

SMEFT: The High, the Low and the Flat

A story of chasing the ambulance-chasers

directed by Tom Tong

Naturwissenschaftlich Technische Fakultät

SMEFT: a model-independent study

Step 1: Use the Standard Model EFT

- Step 2: Constrain all the Wilson coefficients with all the observables
- Step 2: Make some assumptions to simplify the SMEFT, say oblique, flavor universal, MFV, flavor diagonal, etc.
- Step 3: Choose relevant Wilson coefficients and relevant observables
- Step 4: Global fit (within assumptions) !
- But wait... *relevant* to what?

 $\mathcal{L}_{ ext{SMEFT}}^{ ext{dim-6}} = \mathcal{L}_{ ext{SM}} + \sum_{i}^{ ext{2499}} C_i \mathcal{O}_i^{ ext{dim-6}}$

Relevant to the W mass, of course!

In SMEFT @ dim-6, W mass is corrected by

$$\frac{\delta m_W^2}{m_W^2} = v^2 \frac{s_w c_w}{s_w^2 - c_w^2} \begin{bmatrix} 2 C_{HWB} + \frac{c_w}{2s_w} C_{HD} + \frac{c_w}{s_w} \end{bmatrix}$$

• W mass is one of the EWPO

Measurement M_W [GeV] 80.413 ± 0.015 Γ_W [GeV] 2.085 ± 0.042 $\frac{\sin^2 \theta_{\text{eff}}^{\text{lept}}(Q_{\text{FB}}^{\text{had}})}{P_{\tau}^{\text{pol}} = \mathcal{A}_{\ell}}$ 0.2324 ± 0.0012 0.1465 ± 0.0033 $\Gamma_Z \,\,[\text{GeV}]$ 2.4955 ± 0.0023 $\sigma_h^0 \; [{
m nb}]$ 41.480 ± 0.033 $R_\ell^0 \ A_{
m FB}^{0,\ell}$ 20.767 ± 0.025 0.0171 ± 0.0010 \mathcal{A}_{ℓ} (SLD) 0.1513 ± 0.0021 R_{b}^{0} R_{c}^{0} $A_{FB}^{0,b}$ $A_{FB}^{0,c}$ 0.21629 ± 0.00066 0.1721 ± 0.0030 0.0996 ± 0.0016 0.0707 ± 0.0035 $\frac{s_w}{c_w} \left(2 C_{Hl}^{(3)} - C_{ll} \right)$ $egin{array}{c} \mathcal{A}_b \ \mathcal{A}_c \end{array}$ 0.923 ± 0.020 0.670 ± 0.027 0.895 ± 0.091 \mathcal{A}_{s} $BR_{W \to \ell \bar{\nu}_{\ell}}$ 0.10860 ± 0.00090 GF $\sin^2 \theta_{\rm eff}^{\rm lept}$ (HC) 0.23143 ± 0.00025 0.1660 ± 0.0090 R_{uc}

SMEFT analysis of EWPO

- •
- There are 10 SMEFT operators relevant to the EWPO
- Only 8 linear combinations can be constrained
- 2 flat directions remain

Impact of the recent measurements of the top-quark and W-boson masses on electroweak precision fits

J. de Blas (CAFPE, Granada and Granada U.), M. Pierini (CERN), L. Reina (Florida State U.), L. Silvestrini (INFN, Rome) (Apr 8, 2022) e-Print: 2204.04204 [hep-ph]

🔓 pdf 🛛 🖯 cite

 $U(3)_q \times U(3)_u \times U(3)_d \times U(3)_l \times U(3)_e$

$$\hat{C}_{\varphi f}^{(1)} = C_{\varphi f}^{(1)} - \frac{Y_f}{2} C_{\varphi D}, \quad f = l, q, e, u, d,$$
$$\hat{C}_{\varphi f}^{(3)} = C_{\varphi f}^{(3)} + \frac{c_w^2}{4s_w^2} C_{\varphi D} + \frac{c_w}{s_w} C_{\varphi WB}, \quad f = l, d$$

