximation requires a cutofbage impact parameter
to avoid divergence. The valug,ax = 71 fm is chosen from the value prescribed
in Ref. [40]. At the first order or the perturbation theoryethuclear interaction is
simulated by an impact parameter cutofbgg, = 15 fm.

ot

T
DEA —

N OCE -

N

doyu/dky (b fm)

0
-0.4  -0.3

Fig. 3 Breakup of''Be on Pb at 69 MeV/nucleon. The parallel-momentum distributietween
the 19Be core and the halo neutron is computed within the DEA, the QBé& eikonal approxi-
mation including the adiabatic approximation, and the firsteorof the perturbation theory [17].
Reprinted figure with permission from Ref. [17]. Copyright (83)®y the American Physical So-

ciety.
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We first see that the magnitude of the CCE cross section is tbothe DEA one,
whereas, the other two approximations give too large (eikoor too small (first
order) cross sections. Moreover the CCE reproduces nearfegily the shape of
the DEA distribution. In particular the asymmetry, due todgnical effects, is well
reproduced. This result suggests that in addition to sglthie Coulomb divergence
problem introduced by the adiabatic approximation, the G@&6 restores some
dynamical and higher-order effects missing in its ingratiethe usual eikonal ap-
proximation and the first order of the perturbation theory.

5 Continuum-discretized coupled-channel method

The CDCC method is a fully quantal approximation which doesimply some

restriction on energies. Its main interest lies in low emesgvhere the previous
methods are not valid. The principle of the CDCC method isdtednine, as ac-
curately as possible, the scattering and dissociatiors@estions of a nucleus with
a simplified treatment of the final projectile continuum e&tTo this end, these
states describing the relative motions of the unbound feagmare approximately
described by square-integrable wave functions at diseretegies. The relative mo-
tion between the projectile and target and various crodsosesacan then be obtained
by solving a system of coupled-channel equations. The nuwitthese equations
and hence the difficulty of the numerical treatment increitie increasing energy.

The CDCC method was suggested by Rawitscher [46] and firdieapfo
deuteron + nucleus elastic scattering and breakup reactibwas then extensively
developed and used by several groups [18, 47, 48, 49, 50,2%1lt& interest has
been revived by the availability of radioactive beams of kiigound nuclei disso-
ciating into two [19, 48, 49, 50, 51, 52] or three [53, 54, 22] fagments.

We assume that the breakup process leadd w@usters and that the cluster-
target interactions do not depend on the target spin. Thgegie® wave func-
tions @M (EJg, &) describingN-body bound states at negative energigls and
@M (E, &) describingN-body scattering states at positive enerdgieare defined
with Eqg. (2.1). Since the total angular momentum of the mtil-target system
is a good quantum number, the first step consists in detenmipartial waves of
the (N + 1)-body Hamiltonian (2.4). The general partial wave functfona total
angular momentundy can be expanded over the projectile eigenstates as

PR E) = Zg Els. &) @ YWhg(R)TMT
vy / (E,&) @ Wi (R)PTMTdE. (5.1)

In this expansion, indeB runs over the bound states of the projectile. The total
angular momentund; results from the coupling of the orbital momentunof the
projectile-target relative motion with the total angulammentumJ of the projectile
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state. The relative-motion partial waves,s and @} are unknown and must be
determined. The parity is given by the product(efl)- and the parity ofg’™.
The first term of Eq. (5.1) represents the elastic and inelastannels while the
second term is associated with the breakup contributionveder, the presence of
the continuum renders this expression intractable.

The basic idea of the CDCC method is to replace wave functdt) py

WIMT (R, &) = L; [@70(8) @ Wn(R)TTMT, (5.2)

where the functionggt(€) = @V (E7y, &) represent either bound statei§ <
0) or square-integrable apprOX|mat|ons of continuum wawefions E, > 0) at
discrete energies

En = (@ (&) [Hol @ (8)). (5.3)

Approximation (5.2) resembles usual coupled-channelrsipas and can be treated
in a similar way.

In practice, two methods are available to perform the ceniin discretization. In
the “pseudostate” approach, the Sufinger equation (2.1) is solved approximately
by diagonalizing the projectile Hamiltoniaiy either within a finite basis of square-
integrable functions or in a finite region of space. In bothesa square-integrable
pseudostateg’M are obtained. This approach is simple but there is littleirabon
the obtained energies;,. Therefore, it is customary to keep only the pseudostates
with energies below some limiax.

The alternative is to separate the integral dzém Eq. (5.1) into a limited number
of small intervals, or “bins”|E,_1, Ey] which may depend od and to use in each
of them some average of the exact scattering states in thge raf energies [18, 46,
47, 48]. This “bin” method provides the square-integralasib functions

w6 = [ e nEE (5.4)

where the weight function$, may also depend od. Such states are orthogonal
because of the orthogonality of the scattering states aydate normed ¥\, is the
norm of f, over[En_1, En]. Using Eq. (5.4), their energy (5.3) is given by

1

Eh= o

/ |£(E) PEdE. (5.5)
Here also, a maximum ener@nax = En,,,, IS chosen. In practice, these basis states
are usually constructed by averaging the scattering sgaité&, & ) normalized over
the wave numbek, often within equal momentum intervals [19].

The total wave function (5.2) can be rewritten as

WIM(R, &) =R Y &M (Qr E)UT (R), (5.6)
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wherec represents the channelTn and

DIVT (R, €) = it [@(E) ©YL(QR)] T (5.7)

By inserting expansion (5.6) in the Sédinger equation (2.4) and using Eq. (5.3),
the relative wave functionsy” are given by a set of coupled equations

h2 (d®> L(L+1
{_Zu (dRz - (R,Z)) +Ec— ET} wr(R) + ZVQJZ,(R)ug,T(R) =0, (5.8)
wherek; = Eﬂn. The sum ovet is truncated at some valugnax. The sum over
the pseudo-states or bins is limited by the selected maxirenergyEmax. The
CDCC problem is therefore equivalent to a system of couptpthons where the
potentials are given by

VL (R) = (@M (Qr, ) Ver (R, €)| @3 (Qr, €)). (5.9)

This matrix element involves a multidimensional integre¢oQgr and over the in-
ternal coordinateg. In general, the potentials are expanded into multipoleseeo
sponding to the total angular momentum operdtoof the system. This may allow
an analytical treatment of angular integrals.

