Neutrino Interactions

Kate Scholberg, Duke University

MPA Summer School 2021:

Fundamental Interactions in Particle, Hadron and Nuclear Physics

September 2021

Outline of Lecture Topics

Many interesting sources!

Will consider **solar** and **supernova** neutrinos

Detecting solar neutrinos

Electron flavor neutrinos generated in solar fusion; spectrum is pretty well understood from weak physics

What fraction of the Sun's produced energy goes into neutrinos?

- A. 0.001%
- B. 0.1%
- **C**. 3%
- D. 30%
- E. 60%
- F. 99%

Homestake chlorine radiochemical detector

Figure 2.3. Schematic drawing of the argon recovery system. The pump-eductor system forces helium gas through the tetrachloroethylene liquid and provides the helium gas flow through the argon collection system.

600 tons of cleaning fluid

Threshold: 0.81 MeV

v_e + ³⁷Cl → ³⁷Ar + e⁻

Extract atoms of ³⁷Ar every few months and count decays (35-day half life): ~ 12 per month!

Water Cherenkov detectors for solar neutrinos

Elastic scattering of ~MeV solar v's on electrons

real time detection, with *directionality*

Kamiokande II in Japan (original motivation: search for proton decay)

E>~7 MeV : sensitive to ⁸B tail of spectrum

Later: significant improvement from Super-K (consistent with earlier results)

SUPERKAMIOKANDE INSTITUTE FOR COSMIC RAY RESEARCH UNIVERSITY OF TOKYO

NIKKEN SEKKEI

22.5 kton, <~ 5 MeV threshold

The Sun in neutrinos from Super-K

How many pixels does the visible Sun occupy in this neutrino image?

A. <1 B. ~1 C. ~10 D. ~ 25 E. ~ 60

Another radiochemical experiment: gallium

Gallex/GNO (Gallium Neutrino Observatory) at LNGS, Italy: 1991-2006

Used gallium chloride (30 tons of Ga)

The SAGE Experiment

Caucasus mountains, Russia

Based on liquid gallium 50 tons

1990-2007

For many years: the "solar neutrino problem" $\dots v_e$'s disappearing...

How do we know for sure they are oscillating?

The Sudbury Neutrino Observatory

Sudbury, Canada

1 kton D₂O, 1.7 kton H₂O $v_e^+ d \rightarrow p + p + e^- CC$ $v_x^+ d \rightarrow v_x^- + p + n NC$ $v_{e,x}^+ e^- \rightarrow v_{e,x}^+ e^- \qquad \underset{scattering}{\text{Elastic}}$

Cherenkov light from e⁻ and neutron detection for NC

SNO's unique feature: NC detection

$$v_x + d \rightarrow v_x + p + n$$
 flavor-blind

Tag NC via detection of neutron

- Phase I: capture on d (D_2O)
- Phase II: capture on CI (salt, NaCI) $n+{}^{35}Cl \rightarrow {}^{36}Cl + \gamma + 8.6$ MeV
- Phase III: neutron detectors (NCD)

SNO data

Clear evidence from SNO for oscillation to $\nu_{\mu,\tau}$

But there's more: the Borexino Experiment

Gran Sasso, Italy

Go after recoil electrons from the ⁷Be line

Heroic (and successful) struggle with radioactive (ambient & cosmogenic) backgrounds

Capozzi et al., 2019

Deep Underground Neutrino Experiment/ Long Baseline Neutrino Facility

next big US-based international particle physics project

- new 1.2 MW beam, Fermilab to SD
- 40-kton fiducial liquid argon TPC far detector
- Also proton decay, supernova, atmospheric neutrino physics ...

The DUNE far detector: 70,000 tons of liquid argon

Solar neutrinos in DUNE

MARLEY

What are the deex gammas?

A. Photoelectrons

B. Compton scatters

C. Produced e+e- pairs

D. Sparkles

The core-collapse neutrino signal

When a star's core collapses, gravitational binding energy of the proto-nstar goes into v's of *all flavors* with ~tens-of-MeV energies

(Energy *can* escape via v's) Mostly $v - \overline{v}$ pairs from proto-nstar cooling

Timescale: *prompt* after core collapse, overall ∆t~10's of seconds

What fraction of the binding energy is released in the the form of neutrinos?

- A. 0.1%
 B. 1%
 C. 10%
 D. 50%
- E. 99%

Neutrinos from core collapse

Just as gravitational potential energy turns into kinetic (and thermal) energy when an object falls,

.... as the star falls inward, the gravitational energy *must go somewhere*...

The energy *can* escape via neutrinos, thanks to the weakness of the neutrino interactions

~99% of the vast binding energy of the proto-neutron star is shed within ~10 seconds in the form of *neutrinos and antineutrinos of all flavors*

The core-collapse supernova explosion is still not well understood... numerical study ongoing

Blondin, Mezzacappa, DeMarino

Neutrinos are intimately involved

Marek & Janka

Expected neutrino luminosity and average energy vs time

Vast information in the *flavor-energy-time profile*

 $\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_r} \rangle$

Hint #1: what kind of interactions does each flavor have with the medium at <~ 50 MeV energies?

