High precision Standard Model predictions for V+jet decay coefficients for LHC

Timea Vitos

Lund University

Electroweak Precision Physics from Beta Decays to the Z-pole MITP, October 27, 2022

⁰ in collaboration with: R. Frederix, M. Pellen, R. Poncelet, A. Popescu

High precision V+jet decay coefficients

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 00000000
 000000000
 000000000
 000000000

Today's talk

- 1. Status for high precision matrix-element generators
- 2. Decay coefficients for V+jet
- 3. Z+jet at NLO EW
- 4. W+jet at NNLO QCD+NLO EW

Today's talk

- 1. Status for high precision matrix-element generators
- 2. Decay coefficients for V+jet
- 3. Z+jet at NLO EW
- 4. W+jet at NNLO QCD+NLO EW

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 00000000
 000000000
 000000000
 000000000

An overview of current matrix-element generators for LHC physics

• Some open-source matrix-element generators:

MEG	auto.	NLO QCD	NLO EW	matching NLO QCD	matching NLO EW
соміх	YES	YES	NO	Sherpa	NO
MCFM	NO	YES	NO/YES	NO	NO
AMEGIC++	YES	YES	NO	Sherpa, Herwig	NO
AlpGen	NO	NO	NO	Herwig, Pythia	NO
MadGraph5_aMC@NLO	YES	YES	YES	Herwig, Pythia	NO

• No automated matching for NLO EW

• No fully-automated NNLO QCD

• Main focus in matrix-element group in Lund:

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 00000000
 000000000
 000000000
 000000000

Standard Model perturbation theory

- The perturbative tower of $SU(3) \times SU(2) \times U(1)$
- Expansion in coupling constants: α_s (strong) and α (electroweak)

• That's all fixed-order!

Standard Model perturbation theory

- The perturbative tower of $SU(3) \times SU(2) \times U(1)$
- Expansion in coupling constants: α_s (strong) and α (electroweak)

• That's all fixed-order!

o In connection with each blob, there are logarithms of the type

$$lpha_s^n \log^{2k}(\mu_1/\mu_2)$$
 , $1 < k < 2n$

with μ_1, μ_2 two scales of the process

- In regions of phase space where logarithms are small, fixed-order expansion works!
- Where the logarithms are large, we need resummation or parton showers
- But at highest orders (NNLO QCD, NLO EW), automated matching to parton showers not available yet!

Timea Vitos

High precision V+jet decay coefficients 5 / 26

(1)

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 000
 00000000
 000000000

Today's talk

- 1. Status for high precision matrix-element generators
- 2. Decay coefficients for V+jet
- 3. Z+jet at NLO EW
- 4. W+jet at NNLO QCD+NLO EW

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 00000000
 000000000
 000000000

The V+jet process

 \circ One of the key processes for measuring EW parameters (m_W) at LHC:

$$pp \rightarrow V + jet \rightarrow l_1 l_2 + jet$$

 $(V=Z,W^{\pm})$

 $\,\circ\,$ Total cross section at LHC 13 TeV for V+jet production: \sim 12000 pb

The V+jet process

 $\,\circ\,$ One of the key processes for measuring EW parameters (m_W) at LHC:

$$pp \rightarrow V + \text{jet} \rightarrow l_1 l_2 + \text{jet}$$

 $(V=Z,W^{\pm})$

 $\,\circ\,$ Total cross section at LHC 13 TeV for V+jet production: \sim 12000 pb