System (5.8) must be solved with the boundary condition

U?(R)Rjov{”z [1e(KeR)Beqy — Oc(KR)S, ] (5.10)

wherecy is the incoming channel. The asymptotic momentum in chanreadds

Ke = \/2u(Er — Ec) /R?, (5.11)

andv; = hK;/u is the corresponding velocity. In Eq. (5.10)= G; — iFc andO; =
I¢ are the incoming and outgoing Coulomb functions, respelsti{30], and the
elememSéEO of the collision matrix is the amplitude for populating cimahc from
initial channelcy.

Various methods have been developed to solve system (BR)dg., Ref. [55]).
A convenient approach is thematrix formalism [56], which is both simple and
accurate. The configuration space is divided into two regitime internal R < a)
and external R > a) regions, whera is the channel radius. In the external region,
the potential matrix defined by Eqg. (5.9) can be well appr@ted by its diagonal
Coulomb asymptotic form. Hence the wave function is replaog combinations
of Coulomb functions. In the internal region, the radial v.\'/aiunctionsugT can be
expanded over some basis [56]. A significant simplificatioouss when using La-
grange functions [57, 58, 52].

A scattering wave function verifying the initial conditi¢®.6) is then constructed
with the different partial waves. Inserting this CDCC appnoate wave function in
Eq. (4.11) enables calculating transition matrix elemeotgrds pseudostates or
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Fig. 4 "Be angular distribution after the breakup&8 on °8Ni at 25.8 MeV computed within a
CDCC model [19]. The convergence of the numerical scheme isréltest with various maximum
values of thé Be-p relative orbital momentuinin the continuum and various maximum values of
multipole orderA of the potential expansion in Eq. (5.9)< 3,A < 2 (dashed line), <3,A <3
(fullline), | <4, A <4 (dash-dotted line). Experimental data from Ref. [63]. Reted figure with
permission from Ref. [19]. Copyright (2001) by the American PbgkBociety.

bin states as a function of the collision matri@s (see Eq. (5) of Ref. [19]). Since
these transition matrix elements are obtained only at eis@nergiek;,, they must
be interpolated in order to obtain breakup cross sectioa$i ahergies.

The CDCC method has first been applied to two-body projectis an example,
Fig. 4 shows the convergence of the breakufBbn >Ni at 25.8 MeV. The con-
vergence concerns the set of partial waviesthe ’Be-p continuum of the projectile
and the number of multipoles in the expansion of the poteafipearing in matrix
elements (5.9). The validity of CDCC has been tested forkugabservables in
a comparison with three-body Faddeev calculations [25¢ agreement between
both sets of results is good except when the coupling withtrdmesfer channel is
important.

Let us also mention extensions beyond the simple two-bodyetraf the projec-
tile by allowing the core to be in an excited state [59, 60]e3énreferences present
total cross sections for the breakup ofBe target oft1Be into1°Be + n and oft°C
into 14C + n calculated by including core deformations. This extemef CDCC
known as XCDCC leads to very long computational times.

The extension of CDCC to three-body projectiles is more me¢g3, 61, 54,
21, 22]. The calculations are still much more time-consgsimce the projectile
wave functions are much more complicated (see Sec. 7). Quasdy, the cal-
culation of the potential matrix elements (5.9) raises ingoat numerical difficul-
ties. At present, converged calculations are mainly retsiri to elastic scattering
[53, 54, 61]. Most breakup calculations still involve limit bases and/or simplify-
ing assumptions [21, 22] but these limitations can be ovaf52].
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6 Breakup reactions of two-body projectiles

6.1 Two-cluster model

Most of the reaction models have been applied assuming &lwater structure of
the projectile. In this section, we specify the expressibtie internal Hamiltonian
of the projectile and the set of coordinates usually comeiién practical appli-
cations. We then illustrate the models presented in SecdZ2tenapproximations
explained in Secs. 3-5 with various applications to theystfdexotic nuclei and
nuclear astrophysics.

We consider here projectiles made up of a single fragnfeat massm; and
chargeZ;e, initially bound to a corec of massm; and chargeZ.e. The core and
fragment are assumed to have sppands;. The internal structure of these clus-
ters and of the target is usually neglected although sonuetste effects can be
simulated by the effective potentials.

Let us now particularize the general formalism (2.1)—(28}he present case.
The internal coordinate&s represent the relative coordinate=r¢ —r¢. The struc-
ture of the projectile is described by the two-body intetdamiltonian

2

Ho —
0 2Uct

+Ver(r), (6.1)

where .t = mems /mp is the reduced mass of the core-fragment pair (with=
me -+ ms), p is the momentum operator of the relative motion &pdis the potential
describing the core-fragment interaction. This potertsally includes a central
part and a spin-orbit coupling term in addition to a Coulondtential. In many
cases, the potential is deep enough to contain unphysicaldostates below the
ground state. These unphysical or forbidden states arailusetause they allow
the wave function representing the physical ground statxktibit the number of
nodes expected from the Pauli principle, as obtained in ga@pic descriptions
[64]. Although these forbidden states do not play any roléhie core-fragment
scattering, they could affect breakup properties. Howeagsrshown in Ref. [65],
their presence can be ignored because their effect is igglig

Let k be the wave vector describing the asymptotic relative nmobetween
the fragments in the projectile continuum. The correspogainergy is thug =
h2k?/2uc¢. NotationT in Eq. (2.1) corresponds here to the coupling mode, i.e. to
the total spinS of the projectile and the relative orbital momentumrhe wave
functions defined in Eq. (2.1) read

@@ (E,r) =r Y Y(Q) @ xg™Muis(k, 1), (6.2)

where xs is a spinor resulting from the coupling & ands¢. The radial func-
tions us(k,r) are normalized according t(mﬁs(k,r)|uf§(k,’,r)> = &(k—K) and the
wave functionsgd”(E,r) according to(g2"(E,r)|@ld" (E',r)) = (2E/K)S(E —
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E")d35 Oum OisOsg. The notatiorizg in Eq. (2.2) represents the directidpy of k
and the spin orientationg, andv; of the core and fragment spigs ands;. Rela-
tion (2.3) between continuum eigenstatesigfbecomes

_ 1
Do (E1) = 1 2 (SSrvevi SV (ISM-vvIMINT (@0 ¢S (E.r) (6:3)
|

with the property(gof(z;)vcvf (E, r)|(pé?vév% (E',r)) = 0(k —k') &y 0y, v; - Notice that

notationst and |A<E are model dependent and would be quite different if a tensor
interaction were included ;. A detailed description of the simple cage=s; =
0 can be found in Ref. [27].