Reminder on Neutrino Interactions with Matter

Neutrinos are aloof but not completely unsociable

with flavor corresponding to neutrino flavor

(must have enough energy to make lepton)

$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$$

Hint #1: what kind of interactions does each flavor have with the medium at <~ 50 MeV energies? $\nu_e + n \to e^- + p$ $\bar{\nu}_e + p \to e^+ + n$ CC

 ν_x NC only

$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$$

Hint #1: what kind of interactions does each flavor have with the medium at <~ 50 MeV energies? $\begin{array}{c}
\nu_e + n \to e^- + p \\
\overline{\nu}_e + p \to e^+ + n
\end{array}$ CC $\nu_x \quad \text{NC only}$

Hint #2: what's the proto-neutron star made of?

$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$$

Hint #1: what kind of interactions does each flavor have with the medium at <~ 50 MeV energies?

 $\frac{\nu_e + n \to e^- + p}{\overline{\nu}_e + p \to e^+ + n} \operatorname{CC}$ ν_x NC only

Hint #2: what's the proto-neutron star made of? neutrons!

$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$$

Hint #1: what kind of interactions does each flavor have with the medium at <~ 50 MeV energies?

$$egin{aligned} &
u_e + n
ightarrow e^- + p \ & ar{
u}_e + p
ightarrow e^+ + n \ & \mathbf{CC} \ &
u_x & \mathbf{NC} \ & \mathbf{NC} \ & \mathbf{NC} \end{aligned}$$

Hint #2: what's the proto-neutron star made of? neutrons!

Hint #3: which flavors have more interactions?

$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$$

Hint #1: what kind of interactions does each flavor have with the medium at <~ 50 MeV energies?

$$\nu_e + n \to e^- + p$$
 $\bar{\nu}_e + p \to e^+ + n$
CC

 $u_x \quad \text{NC only}$

Hint #2: what's the proto-neutron star made of?neutrons!Hint #3: which flavors have more interactions? v_e has most
then bar- v_e
 v_x has least

$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$$

Hint #1: what kind of interactions does each flavor have with the medium at <~ 50 MeV energies?

$$\nu_e + n \to e^- + p$$
 $\bar{\nu}_e + p \to e^+ + n$
CC

 ν_x NC only

Hint #2: what's the proto-neutron star made of? neutrons! Hint #3: which flavors have more interactions? $v_e^{\text{has most}}$ then bar- $v_e^{\text{v_x}}$ has least

Hint #4: "neutrinosphere" is the surface at which neutrino mean-free-path is infinity ...where are the neutrinospheres for each flavor?

$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$$

Hint #1: what kind of interactions does each flavor have with the medium at <~ 50 MeV energies?

$$\nu_e + n \to e^- + p$$
 $\bar{\nu}_e + p \to e^+ + n$
CC

 u_x NC only

 v_x is deepest

Hint #2: what's the proto-neutron star made of?neutrons!Hint #3: which flavors have more interactions? v_e has most
then bar- v_e
 v_x has leastHint #4: "neutrinosphere" is the surface
at which neutrino mean-free-path is infinity v_e is farthest out
then bar- v_e

...where are the neutrinospheres for each flavor?

$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$$

Hint #1: what kind of interactions does each flavor have with the medium at <~ 50 MeV energies?

$$\nu_e + n \to e^- + p$$

$$\bar{\nu}_e + p \to e^+ + n$$
 CC

NC only ν_x

Hint #2: what's the proto-neutron star made of? neutrons! v_e has most Hint #3: which flavors have more interactions? then bar- v_e v_x has least Hint #4: "neutrinosphere" is the surface at which neutrino mean-free-path is infinity

...where are the neutrinospheres for each flavor?

 v_e is farthest out then bar- v_e v_x is deepest

Hint #5: how does temperature vary with radius?

$$\langle E_{\nu_e} \rangle < \langle E_{\bar{\nu}_e} \rangle < \langle E_{\nu_x} \rangle$$

Hint #1: what kind of interactions does each flavor have with the medium at <~ 50 MeV energies?

$$\nu_e + n \to e^- + p$$
 $\bar{\nu}_e + p \to e^+ + n$
CC

 u_x NC only

Hint #2: what's the proto-neutron star made of?neutrons!Hint #3: which flavors have more interactions? v_e has most
then bar- v_e
 v_x has leastHint #4: "neutrinosphere" is the surface
at which neutrino mean-free-path is infinity
...where are the neutrinospheres for each flavor? v_e is farthest out
then bar- v_e
 v_x is deepestHint #5: how does temperature vary with radius?the deeper,
the higher the

temperature

Nominal expected flavor-energy hierarchy

May or may not be robust...

Neutrino flavor oscillations (governed by fundamental neutrino parameters) will modify the spectra

Neutrino spectrum from core collapse

Supernova 1987A in the Large Magellanic Cloud (55 kpc away)

~two dozen neutrino interactions observed!