• Expansion of process to NNLO:

$$\Delta_{\text{LO}}(\alpha_{5},\alpha) = \underbrace{\alpha_{5}\alpha^{2}\Delta_{1,2}}_{\text{LO}_{1}} + \underbrace{\alpha^{3}\Delta_{0,3}}_{\text{LO}_{2}}$$

$$\Delta_{\text{NLO}}(\alpha_{5},\alpha) = \underbrace{\alpha_{5}^{2}\alpha^{2}\Delta_{2,2}}_{\text{NLO}_{1}} + \underbrace{\alpha_{5}\alpha^{3}\Delta_{1,3}}_{\text{NLO}_{2}} + \underbrace{\alpha^{4}\Delta_{0,4}}_{\text{NLO}_{3}}$$

$$\Delta_{\text{NNLO}}(\alpha_{5},\alpha) = \underbrace{\alpha_{5}^{3}\alpha^{2}\Delta_{3,2}}_{\text{NNLO}_{1}} + \underbrace{\alpha_{5}^{2}\alpha^{3}\Delta_{2,3}}_{\text{NNLO}_{2}} + \underbrace{\alpha_{5}\alpha^{4}\Delta_{1,4}}_{\text{NNLO}_{3}} + \underbrace{\alpha^{5}\Delta_{0,5}}_{\text{NNLO}_{3}}$$
(2)

Decay coefficients

• Differential cross section (5-dimensional) in V-boson kinematics expanded in real spherical harmonics

$$\frac{\mathrm{d}\sigma}{\mathrm{d}p_{T,Z}\mathrm{d}y_{Z}\mathrm{d}m_{\parallel}\mathrm{d}\Omega} \propto \left((1+\cos^{2}\theta) + A_{0}\frac{1}{2}(1-3\cos^{2}\theta) + A_{1}\sin 2\theta\cos\phi + A_{2}\frac{1}{2}\sin^{2}\theta\cos 2\phi + A_{3}\sin\theta\cos\phi + A_{4}\cos\theta + A_{5}\sin^{2}\theta\sin 2\phi + A_{6}\sin 2\theta\sin\phi + A_{7}\sin\theta\sin\phi \right)$$
(3)

with eight angular/decay coefficients $A_i(p_{T,V}, y_V, m_{II})$

- This decomposition separates production mechanism and decay part
- Angles $(heta, \phi)$ are angles of I^{\pm} in the **Collins-Soper frame**

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 000
 00000000
 00000000
 00000000

Current status of V+jet decay coefficients at high energies

• Theory:

- 1. NNLO QCD¹
- NLO QCD+PS²

• Measurements:

- 1. CDF: √s=1.96 TeV³
- 2. CMS: $\sqrt{s}=8 \text{ TeV}^4$
- 3. ATLAS: $\sqrt{s}=8 \text{ TeV}^5$

• Wishlist:

- 1. NLO EW , NNLO QCD+PS
- 13 TeV run results + lower uncertainty

¹R. Gauld et al. arXiv:1708.00008

- ²A, Karlberg et al. arXiv:1407.2940
- ³CDF Collaboration arXiv:1103.5699v3
- ⁴CMS Collaboration arXiv:1504.03512
- ⁵ATLAS Collaboration arXiv:1606.00689
- ⁶ATLAS Collaboration arXiv:1701.07240
- ⁷CDF Collaboration arXiv:hep-ex/0504020

Timea Vitos

W + jet

• Theory:

1. NLO QCD+PS⁶

Measurements:

- 1. CDF: $\sqrt{s} = 1.8 \text{ TeV}^7$
- Predictions by unfolding from Z+jet⁶
- Wishlist:
 - 1. NNLO QCD, NLO EW , PS matched
 - 2. Direct measurements for LHC energies

High precision V+jet decay coefficients

Today's talk

- 1. Status for high precision matrix-element generators
- 2. Decay coefficients for V+jet
- 3. Z+jet at NLO EW
- 4. W+jet at NNLO QCD+NLO EW

Decay coefficients for Z+jet: Lam-Tung relation

• Up to order $\alpha_{S} \alpha^{2}$ (LO): Lam-Tung relation $A_{0} = A_{2}$ (if $\Phi_{1} = 0$)

$$A_0 = \sin^2 \theta_1 \quad , \quad A_2 = \sin^2 \theta_1 \cos 2\Phi_1 \tag{4}$$