Fig. 5 Jacobi set of coordinates:
r is the projectile internal coordinate, and
R =Db+ZZ is the target-projectile coordinate.

Within this framework the description of the reaction redsi¢to the resolution of
a three-body Sclidinger equation (2.4) that reads, in the Jacobi set of doatels
illustrated in Fig. 5,

2
|:§“ + HO+VPT(r7R):| LIJ(I’,R) = ETW(r7R)' (64)

The projectile-target interaction (2.5) then reads

m
Ver(R,r) = Ver (R— ff) +Vir <R+ mcf) , (6.5)
mp mp

whereVct andV;t are optical potentials that simulate the core-target aagifrent-
target interactions, respectively.

For a two-body projectile, the DEA breakup cross sectiohfbecomes Eq. (46)
of Ref. [14]. Integration ovef2, and summation over. andv; lead to the energy
and angular distribution of the fragments in tBel c.m. rest frame. With the nor-
malization of the positive-energy states given above aitisg14]

dopy  Her KK’
dEdQ ﬁ2k230+1g0|§,,

@ 2
/o bdbdu- | (ab)Sa(b)| (6.6)
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whereiﬁ?&, are coefficients of a partial-wave expansion of the breakuplitude
(4.14) (see Eq. (44) of Ref. [14]). Breakup cross sectioesnaainly expressed as
energy distributionsloy,,/dE as a function of the energy of the relative motion be-
tween the fragments. They are obtained by integrating ®:6) Q. However, most
experimental data concern angular distributions or distions of the core momen-
tum in the laboratory frame. Note that, in addition, theimatresults should be
convoluted with the experimental acceptance and resolufichange of frame for
the theoretical results is thus in general not sufficientltmaa fruitful comparison
with experiment.

6.2 Two-body breakup of exotic nuclei

A first information that one can extract from experiment cems the separation
energy of the halo neutrons. Indeed, the shape of the breakisp section and, in
particular, its maximum are sensitive to this energy as @shown at first order of
perturbation theory with rather simple models based on $igengtotic behaviour of
the halo wave function [66]. An example is given by the brgaéit°C on lead at 67
MeV/nucleon [67, 4]. In Fig. 6, a semi-classical calculatiaith a'8C + n two-body
model shows that the shape of the experimental data is mutdr beproduced if
the binding energy of°C is raised from the recommended value 0.53 MeV to 0.65
MeV [35],

*C +7%pp —>*C +n + *pb (@
3 Epeam = 67 MeV/nucleon b
% -=-=-- Coul. dynamical ]
- N Coul. + Nucl. dynamical
g NN ~Nucl. dynamical
y A f
g PN ,
SSeal — *
1.0 15 2.0 25 3.0
E. [MeV]
1.8 T T T T
16 C +2®pb —> *C + n + **Pb (b) 1
3 ig [ E,eam = 67 MeV/nucleon ]
s - ---- Coul. dynamical
S 10 F .
_os | Coul. + Nucl. dynamical
ut ~—=Nucl. dynamical
5 06
2 04 L.
o2y TR
00 i i L I ==
0.0 0.5 1.0 15 2.0 25 3.0

Fig. 6 Breakup of!°C on Pb at 67 MeV/nucleon: semi-classical cross sections for tvierelift
binding energies of the projectile: 0.53 MeV (upper paneljl .65 MeV (lower panel) [35].
Experimental data from Ref. [67]. Reprinted figure with perntesirom Ref. [35]. Copyright
(2001) by the American Physical Society.
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Fig. 7 Breakup of*'Be on a C target at 67 MeV/nucleon: calculation performed imai-s#assical
model [70]. Experimental data from Ref. [36].

Indirect information can also be obtained on the spin of tfegd state of the
halo nucleus when few rather different orbital momenta aobable. The magni-
tude of the cross section is very sensitive to the orbital wtoml of the ground
state. A study of the one-neutron removal cross section ftide described in a
simple 3°Ne + n model allows to rule out the predictiof - of the naive shell
model and to confirm the value’3™ resulting from a shell inversion [68, 69, 4].

Nuclear-induced two-body breakup on light targets is amrggting tool to
observe resonances of a halo nucleus and to assess somaer gfrtiperties. In
Fig. 7 are displayed experimental data on ti8e breakup on a C target at
67 MeV/nucleon [36, 4]. These data present a broad bump hedotation of a
known resonance with an assumed spin-parjt2's The bump width is however
broader than the known resonance width. A semi-classidaliiggion (dashed line)
based on &°Be + n model reproduces the shape of the data very well aftendo-
tion with the experimental resolution (full line) [70]. Meover thed5/2 component
of the theoretical cross section (dotted line) resonatéscanfirms the 2™ attri-
bution.

Breakup reactions are also used to infer the spectroscagiorfof the dominant
configuration in the core+nucleon structure of halo nuc2#, [41]. Various theo-
retical studies have been performed to assess the seysitilireakup calculations
to the projectile description [71, 72]. These studies hawealed that the breakup
cross sections not only depend on the initial bound statbeptojectile, but are
also sensitive to the description of its continuum [71]. Blrer it has been shown
that, for loosely-bound projectiles, only the tail of thewsgunction is probed in
the breakup process and not its whole range [72, 73]. Theskesttherefore sug-
gest that one should proceed with caution when extractiegtapscopic factors of
weakly-bound nuclei from breakup measurements, as otheitste properties, like
the continuum description, may hinder that extraction.