SMEFT analysis of EWPO

	Result		
		$(IC_S$	$_{\rm MEFT}/I0$
$\hat{C}^{(1)}_{\varphi l}$	-0.007 ± 0.011	1.00	
$\hat{C}^{(3)}_{arphi l}$	-0.042 ± 0.015	-0.68	1.00
$\hat{C}_{arphi e}$	-0.017 ± 0.009	0.48	0.04
$\hat{C}^{(1)}_{\varphi q}$	-0.018 ± 0.044	-0.02	-0.06
$\hat{C}^{(3)}_{\varphi q}$	-0.113 ± 0.043	-0.03	0.04
$\hat{C}_{arphi u}$	0.090 ± 0.150	0.06	-0.04
$\hat{C}_{arphi d}$	-0.630 ± 0.250	-0.13	-0.05
\hat{C}_{ll}	-0.022 ± 0.028	-0.80	0.95

- consistent with these values
- But treating the EWPO in isolation is problematic

Correlation Matrix $C_{\rm SM} = 31.8/80.2$

1.00-0.13 1.00 -0.16 - 0.37 1.00 $0.04 \quad 0.61 \ -0.77$ 1.00-0.30 0.40 0.58 -0.04 1.00 -0.10 -0.06 -0.01 -0.04 -0.05 1.00

This would be the guide for model building: try to build models

First-row CKM unitarity

$\Delta_{\rm CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 - 1$

- V_{ud} and V_{us} are obtained from nuclear beta decay and Kaon decays
- Requires detailed understanding of radiative corrections
- Very precise determinations are in tension with CKM unitarity

 $\Delta_{CKM}^{PDG} \approx -(0.15 \pm 0.06)\%$

First-row CKM in SMEFT (with MFV)

Beta-decay implications for the W-boson mass anomaly

Vincenzo Cirigliano,^a Wouter Dekens,^a Jordy de Vries,^{b,c} Emanuele Mereghetti,^d Tom **Tong**^e

^aInstitute for Nuclear Theory, University of Washington, Seattle WA 91195-1550, USA ^bInstitute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands ^cNikhef, Theory Group, Science Park 105, 1098 XG, Amsterdam, The Netherlands ^d Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA ^eCenter for Particle Physics Siegen, University of Siegen, 57068 Siegen, Germany

08440 7204

where $C_{la}^{(3)}$ is irrelevant to the EWPO and does not play a role in the fit

 $\Delta_{\rm CKM} \equiv |V_{ud}|^2 + |V_{us}|^2 - 1$

- We combine the relevant Wilson coefficients into C_{Λ}
- Replace C_{ll} with C_{Λ} and re-do the fit

• From the re-fit, we obtain a large, %-level, deviation from the first-row CKM unitarity

$\Delta_{CKM}^{fit} \approx -(1 \pm 0.5)\%$

• Based on up-to-date predictions of $0^+ \rightarrow 0^+$ nuclear beta-decays and Kaon decays, the PDG average indicates that

$\Delta_{CKM}^{PDG} \approx -(0.15 \pm 0.07)\%$

- A 2-sigma deviation per se, but much smaller than indicated by the fit
- Refitting with CKM included shifts the values \bullet
- Would point to other models!

		Result	Result with (
$\hat{C}^{(1)}_{\varphi l}$	L) Į	-0.007 ± 0.011	$-0.013 \pm 0.$
$\hat{C}_{\varphi l}^{(3)}$	8) l	-0.042 ± 0.015	$-0.034 \pm 0.$
\hat{C}_{arphi}	e	-0.017 ± 0.009	$-0.021 \pm 0.$
$\hat{C}^{(1)}_{arphi arphi}$	q	-0.0181 ± 0.044	-0.048 ± 0
$\hat{C}^{(3)}_{arphi e}$	q	-0.114 ± 0.043	$-0.041 \pm 0.$
$\hat{C}_{arphi'}$	u	0.086 ± 0.154	$-0.12 \pm 0.$
\hat{C}_{arphi}	d	-0.626 ± 0.248	$-0.38 \pm 0.$
C_{Δ}	7	-0.19 ± 0.09	$-0.027 \pm 0.$