 $(\theta_1, \Phi_1 \text{ are the angles of the incoming parton})$

- Predictions for Z+jet available at order $\alpha_5^3 \alpha^2$ (NNLO QCD)⁸
- ATLAS and CMS (and runs at Tevatron) all measured **higher violation** of Lam-Tung than predicted by NNLO QCD at $p_{T,Z} > 20$ GeV

⁸R. Gauld, et al. High Energ. Phys. 2017, 3 (2017)

Timea Vitos

High precision V+jet decay coefficients

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 000000000
 000000000
 000000000
 000000000

Decay coefficients for Z+jet: setup

- This project: Calculate electroweak corrections to the dominant angular coefficients and Lam-Tung relation
- Fixed-order: $pp \rightarrow \{e^+e^-, \mu^+\mu^-\} + j$ at 8 TeV with MadGraph5_aMC@NLO at

 $\mathsf{NLO}\ \mathsf{QCD} + \mathsf{EW} := \mathsf{LO}_1 + \mathsf{LO}_2 + \mathsf{NLO}_1 + \mathsf{NLO}_2$

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 000000000
 000000000
 000000000
 000000000

Decay coefficients for Z+jet: setup

- This project: Calculate electroweak corrections to the dominant angular coefficients and Lam-Tung relation
- Fixed-order: $pp \rightarrow \{e^+e^-, \mu^+\mu^-\} + j$ at 8 TeV with MadGraph5_aMC@NLO at

NLO QCD+EW :=
$$LO_1 + LO_2 + NLO_1 + NLO_2$$

• Introduce single lepton p_T cut to avoid double IR (2-loop) singularity \rightarrow vary cut to extrapolate to the full phase space of the dilepton pair

• Use moments method for each coefficient in $A_i f(\theta, \Phi)$

$$A_i \propto \frac{\int \mathrm{d}\Omega \mathrm{d}\sigma f(\theta, \Phi)}{\int \mathrm{d}\Omega \mathrm{d}\sigma}$$

 Note! Due to the ratio-nature of the coefficients, EW Sudakovs are not necessarily expected to show up! (5)

Decay coefficient for Z+jet: results

- *p*_{T,Z}-distributions for **A**₀ at LO and NLO QCD (left) and NLO QCD+EW (right)
- Negligible electroweak corrections except in low- $p_{T,Z}$ region

⁹R. Frederix, T. Vitos. arXiv:2204.12394

Timea Vitos

High precision V+jet decay coefficients

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 00000000
 00000000
 00000000
 00000000

Decay coefficients for Z+jet: results

- *p*_{T,Z}-distributions for *A*₃ at LO and NLO QCD (left) and NLO QCD+EW (right)
- Constant -10% electroweak corrections

⁹R. Frederix, T. Vitos. arXiv:2204.12394

Timea Vitos

High precision V+jet decay coefficients

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 00000000
 00000000
 00000000
 00000000

Decay coefficients for Z+jet: results

- Electroweak input parameters important for A_3 and A_4 !
- ρ-parameter entering

$$\sin\theta_w^2 \to \sin\theta_w^2 + \Delta\rho\cos\theta_w^2 \tag{6}$$

needs to be consistently included in LO and NLO QCD \rightarrow include one-loop contribution 10

¹⁰J. Fleischer, et al., 10.1016/0370-2693(93)90810-5

Timea Vitos

High precision V+jet decay coefficients

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 00000000
 00000000
 00000000

Decay coefficients for Z+jet: results

 Lam-Tung violation A₀ – A₂ at LO and NLO QCD (left) and NLO QCD+EW (right)

⁹R. Frederix, T. Vitos. arXiv:2204.12394

Timea Vitos

High precision V+jet decay coefficients

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 00000000
 00000000
 00000000
 00000000

Decay coefficients for Z+jet: results

 $\circ\,$ Lam-Tung violation A_0-A_2 at NNLO QCD with ATLAS data (left)^8 and NLO QCD+EW (right)

- Electroweak effects move relation towards the data for the low-p_T region
- In high-p_T region, EW corrections are negligible