As mentioned earlier, many Coulomb-breakup experiments baen analyzed
within the framework of the first order of the perturbatioretiny (see Sec. 3.3).
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Fig. 8 Influence of the couplings inside the continuum [29]. Time atioh of the numerical
breakup probability per energy unit (3.7) f&tBe impinging on Pb at about 45 MeV/nucleon
for a1%Be-n relative energf = 1.5 MeV and an impact parameter= 100 fm. Reprinted figure
with permission from Ref. [29]. Copyright (2005) by the Amerid@lnysical Society.

In order to assess the validity of that approximation, wasi@uthors have com-
pared perturbation calculations to numerical resolutiohghe time-dependent
Schibdinger equation [74, 75, 76, 29]. These studies have shimatnih many cases,
breakup cannot be modelled as a one-step process from tta tund state to-
wards the continuum and that higher-order effects shouthsidered for a reliable
description of the reaction. In particular, they indicdtattsignificant couplings are
at play inside the continuum. To illustrate this, Fig. 8 dhys the time evolution of
the breakup probability per energy unit (3.7) for the cadlisof 1'Be on Pb at about
45 MeV/nucleon computed within the time-depend®Bte + n model of Ref. [11].
The obtained value is divided by its evaluation at the firsteo of the perturba-
tion theory (3.15) at — +oo. After a sharp increase at the time of closest approach
t = 0, the breakup probability (full line) oscillates and thealslizes at a value
which differs by about 5% from its first-order estimate. Altlgh the total breakup
probability becomes stable, its partial-wave composisth varies: the dominant
p wave contribution (dash-dotted line) is depleted towahdsst(dotted line) and
especiallyd (dashed line) ones. This signals couplings inside the coatn, which
may affect the evaluation of breakup observables [29, 7& WM see in the next
section that it may perturb the analysis of breakup reastajrastrophysical interest
[77,78, 79, 80].

6.3 Application to nuclear astrophysics

Radiative-capture reactions are a crucial ingredientédétermination of the reac-
tion rates in nuclear astrophysics. However the difficuftyheir measurement and,
in some cases, the scatter of the results has raised initefedtrect methods where



Breakup reaction models for two- and three-cluster projestil 27

the time-reversed reaction is simulated by virtual photionthe Coulomb field of
a heavy nucleus [81, 82]. The radiative-capture crossaectn be extracted from
breakup cross sections if one assumes that the dissociatilue to E1 virtual pho-
tons and occurs in a single step. A typical example is' Be(py)®B reaction which
has been studied with the breakup®@f into "Be+p on heavy targets at different
energies [83, 84, 85, 86, 63, 87, 88, 89].

Though appealing, the breakup method also faces a numbéficaidies. First,
while many reactions are dominated by an E1 transition, andf2ribution to the
breakup cross section may not be negligible [74]. Secorghdrniorder effects, i.e.
transitions from the initial bound state into the continutimough several steps
may not be negligible [74, 75, 76, 29]. Finally, the nucleateractions between
the projectile and the target may interfere with the Coulantbraction [35, 11].
Therefore elaborate reaction theories must be used topnetethe experimental
data.
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Fig. 9 8B Coulomb breakup on Pb at 44 MeV/nucleon. Parallel-momentgtmilition of the
"Be core corresponding to various angular cuts calculatedDEA model [78]. (a) Influence of
nuclear and Coulomb interactions on the calculation. (bg¢&#f of the various multipoles of the
Coulomb interaction. (c) Role of the higher-order effectsti@ calculation. Experimental data
from Ref. [85].

The experiments on the breakup®® have been analyzed in a number of papers
[19, 90, 91, 92, 77, 78]. Figure 9 shows a comparison betwezaxperimental data
of Ref. [85] and DEA calculations [78]. Without adjustabkrameters, the calcula-
tions (full lines) fairly reproduce the asymmetry exhikbitey the data which could
not be well explained in earlier works [90, 92]. The threeglarof Fig. 9 illustrate
the influence of various approximations upon the calcutafi8]. The left panel
illustrates that nucled?-T interactions can be neglected when data are restricted to
forward angles. The central panel confronts a dynamicalutation including only
the dipole term of the Coulomb interaction (dashed linestht full calculation,
indicating that higher multipoles have a significant effeotthe breakup process.
The right panel compares the dynamical calculation to itt-firder approxima-
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Fig. 10 Breakup of'>C on Pb at 68 MeV/nucleon. The experimental energy distributieasured
for two scattering-angle cuts [99] is confronted to the tinepehdent calculation of Ref. [80].
Reprinted figure with permission from Ref. [80]. Copyright (20®y the American Physical So-
ciety.

tion (dot-dashed lines), emphasizing the necessity taidehigher-order effects
in breakup calculations. These results show that some oaskamptions of the
breakup method [81, 82] are not valid. It is therefore diffica infer the accuracy
of the Sfactors extracted from breakup cross sections.

An interesting problem was raised by tH(n,y)1°C capture reaction. The mea-
sured cross sections for the Coulomb breakup®6f [93, 94] provided arS factor
which disagreed with direct measurements [95, 96]. Moredheoretical analyses
indicated that the Coulomb-breakup cross sections wemnsistent with informa-
tion obtained from'>F by charge symmetry and with microscopic models [97]. A
new measurement [98, 99] has obtained breakup cross settiatfully agree with
properties of the mirror system and with theory [79, 80]. 3d¢heoretical analyses
show that a fully dynamical calculation, taking proper aotioof higher-order ef-
fects is necessary to correctly analyze the breakup measuts, in agreement with
the analysis of théB Coulomb breakup of Ref. [78]. They also indicate that idelu
ing both Coulomb and nuclear interactions as well as theériarences is neces-
sary to correctly reproduce data at large scattering angiiehis way a very good
agreement can be obtained between direct and indirect measats of th&factor.
Fig. 10 displays the breakup cross sectiof®@f on Pb measured at 68 MeV/nucleon
[99] and its comparison to the theoretical calculation & time-dependent model
of Ref. [80]. The dotted lines show the direct results of takeglation, while the full
lines correspond to these results folded by the experirhegalution and scaled to
the data.
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7 Breakup reactions of three-body projectiles