Let's include more high energy data

SMEFT Analysis of m_W

Emanuele Bagnaschi,^a John Ellis,^{b,a,c} Maeve Madigan,^d Ken Mimasu,^b Veronica Sanz^{e,f} and Tevong You^{b,d,g}

^a Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland

^b Theoretical Particle Physics and Cosmology Group, Department of Physics, King's College London, London WC2R 2LS, UK

^cNational Institute of Chemical Physics & Biophysics, Rävala 10, 10143 Tallinn, Estonia

^dDAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, UK

^eInstituto de Física Corpuscular (IFIC), Universidad de Valencia-CSIC, E-46980 Valencia, Spain

^f Department of Physics and Astronomy, University of Sussex, Brighton BN1 9QH, UK

^gCavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge CB3 0HE, UK

- EWPO + Diboson + Top + Higgs
- More observables, more relevant operators
- Global-fit with 20 operators (flavor universal)
- Well, the same. Percent-level CKM unitarity violation
- Adding more high energy data *does not* help!
- The same if one uses flavor diagonal assumptions (2204.05992, Zupan et al)

Model	Spin	SU(3)	SU(2)	U(1)	Parameters
S_1	0	1	1	1	(M_S, κ_S)
Σ	$\frac{1}{2}$	1	3	0	$(M_{\Sigma},\lambda_{\Sigma})$
Σ_1	$\frac{1}{2}$	1	3	-1	$(M_{\Sigma_1},\lambda_{\Sigma_1})$
N	$\frac{1}{2}$	1	1	0	(M_N, λ_N)
E	$\frac{1}{2}$	1	1	-1	(M_E, λ_E)
B	1	1	1	0	(M_B, \hat{g}_H^B)
B_1	1	1	1	1	(M_{B_1}, λ_{B_1})
[1]	0	1	3	0	(M_{Ξ},κ_{Ξ})
W_1	1	1	3	1	$(M_{W_1}, \hat{g}_{W_1}^{\varphi})$
W	1	1	3	0	(M_W, \hat{g}_W^H)

Model
S_1
Σ
Σ_1
N
E
B_1
B
[I]
W_1
W

Mass limits (in TeV)

C_{HD}	C_{ll}	$C_{Hl}^{(3)}$	$C_{Hl}^{(1)}$	C_{He}	$C_{H\square}$	$C_{ au H}$	C_{tH}	C_{bH}
	-1							
		$\frac{1}{16}$	$\frac{3}{16}$			$\frac{y_{\tau}}{4}$		
		$\frac{1}{16}$	$-\frac{3}{16}$			$\frac{y_{\tau}}{8}$		
		$-\frac{1}{4}$	$\frac{1}{4}$					
		$-\frac{1}{4}$	$-\frac{1}{4}$			$\frac{y_{\tau}}{2}$		
1					$-\frac{1}{2}$	$-\frac{y_{\tau}}{2}$	$-\frac{y_t}{2}$	$-\frac{y_b}{2}$
-2						$-y_{\tau}$	$-y_t$	$-y_b$
$-2\left(\frac{1}{M_{\Xi}}\right)^2$					$\frac{1}{2}\left(\frac{1}{M_{\Xi}}\right)^2$	$y_{\tau}\left(\frac{1}{M_{\Xi}}\right)^2$	$y_t \left(\frac{1}{M_{\Xi}}\right)^2$	$y_b\left(\frac{1}{M_{\Xi}}\right)^2$
$-\frac{1}{4}$					$-\frac{1}{8}$	$-\frac{y_{\tau}}{8}$	$-\frac{y_t}{8}$	$-\frac{y_b}{8}$
$\frac{1}{2}$					$-\frac{1}{2}$	$-y_{\tau}$	$-y_t$	$-y_b$