⁸R. Gauld, et al. High Energ. Phys. 2017, 3 (2017) Timea Vitos High precision V+jet decay coefficients

Today's talk

- 1. Status for high precision matrix-element generators
- 2. Decay coefficients for V+jet
- 3. Z+jet at NLO EW
- 4. W+jet at NNLO QCD+NLO EW

Decay coefficients for W+jet: motivation

- $\,\circ\,$ Direct decay coefficient measurements by CDF (1.8 TeV)^7
- Template fits of distributions to measure W-boson mass⁶
- $\,\circ\,$ Improve fluctuations by an unfolding to Z+jet 6

Timea Vitos

⁷CDF Collaboration arXiv:hep-ex/0504020

⁶ATLAS Collaboration arXiv:1701.07240

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 00000000
 00000000

Decay coefficients for W+jet: setup

- **This project**: Calculate and combine NNLO QCD and NLO EW corrections to the angular coefficients
- Fixed-order: $pp \rightarrow \{e^+v_e\} + j$ at 13 TeV at:

$$\label{eq:NLO_EW} \begin{split} \mathsf{NLO} \ \mathsf{EW} &:= \mathsf{LO}_1 + \mathsf{LO}_2 + \mathsf{NLO}_2 \\ \mathsf{NNLO} \ \mathsf{QCD} &:= \mathsf{LO}_1 + \mathsf{NLO}_1 + \mathsf{NNLO}_1 \end{split}$$

• MadGraph5 aMC@NLO (for NLO EW) and STRIPPER (for NNLO QCD) ¹¹

¹¹M. Czakon arXiv:1005.0274

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 00000000
 00000000
 00000000

Decay coefficients for W+jet: setup

- **This project**: Calculate and combine NNLO QCD and NLO EW corrections to the angular coefficients
- Fixed-order: $pp \rightarrow \{e^+v_e\} + j$ at 13 TeV at:

$$\label{eq:NLO_EW} \begin{split} \mathsf{NLO} \ \mathsf{EW} &:= \mathsf{LO}_1 + \mathsf{LO}_2 + \mathsf{NLO}_2 \\ \mathsf{NNLO} \ \mathsf{QCD} &:= \mathsf{LO}_1 + \mathsf{NLO}_1 + \mathsf{NNLO}_1 \end{split}$$

- MadGraph5 aMC@NLO (for NLO EW) and STRIPPER (for NNLO QCD) ¹¹
- Combining NLO EW and NNLO QCD, default way (unexpanded):

$$\mathbf{A}_i^{\text{default}} = \frac{N}{D},$$

Expansion in α_s:

$$A_i^{\exp} = A + \alpha_s B + \alpha_s^2 C, \qquad (9)$$

• Inclusion of NLO EW through an overall K-factor (avoids $p_T(I)$ cut dependence)

$$A_{i,\text{QCD}+\text{EW}} = K_{\text{NLO EW}} \times A_i, \tag{10}$$

Timea Vitos

High precision V+jet decay coefficients

20 / 26

(8)

¹¹M. Czakon arXiv:1005.0274

Status for high precision matrix-element generators Decay coefficients for V+jet Z+jet at NLO EW W+jet at NNLO QCD+NLO 000000000

Decay coefficients for W+jet: results, inclusive rapidity

• The coefficients A_0 (left) and A_4 (right) for W^- signature, inclusive in rapidity

Coefficient A₄ for W[−] (inclusive rapidity)

¹²M. Pellen, R. Poncelet, A. Popescu, T. Vitos. arXiv:2204.12394

Timea Vitos

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 0000
 00000000
 000000000

Decay coefficients for W+jet: results, A₀ rapidity dependence

- $\circ~$ The coefficients A_0 in various rapidity bins
- No rapidity dependence (same for A_2)
- Mid: $|y| \le 0.5$, mid-central: $0.5 \le |y| \le 1.5$,

¹²M. Pellen, R. Poncelet, A. Popescu, T. Vitos. arXiv:2204.12394

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 000000000
 000000000
 000000000