7.1 Three-cluster model of projectile

Let us consider a system of three particles, the core withdinater ., masan. and
chargeZ.e and two fragments with coordinateg andr,, massesm andny, and
chargesZ;e andZ,e. The projectile mass ig, = mc + myo with M2 = my + mp.
After removal of the c.m. kinetic energit.m., the three-body Hamiltonian of this
system in Eq. (2.1) can be written as

2 2 2
Ho = %4—2%1 %-&—Vcl-i—vcz-i-vlz—-rc.m., (7.1)
whereVj; is an effective potential between particleand j (i, j = c,1,2). We as-
sume that these interactions involve central, spin-onit @oulomb terms. These
potentials may contain unphysical bound states below tectuster ground state
to simulate effects of the Pauli principle. These forbiddtates must be eliminated
from the three-body wave functions either with pseudop@aén[100] or with su-
persymmetric transformations [101, 102].

Various resolution techniques can be considered for oioigiihe wave functions
of a three-body projectile. A first option is to describe tpisjectile with an expan-
sion in Gaussian functions depending on Jacobi coordifitdds 31, 21]. For bound
states, the wave functions can be obtained from a varidtzateulation. Well es-
tablished techniques allow systematic calculations ohta&ix elements [103, 31].
Calculations are then simpler when the interactions areessed in terms of Gaus-
sians. At negative energies, this type of expansion may Yemeave convergence
problems in the description of extended halos. At positivergies, it is convenient
to obtain pseudostates but not convenient to obtain stajtstates.

Let us describe another efficient tool to deal with threeytmgstems, the formal-
ism of hyperspherical coordinates. It is especially indérgy when the two-cluster
subsystems are unbound so that only a three-body continuists.eNotationé of
Sec. 2 represents here five angular variables and one catediith the dimension
of a length, the hyperradius (see Refs. [104, 105, 106] foaidg. Four angular
variables correspond to physical angles and the fifth oneléded to a ratio of co-
ordinates defined below in Eq. (7.6). The wave functions apaweded in series of
hyperspherical harmonics, i.e. a well known complete setiifonormal functions
of the five angular variables. The coefficients are functiohthe hyperradius and
can be obtained from variational calculations. Scattesiages can be obtained from
extensions of th& matrix theory [107, 56]. A drawback of this method is that the
hyperspherical expansion may converge rather slowly.

With the dimensionless reduced maspgs?) = McMy2/MpMmy and ti2 = My
/mi2my wheremy is the nucleon mass for example, the internal coordinétase
scaled Jacobi coordinates defined as

X= Va2 — 1) (7.2)
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and

m1r1+mzrz) (7.3)

Y= /Hc12 (fc - o

i.e., up to a scaling factor, the relative coordinate betwtbe clusters 1 and 2 and the
relative coordinate of their centre of mass with respech&dore. With Laplacians
Ay andAy with respect toc andy, the Hamiltonian (7.1) of this three-body projectile
can be rewritten as
ﬁ2
Ho = — 2 (Ax+Ay) +Ve1 +Ve2 + Vio. (7.4)

To investigate the breakup cross sections for this systeemeed wave functions at
both positive and negative energies.

In the notation of Refs. [104, 106], the hyperradmsnd hyperangler are de-
fined as

p=VxX2+y2 (7.5)
and
a = arctarfy/x). (7.6)

The hyperangler and the orientation€y and Qy of x andy provide a set of five
angles collectively denoted a@3s. The volume element idxdy = p°dpdQs with
dQs = sirfa cog adadQ,dQy.

The hyperspherical harmonics form an orthonormal basisimnérifies a closure
relation. The purely spatial hyperspherical harmonicsl (@84, 106]

D (Qs) = ¥ (@) ¥, (20 @Y, (@)™
whereK is the hypermomentum gquantum numbgandly are the orbital quantum
numbers associated withandy, andL is the quantum number of total orbital mo-
mentum. The functioneﬁLXIy depending on the hyperangteare defined in Egs. (9)
and (10) of Ref. [106]. The hyperspherical harmonics inirg\spin are defined by

(7.7)

JM Ixly M
Y (25) = [@KL (2s)@Xs| (7.8)

wherexsis a spinor corresponding to a total sj@iof the three clusters. Intermediate
couplings as, for example, the total sgin of the fragments are not displayed for
simplicity. Indexy stands for(lylyLS).

A partial wave functionp’ is a solution of the Sckidinger equation (2.1) asso-
ciated with the three-body Hamiltonian (7.4) at enegyit can be expanded as

@(E,p,Qs) = pfs/z;xf«(E,p) 2R (Qs), (7.9)
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For bound statedH < 0), the hyperradial wave functions decrease asymptoyiesl|

Xik (E.p) ~_exp(—y/2m\[E|/Fp). (7.10)

Index T of Eq. (2.1) is irrelevant for bound states within the présessumptions.
The normalization of the scattering statésx 0) is fixed by their asymptotic form.
Several choices are possible. The asymptotic form of thetgidial scattering wave
function is for instance given by [20]

Xy (yoker) (- P) pjwiK“H(Z”/k)s/z

% [Hi, 2(kP) Sy Bk — Uy vk, Hic 2 (k) (7.11)

wherek = /2myE /R? is the wave number and,, andH, are incoming and out-
going functions [108, 109, 107]. In the neutral case, i.eemvhblusters 1 and 2 are
neutrons, these functions redig (x) = =i (7x/2)Y/? [J¢ (x) =Yk (X)] whereJk and

Yk are Bessel functions of first and second kind, respecti\Tdrlg/W/ave functions
G%Jy“u/,le) (E, p, Qs) are normalized according l(m(’nyw) (E,p, Q5)|¢’(Jyg}<g)) (E',p,Qs))

= 2E(2m/k)®5(E — E") 833 dumr Oy,,y, k., - IN the charged case, expression (7.11)
is only an approximation because the asymptotic form of thal@nb interaction

is not diagonal in hyperspherical coordinates [110, 107k indicesy,,K., where

Yo = (Ixw, lyw, Lw, S) denote the partial entrance channels for this solutionsEat-
tering states, index of Eq. (2.1) is necessary and rather complicated: it repitsse
the entrance channg},K,. The asymptotic behaviour of a given partial wave de-
pends on the collision matrix. For real interactions, thiision matrix U’ of each
partial wavelJ is unitary and symmetric. For three-body scattering, ifed from
two-body collision matrices in an important aspect: its éision is infinite since
the particles can share the angular momentum in an infinitywayfs. In practical
calculations, its dimension depends on the number of hyperamta included in
the calculation, limited to a maximui value, denoted a$max.