What is a kiloparsec (kpc)?

- A. A unit of distance equal to about 3260 light years
- B. A unit of time equal to about 3260 years
- C. Approximately the distance to Betelgeuse
- D. A leisurely amount of time to complete the Kessel Run

SN1987A in LMC

v's seen ~2.5 hours before first light

Confirmed baseline model... but still many questions

Supernova neutrino detector types

Water Cherenkov detectors

http://snews.bnl.gov/snmovie.html

Long string water Cherenkov detectors

~kilometer long strings of PMTs in very clear water or ice (IceCube, ANTARES)

Nominally multi-GeV energy threshold... but, may see burst of low energy (anti-) v_e 's as coincident increase in single PMT count rate

Map overall time structure of burst by tracking the single-PMT hit glow

Scintillation detectors

Liquid hydrocarbon (C_nH_{2n}) that emits (lots of) photons when charged particles lose energy in it

Will see supernova electron antineutrinos, with good energy resolution

$$\bar{\nu}_e + p \to e^+ + n$$

Many examples worldwide of current and future detectors

Liquid argon time projection chambers

fine-grained trackers ionization + scintillation photons

sensitive to electron neutrinos (as opposed to antineutrinos)

$$\nu_e + {}^{40}\mathrm{Ar} \to e^- + {}^{40}\mathrm{K}^*$$

ICARUS (Italy→USA) 0.6 kton

MicroBooNE (USA) 0.2 kton

Summary of supernova neutrino detectors

Detector	Туре	Location	Mass (kton)	Events @ 10 kpc	Status
Super-K	Water	Japan	32	8000	Running (SK IV)
LVD	Scintillator	Italy	1	300	Running
KamLAND	Scintillator	Japan	1	300	Running
Borexino	Scintillator	Italy	0.3	100	Running
IceCube	Long string	South Pole	(600)	(10 ⁶)	Running
Baksan	Scintillator	Russia	0.33	50	Running
HALO	Lead	Canada	0.079	20	Running
Daya Bay	Scintillator	China	0.33	100	Running
NOvA	Scintillator	USA	15	3000	Running
SNO+	Scintillator	Canada	1	300	(Running)
MicroBooNE	Liquid argon	USA	0.17	17	Running
DUNE	Liquid argon	USA	40	3000	Future
Hyper-K	Water	Japan	540	110,000	Future
JUNO	Scintillator	China	20	6000	Future
IceCube Gen-2	Long string	South pole	(600)	(10 ⁶)	Future

Extragalactic

How many events are expected in DUNE for a core collapse in Andromeda (700 kpc)?

A. <<1 B. 1 C. 10 D. 100 E. 1000

Distance reach for future detectors

What can we learn from the next neutrino burst?

CORE COLLAPSE PHYSICS

explosion mechanism proto nstar cooling, quark matter black hole formation accretion, SASI nucleosynthesis

input from

photon (GW)

observations

from flavor, energy, time structure of burst input from neutrino experiments

$v_e = v_\mu$

NEUTRINO and OTHER PARTICLE PHYSICS

v absolute mass (not competitive)
v mixing from spectra: flavor conversion in SN/Earth (mass hierarchy)
other v properties: sterile v's, magnetic moment,...
axions, extra dimensions, FCNC, ...

+ EARLY ALERT

SNEWS: SuperNova Early Warning System

Inelastic interactions of neutrinos with nuclei (cross sections & interaction products) quite poorly understood... sparse theory & experiment (only measurements at better than ~50% level are for ^{12}C)

Example of variation in theory predictions at low energy

E. Conley, S. Gardiner

This is for v_eCC on Ar, but gives an idea of (large) uncertainties for these kinds of calculations... need better info to interpret an SNB observation!

Stopped-Pion (π**DAR)** Neutrinos

 $|\nu_e|$

 $\mu^+ \rightarrow e^-$

2-body decay: monochromatic 29.9 MeV v_{μ} PROMPT

3-body decay: range of energies between 0 and $m_{\mu}/2$ DELAYED (2.2 μ s)

Neutrinos from stopped pions overlap with the typical supernova spectrum $_{\underline{\times 10^6}}$

Available at the Spallation Neutron Source

Fluence at ~50 m from the stopped pion source amounts to ~ a supernova a day!

(or 0.2 microsupernovae per pulse, 60 Hz of pulses)

Take-away points from today

- Solar neutrinos:
 - up to ~15 MeV, huge rate of pp below ~1 MeV
 - interesting to measure in DUNE with v_eCC
- <u>Supernova neutrinos:</u>
 - all flavors, up to ~50 MeV, 10 second burst
 - very rich physics and astrophysics
 - multiple detectors worldwide
- Inelastic neutrino interactions have big uncertainties! \rightarrow We need to measure the cross sections
- Stopped-pion neutrino sources are "synthetic supernovae" ... more on this Thursday!

Outline of Lecture Topics