Decay coefficients for W+jet: results, A₁ rapidity dependence

- $\circ~$ The coefficients A_1 in various rapidity bins
- Note: different y-scales!
- Heavily rapidity-dependent (same for A_3 and A_4)
- Mid: $|y| \le 0.5$, mid-central: $0.5 \le |y| \le 1.5$,

forward: $|y| \ge 1.5$

¹²M. Pellen, R. Poncelet, A. Popescu, T. Vitos. arXiv:2204.12394

Decay coefficients for W+jet: EW non-closure effect¹³

 $\circ~$ The expansion to spherical harmonics is no longer valid when EW splittings are allowed (1 \rightarrow 3 kinematics)

¹²M. Pellen, R. Poncelet, A. Popescu, T. Vitos. arXiv:2204.12394
 ¹³M. A. Ebert, et al.. arXiv:2006.11382

Timea Vitos

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 000000000
 000000000

Decay coefficients for W+jet: EW non-closure effect¹³

- The expansion to spherical harmonics is no longer valid when EW splittings are allowed $(1 \rightarrow 3 \text{ kinematics})$
- Reproduce lepton distribution $(p_T(I^+))$ with angular coefficients with reweighting
- Correct for binning effects
- Correct for NWA effects (from LO)
- NLO EW (off-shell) versus reweighted with A_i show good agreement (except first few bins)

¹²M. Pellen, R. Poncelet, A. Popescu, T. Vitos. arXiv:2204.12394

¹³M. A. Ebert, et al.. arXiv:2006.11382

Timea Vitos

High precision V+jet decay coefficients

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 00000000
 000000000
 000000000
 000000000

Summary and outlook

Summary

- **Z-boson:** Negligible NLO EW corrections for the Z-boson decay coefficients in high- p_T range
- **Z-boson:** In low- p_T range, electroweak non-closure effect might be a source of error
- W-boson: Significant few percent effects from NNLO QCD and comparable NLO EW corrections
- W-boson: Very different scale uncertainty bands for expanded and unexpanded versions

Future prospects

- **Z-boson:** Awaiting the 13 TeV results from ATLAS for Z+jet angular coefficients (reduced uncertainties?)
- W-boson: Resummation effects at low- p_T range for ATLAS
- Hopefully matching to parton showers (but expected to be small)

 Status for high precision matrix-element generators
 Decay coefficients for V+jet
 Z+jet at NLO EW
 W+jet at NNLO QCD+NLO

 000
 000000000
 000000000
 000000000
 000000000

Thank you for listening!

Collins-Soper frame

• $pp \rightarrow V + X \rightarrow l_1 l_2 + X$: in Collins-Soper frame⁷

 $\circ~$ Introduce polar and azmuthal angles θ_1, Φ_1 of quark compared to the hadron plane

• Angles θ, Φ are the angles of the (negatively charged) lepton I^-

⁷J.-C. Peng *et al.*, arXiv:1511.08932

Decay coefficient for Z+jet: results

- *p*_{T,Z}-distributions for *A*₁ at LO and NLO QCD (left) and NLO QCD+EW (right)
- Negligible electroweak corrections

Decay coefficients for Z+jet: results

*p*_{T,Z}-distributions for *A*₂ at LO and NLO QCD (left) and NLO QCD+EW (right)

Timea Vitos

Decay coefficients for Z+jet: results

*p*_{T,Z}-distributions for *A*₄ at LO and NLO QCD (left) and NLO QCD+EW (right)

 $\circ~$ Same -10% electroweak corrections

Timea Vitos

Decay coefficients for Z+jet: ρ -parameter

• The coefficients A_0, A_1, A_2 are not affected by the weak mixing angle

Decay coefficients for W+jet: results

$\circ~$ The coefficients A_2 in various rapidity bins

Decay coefficients for W+jet: results

• The coefficients A₃ in various rapidity bins

Decay coefficients for W+jet: results

• The coefficients A₄ in various rapidity bins