The three-body final scattering states are described asjicgdty with two rel-
ative wave vectors. Letc, k1, k2 be the wave vectors of the core and fragments in
the projectile rest frame. The asymptotic relative motiaresdefined by the relative
wave vector of the neutrons

ko1 = /Higk, = K2~ ek (7.12)
M2
and the relative wave vector of the core with respect to thereeof mass of the
fragments

Muoke —me(k1+k
Ke(12) = /Hoagky = —— mP( 1tka) (7.13)
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The total internal energy of the projectile with respectte three-particle threshold
is given by

h? h2

E:mkzzm(k§+k§). (7.14)
The orientationg2y, of kyx and Q, of ky and the raticoy = arctaryy/xx) form the
wave vector hyperangleQs,. The hyperanglex, controls the way the projectile
energyE is shared among the fragments. For example, the energy aktatve
motion between fragments 1 and Fisos ay. In the scattering states (2.2), notation
ks thus represent®s, and the final orientations, vi, v, of the three spins. It is
convenient to replace these orientations by the total spif the fragments, the
total spinSand its projectiorv. Relation (2.3) is then given by

Gy (E.P, Qs) = (2n)*3% S (LeSM-vv[IM)

IxwlywlwKae

X (Qs) A G (2P, Qs). (7.15)
where 7" is the time-reversal operator. These functions are nomealhvith respect
to 5(kX - k;)5(ky - k§)5ss5vw-

The hyperradial wave functiorpq}K are to be determined from the Sékinger
equation (2.1). The parityt = (—1)X of the three-body relative motion restricts
the sum oveK to even or odd values. Rigorously, the summation géiin (7.9)
should contain an infinite number of terms. In practice, &éxigansion is limited by
the truncation valu&max. Thely andly values are limited b+ 1y < K < Kpax. For
weakly-bound and scattering states, it is well known thatdbnvergence is rather
slow and that larg&max Values must be used.

The functionsxf,K are derived from a set of coupled differential equation$[10
107]

{_ﬁz ((;I.;_(K+3/2)(K+5/2)>_E} Y(E.p)

2my P2
* VZK/V;K%(P)X;J/K/(E,p) =0, (7.16)
where the potentials matrix elements are defined as

3
Vi (P) = (ZpR(Qs)] S Vij(ry —ri) %R (2s)). (7.17)

i>]=1

For bound states, approximate solutions can be obtainddamiexpansion on a fi-
nite square-integrable basis. However, using such a barssséttering states raises
problems since they do not vanish at infinity. Their asymptéirm requires a
proper treatment. This technical difficulty can be solvethini theR-matrix theory



Breakup reaction models for two- and three-cluster projestil 33

[111, 107, 56] which allows matching a variational functiover a finite interval
with the correct asymptotic solutions of the Satlinger equation.

In the R-matrix approach, both bound and scattering hyperradialewfanc-
tions are approximated over the internal region by an exparen a set of square-
integrable variational functions defined ovéra]. Lagrange-mesh basis functions
are quite efficient for describing two-body bound and scattestates [57, 112,
113]. The main advantage of this technique is to stronglypifinthe calculation
of matrix elements (7.17) without loss of accuracy if the &aapproximation con-
sistent with the mesh is used [106]. This method was extetalfdtee-body bound
states in Ref. [106] and to three-body scattering statesein [R07]. We refer the
reader to those references for details.

7.2 Dipole strength distribution

The E1 strength distribution for transitions from the grdiwstate to the continuum
is a property of the projectile that can be extracted fromakug experiments un-
der some simplifying assumptions for cases where E1 is damif#]. In the hy-

perspherical coordinate system, the multipole operatesgaven by Eq. (B2) of
Ref. [106]. For example, in two-neutron halo nuclei, the E#rggth is given by

ME(p, Q) — o7,z PET

Mp /He(12)

The E1 transition strength (3.16) from the ground state gatiee energyEg with
total angular momenturdy to the continuum is given by

Y (Qy). (7.18)

dB(El) 4

3
mN 2 /
- ) E dQ
dE 2J0+1(ﬁ2) A%l; .

2
(950 (.. Q5)\. 4 (P, 0s)|9*°(Eo, p, 05)) [ . (7.19)

The E1 strength presents the advantage that it can also tidateld in various
ways without constructing the complicated three-bodytedaly states [114]. Most
model calculations of the E1 strength fife indicate a concentration of strength
at low energie€ [20, 22, 108, 115, 116, 117]. The origin of this low-energyrip
remains unclear and can sometimes be attributed to a tlueefesonance [108,
20]. The existence of such a bump does not agree with the G&[HEB].

This puzzling problem deserves further studies. A firsteordescription of
Coulomb breakup foPHe is probably not very accurate (see Sec. 7.3), even at
the energies of the GSI experiment [118]. Extracting the tedngth from breakup
measurement is very difficult and not without ambiguitiebisTis exemplified by
the variety of experimental results obtained for the brgaitheLi two-neutron
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halo nucleus. As shown in Fig. 11, most early experiment,[120, 121] did not
display a significant strength at low energies in contraaiictvith data from the
more recent RIKEN experiment [122, 4].
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Fig. 11 Experimental E1 strength for the breakup of #iki two-neutron halo nucleus: Ref. [122]
(full circles), Ref. [119] (dash-dotted line), Ref. [120] ¢logram), Ref. [121] (dashed line).
Reprinted figure with permission from Ref. [122]. Copyright B) by the American Physical
Society.