Model	Pull	Best-fit mass	$1\text{-}\sigma$ mass	$2-\sigma$ mass	1- σ coupling
		(TeV)	range (TeV)	range (TeV)	range
W_1	6.4	3.0	[2.8, 3.6]	[2.6, 3.8]	[0.09, 0.13]
B	6.4	8.6	[8.0, 9.4]	[7.4, 10.6]	[0.011, 0.016]
Ξ	6.4	2.9	[2.8, 3.1]	[2.7, 3.2]	[0.011, 0.016]
N	5.1	4.4	[4.1, 5.0]	[3.8, 5.8]	$\left \begin{array}{c} [0.040, 0.060 \end{array} \right $
	3.5	5.8	[5.1, 6.8]	[4.6, 8.5]	[0.022, 0.039]

• These two models induce too large CKM unitarity violation

Is it really W mass the perpetrator?

- If not, then the global-fit should be in bad tension with CKM even before the new CDF results
- So, what was Δ_{CKM} before 2022?
- We re-did the old EWPO fits
- It was only $-(0.4 \pm 0.4)\%$ in 0908.1754
- And a similar value indicated by 2012.02779, which is the old version of the 20-parameter fit
- It seems that roughly about half of the deviation was already there, and the CDF W mass has doubled that.

THE PERPETRATORS

 $\Delta_{CKM}^{fit} \approx -(1 \pm 0.5)\%$

What happened'

? The Flat

$$\frac{s_w c_w}{s_w^2 - c_w^2} \left[2 C_{HWB} + \frac{c_w}{2s_w} C_{HD} + \frac{s_w}{c_w} \left(2 C_{Hl}^{(3)} - C_{ll} \right) \right]$$

- Fitting to the high energy data, there exists an almost flat direction involving C_{HD} and C_{II}
- It can only be lifted by the W mass
- The value of W mass largely dominates the constraints on $C_{\!H\!D}$ and $C_{\!ll}$ along this flat direction

The Flat is the Ugly

• Grey bars: Fitting results to the high energy data but without W mass

 Not even compatible with the real W mass at all, if both C_{HD} and C_{ll} are present

Finally, CKM comes to the rescue

- Δ_{CKM} is sensitive to C_{ll}
- It can help lift the flat direction
- They've heard us!
- And 2204.05260 is now V2

Take a closer look

- The old W mass has already deviated from the CKM and the Z-pole
- Corresponding to the 0.5% tension before CDF
- The new W mass drifted further away
- Worsening the tension into 1%

All good?

SM

 m_W world avg.

SMEFT+ Δ_{CKM} , no m_W

80500

- SMEFT 2022+ Δ_{CKM}
- So it seems. The Flat has been resolved

 Although some strong tension still remains between the High and the Low

- We may effectively decouple the CKM from EWPO by a non-zero $C_{l_a}^{(3)}$
- $C_{la}^{(3)}$ is constrained by 8 TeV $pp \rightarrow ll$ data at the LHC
- Could be tested by 13 TeV data
- And also at the HL-LHC

Summary

- SMEFT global-fits including only high energy data will damage the CKM unitarity
- Low energy data is important because they can help lift some of the flat directions
- Model-independent global analyses can sometimes be tricky and even deceptive
- The operators are *intertwined* with the observables in a highly non-trivial way

Question

EDITED BY Cynthia J. Mussinan and Michael J. Morello

- explore?

 Choosing the "relevant" operators and observables is some kind of art

• In principle, one would like to include as many observables as possible (and hence many more operators), and still be able to make useful statements about new physics

• For example, what about the muon g - 2, and all those flavor anomalies?

• Question: In the next few years, can the community find patterns in the global data, which may lead to concrete predictions for the experiments to

Thanks for watching (

