Breakup Project

Pierre Capel

8-12 August 2022

Reaction Project

During the exercise sessions, you'll be computing and analysing breakup cross sections of halo nuclei

- You'll be using the Fortran code Chaconne.f (see Indico) That code implements the Coulomb Corrected Eikonal (CCE)
 - runs fast (a few minutes at most)
 - accounts for the P-T interaction at all orders
 - includes a 1st order correction of the Coulomb interaction
- You pick one (or two, or all...) of the reactions
 - ▶ ${}^{11}\text{Be} + \text{Pb} \rightarrow {}^{10}\text{Be} + \text{n} + \text{Pb} @69A \text{ MeV}$
 - [Fukuda et al. PRC 70, 054606 (2004)]
 - $\bullet^{11}\text{Be} + \text{C} \rightarrow {}^{10}\text{Be} + \text{n} + \text{C} @67A \text{ MeV}$

[Fukuda et al. PRC 70, 054606 (2004)]

► ${}^{15}\text{C} + \text{Pb} \rightarrow {}^{15}\text{C} + \text{n} + \text{Pb} @68A \text{ MeV}$

[Nakamura et al. PRC 79, 035805 (2009)]

► ${}^{19}\text{C} + \text{Pb} \rightarrow {}^{19}\text{C} + \text{n} + \text{Pb} @67A \text{ MeV}$

[Nakamura et al. PRL 83, 1112 (1999)]

Goal Project

• Study the reaction :

- develop a V_{cf} interaction (within Halo EFT) (use the code Boscos.f to fit the interaction, see Indico)
- find suitable optical potentials V_{cT} and V_{fT}
- check the convergence
- compare to existing data (available on Indico)
 There are energy and angular distributions
 Don't forget to account for the experimental resolution
- analyse the agreement/differences with experiment
- Work in groups of 4 (make sure that one of you has a computer to run the code)
- Friday morning, present the results of your study to the others
- This afternoon session is to decide on the system and set V_{cf}

Resources on Indico

- Codes Boscos.f (structure) and Chaconne.f (reaction) with short user's manuals and examples of input files (*.dat files) and output files (*.dep and *.sdE files)
- Experimental data (*.dat and *.rtf files)
 - projectile and target are self-explanatory
 - erel_*.* are energy distributions $(d\sigma_{\rm bu}/dE)$ obtained after integration over angular range
 - angle_*.* are angular distributions $(d\sigma_{\rm bu}/d\Omega)$ obtained after integration over a definite energy range

Details about the beam energy, experimental resolution etc. can be found in the original articles, which are provided in that same folder.