7.3 The CCE approximation for three-body projectiles

We consider a collision between a three-body projectile @amstiuctureless target
with massmr and charge&Zye [20]. The breakup reaction is described by the four-
body Schoédinger equation (2.4) whetdy is given by Eq. (7.4). The effective po-
tential (2.5) between projectile and target is defined as

My Yy me Yy m X
Ver(R,X,Y) =Ver | R+ —= Vit | R= = _ 1z
P Y) °r ( mMp I1c<12)> H ( Mp /He12) M2 \/le)

m Yy m X
+Vor | R—— + — . 7.20
T ( Mp /He12) M2 \/Mz) ( )

In this expression, each interactivfy between a constituent of the projectile and
the target is simulated by a complex optical potential (idadg a possible Coulomb
interaction taking the cluster extension into account).

In order to obtain breakup cross sections, one must ca&tansition matrix
elements for the breakup into three fragments. The tramsitiatrix elements (4.11)
read
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Thi = (Maobeaz) ¥4
x (€ Reb s, (E.p. Q) Ver (R Y)W (R, p, Q5))  (7.21)

KSV
for four-body breakup. The factc(wlguc(lz))*”/“ appears when the integration is
performed in coordinatep and Qs and the bound-state wave function (7.9) is
normed in this coordinate system rather than in Jacobi d¢oatels [20]. At the
eikonal approximation, the exact scattering wave functiéin Eq. (7.21) is re-
placed by its approximation given by Egs. (4.1) and (4.1Te Transition matrix
element (7.21) is then obtained following Eq. (4.13) as

i = ifiv / dbe @05 (E, 0gy b). (7.22)
with the eikonal breakup amplitude (4.14), that reads h20¢ [
S (E, Qs b) = (H12be(12) ¥4
X (@5, (E. p, Q5) [€XCS) | goMo(Eg p, Os)). (7.23)
Following Eq. (7.20), the eikonal phase shyfdefined in Eq. (4.18) is obtained as

X = XcT + X171 + XoT- (7.24)

It depends on the transverse plaf R as well as on the transverse pastsands,
of the scaled Jacobi coordinatesndy.

¢From the transition matrix elements (7.21), various cezsgions can be de-
rived. The differential cross section (4.15) with respexthe eight independent
variablesQ, ka1, K¢(12) reads in the c.m. frame

do 1 1 u 2 K’ )
- 2w\ K Tril . 7.25
dekZldkC(12) 2J0+l 41712 <ﬁ2> K o 0| fl| ( )

The physical wave numbeks; andk1,) are proportional td andky and can thus
be expressed frork and ay [20]. Integrating Eq. (7.25) over all anglé® and Qs
leads to the energy distribution cross sectilary dE.

The CCE approximation has allowed calculating varioustigleend breakup
cross sections fotHe on298pb by treating®He as ana + n + n three-body sys-
tem [20]. In Fig. 12, the contribution from the different patwaves is displayed at
240 MeV/nucleon. As expected for a transition from'aground state, thd = 1~
component is dominant. However tie= 0™ andJ = 2+ components are not neg-
ligible. The known Z resonance at 0.82 MeV is clearly visible in the total cross
section. Extracting an E1 strength from such data is thugasy, even at this high
energy.

A comparison of the CCE cross section (full line) with GSlal§t18] is pre-
sented in Fig. 13. The disagreement already discussedd@ ttstrength in Sec. 7.2
is clearly visible. The data do not show as large a crossaeeti low energies as
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Fig. 12 CCE calculation of the total andQ1~, 2* partial cross sections §He breakup 03°Pb
at 240 MeV/nucleon [20]. Reprinted figure with permission froef.R20]. Copyright (2009) by
the American Physical Society.

the theory. It is not even clear whether thé Bsonance is visible in these data.
Nevertheless the agreement is reasonably good above 2 MeY,, that no param-
eter is fitted to this experiment in the model calculationeTh contribution is
calculated with two different ways of eliminating the ungigal bound states in the
o + n potentials (dashed and dotted lines). The low-energk peaesponds to a
broad resonance in the lowest three-body phase shift. Further experimental and
theoretical works are needed to explain this discrepancy.
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Fig. 13 Comparison [20] between the total CCE cross section (full lifiéHe breakup oR%8Pb at
240 MeV/nucleon with the experimental data of Ref. [118]. Thepartial cross sections calculated
with two types of elimination of forbidden states (supersymmaetashed line, projection: dotted
line) are also displayed. Reprinted figure with permission frorh R8]. Copyright (2009) by the
American Physical Society.
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The advantage of the relative simplicity of the CCE is thatows types of an-
gular differential cross sections can be calculated. Exesnpf double differential
cross sections showing various energy repartitions betvlee fragments are pre-
sented in Fig. 7 of Ref. [20].

7.4 The CDCC approximation for three-body projectiles

The CDCC method has also been extended to three-body plegedh the first
works [53, 61, 54], the pseudostate discretization was @dopndeed, it avoids
the difficult construction of scattering states and allowseacurate treatment using
expansions involving Gaussians with various widths. Omrlgently was the con-
struction of bins attempted [22]. The difficulty of the cdktion restricted the first
applications to elastic scattering.

The differential cross section for elastic scatterindlde on!?C at 229.8 MeV
is displayed in Fig. 14. A single-channel calculation negitey breakup channels
(dotted line) overestimates the experimental data of Re&f3]. The shape of the
data is very well reproduced by introducing @nd 2" pseudochannels and taking
account of all couplings (full line).

10
x
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3
10°
®He+'°C at 229.8 MeV
o (Ng=1.0, N=0.3)
;f ------- no coupling
—— 0" and 2" coupling
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Oc.m. [ded]

Fig. 14 Ratios of differential cross sections obtained with CDCC t¢herford cross section for
the elastic scattering dfHe on12C at 229.8 MeV without and with coupling to breakup chan-
nels [53]. Experimental data from Ref. [123]. Reprinted fegwith permission from Ref. [53].
Copyright (2004) by the American Physical Society.
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In Fig. 15 is displayed a comparison between calculatior®Hef elastic scat-
tering on2%9Bi at 22.5 MeV involving two-cluster (three-body, dashedel and
three-cluster (four-body, full line) descriptions &fle. A significant difference ap-
pears between calculations neglecting breakup channadsc@upling”) and those
including it (“full coupling”). The agreement with experantal data [124, 125]
seems better within the four-body treatment including treakup channels.

®He+*"Bi at 22.5 MeV |

1 i N\ Four-body CDCC _
vy T (no coupling)

Three—body cpcc |
"7 (no coupling) E

3
L A\

Four-body CDCC %
- (full coupling) 3

- Three-body CDCC
0 -~ I(fuII cogpling)l

| ey

0 50 100 150
. m. [ded]

Fig. 15 Ratios of differential cross sections to Rutherford cross sedtr the elastic scattering of
6He on?%%Bi at 22.5 MeV: comparison of three- and four-body CDCC withand with coupling to
breakup channels [61]. Experimental data from Refs. [124]. R&printed figure with permission
from Ref. [61]. Copyright (2006) by the American Physical Sigi

Another type of basis functions, based on deformed osgilahas been used to
construct®He pseudostates in Ref. [54]. This technique also alloweesaription
of elastic scattering explicitly including breakup chalsnén Fig. 16, the elastic
scattering ofHe on®4Zn at 13.6 MeV is compared with experimental data from
Ref. [126]. These results show that including partial wawetoJ = 2 and taking
coupling into account (full line) allow a good agreementwdata (dots). Here also,
the calculation omitting the coupling to the continuum (g line) disagrees with
the experimental data. The same basis has recently beemestto the construction
of bins [22].

While, for three-body projectiles, the effect of breakup mhels has been in-
cluded for some time in studies of elastic scattering, therd@nation of breakup
cross sections is just starting. Some preliminary calgutathave been published
recently. Some of them are not fully converged [22] or ineodimplifying assump-
tions [21]. A recent CDCC calculation [62] provides a goodeggnent with experi-
ment [118] for’He breakup od%C. For®He breakup 0R%8Pb, it does not agree well
with experiment and is about a factor of two lower than the G&4tilts of Ref. [20]
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displayed in Fig. 13. The reasons of these discrepancieméaget understood. Nev-
ertheless, the CDCC method should allow a precise treatofi¢mtee-body breakup
in a near future.

T T T

L I\ |

experimental dat
1 —— one channel =

- n=2¢g =7 MeV
I — n=4g, =6 MeV| |
0.8 - n=6g =6MeV| -
s i

p=l
o- 0.6 |
© - ‘\ 4
\
\
0.4 \ —
\
L \ 4
\
0.2\ \ |
\
AN
L N ]
~ ~<
0 | | | Tr-~ T
0 30 60 90 120 150 180

Fig. 16 Ratios of differential cross sections to Rutherford cross sadbr the elastic scattering
of 6He on®Zn at 13.6 MeV: comparison of CDCC calculations with variousidaizes and max-
imum energieEmax With a single-channel calculation [54]. Experimental datarfrRef. [126].
Reprinted figure with permission from Ref. [54]. Copyright (83)®y the American Physical So-
ciety.

8 Perspectives

The theory of breakup reactions offers several accuraterelativistic approxima-

tions covering a broad energy range, that allow an inteatiat of various exper-
iments. A good accuracy is reached for some time for the lugak two-body

projectiles and is in view for the breakup of three-body potiles. Good results
can already be obtained with the simplest models of prdgestructure, provided
that the value of the projectile binding energy is corredtisTsuggests that only
limited spectroscopic information can be extracted from ¢bmparison of theory
and experiment. This is partly due to the fact that a comparisf experimental

data with results of calculations usually requires congtéd convolutions. Nev-
ertheless, breakup has proved to be an efficient alternptiviee to measure the
separation energies of bound states of exotic nuclei. Wheorpeed on light tar-

gets, it also provides information about the location andtlwiof resonances of
such nuclei. Moreover, some information about the quantumbers of the ground
state of exotic nuclei can be assessed from breakup measoi®nThe extraction
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of spectroscopic factors, however, is very sensitive toabteuracy of the absolute
normalization of experiments. Moreover, the sensitivityooeakup calculations to
the description of the continuum of the projectile indicatbat these extractions
should be performed with caution. In addition, Coulomb krgmon heavy targets
is also used to measure astrophysgfctors. However the accuracy of this indirect
technique is uncertain.

Several methods can now be applied to the breakup of thrtesteclprojectiles
(CDCC method, eikonal approximation, ...). They will allstudying coincidence
observables that are more difficult to measure but lesstseng the absolute nor-
malization of cross sections. They should also allow thelystf correlations be-
tween the emitted fragments. In this respect, efforts shtel made at the inter-
face between theory and experiment to facilitate the t@nsdtion of the results
of model calculations into quantities comparable with tlaadtaking account of
the resolution and acceptances of the detection setup.€xthéelretical side, three-
cluster bound states can be obtained with good accuracheuifficult treatment
of the three-body continuum still requires progress.

Attempts to improve the model description of the projechieincluding ex-
cited states of the clusters composing the projectile htargesl with the extended
CDCC. In the future, one can expect a further improvementdiygia microscopic
description of the projectile within the microscopic clistmodel [127, 128, 129],
involving effective nucleon-nucleon forces and full aptismetrization. Improve-
ments in the projectile description should first concernrzbstates. This should
reduce the uncertainties appearing in non-microscopisteiunodels because of
the effective forces between the clusters in the projeetild between the clusters
and the target. Using fully antisymmetrized wave functionbreakup calculations
seems to be within reach for two-cluster projectiles. Tipigraach should open the
way towards ab initio descriptions of the projectile basedudly realistic nucleon-
nucleon forces.

All the reaction descriptions presented in this review Ha&en developed within
non-relativistic quantum mechanics. However, relatiwistfects may be significant
and affect the analysis of breakup data, even at intermediatrgies of a few tens
of MeV/nucleon. Several authors have started analyzinggtledfects and have pro-
posed ways to take them into account in time-dependent [A30PCC [131, 132]
frameworks. Since some of the new facilities of radioactoure beams will operate
at high energies (a few hundreds of MeV/nucleon), thesecisffeill have to be
better understood and incorporated in state-of-the-ardtien models.
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